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ABSTRACT

Hypergraph Neural Networks (HGNNs) have achieved remarkable performance
in various learning tasks involving hypergraphs— a data model for higher-order
relationships across diverse domains and applications. However, the scalability
of HGNNSs is limited by the computational and memory demands incurred by
dense hypergraph structures. Existing unsupervised sparsifiers address the scala-
bility issue but sacrifice downstream predictive performance. To address this, we
propose EdgeMask-HGNN, a novel framework that introduces a learnable, task-
aware sparsification mechanism to reduce the hypergraph size while preserving
predictive performance. EdgeMask-HGNN offers two distinct masking: a fine-
grained node-hyperedge masking and a coarse-grained hyperedge-level masking,
both trained end-to-end using supervision from the downstream task. We pro-
vide theoretical analysis showing that our approach (i) yields stable model outputs
under stochastic masking, and (ii) ensures convergence of retention probabilities
under gradient descent. Extensive experiments on multiple node classification
benchmarks demonstrate that EdgeMask-HGNN reduces or maintains memory
usage on both small- and large-scale hypergraphs without sacrificing accuracy,
and in some cases outperforms HGNNs trained on full hypergraphs. EdgeMask-
HGNN also consistently outperforms unsupervised sparsification baselines such
as random, degree-based, and spectral sparsification.

1 INTRODUCTION

Hypergraph Neural Networks (HGNNs) have emerged as powerful tools for learning on hyper-
graphs, where a single edge can connect multiple nodes (beyond pairwise connections), unlike
traditional graphs. There are numerous real-world instances of such relations involving multiple
entities: set of researchers collaborating on a paper (Han et al.,[2009)), set of products purchased in a
shopping cart (Xia et al.| 2021}, group of legislators co-sponsoring a bill (Benson et al.,|2018), or set
of molecules participating together in biological processes (Gaudelet et al.| [2018)). With the rapid
growth of data, the scale of real-world hypergraphs has also expanded dramatically. For instance,
the open-source bibliographic database OpenAlex has ~209 million scholarly works (hyperedges)
from ~13 million authors (node) across more than 450 topicsﬂ A wide range of learning problems
arises in this setting, from node classification (Yadati et al., [2019} Duta et al., [2023)) to node clus-
tering (Chodrow et al., [2021) to hyperlink prediction (Yadati et al., [2020). HGNNs have proven to
be effective for addressing these tasks, demonstrating strong empirical performance across diverse
domains such as social networks (Wang et al.,|2018]), recommendation systems (Wang et al.,|2021)),
and bioinformatics (Deng et al., [2024).

Despite the success of Hypergraph neural networks, they incur high computational and memory
complexity in terms of scaling to large-scale hypergraphs due to dense incidence structures. These
costs arise from sparse-dense matrix multiplications during message-passing and the storage of in-
termediate activations during forward and backward passes. Sparsifying the hypergraph by pruning
redundant node—hyperedge links offers a promising solution by significantly reducing computational
and memory overhead while retaining key structural information.

'"https://en.wikipedia.org/wiki/OpenAlex
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Figure 1: A synthetic 3-uniform hypergraph (#nodes=30,#edges=134) with their (x,y)-coordinates in
R? as ground truth node features (left). 50% hyperedges were pruned to learn node embeddings via
EdgeMask-HGNN (middle) and via Random sparsification (right). The node embeddings learned
by EdgeMask-HGNN are well separable, and more aligned with the true class separation.

A naive way to sparsify would be dropping hyperedges uniformly at random, often termed as ran-
dom sparsification in graph literature (Das et al.| 2025)). However, this method does not exploit the
structure of the hypergraph. Inspired by graph literature, degree-proportionate sampling (Leskovec
& Faloutsos| [2006) samples nodes based on their degree in the hypergraph, constructing a sparse
subhypergraph. However, this method may not preserve the spectral properties of the hypergraph
and may remove nodes that are important for message passing for downstream tasks. spectral spar-
sifiers (Soma & Yoshida, 2019) sample nodes based on hypergraph effective resistance to preserve
eigenvalues and eigenvectors of the original hypergraph. However, this approach may preserve task-
irrelevant hyperedges since it does not exploit label information.

Our contributions. (I) In this paper, we propose EdgeMask-HGNN to fill this gap of a lack of
task-specific sparsification in HGNNs. EdgeMask-HGNN offers two distinct masking strategies: a
fine-grained node-hyperedge masking and a coarse-grained hyperedge-level masking, both trained
end-to-end using supervision from the downstream task to facilitate task-aware sparsification. Un-
like unsupervised methods (e.g., random, degree-based, and spectral sparsification) that rely on
fixed hypergraph structures sampled a priori, EdgeMask-HGNN dynamically selects a subset of
hyperedges during training that helps the downstream HGNN perform better on the learning task.
Figure[T]highlights the importance of leveraging task-specific signal during sparsification: under the
same sparsification budget, embeddings learned by EdgeMask-HGNN yield better class separation
than the random sparsifier that does not utilize label information.

(II) We theoretically analyze EdgeMask-HGNN to show that it has a probabilistic interpretation
in terms of sampling the mode of the distribution over sparse subhypergraphs. We also show that
the sparsification (a) produces stable model outputs, and (b) has an O(1/¢) convergence rate to an
e-confidence threshold on the learned retention probabilities.

(III) Empirical evaluation and analysis show that EdgeMask-HGNN is more effective than alterna-
tive sparsifiers such as random, degree distribution-based, and effective resistance sparsifiers, while
also being competitive or superior in terms of memory and runtime. Compared to training on the full
hypergraph, EdgeMask-HGNN sacrifices little accuracy and often achieves better predictive perfor-
mance, while maintaining or reducing memory usage on both small- and large-scale hypergraphs.

2 RELATED WORKS

Hypergraph Neural Networks (HGNNs). [Feng et al.| (2019) proposed HGNN by generalizing
spectral graph convolutions to hypergraphs through the hypergraph Laplacian. Subsequently, sev-
eral variants have been proposed, such as HyperGCN (Yadati et al.| 2019), and HNHN (Dong et al.,
2020). HyperGCN reformulates hypergraph convolution using clique expansion, and HNHN intro-
duces attention mechanisms for hyperedge importance. spatial HGNNs typically define two-stage
message aggregation: node to hyperedge and hyperedge to node. HyperSAGE (Arya et al., |2020),
HGNN+ (Gao et al.l [2022), and UniGCN (Huang & Yang, 2021) belong to this category. Re-
cently, (Chien et al.| (2021) showed that propagation rules of many existing spatial HGNNs can be
represented as a composition of two multiset functions, and proposed two different multiset en-
coding functions: DeepSets and SetTransformer. In addition, several recent frameworks, such as
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Wang et al.| (2025); [Saxena et al.| (2024])), focus on general and expressive message-passing designs
for hypergraphs. Our work targets resource-efficient learning by identifying and preserving only
task-relevant hyperedges, making it a practical augmentation for such general-purpose designs. In-
terested readers may refer to recent surveys for a more in-depth discussion on HGNNs (Antelmi
et al.l [2023; |[Kim et al.,|2024).

Unsupervised and Spectral Hypergraph Sparsification. Graph sparsification has a long legacy,
starting with [Benczur & Karger| (1996) for preserving cuts via edge sampling. Subsequently, sig-
nificant progress was made by |Spielman & Teng| (2011)) and [Spielman & Srivastaval (2008), who
introduced spectral sparsification via effective resistance. These methods ensure that a small subset
of edges preserves global graph properties. Among earlier works on hypergraph sparsification, |De-
veci et al.| (2013) proposed hyperedge sampling heuristics to reduce hyperedges while preserving
cut structure for hypergraph partitioning tasks. Going beyond heuristics, |Soma & Yoshidal (2019)
extended spectral sparsification to hypergraphs, defining a nonlinear Laplacian quadratic form and
constructing e-spectral sparsifiers of size O(n3/€?) in polynomial time. Subsequent works such as
Bansal et al.| (2019); |[Kapralov et al.| (2021); |Lee| (2023) attempted to improve this bound. Most
recently, [Kapralov et al.| (2022) proved a significant result showing that it is possible to obtain an
e-spectral sparsifier of linear size.

Unlike EdgeMask-HGNN, these methods are unsupervised in nature and do not incorporate node
labels into their sparsification decision. Since sparsification is done a priori to training, they are
downstream task-unaware. Hence, they may not be suitable for representation learning tasks on
hypergraphs that require preserving task-relevant hyperedges.

3 PROBLEM STATEMENT

We consider the semi-supervised node classification task on a hypergraph H = (V,E,X) =
(H,X), where V is the set of nodes, F is the set of hyperedges, H is the incidence matrix of
H, and X € R™*F is the node feature matrix. A hyperedge e € E is a subset of V.. Let Vz, Viy
be the set of labeled and unlabeled nodes, respectively, and yr, € {1,...,C }|VL‘ be the label vector
for the labeled nodes. The goal is to learn a model fo« : Viy — {1,...,C?} that predicts labels for
nodes in Vi based on the labels y;, of the labeled nodes by minimizing a loss function L, (e.g.
cross-entropy): 6* = argming Leasx(fo(H, X),yz) .

Given an budget, the goal of supervised sparsification is to construct a sparse hypergraph H =
(H, X) such that the prediction accuracy of the downstream task can be preserved or even improved
by using H (instead of ) as input. This can be formulated as the following optimization problem:

0" = arg;nin Etask(f@(ﬁv X)7 yL)7

where H is the masked incidence matrix produced by a learnable sparsification module. The down-
stream task loss could be any classification loss, e.g., the cross-entropy loss:

1 ] )
Lop =~ > YiclogV,e,

veVy c=1

where Y,,. indicates the true probability of node v belonging to class ¢ € C, and the predicted
probabilities expressed as Y = fe(I:I ,X). Due to the uniqueness of hypergraphs, the budget
constraint could be in the form of # incidence-pairs or # hyperedges. Let k£ denotes the #node-
hyperedge connections retained after sparsification. As edges in a hypergraph may contain more
than 2 nodes, we shall denote by « the corresponding #hyperedges retained after sparsification. We
denote the # node-hyperedge connections before sparsification by t = > _;,[e].

4 EDGEMASK-HGNN: LEARNABLE HYPERGRAPH SPARSIFICATION

In this section, we introduce EdgeMask-HGNN, a task-aware, learnable sparsification framework
for hypergraph neural networks. The main idea is to devise a differentiable module that can learn
to selectively mask hyperedges based on their relevance to the downstream learning task. Unlike
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Figure 2: EdgeMask-HGNN on a small example where a task-irrelevant edge (red) is pruned.

prior hypergraph pruning methods that use fixed heuristics, EdgeMask-HGNN is trained end-to-end,
allowing the model to jointly optimize both the hypergraph structure and parameters of HGNNs.
Figure [2]illustrates the schematic of EdgeMask-HGNN with an example.

Since hyperedges may contain more than two nodes, two types of learnable masking strategies
emerge: Incidence-level Masking and Edge-Level Masking. Incidence-level Masking learns a score
for each (node, hyperedge) pair in the hypergraph, whereas Edge-Level Masking learns a score for
each hyperedge. The scores are used to compute the sparsified hypergraph, which in turn is used to
train the downstream HGNN. Based on the task loss of the downstream HGNN, the gradients are
backpropagated down to compute the updated incidence-level or edge-level scores.

4.1 FINE-GRAINED INCIDENCE-LEVEL MASKING (EHGNN-F)

Fine-grained incidence-level masking focuses on learning a soft selection probability for individual
node—edge connections so as to achieve a fine-grained control over the sparsified hypergraph struc-
ture. For each incidence pair (v, e), we maintain a learnable score parameter s,, ., which is converted
to a soft selection probability as

Pve = U(Sv,e)/ Za(sv,e)a (1)

where o is the sigmoid function. p = (p,) can be interpreted as the marginal probabilities of
a categorical distribution over all incidence entries, from which we aim to sample a prescribed
number of active pairs, denoted by constraint k. In other words, if the sparsifier samples (v, ), the
hard binary mask 7, . = 1 and 0, otherwise. Mathematically,

mm ~ Top-k Categorical(p), vave =k. 2)

This sampling process is not differentiable during the backward pass. To enable differentiable learn-
ing, we apply a straight-through estimator (Bengio et al.}|2013). During the forward pass, we com-
pute p, . for each node-edge pair and use top-k sampling to generate a hard binary mask 772, .,
where only the top-k values are retained. During the backward pass, we define the final mask as:

My e = stop_grad(My ) + Py, — stop-grad(py e ). 3)

This ensures that the forward pass uses the hard mask 77, ., while the backpropagation treats it as if
it were the continuous probability p, ., allowing gradient-based optimization. The sparse matrix is:

H=HoM, 4)

where M € {0, 1}"*"™ is the sampled incidence-level mask, and © indicates element-wise multipli-
cation. To avoid notational conflict, in subsequent theoretical sections we define P € [0, 1]™*™ as
the matrix of marginal retention probabilities, and write: M ~ g(M | P) to denote a probability
distribution over binary incidence matrices, where P specifies the marginal inclusion probabili-
ties such that p, . = P(M, . = 1). A realization of this random variable (M) is denoted by

M € {0,1}"*™, used in the sparsified incidence matrix H (Equation .
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Variant of EHGNN-F conditioned on node features. EHGNN-F is feature-agnostic, each
node-hyperedge incidence (v, e) has a free learnable parameter s, ., which do not depend on node
features, rather they are optimized via task loss. In semi-supervised setting, this may cause only the
incidences near labeled nodes to benefit from supervision. To address this issue, feature-conditioned
EHGNN-F (EHGNN-F (cond.)) learns the scorer as a parameter of node features as follows:

Sv.c = MLP(X, || X.), (5)

where X, is the feature vector of node v and the aggregated embedding of hyperedge e is

X, = ﬁ > vece Xv. The shared MLP parameters allow limited labeled nodes to shape sparsifi-
cation decisions across the whole hypergraph, alleviating the lack of supervision issue.

To summarize, EHGNN-F promotes competitive selection among node—edge connections, which
ensures that only the most informative relationships are retained under a global sparsity constraint.
This selective pressure improves the model’s ability to identify task-relevant structure while avoiding
over-retention of redundant or noisy incidences.

4.2 COARSE-GRAINED EDGE-LEVEL MASKING (EHGNN-C)

Although Incidence-level masking allows fine-grained control, it may result in a large parameter
size since the network keeps one parameter per incidence pair. Coarse-grained Edge-Level masking
alleviates this by maintaining one parameter per edge. For instance, if the input hypergraph is k-
uniform (every edge contains k nodes), edge-level scoring reduces the model parameters by k.

The learnable edge score parameter s is converted to soft probabilities via sigmoid function:

Pe = 0(58)/ 20(56) (6)

We treat p = (p.) as the marginal probabilities of a categorical distribution over all hyperedges and
sample binary hyperedge masks from it:

m ~ Top-k Categorical(p), Zme = K.
e

The binary mask m, € {0,1} determines whether the hyperedge e is retained or dropped. This
allows efficient sparsification of hyperedges with a low-parameter overhead and is especially well
suited for large-scale hypergraphs. The sparsified incidence matrix becomes:

H=Ho1,m", (N
where 1,, € R" is a vector of ones, m? € R'X™ is the binary mask.

Variant of EHGNN-C conditioned on node features. EHGNN-C is feature-agnostic, each edge
has a free learnable parameter s., which do not depend on its constituent node features. In semi-
supervised setting, this may cause only the edges containing labeled nodes to benefit from supervi-
sion. To address this issue, feature-conditioned EHGNN-C (EHGNN-C (cond.)) learns the scorer
as a parameter of node features using a permutation-invariant operator, such as mean pooling:

~ 1 ~
X, = el ZXU, Se = MLP(X,) (8)

vee

Training and Inference. The masked incidence H is passed into any HGNN architecture (e.g.,
HyperGCN, UniGNN, etc.) and trained end-to-end with a task loss Li,¢. This yields a sparse hy-
pergraph H adapted to the node classification task. During inference, instead of stochastic sampling,
we use deterministic top-k (or top-«) selection from p to select incidences (or edges) of H.

Unlike prior sparsification approaches for graphs or hypergraphs, EdgeMask-HGNN introduces a
fully learnable, task-aware sparsification module at two granularities, operating end-to-end with
downstream supervision. The fine-grained variant (EHGNN-F) allows localized selection of in-
formative node—edge connections, while the coarse-grained variant (EHGNN-C) offers a more
parameter-efficient alternative by scoring entire hyperedges via permutation-invariant pooling. Al-
though masking strategies have been explored in the graph sparsification literature, such as L-based
sparsifiers (Ye & Ji,[2021), EdgeMask-HGNN addresses the unique structure of hypergraphs, where
sparsification potentially operates over exponentially many possible incidence patterns.
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5 THEORETICAL GUARANTEES

We provide a formal analysis of EHGNN-F by examining stability, and convergence behavior. The
proofs are presented in the Appendix for brevity.

Stability and Robustness. We prove that the model output remains stable under stochastic masking.
Let p, . € [0, 1] represent the marginal probability of retaining the connection (v, €). A binary mask
M € {0,1}"*™ is sampled as a realization of a random variable M ~ ¢(M | P). Eachrealization

corresponds to a subhypergraph H = H © M, and defines a distribution over the subhypergraphs.

Theorem 5.1 (Perturbation Stability). If the HGNN fo(X,-) is L-Lipschitz w.r.t. the Frobenius
norm,

E [||fo(X. B) = foX.EHD)|| | <L+ [ H2poe(1 = Do) ©

v,e

Here the expectation E[H] quantifies the average connectivity across sparsified subhypergraphs
sampled from the model. This theorem suggests that, as the learned mask becomes more determin-
istic (py,e — 1 or 0), the model’s output becomes more stable.

Convergence of retention probabilities p, ..

Theorem 5.2 (Convergence of Fine-Grained Mask Parameters). Let the mask be defined by proba-
bilities P = o (S) € [0, 1]"*™, where each entry p, . = 0(sy,) is a sigmoid-transformed logit.

If the gradient of the loss with respect to each p,, . maintains a fixed sign and the logits are updated
via gradient descent, then for any small € > 0, the time to convergence (either p, . < € OF Py >
1 —¢€) follows

7>0(1/e)

This theorem suggests that one can ensure p, .(7) reaches within € of its limiting value or at least
(1 — €); it suffices to train for #epochs proportional to 1/e.

6 EXPERIMENTS

We focus on semi-supervised node classification task in the transductive setting. Note that, we
have also evaluated EdgeMask-HGNN on unsupervised node clustering task (see Appendix [G). We
randomly split the nodes into training/validation/test samples using 50%/25%/25% splitting per-
centages |(Chien et al.|(2021). Unless stated otherwise, we have used HGNN (Feng et al., 2019) as
a backbone in our implementation. We follow (Chien et al.,| (2021) to set the hyperparameters of
various base HGNN models. We average the results of 10 experiments using multiple random splits
and initializations. All experiments are run on a system with 1 TB RAM and NVIDIA H200 GPU
with 141 GB of HBM3e memory.

Datasets. The hypergraph datasets and their statistics are presented in Table |1} It includes 3 re-
cently proposed heterophilic benchmarks (Actor, Twitch, Pokec) from |Li et al.| (2025). The rest
of the datasets are well-known in the hypergraph learning literature, originating from works such
as|Yadati et al.| (2019); (Chien et al.|(2021) where they are discussed in detail.

Baselines. The baseline algorithms include i) Full: the HGNN model is trained on the entire hy-
pergraph, ii) Degdist: top-k nodes are sampled from the distribution Top-k Categorical(d) with
d, being the normalized degree of node v. All node, hyperedge connections involving the sampled
nodes are kept in the sparsified hypergraph, iii) Random: drops a node-hyperedge connection (u, €)
if an i.i.d uniform random variable r ~ U[0, 1] satisfies r < k/|F|, and finally, iv) Spectral: We
sample top-~ hyperedges based on their effective resistance. We approximated effective resistance

Table 1: Dataset statistics.

Cora Citeseer Pubmed Cora-CA DBLP-CA 20News Mushroom NTU2012 ModelNet40  Yelp  House Walmart Actor Twitch Pokec

V] 2708 3312 19717 2708 41302 16242 8124 2012 12311 50758 1290 88860 16255 16812 14998
|E| 1579 1079 7963 1072 22363 100 298 2012 12311 679302 341 69906 10164 2627 2406
#feature 1433 3703 500 1433 1425 100 22 100 100 1862 100 100 50 7 65
#class 7 6 3 7 6 4 2 67 40 9 2 11 3 2 2
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R(e) = Y, (LT), forefficiency purposes. Here L indicates the Moore-Penrose pseudoinverse
of the Hypergraph Laplacian (Zhou et al., 2006). Note that there are no task-relevant methods in
the HGNN literature, hence our comparison had to be limited to unsupervised approaches. The
model parameters, hyperparameters of the algorithms, ablation studies, convergence of retention
probabilities, and node-clustering experiments can be found in the Appendix. Our source codes:
https://github.com/toggled/ehgnnl

6.1 EXPERIMENTAL EVALUATION

I. Effectiveness and Scalability. Table [2| highlights the effectiveness of EdgeMask-HGNN over
the baselines. We observe several things:

Supervised vs Unsupervised sparsifiers: On most datasets, EHGNN variants consistently outperform
Random and degree-based sparsification. This highlights the importance of task-aware learning
of sparsification masks, which can retain task-relevant incidences or hyperedges while discarding
noisy ones. On large-scale datasets, spectral methods face memory issues, which highlight the
computational challenges to preserving the Laplacian spectrum.

Full training vs Sparsification: On several (8 out of 15) datasets, EdgeMask-HGNNs actually out-
performs full HGNN training, such as ModelNet40, Actor, DBLP-CA, House, Pokec, Pubmed,
Walmart, and Yelp. This demonstrates that pruning of irrelevant pairs can enhance generalization
by improving the signal-to-noise ratio during message passing.

Fine-grained vs Coarse-grained EdgeMasking and variants: EHGNN-C is slightly better than
EHGNN-F, often outperforming on datasets like 20news, CiteSeer, Cora, Cora-CA, DBLP-CA, and
PubMed. Since co-authorship and co-citation datasets contain semantically coherent hyperedges
(papers) and rich bag-of-words features, the model does not need fine-grained incidence-level filter-
ing to extract meaningful training signals. Instead, pruning at the hyperedge level is sufficient. In
contrast, EHGNN-F excels on ModelNet40, NTU2012 (where class counts are large), and Walmart,
House, Actor, and Pokec, where hyperedges are more noisy, and may group together items or people
that aren’t strongly related to the prediction task. In such conditions, fine-grained incidence pruning
provides a stronger signal-to-noise filtering.

II. Memory efficiency. Table [3| reports peak GPU memory across methods at the same sparsity
budget. Note that, peak GPU usage during HGNN training is dominated by activations (messages,
pooled edge features, and autograd buffers) that scale with # incidences after sparsification £ =
> _ec7; lels and feature dimension d, not by the parameter overhead (see Table@ Appendix .

On small-scale datasets: On small datasets, all methods exhibit similar peak memory because the
entire incidence structure fits comfortably on a GPU. The incidence and hyperedge counts are not
large enough to pose scalability challenges, thus, sparsification strategies bring little practical dif-

Table 2: Accuracy (= std) across different datasets for each algorithm at sparsity = 50%. OOM=0Out-
of-Memory. Bold (underline) denotes the best (2nd best) result per dataset not counting Full.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor CiteSeer Cora-CA DBLP-CA
Full 8140 £0.04 94.88+0.06 97.76 031 87.67+0.24 6458+0.03 69.93+046 8225+022 91.14+0.04
Random 5526 +£0.66 6403+ 1.01 84.19+125 59.80+255 6586+0.67 2729+ 1.14 42.72+333 52.63+1.90
Degdist 59.02+£0.60 5025+ 1.05 74194125 4453+145 63.57+0.16 40.39 £020 52.64+2.68 57.64+0.26
Spectral 72.80 +£0.02 8253+0.03 97.74+0.12 6545+043 63.93+003 3585+028 64.14+0.28 OOM

EHGNN-F 78.00 £0.04 9525+0.08 96424041 87.40+0.18 7699 +0.03 67.92+043 79.38+0.39 88.0040.10
EHGNN-C 81.10 £0.28 9490+0.08 9623 £1.13 87.36£0.30 74.07£0.05 69.03+0.33 82.25+0.28 91.33 £ 0.04
EHGNN-F (cond.) 78.54 £0.08 95.52+0.05 9492+0.61 87.28+0.54 78.75+0.04 6843+048 7595+059 86.28+0.09
EHGNN-C (cond.) 74.82+£0.26 94524+0.10 97.46+0.30 8533+£041 77.55+£0.04 67.05+£0.16 7539+£0.34 87.11£0.18

Cora House Pokec PubMed Twitch ‘Walmart Yelp Avg. Rank
Full 78.35+0.34 73.99+044 585540.05 85.61+0.05 51.22+005 9478 £0.02 30.48+0.68

Random 41.57+£128 61.73+£0.71 53344029 46.24+031 49.88+0.78 5570+£0.20 29.78+0.28 6.29
Degdist 59324+ 1.01 5214 £5.18 54.15+0.05 49.04+£0.03 50.44+0.59 5628+0.14 27.82+0.65 6.00
Spectral 56.90 £0.12  57.59+0.54 52.924+0.06 49.074+0.00 51.05+0.12 65.90+0.03 OOM 5.21
EHGNN-F 7400 £043 87.934+022 5870 £0.04 8559 £0.03 50.67£0.03 95.16£0.01 30.57 £ 0.46 2.58
EHGNN-C 77.52£028 7474+£0.17 5846+0.09 85.69+0.05 51.10+0.04 93.72+£0.09 30.12+0.60 2.21
EHGNN-F (cond.) 73.65+0.44 100.00 + 0.00 59.14 +0.07 85.55+0.07 50.89 +0.04 98.38+0.01 29.13 4+ 0.44 243
EHGNN-C (cond.) 75.86 £0.47 73.07+0.95 59.01 £0.05 8548+0.04 50.67+0.03 9473+£0.04 29.17+0.18 3.29
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Table 3: Maximum GPU memory usage (in GB) across datasets for each algorithm at sparsity =
50%. Avg. Rank computed over all datasets with OOM (Out-of-memory) treated as the worst rank.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor CiteSeer Cora-CA DBLP-CA
Full 1.3+£00(13) 1.3£00(1.3) 1.0£0.0(1.0) 0.9+£0.0(0.9) 1.1£0.0(L.1) 0.9 £0.0(0.9) 0.9 £ 0.0 (0.9) 3.940.03.9)
Random 1.0+£0.0(1.0) 1.0£0.0(1.0) 09£0.0(0.9) 08=£0.0(0.8) 1.0 £ 0.0 (1.0) 0.9 +£0.0 (0.9) 0.8 £0.0(0.8) 1.5+ 0.0 (1.5)
Degdist 1L1£0.0(1.1) 1.1£0.0(1.1) 09+0.0(0.9 0.8+0.0(0.8) 1.1 £0.0 (1.1) 0.9 +0.0 (0.9) 0.8 +£0.0(0.8) 1.5+ 0.0 (1.5)
Spectral 80+0.1(81) 77+£14(85 30£01(3.00 12+£00(1.2) 120£2.1(13.3) 1.5+£0.0(L5) 1.3+£0.0(1.3) 64.6 £ 19.8 (76.1)
EHGNN-F 1L1+£00(L.1) 1L1£00(1.1) 1.0£0.0(1.0) 08=£0.0(0.8) 1.1 £0.0 (1.1) 0.9 +0.0 (0.9) 0.9 +£0.0(0.9) 1.7 +£0.0 (1.7)
EHGNN-C 12+£0.1(1.3) 1.2£0.1(1.2) 1.0£0.0(1.0) 0.9=£0.0(0.9) 1.2+0.1(1.2) 0.9 +£ 0.0 (0.9) 0.9 +£ 0.0 (0.9) 23405 (2.6)
EHGNN-F (cond.) 1.1 +£0.0(1.1) 1.14+0.0(1.1) 1.0+0.0(1.0) 0.8+0.0(0.8) 1.1£0.0(1.1) 1.1£0.0 (1.1) 0.9 £ 0.0 (0.9) 5.54+0.0(5.5)
EHGNN-C (cond.) 1.1£0.0(1.1) 1.1£0.0(1.1) 1.0+0.0(1.0) 0.8+0.0(0.8) 1.1 +£0.0 (1.1) 0.9 +0.0 (0.9) 0.9 +£0.0(0.9) 24400 24)
Cora House Pokec PubMed Twitch Walmart Yelp Avg. Rank
Full 09+£0.0(0.9) 0940.0(0.9) 1.0+00(1.0) 12+0.0(1.2) 1.0 £ 0.0 (1.0) 13.3£0.0(13.3) 98.9 £21.2(111.2) 4.25
Random 0.8+0.0(0.8) 08+0.0(0.8) 09+00(0.9) 1.0+0.0(1.0) 0.9 £0.0(0.9) 52+0.7(5.6) 38.9£0.1(38.9) 1.92
Degdist 09+0.0(0.9) 08+0.0(0.8) 09£0.0(0.9) 1.1£00(1.1) 0.9 +£0.0(0.9) 8.0 +0.0 (8.0) 104.4 4 48.1 (130.1) 2.83
Spectral 1.3+£00(13) 1L1£00(1.1) 86412(93) 155£25(17.0) 104+ 1.4(11.3) 1358 +£22(1352) OOM 7.75
EHGNN-F 09+0.0(09) 08+00(0.8) 10£00(1.0)0 11£0.0(L1) 1.0 £ 0.0 (1.0) 72+0.0(72) 110.0 4 47.2 (135.7) 3.00
EHGNN-C 09+0.0(0.9) 09+00(0.9 10£00(1.0) 1.2£00(1.2) 1.0 £ 0.0 (1.0) 7.4 +0.0(7.4) 104.9 £22.3 (117.8) 3.50
EHGNN-F (cond.) 0.9 +£0.0(0.9) 0840.0(0.8) 1.0+00(1.0) 12+0.0(1.2) 1.0 + 0.0 (1.0) 7.1+0.0(7.1) 138.2+ 0.3 (138.1) 3.83
EHGNN-C (cond.) 0.9 +£0.0(0.9) 0840.0(0.8) 1.0+0.0(1.0) 1.1£0.0(1.1) 1.0+0.0(1.0) 833+655(101.7) 118.1+37.3(139.5) 3.92

ference in this regime. We also find that Spectral methods require noticeably large memory in this
regime.

On large, but less-dense hypergraphs (DBLP-CA, Walmart): The differences emerge clearly on
large hypergraphs where the activations dominate the memory footprint. Spectral sparsification
is the most memory-hungry due to Laplacian computations on dense adjacency matrix. Random
and degree-based pruning yield good memory savings, but their accuracy significantly degrades
compared to Full training. EHGNN-F and EHGNN-C are better alternatives, since with a similar
memory footprint as Random and degree-based pruning, they yield better accuracy.

On large, but more-dense hypergraph (Yelp): As density increases, the additional buffers for mask
parameters and stochastic sampling cause peak activation memory to also increase. As a result, all
EHGNN variants consume more memory than the full HGNN on Yelp. The effect is pronounced
for feature-conditioned variants, where pooling and scorer MLPs introduce extra activations, while
coarse EHGNN-C without conditioning shows smaller overhead but still exceeds the Full baseline.

Fine- versus coarse-grained masking: Among our methods, EHGNN-F attains the best average rank
(3.00) and shows the most stable reductions overall, since incidence-level pruning directly lowers
the number of active node—edge pairs k. EHGNN-C (3.50) can also save memory by keeping fewer
parameters and retaining smaller edges, but due to randomness in sampling, sometimes it may cause
large activations (large k) by retaining large edges, consequently increasing the memory footprint.

To summarize, memory footprint is determined by the # retained incidences k and per-layer activa-
tions. EHGNN-F directly reduces k and is therefore the most reliable way to shrink peak memory.
EHGNN-C reduces m (#edges) but can retain large hyperedges, keeping k high. Feature condition-
ing at the hyperedge level adds pooling/MLP activations and can further increase peak usage.

III. Accuracy/Runtime vs sparsity trade-off. We analyze the trade-off between accuracy (on
DBLP-CA) and sparsity due to edge pruning by our proposed EdgeMask-HGNN in Figure[3a] while
the impact of sparsity on the end-to-end runtime (Training + Evaluation time) is presented in Fig-
ure[3b] We observe that with more edges retained in the sparsification, the accuracy increases at the
cost of a higher runtime.

% 16 &
90 - - Full
< 1
9 g 5 5 == Random
hg:L] €14 S == Degdist
> 3
1% = ] EHGNN-F
© 13 =
< 86 k=] %) EHGNN-C
=1 < £
] w12 =
<o gu E
82 210 Zo.
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 Yelp Walmart DBLP-CA
% edges retained % edges retained Dataset

(a) Accuracy vs. Sparsity (b) End-to-end runtime vs. Sparsity (c) Training time
Figure 3: (a-b) Impact of sparsity on EHGNN-F’s performance (DBLP-CA dataset) (c) Training
time efficiency of the methods.

IV. Runtime efficiency. Figure [3c|compares the average training time/epoch across three large-
scale datasets. On Yelp, the full model incurs the highest cost (~0.17s), while EHGNN-F reduces
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Table 4: End-to-end execution time (in seconds) as mean =+ std across datasets for each algorithm at
sparsity = 50%.

Algorithms 20news ModelNet40 ~ Mushroom NTU2012 Actor Citeseer Cora-CA DBLP-CA
Full 1837 £037 1743+1.08 17.394+0.99 1698 +1.10 16.90+040 8.20+0.14 10.39 £ 1.11 12.75 £0.33
Random 17994+ 0.38 1690 £0.32 17.024+0.44 16.78 £0.26 16.91+0.32 7.57+£0.25 8.92 + 0.61 11.29 + 0.12
Deg 16.84+£0.40 17.10£0.32 16.96 £0.27 16924036 1835+0.55 7.76+£0.17 9.92 £0.63 12.43 +0.44
Spectral 7498 £030 4534+1.28 25174+1.02 1838+135 8838+021 842+0.19 10.66 = 1.26  18.64 £0.32
EHGNN-F 17.89 £0.49 1852+0.72 182240.79 18.06£0.72 1850 £0.79 9.16 £+ 0.49 10.84 £0.34  12.93 £0.70
EHGNN-C 17.50 £0.61 19.08 +0.34 17.52£0.34 1827+0.32 19284+0.19 8.86+0.24 11.15+0.79  13.76 £0.78
EHGNN-F (cond.) 19.18 £0.13 18394+ 046 18.15+0.47 1790 +044 1857+0.73 9.32+0.21 10.68 +0.43 14.51 +0.50
EHGNN-C (cond.) 16.22 +1.27 18534+0.37 18.15+£0.32 17894036 1849 +0.24 8.64+045 11.90+£0.62  13.77 £ 043
Cora House Pokec PubMed Twitch Walmart Yelp Avg. Rank
Full 1014 +£1.23 1823+ 1.13 1599+£1.09 17.254+0.77 11.58+£3.04 22824370 84.42+125
Random 894+039 17844026 7.62+047 17.61+046 7.98+0.93 19.30+0.35 3588+ 0.28 153
Deg 9.65+0.10 1601186 7.66+0.51 17.64+£0.34 12474402 20.19+£0.32 59.9542.60 2.13
Spectral 10.04 +026 1848 +£0.64 12.83+0.38 98.80+0.89 9.704+024 62.174+0.94 OOM 543
EHGNN-F 1141 £052 1736 +0.58 17.72+£029 18504+0.84 1258 +£3.32 20.844+0.57 41.97+£292 4.47
EHGNN-C 1028 £0.66 1791 +0.72 1591 +£228 17.954+0.30 1432+427 21.154+045 39.75+0.36 4.53
EHGNN-F (cond.) 10.95+0.34 19.11+0.56 17.904+0.73 18.56+£0.15 14.19+£3.93 21.794+0.71 162.61 £11.45 543
EHGNN-C (cond.) 11.43+1.02 17.734+026 17.71£1.12 18.13+£0.26 11.6043.38 22.524+0.73 109.33 +36.23 4.37

Table 5: Comparing various state-of-the-art HGNNs and their EHGNN-F enhanced counterparts
(sparsity = 50%).

Models Actor Cora Cora-CA House ModelNet40 NTU PubMed

AllSetTrans. 68.77 £0.60 76.93 +0.41 83.34 +0.77 100.00 = 0.00 97.80 + 0.07 90.30 + 0.71 88.58 + 0.12
AllSetTrans.+EHGNN-F 8573 £0.36 76.54 £ 0.75 79.41 £0.44 9994+ 0.14 9743 +0.11 88914043 8849 +£0.16
CE-GAT 70.84 £4.40 7439 £0.67 73.26+0.54 96.78£2.69 90.65+0.15 7833 +1.13 84.76 & 0.16
CE-GAT+EHGNN-F 74.67 £1.76 73.65+0.70 73.83+1.15 99.57 +£0.28 92.27 +£0.29 7746+ 1.06 84.45+0.69
CE-GCN 5727 +£0.37 5251 £0.19 50.66+0.40 51.98+0.39 4321 +£0.37 35204043 61.01+0.06

CE-GCN+EHGNN-F 62.76 = 0.03 53.29 £0.12 5244 +0.49 52.63 +0.31 44.58 £0.62 35.55+0.45 61.08+0.05

training time substantially, with Random being the fastest. On DBLP-CA, the EHGNN variants
take slightly longer than Full HGNN. This is because our methods introduce mask-learning steps
(scoring, sampling, straight-through estimation) that add a fixed computational overhead. Table [4]
shows that, on small datasets (ModelNet40, NTU2012, Cora, Citeseer), message passing itself is
inexpensive, so this additional overhead dominates, leading to a slightly higher runtime than Full.
On larger datasets, such as Walmart and Yelp, EHGNN achieves training times comparable to or
better than Full, as incidence-level sparsification reduces the dominant message-passing cost.

V. Adaptability to existing HGNNs. EdgeMask-HGNN is model-agnostic and easily adaptable to
different hypergraph architectures. To demonstrate this, we have employed EHGNN-F into AllSet-
Transformer, CE-GCN, and CE-GAT architectures |Chien et al.| (2021) and present the results in
Table[5] We observe that EHGNN-F achieves comparable and sometimes better performance across
these three HGNN backbones. This indicates that the sparsification mechanism is flexible and can
act as a plug-in module without significantly degrading existing HGNNs’ representational power.

7 CONCLUSION AND FUTURE WORKS

We introduced EdgeMask-HGNN, a novel task-aware sparsification framework that effectively re-
duces memory overhead without sacrificing predictive performance of HGNNs. We proposed two
learnable masking strategies: fine-grained masking and coarse-grained masking— both trained end-
to-end using feedback from downstream tasks. Furthermore, EdgeMask-HGNN is theoretically
grounded in terms of stability and convergence of the learned sparsifiers.

Extensive experiments across diverse and challenging benchmarks and multiple HGNN backbones
underscore the adaptability and effectiveness of EdgeMask-HGNN. In particular, the fine-grained
variant not only improves accuracy over full hypergraph training in many cases, but also achieves
slightly smaller execution time on large hypergraphs with a comparable memory footprint. Finally,
our approach consistently outperforms unsupervised and spectral baselines in accuracy, with a com-
parable or better memory footprint.
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APPENDIX

A THEORETICAL ANALYSIS

We first prove the following lemma that will be used later in Stability proof.

Lemma A.1 (Expectation of Masked Structure). Ler P € [0,1]"*™ be the matrix of marginal
inclusion probabilities, i.e., p, . = P(M, . = 1). Then,

E[H]=H & P.
Proof.
E[I:IU,E} = E[Hv,e . Mv,e}
= H’u,e . E[Mu,e}
= 1ye * Pv,e

= EH|=HOP

O

Theorem [5.1] (Perturbation Stability). If fo(X, ") is L—Lipschitz w.r.t. the Frobenius norm,

B |6k 2 - pox A | <

Z Hg,epv,e(l — Due)-
v,e
Proof. Since we assumed the HGNN fy to be L-Lipschitz,
1£o(X, H1) = fo(X, Ho)|[p < L - ||Hy — Hs|
for all incidence matrices H 1, H 2.
Let H = E[H]. As per Lemma E[H] = H © P. Thus
1fo(X. H) = fo(X,H)|lr < L-||H - H||r
Taking expectation
B [Ifo(X, H) — fo(X, H)|p| < L -Eg [IH - HIlF|
By Jensen’s inequality, for any matrix A
E[|A[] < VE[[A][]?]

E[|H — H||¢] < \/E[|H — H||3]

Since the entries ﬁv’e are independent:
E[(f{v,e - Hv,e)z] = Var[g’u,e} = H,ie : pv,e(l - pv,e)
It follows that,
B8 - H|}| = Varlfl,..] = Z 2 pue(l = pue)

Thus,

a [er(X, H) — fo(X, E[H))|F|

\/Z e Pue(l—pue)
O

12
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Theorem [5.2] (Convergence of Fine-Grained Mask Parameters). Let the mask be defined by proba-
bilities P = o (S) € [0, 1]"*™, where each entry p, . = 0(sy.) is a sigmoid-transformed logit.

If the gradient of the loss with respect to each p, . maintains a fixed sign and the logits are updated
via gradient descent, then for any small € > 0, the time to convergence (either p, . < € OF Py e >

1 — ¢) follows
1
€

Proof. Each probability p,, . € (0,1) is parameterized as a sigmoid function:

1

=0(Spe) = —
pv,e ( v,c) 1 T e—Sv.e
For simplicity, we ignore the normalisation of the scores. Its derivative with respect to the logit is:

dpy,e
dsy.e

= p’u,e(l - pv,e)

This gradient is positive and bounded by %, ensuring smooth and monotonic updates.
Using chain rule, the gradient descent update on the logit becomes

_ 'aﬁtask'dpv,e:_ ) Doe(l = Poe)
dr n apv’e dSy’e 7 Gu,e " Pu,e v,e)s

g — sign 8‘Ctask
o Opuve )

is assumed fixed throughout training. There are two cases to consider.

dsy,e

where

M gve>0. If g, > 0, the gradient descent step decreases s, ¢, pushing p, . — 0, which
implies (1 — p,,.) — 1. Hence we are in the low-probability regime, where we can approximate
Pu,e(l — Dye) = Py Thus,

dpv,e _ dpv,e ) dsv,e
dr dsye dr

= pv,e(l - pv,e) . (_ngv,epv,e(l - pv,e))
= 71791),6 (pv,e(l - pv,e))Q
~ —Ugv,epi,e

This is a first-order linear differential equation. Solving this differential equation yields

1
Pv,e = .
NGv,eT

To reach a desired threshold p, . < €, we solve:
1
NGgv,e€

T >

~ O(1/e).

D gy.e < 0.If g, . < 0, the gradient descent step increases s, ., pushing p, . — 1, which implies
(1 — py,e) — 0. In this high-probability regime, we can approximate p, (1 — pye) = 1 — pye.
Thus,

d(1 _pv,e) _ _dpv,e

dr dr
~ 77|g’u,e

(1 - pv,e)2

13
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Solving this differential equation yields
1
NGv,eT

1 — Puse ~

To reach a desired threshold 1 — p,, . < € = p, . > 1 — €, we require

1
T > ~ O(1/e)
NGv,e€

Thus, convergence to an e-confidence threshold is in O(1/¢). O

B COMPUTATIONAL COMPLEXITY

We compare the per-layer computational complexity of full HGNNs with our fine-grained (EHGNN-
F) and coarse-grained (EHGNN-C) sparsification variants. Let n,m,t, d, and k denote the #nodes,
#hyperedges, #node-hyperedge incidence pairs in H, feature dlmensmns and #node-hyperedge
incidence palrs in H respectively. TableE] shows that EHGNN-F reduces activation and computation
overhead via incidence-level sparsification, but incurs a higher parameter cost. EHGNN-C reduces
parameter overhead by scoring hyperedges via a shared MLP over pooled node features, sacrificing
fine-grained control for scalability. Both variants are more scalable than full HGNN.

Let, n = |V| denotes the number of nodes, m = |E| denotes the number of hyperedges, ¢ =
> ecr |e] denotes the number of incidence pairs (nonzeros in H € {0,1}"*™), d denotes the input
feature dimensionality, k£ denotes the number of retained node—edge pairs after sparsification, h
denotes hidden layer size, and x denotes the number of hyperedges retained after sparsification,
meaning, K ~ m.k/t.

Full HGNN. Node-to-edge and edge-to-node aggregations per layer is typically done via sparse
matrix—dense matrix multiplication (SpMM). In particular, node-to-edge aggregation is done via
HTX < R™*? to construct hyperedge embedding, while edge-to-node aggregation is done via
H(HT X) € R to construct embedding of the nodes in the next layer. Both aggregations has
a time complexity O(td). The space complexity to hold the intermediate results is O(¢d). This is
because there are ¢ non-zero entries in H, for each we need to conduct d elementwise multiply-add
operations. There is no additional parameter overhead involved in Full HGNN training.

Fine-grained masking (EHGNN-F). Time complexity: EHGNN-F incurs computational cost in
two main stages: sparsification and message passing. During sparsification, the model computes
sigmoid scores for all ¢ incidence logits in O(t) time. To select the top-k incidences, it uses top-
k Categorical sampling, costing O(tlog k). Once the top-k mask is applied, message passing is
executed over the reduced incidence matrix containing k incidence pairs. Each such pair involves
computations over feature vectors of dimension d, resulting in a total message passing cost of O(kd).
Summing these components, the overall time complexity per forward pass is: O(kd + tlog k).

Space complexity: The space complexity of EHGNN-F consists of both the memory required for
storing scores s, . and intermediate activations stored during the forward pass. First, the model
learns a scalar mask logit s,, . for every incidence pair (v,e), totaling O(¢) persistent memory. During
forward propagation, all ¢ scores are passed through a sigmoid and retained in memory for use in
the straight-through estimator, contributing an additional O(t) temporary memory. The model then

Table 6: Time and space (activation) complexity, and parameter overhead comparison. Here m =
|E| is the original # hyperedges, t = > |e] is the original incidence size, k ~ t.x/m indicates
the reduced incidence size after sparsification, and « indicates the #hyperedges after sparsification.

Method Time Space/Activation Param. overhead
Full HGNN O(td) O(td) None
EHGNN-F (Fine) O(tlogk + kd) O(t + kd) o(t)
EHGNN-F w/ cond. (Fine) O(tlogk + kd + td) O(t + kd) O(d?)
EHGNN-C (Coarse) O(td 4+ mlog k + kd) O(m + kd) O(m)
EHGNN-C w/ cond. (Coarse)  O(td +md? + mlog k + kd) O(m + kd) O(d?)
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Figure 4: Ablation study of hard mask sampling from soft probabilities.

selects the top-k incidences and performs message passing only over this pruned subset, requiring
storage of O(kd) for the selected node or edge features. Thus, the total space complexity is: O(t +
kd). This becomes prohibitive in large, dense hypergraphs where ¢ >> n, m; however, it is still more
efficient than Full HGNN’s space complexity O(td).

Parameter overhead: The parameter overhead in EHGNN-F originates from its fine-grained masks.
For each incidence pair, the model maintains a dedicated scalar parameter. This leads to a total
parameter count of: O(t).

Coarse-grained masking (EHGNN-C w/ cond.). Time Complexity: The runtime overhead of
EHGNN-C consists of edge scoring and sparse message passing. First, node features are aggregated
to hyperedges via H” X, requiring O(td) elementwise multiply-add operations. Then, the edge-
level MLP scores each of the m hyperedges in O(md?) time if a single-layer MLP is used. Selecting
the top-x edges costs O(mlog k). Finally, sparse message passing occurs over k incidence pairs
costs O(kd). Thus, the total time complexity per forward pass is: O(td + md? + mlog k + kd).
This reflects an efficient sparsification process, in particular for dense hypergraphs where the number
of hyperedges m < t.

Space Complexity: EHGNN-C requires memory primarily for intermediate activations and edge-
level mask scores. During message passing, only the top-« hyperedges are retained which contribute
to roughly k incidence pairs that participate in message passing. Thus, message-passing activations
are stored for k& node—edge pairs, each of feature size d, totaling O(kd). Additionally, the model
stores m scalar scores (s.) for edge selection, which adds O(m) space. The total space complexity
during forward propagation is: O(m + kd). This is significantly better than EHGNN-F’s space
complexity in dense hypergraphs where m < t.

Parameter overhead: The parameter overhead of EHGNN-C comes from its coarse-grained scoring
MLP, which is applied once per hyperedge. For a single shared MLP (across all edges), the num-
ber of parameters is O(d?), assuming one hidden layer. More importantly, the parameter count is
independent of the number of node-edge incidences ¢. This makes EHGNN-C far more parameter-
efficient than EHGNN-F, especially for large-scale hypergraphs with millions of incidences but only
thousands of hyperedges.

C PARAMETER SETTINGS OF EHGNN-C AND EHGNN-F

Recall that EHGNN-C (cond.) and EHGNN-F (cond.) passes the node features of the nodes in a
hyperedge to an MLP (shared with other hyperedges) to compute edge-level scores for each hyper-
edge. Table[7]reports the #neurons in the hidden layer of the MLP on various datasets. The reported
setting produced the best accuracy on the test set.
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Table 7: Parameter settings of EHGNN-C (cond.) and EHGNN-F (cond.)

Dataset # Hidden layers of MLP
20news 8
Actor 16
CiteSeer 16
Cora 32
Cora-CA 8
DBLP-CA 16
House 8
ModelNet40 16
Mushroom 32
NTU 16
Pokec 32
PubMed 32
Twitch 16
Walmart 32
Yelp 16

Table 8: Comparison (accuracy =+ std) of EHGNN-F and its variant without Probabilistic Normal-
ization across datasets.

Model 20news ModelNet40 Mushroom NTU2012 Actor Citeseer Cora-CA DBLP-CA

EHGNN-F w/o Norm.  77.96 + 0.10 9528 + 0.05 96.30 +0.49 87.28+0.42 76.82+0.21 70.87 £0.72 80.71 £0.43 88.44 + 0.08

EHGNN-F 7794+ 0.11 9524+0.07 96.35+0.41 87.40+0.18 76.68+0.14 7094 +0.37 80.77 +0.46 8837+ 0.07
Cora House Pokec Pubmed Twitch ‘Walmart Yelp

EHGNN-F w/o Norm.  75.92 +0.43 87.80+ 1.19 5876 +£0.03 85.57£0.07 50.71 £0.07 95.16+0.02 30.92 + 0.14

EHGNN-F 7542+ 0.57 87.93+0.22 58.82+0.09 8559+0.03 50.72+0.11 9517 +0.02 30.57+0.46

D ABLATION STUDIES

We analyze the various design choices for EHGNN-F. To that end, we conduct two studies: (a)
whether it is worth normalizing o (s, . ) during the computation of probabilities p, ., and (b) whether
the Bernoulli sampling performs better than Top-k Categorical sampling.

(a) In Table[8] we observe that in most of the datasets (9 out of 15), normalization slightly helps
improve the performance. As normalization is a constant-time operation, we decided to do so in
EHGNN-F for an additional boost in performance. (b) In Figure ] we find that the Bernoulli sam-
pling, along with enforcing the budget constraint via L2 regularization, does not boost accuracy,
but rather consumes more memory. Thus, instead, we opted for Top-k Categorical sampling in
EHGNN-F.

E ADDITIONAL EXPERIMENTS

E.1 EFFECTIVENESS ON HETEROPHILIC HYPERGRAPHS.

Li et al.| (2025) proposed a synthetic dataset containing hypergraphs with various homophily ra-
tios. We compare EHGNN-F and EHGNN-C with this dataset to understand the effectiveness of
EdgeMask-HGNN on heterophilic hypergraphs. The results are presented in Figure [5]

On heterophilic hypergraphs (e.g., homophily ratio = 0.3), where connected nodes often have dis-
similar labels, EHGNN-F slightly outperforms EHGNN-C. This suggests that a more flexible fine-
grained masking may better preserve diverse cross-class connections, which are important for in-
formation propagation in heterophilic settings. In contrast, EHGNN-C may prematurely prune such
informative edges due to its more selective sparsification criteria. The performance of EHGNN-C
becomes slightly better than EHGNN-F as hypergraphs become more homophilic (e.g., homophily
ratio = 0.9).
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Figure 5: Performance of EdgeMask-HGNN on hypergraphs with various node homophily ratios.
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Figure 6: Analysing the retention probabilities of EHGNN-F on Cora (sparsity = 1%)

E.2 CONVERGENCE OF RETENTION PROBABILITIES.

We analyze the retention probabilities p, . in EHGNN-F to better understand their convergence
behavior. Figure EI presents the results regarding (a) the standard deviation of pq(,t)e across epochs ¢

(left plot), (b) the mean pq(,t)e across epochs ¢. (middle plot), and (c) the proportion of epochs where
the pairs (v, e) were selected to be in the top-k (right plot).

(a) From the left plot, we observe that the vast majority of (v, e) pairs have low standard deviation,
indicating that their retention probabilities remain stable across training epochs. This demonstrates
strong convergence of the learned mask, as the model consistently assigns very similar probabilities
across epochs.

(b) The mean probabilities are evenly distributed across the full [0, 1] range, forming a near-uniform
bell shape. This suggests the model learns a broad spectrum of importance scores, effectively distin-
guishing task-relevant vs. irrelevant incidence pairs. This reflects the model’s ability to differentiate
between task-relevant and irrelevant pairs, reinforcing the value of the learned masking.

(c) The selection frequencies also follow a wide and symmetric distribution. Some edges are con-
sistently selected, appearing in the top-k£ mask in most epochs. These are likely critical incidence
pairs, showing high agreement between learned probabilities and sampled mask selections. While
others are rarely selected, reinforcing that the model has converged to a sparse and discriminative
selection pattern.

F MODEL PARAMETER SIZES

We report the model parameter sizes in Table [9| for a complete understanding of the parameter
overhead, which was discussed earlier theoretically. Recall that EHGNN-C and EHGNN-F have
parameter overhead of O(d?) and O(t), respectively, where d represents the dimension of node
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Table 9: Number of model parameters (integers) across datasets for each algorithm at sparsity =
50%. OOM=0ut-of-Memory.

Algorithms 20news ModelNet4d) Mushroom NTU2012 Actor  Citeseer Cora-CA DBLP-CA

Full 53764 72745 12802 86083 27651 1899526 737799 733190

Random 53764 72745 12802 86083 27651 1899526 737799 733190

Degdist 53764 72745 12802 86083 27651 1899526 737799 733190

Spectral 53764 72745 12802 86083 27651 1899526 737799 OOM

EHGNN-F 119215 134300 53422 96143 81023 1902979 742384 832751

EHGNN-F (cond.) 60229 79210 14275 92548 30916 2136583 829576 824455

EHGNN-C 119215 134300 53422 96143 81023 1902979 742384 832751

EHGNN-C (cond.) 57029 76010 13571 89348 29316 2018087 783720 778855
Cora House Pokec Pubmed Twitch  Walmart  Yelp

Full 737799 2562 34818 258051 5122 11787 958473

Random 737799 2562 34818 258051 5122 11787 958473

Degdist 737799 2562 34818 258051 5122 11787 958473

Spectral 737799 2562 34818 258051 5122 OOM OOM

EHGNN-F 742585 14405 40320 292680 21478 472417 5482067

EHGNN-F (cond.) 829576 2755 39043 290116 5635 12556 1077706

EHGNN-C 742585 14405 40320 292680 21478 472417 5482067

EHGNN-C (cond.) 783720 2691 36963 274116 5411 12204 1018122

features and t = ) _. 1, |e| is the number of node—hyperedge pairs. Note that d does not depend on
|[V| or |E| and it’s a constant, but ¢ does. Hence, we observe that EHGNN-C has a smaller parameter
overhead than EHGNN-F in general.

EHGNN-F has a higher parameter overhead than Full, Random, Degdist, and Spectral due to the
fact that it needs to learn the mask conditioned on the supervision signal from the downstream task,
requiring additional parameters. While EHGNN-F introduces a higher parameter overhead, its mem-
ory usage (O(t + kd)) is dominated by sparsified message passing layers. The substantial reduction
in active node—hyperedge incidences (k < t) leads to a much smaller activation footprint. Thus,
despite having more parameters, EHGNN-F consumes roughly equal and oftentimes less memory
than the Full training (see Table[3).

G EVALUATING EDGEMASK-HGNN ON NODE CLUSTERING TASK

We adopt an unsupervised autoencoder framework, where the encoder learns node embeddings
Z ¢ R"*4 from the hypergraph. The decoder reconstructs the incidence structure H from the em-
beddings. The encoder-decoder are trained based on reconstruction loss (e.g. Binary cross-entropy
loss). Finally, we run a standard clustering algorithm (e.g., k-means) on the learned embedding Z.

Encoder. Given the hypergraph H = (X, H), an HGNN (Feng et al., 2019) encoder f, produces
node embeddings:

Z = fo(X,H) € R™*4,

The encoder may also include a sparsification mask (EHGNN-F or EHGNN-C), in which case the
effective incidence is:

H=HoM, Me{0,1}"*™,
where M is the learned binary mask as discussed in section 4]

Decoder. The decoder reconstructs the incidence matrix H from Z. Each hyperedge e € F is
represented by aggregating its node embeddings:

1
he:WZZ,,, h. € R%,
e

vee
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Table 10: Node clustering Accuracy (= std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40  Mushroom — NTU2012 pokec pubmed twitch Avg. Rank

Full 0.41+£0.02 041+£0.02 041+0.03 0.67 +0.00 0.93+0.00 0.84+0.05 0.69£001 051+£001 0524008 0.51+0.00
EHGNN-F 0.41+0.03 040+0.05 0.42+0.04 0.61 + 0.03 0.92£0.02 0.69+0.07 0.67+0.02 051+0.00 0.53+0.07 0.51=+0.00 2.00
EHGNN-C 0.43£0.03 041+0.04 041+0.02 0.58 £ 0.05 0.90+0.02 0.75+0.10 0.67+0.02 051+0.00 0.5240.08 0.51=+0.00 2.60

EHGNN-F (cond.) 0.41+0.03 0.39+0.04 0.40+0.04 0.59 £+ 0.02 091 £0.01 0.70+0.08 0.66+0.01 051+0.01 0.53+0.07 0.51+0.00 2.90
EHGNN-C (cond.) 0.42+0.03 0.41+0.04 0.41+0.02 0.61 £ 0.05 091+0.01 0.75+0.10 0.65+001 051+0.00 0.5340.07 0.51+0.00 2.50

Table 11: Node clustering NMI (£ std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40  Mushroom ~ NTU2012 pokec pubmed twitch Avg. Rank
Full 0.004+0.00 0.20+0.03 0.24 £ 0.02 0.22 +0.00 0.92+0.00 041+£0.11 0.82+0.00 0.00+0.00 0.12+0.06 0.00+0.00

EHGNN-F 0.00+£0.00 0.18+0.04 0.22 +0.03 0.14 +0.04 092£0.00 0.1440.07 0.80+=0.00 0.0040.00 0.13+0.06 0.00 =+ 0.00 230

EHGNN-C 0.00 £0.00 0.18+0.03 0.23£0.03 0.10 £0.07 091£0.00 0244+0.12 0.80£0.00 0.00£0.00 0.1240.07 0.00 £ 0.00 2.50

EHGNN-F (cond.) 0.00 £0.00 0.17+£0.04 0.22 +£0.04 0.12 £0.03 0.92+£0.00 0.15+£0.08 0.80+0.01 0.00+0.00 0.14+0.06 0.00+0.00 2.90
EHGNN-C (cond.) 0.00 +0.00 0.194+0.03 0.23 +0.03 0.14 £+ 0.08 091 £0.00 024+0.12 080+0.00 0.00+0.00 0.13+0.06 0.00+0.00 2.30

Table 12: Node clustering ARI (£ std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40 ~ Mushroom NTU2012 pokec pubmed twitch Avg. Rank
Full 0.01 £0.00 0.16+£0.02 0.18 +0.03 0.12 +0.00 0.90+£0.00 048+0.13 0.65+0.01 0.00£0.00 0.11+0.06 0.00+0.00
EHGNN-F 0.01 £0.00 0.13+0.03 0.16 £0.03 0.05 £0.02 091 +0.01 0.16+0.10 0.62+0.03 0.00+0.00 0.134+0.07 0.00 £ 0.00 2.10
EHGNN-C 0.01 £0.00 0.14+0.03 0.16 +0.04 0.04 +0.05 0.88+£0.02 02940.16 0.63+0.04 0.00%0.00 0.11%0.08 0.00+0.00 2.60
EHGNN-F (cond.) 0.01 £0.00 0.1240.03 0.15 £ 0.03 0.04 £0.02 090+0.01 0.184+0.12 0.61 £0.02 0.00£0.00 0.1340.07 0.00 £ 0.00 2.80

EHGNN-C (cond.) 0.01 £0.00 0.14+0.03 0.16 £ 0.03 0.06 £ 0.05 0.90+£0.01 029+0.16 0.60+0.02 0.00+0.00 0.12+0.07 0.00 = 0.00 2.50

The probability that node v belongs to hyperedge e is modeled as:

Hv,e =0 (<W77,Zva Wehe>) 5

where W,,, W, € R9*? are learnable projections of the decoder, (-,-) denotes the dot product, and
o is the sigmoid activation function.

Reconstruction Loss. We sample the same number of positive incidences (v, ¢) where H, . = 1,
and negatives (v, e) where H, . = 0. The reconstruction loss is binary cross-entropy loss:

£recon = - Z IOg ﬁv,e - Z IOg(l - IA{v,e)v

(v,e)e2t (v,e)eQ—

where QT = {(v,e) : H, . = 1} and Q~ is a set of sampled negatives.

The encoder parameters 6, and decoder projections (W,,, W,) are optimized jointly to minimize
‘CI‘CCOI’I'

Observations. We observe that all algorithms (including Full) perform poorly on heterophilic hy-
pergraph benchmarks (Actor, Pokec, twitch). We believe the reason is the following: on heterophilic
hypergraphs node neighbors often have different labels which renders laplacian-style averaging over
incident nodes under homophily assumption ineffective. As there are currently no studies on the
node-clustering performance of HGNNs on heterophilic hypergraphs, addressing this issue not only
under full training but also sparsified training setting would be an interesting future work.
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