
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EDGEMASK-HGNN: LEARNING TO SPARSIFY HY-
PERGRAPHS FOR SCALABLE NODE CLASSIFICATION
IN HYPERGRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraph Neural Networks (HGNNs) have achieved remarkable performance
in various learning tasks involving hypergraphs— a data model for higher-order
relationships across diverse domains and applications. However, the scalability
of HGNNs is limited by the computational and memory demands incurred by
dense hypergraph structures. Existing unsupervised sparsifiers address the scala-
bility issue but sacrifice downstream predictive performance. To address this, we
propose EdgeMask-HGNN, a novel framework that introduces a learnable, task-
aware sparsification mechanism to reduce the hypergraph size while preserving
predictive performance. EdgeMask-HGNN offers two distinct masking: a fine-
grained node-hyperedge masking and a coarse-grained hyperedge-level masking,
both trained end-to-end using supervision from the downstream task. We pro-
vide theoretical analysis showing that our approach (i) yields stable model outputs
under stochastic masking, and (ii) ensures convergence of retention probabilities
under gradient descent. Extensive experiments on multiple node classification
benchmarks demonstrate that EdgeMask-HGNN reduces or maintains memory
usage on both small- and large-scale hypergraphs without sacrificing accuracy,
and in some cases outperforms HGNNs trained on full hypergraphs. EdgeMask-
HGNN also consistently outperforms unsupervised sparsification baselines such
as random, degree-based, and spectral sparsification.

1 INTRODUCTION

Hypergraph Neural Networks (HGNNs) have emerged as powerful tools for learning on hyper-
graphs, where a single edge can connect multiple nodes (beyond pairwise connections), unlike
traditional graphs. There are numerous real-world instances of such relations involving multiple
entities: set of researchers collaborating on a paper (Han et al., 2009), set of products purchased in a
shopping cart (Xia et al., 2021), group of legislators co-sponsoring a bill (Benson et al., 2018), or set
of molecules participating together in biological processes (Gaudelet et al., 2018). With the rapid
growth of data, the scale of real-world hypergraphs has also expanded dramatically. For instance,
the open-source bibliographic database OpenAlex has ∼209 million scholarly works (hyperedges)
from ∼13 million authors (node) across more than 450 topics1. A wide range of learning problems
arises in this setting, from node classification (Yadati et al., 2019; Duta et al., 2023) to node clus-
tering (Chodrow et al., 2021) to hyperlink prediction (Yadati et al., 2020). HGNNs have proven to
be effective for addressing these tasks, demonstrating strong empirical performance across diverse
domains such as social networks (Wang et al., 2018), recommendation systems (Wang et al., 2021),
and bioinformatics (Deng et al., 2024).

Despite the success of Hypergraph neural networks, they incur high computational and memory
complexity in terms of scaling to large-scale hypergraphs due to dense incidence structures. These
costs arise from sparse-dense matrix multiplications during message-passing and the storage of in-
termediate activations during forward and backward passes. Sparsifying the hypergraph by pruning
redundant node–hyperedge links offers a promising solution by significantly reducing computational
and memory overhead while retaining key structural information.

1https://en.wikipedia.org/wiki/OpenAlex

1

https://en.wikipedia.org/wiki/OpenAlex

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 1 0 1 2
X coordinate (X1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y
co

or
di

na
te

 (X
2)

0

1

2

3

4

56

7

8

91011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29
Ground Truth Feature Space

Class 0 (+,+ quadrant)
Class 1 (-,+ quadrant)

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
Learned Embedding Dimension 1

8

6

4

2

0

Le
ar

ne
d

Em
be

dd
in

g
Di

m
en

sio
n

2

Learned Embeddings (EHGNN-C)

Class 0
Class 1

12 10 8 6 4 2 0
Learned Embedding Dimension 1

10

8

6

4

2

0

Le
ar

ne
d

Em
be

dd
in

g
Di

m
en

sio
n

2

Learned Embeddings (Random)

Class 0
Class 1

Figure 1: A synthetic 3-uniform hypergraph (#nodes=30,#edges=134) with their (x,y)-coordinates in
R2 as ground truth node features (left). 50% hyperedges were pruned to learn node embeddings via
EdgeMask-HGNN (middle) and via Random sparsification (right). The node embeddings learned
by EdgeMask-HGNN are well separable, and more aligned with the true class separation.

A naı̈ve way to sparsify would be dropping hyperedges uniformly at random, often termed as ran-
dom sparsification in graph literature (Das et al., 2025). However, this method does not exploit the
structure of the hypergraph. Inspired by graph literature, degree-proportionate sampling (Leskovec
& Faloutsos, 2006) samples nodes based on their degree in the hypergraph, constructing a sparse
subhypergraph. However, this method may not preserve the spectral properties of the hypergraph
and may remove nodes that are important for message passing for downstream tasks. spectral spar-
sifiers (Soma & Yoshida, 2019) sample nodes based on hypergraph effective resistance to preserve
eigenvalues and eigenvectors of the original hypergraph. However, this approach may preserve task-
irrelevant hyperedges since it does not exploit label information.

Our contributions. (I) In this paper, we propose EdgeMask-HGNN to fill this gap of a lack of
task-specific sparsification in HGNNs. EdgeMask-HGNN offers two distinct masking strategies: a
fine-grained node–hyperedge masking and a coarse-grained hyperedge-level masking, both trained
end-to-end using supervision from the downstream task to facilitate task-aware sparsification. Un-
like unsupervised methods (e.g., random, degree-based, and spectral sparsification) that rely on
fixed hypergraph structures sampled a priori, EdgeMask-HGNN dynamically selects a subset of
hyperedges during training that helps the downstream HGNN perform better on the learning task.
Figure 1 highlights the importance of leveraging task-specific signal during sparsification: under the
same sparsification budget, embeddings learned by EdgeMask-HGNN yield better class separation
than the random sparsifier that does not utilize label information.

(II) We theoretically analyze EdgeMask-HGNN to show that it has a probabilistic interpretation
in terms of sampling the mode of the distribution over sparse subhypergraphs. We also show that
the sparsification (a) produces stable model outputs, and (b) has an O(1/ϵ) convergence rate to an
ϵ-confidence threshold on the learned retention probabilities.

(III) Empirical evaluation and analysis show that EdgeMask-HGNN is more effective than alterna-
tive sparsifiers such as random, degree distribution-based, and effective resistance sparsifiers, while
also being competitive or superior in terms of memory and runtime. Compared to training on the full
hypergraph, EdgeMask-HGNN sacrifices little accuracy and often achieves better predictive perfor-
mance, while maintaining or reducing memory usage on both small- and large-scale hypergraphs.

2 RELATED WORKS

Hypergraph Neural Networks (HGNNs). Feng et al. (2019) proposed HGNN by generalizing
spectral graph convolutions to hypergraphs through the hypergraph Laplacian. Subsequently, sev-
eral variants have been proposed, such as HyperGCN (Yadati et al., 2019), and HNHN (Dong et al.,
2020). HyperGCN reformulates hypergraph convolution using clique expansion, and HNHN intro-
duces attention mechanisms for hyperedge importance. spatial HGNNs typically define two-stage
message aggregation: node to hyperedge and hyperedge to node. HyperSAGE (Arya et al., 2020),
HGNN+ (Gao et al., 2022), and UniGCN (Huang & Yang, 2021) belong to this category. Re-
cently, Chien et al. (2021) showed that propagation rules of many existing spatial HGNNs can be
represented as a composition of two multiset functions, and proposed two different multiset en-
coding functions: DeepSets and SetTransformer. In addition, several recent frameworks, such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Wang et al. (2025); Saxena et al. (2024), focus on general and expressive message-passing designs
for hypergraphs. Our work targets resource-efficient learning by identifying and preserving only
task-relevant hyperedges, making it a practical augmentation for such general-purpose designs. In-
terested readers may refer to recent surveys for a more in-depth discussion on HGNNs (Antelmi
et al., 2023; Kim et al., 2024).

Unsupervised and Spectral Hypergraph Sparsification. Graph sparsification has a long legacy,
starting with Benczúr & Karger (1996) for preserving cuts via edge sampling. Subsequently, sig-
nificant progress was made by Spielman & Teng (2011) and Spielman & Srivastava (2008), who
introduced spectral sparsification via effective resistance. These methods ensure that a small subset
of edges preserves global graph properties. Among earlier works on hypergraph sparsification, De-
veci et al. (2013) proposed hyperedge sampling heuristics to reduce hyperedges while preserving
cut structure for hypergraph partitioning tasks. Going beyond heuristics, Soma & Yoshida (2019)
extended spectral sparsification to hypergraphs, defining a nonlinear Laplacian quadratic form and
constructing ϵ-spectral sparsifiers of size O(n3/ϵ2) in polynomial time. Subsequent works such as
Bansal et al. (2019); Kapralov et al. (2021); Lee (2023) attempted to improve this bound. Most
recently, Kapralov et al. (2022) proved a significant result showing that it is possible to obtain an
ϵ-spectral sparsifier of linear size.

Unlike EdgeMask-HGNN, these methods are unsupervised in nature and do not incorporate node
labels into their sparsification decision. Since sparsification is done a priori to training, they are
downstream task-unaware. Hence, they may not be suitable for representation learning tasks on
hypergraphs that require preserving task-relevant hyperedges.

3 PROBLEM STATEMENT

We consider the semi-supervised node classification task on a hypergraph H ≜ (V,E,X) ≡
(H,X), where V is the set of nodes, E is the set of hyperedges, H is the incidence matrix of
H, and X ∈ Rn×F is the node feature matrix. A hyperedge e ∈ E is a subset of V . Let VL, VU

be the set of labeled and unlabeled nodes, respectively, and yL ∈ {1, . . . , C}|VL| be the label vector
for the labeled nodes. The goal is to learn a model fθ∗ : VU → {1, . . . , C} that predicts labels for
nodes in VU based on the labels yL of the labeled nodes by minimizing a loss function Ltask (e.g.
cross-entropy): θ∗ = argminθ Ltask(fθ(H,X),yL) .

Given an budget, the goal of supervised sparsification is to construct a sparse hypergraph Ĥ =
(H̃,X) such that the prediction accuracy of the downstream task can be preserved or even improved
by using Ĥ (instead of H) as input. This can be formulated as the following optimization problem:

θ∗ = argmin
θ

Ltask(fθ(H̃,X),yL),

where H̃ is the masked incidence matrix produced by a learnable sparsification module. The down-
stream task loss could be any classification loss, e.g., the cross-entropy loss:

LCE = − 1

|VL|
∑
v∈VL

|C|∑
c=1

Yvc log Ŷvc,

where Yvc indicates the true probability of node v belonging to class c ∈ C, and the predicted
probabilities expressed as Ŷ = fθ(H̃,X). Due to the uniqueness of hypergraphs, the budget
constraint could be in the form of # incidence-pairs or # hyperedges. Let k denotes the #node-
hyperedge connections retained after sparsification. As edges in a hypergraph may contain more
than 2 nodes, we shall denote by κ the corresponding #hyperedges retained after sparsification. We
denote the # node-hyperedge connections before sparsification by t =

∑
e∈H|e|.

4 EDGEMASK-HGNN: LEARNABLE HYPERGRAPH SPARSIFICATION

In this section, we introduce EdgeMask-HGNN, a task-aware, learnable sparsification framework
for hypergraph neural networks. The main idea is to devise a differentiable module that can learn
to selectively mask hyperedges based on their relevance to the downstream learning task. Unlike

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a

b c

d

𝑥!
𝑥"

𝑥#
e
𝑥$

𝑥%

𝐸"

𝐸!

𝐸%

1a
1b
1c
3c
3d
2d
2e

𝑉 𝐸 1a
1b
1c
2d
2e

𝑉 𝐸

HGNN

Hypergraph

Sparsified Hypergraph
(Task-irrelevant 𝐸!	removed)

0.8
-0.3
0.8
-0.6
-0.7
0.3
0.1

Fine-grained Sparsification

Sigmoid +
norm.

0.2
0.1
0.2
0.05
0.05
0.2
0.2

Categorical
Top-k
sampling

1
1
1
0
0
1
1

𝑯

𝑴𝑷Param. 𝑺

𝑯⨀𝑴

Coarse-grained Sparsification

Sigmoid +
norm.

0.8
0.5
-0.3

0.4
0.4
0.2

𝑷

1
1
0

𝒎
Categorical
Top-k
sampling

𝑯⨀𝟏𝒏𝒎𝑻

𝑎, 𝑏, 𝑐	= Students in CS major
𝑑, 𝑒	= Students in Biology major
𝑬𝟏 = {𝑎, 𝑏, 𝑐} = CS study group
𝑬𝟐 = {𝑑, 𝑒}	= Biology lab team
𝑬𝟑	= {𝑐, 𝑑}	= Attended a biotech seminar at college

Param. 𝑺

Task Loss
ℒ&'

Backward propagation
Forward propagation

Figure 2: EdgeMask-HGNN on a small example where a task-irrelevant edge (red) is pruned.

prior hypergraph pruning methods that use fixed heuristics, EdgeMask-HGNN is trained end-to-end,
allowing the model to jointly optimize both the hypergraph structure and parameters of HGNNs.
Figure 2 illustrates the schematic of EdgeMask-HGNN with an example.

Since hyperedges may contain more than two nodes, two types of learnable masking strategies
emerge: Incidence-level Masking and Edge-Level Masking. Incidence-level Masking learns a score
for each (node, hyperedge) pair in the hypergraph, whereas Edge-Level Masking learns a score for
each hyperedge. The scores are used to compute the sparsified hypergraph, which in turn is used to
train the downstream HGNN. Based on the task loss of the downstream HGNN, the gradients are
backpropagated down to compute the updated incidence-level or edge-level scores.

4.1 FINE-GRAINED INCIDENCE-LEVEL MASKING (EHGNN-F)

Fine-grained incidence-level masking focuses on learning a soft selection probability for individual
node–edge connections so as to achieve a fine-grained control over the sparsified hypergraph struc-
ture. For each incidence pair (v, e), we maintain a learnable score parameter sv,e, which is converted
to a soft selection probability as

pv,e = σ(sv,e)/
∑
v,e

σ(sv,e), (1)

where σ is the sigmoid function. p = (pv,e) can be interpreted as the marginal probabilities of
a categorical distribution over all incidence entries, from which we aim to sample a prescribed
number of active pairs, denoted by constraint k. In other words, if the sparsifier samples (v, e), the
hard binary mask m̂v,e = 1 and 0, otherwise. Mathematically,

m̂ ∼ Top-k Categorical(p),
∑
v,e

m̂v,e = k. (2)

This sampling process is not differentiable during the backward pass. To enable differentiable learn-
ing, we apply a straight-through estimator (Bengio et al., 2013). During the forward pass, we com-
pute pv,e for each node–edge pair and use top-k sampling to generate a hard binary mask m̂v,e,
where only the top-k values are retained. During the backward pass, we define the final mask as:

mv,e = stop grad(m̂v,e) + pv,e − stop grad(pv,e). (3)

This ensures that the forward pass uses the hard mask m̂v,e, while the backpropagation treats it as if
it were the continuous probability pv,e, allowing gradient-based optimization. The sparse matrix is:

H̃ = H ⊙M , (4)

where M ∈ {0, 1}n×m is the sampled incidence-level mask, and ⊙ indicates element-wise multipli-
cation. To avoid notational conflict, in subsequent theoretical sections we define P ∈ [0, 1]n×m as
the matrix of marginal retention probabilities, and write: M ∼ q(M | P) to denote a probability
distribution over binary incidence matrices, where P specifies the marginal inclusion probabili-
ties such that pv,e = P(Mv,e = 1). A realization of this random variable (M) is denoted by
M ∈ {0, 1}n×m, used in the sparsified incidence matrix H̃ (Equation 4).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Variant of EHGNN-F conditioned on node features. EHGNN-F is feature-agnostic, each
node–hyperedge incidence (v, e) has a free learnable parameter sv,e, which do not depend on node
features, rather they are optimized via task loss. In semi-supervised setting, this may cause only the
incidences near labeled nodes to benefit from supervision. To address this issue, feature-conditioned
EHGNN-F (EHGNN-F (cond.)) learns the scorer as a parameter of node features as follows:

sv,e = MLP(Xv||X̂e), (5)
where Xv is the feature vector of node v and the aggregated embedding of hyperedge e is
X̂e = 1

|e|
∑

v∈e Xv . The shared MLP parameters allow limited labeled nodes to shape sparsifi-
cation decisions across the whole hypergraph, alleviating the lack of supervision issue.

To summarize, EHGNN-F promotes competitive selection among node–edge connections, which
ensures that only the most informative relationships are retained under a global sparsity constraint.
This selective pressure improves the model’s ability to identify task-relevant structure while avoiding
over-retention of redundant or noisy incidences.

4.2 COARSE-GRAINED EDGE-LEVEL MASKING (EHGNN-C)

Although Incidence-level masking allows fine-grained control, it may result in a large parameter
size since the network keeps one parameter per incidence pair. Coarse-grained Edge-Level masking
alleviates this by maintaining one parameter per edge. For instance, if the input hypergraph is k-
uniform (every edge contains k nodes), edge-level scoring reduces the model parameters by k.

The learnable edge score parameter s is converted to soft probabilities via sigmoid function:

pe = σ(se)/
∑
e

σ(se) (6)

We treat p = (pe) as the marginal probabilities of a categorical distribution over all hyperedges and
sample binary hyperedge masks from it:

m ∼ Top-k Categorical(p),
∑
e

me = κ.

The binary mask me ∈ {0, 1} determines whether the hyperedge e is retained or dropped. This
allows efficient sparsification of hyperedges with a low-parameter overhead and is especially well
suited for large-scale hypergraphs. The sparsified incidence matrix becomes:

H̃ = H ⊙ 1nm
T , (7)

where 1n ∈ Rn is a vector of ones, mT ∈ R1×m is the binary mask.

Variant of EHGNN-C conditioned on node features. EHGNN-C is feature-agnostic, each edge
has a free learnable parameter se, which do not depend on its constituent node features. In semi-
supervised setting, this may cause only the edges containing labeled nodes to benefit from supervi-
sion. To address this issue, feature-conditioned EHGNN-C (EHGNN-C (cond.)) learns the scorer
as a parameter of node features using a permutation-invariant operator, such as mean pooling:

X̂e =
1

|e|
∑
v∈e

Xv, se = MLP(X̂e) (8)

Training and Inference. The masked incidence H̃ is passed into any HGNN architecture (e.g.,
HyperGCN, UniGNN, etc.) and trained end-to-end with a task loss Ltask. This yields a sparse hy-
pergraph H̃ adapted to the node classification task. During inference, instead of stochastic sampling,
we use deterministic top-k (or top-κ) selection from p to select incidences (or edges) of H̃ .

Unlike prior sparsification approaches for graphs or hypergraphs, EdgeMask-HGNN introduces a
fully learnable, task-aware sparsification module at two granularities, operating end-to-end with
downstream supervision. The fine-grained variant (EHGNN-F) allows localized selection of in-
formative node–edge connections, while the coarse-grained variant (EHGNN-C) offers a more
parameter-efficient alternative by scoring entire hyperedges via permutation-invariant pooling. Al-
though masking strategies have been explored in the graph sparsification literature, such as L0-based
sparsifiers (Ye & Ji, 2021), EdgeMask-HGNN addresses the unique structure of hypergraphs, where
sparsification potentially operates over exponentially many possible incidence patterns.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 THEORETICAL GUARANTEES

We provide a formal analysis of EHGNN-F by examining stability, and convergence behavior. The
proofs are presented in the Appendix for brevity.

Stability and Robustness. We prove that the model output remains stable under stochastic masking.
Let pv,e ∈ [0, 1] represent the marginal probability of retaining the connection (v, e). A binary mask
M ∈ {0, 1}n×m is sampled as a realization of a random variable M ∼ q(M | P). Each realization
corresponds to a subhypergraph H̃ = H ⊙M , and defines a distribution over the subhypergraphs.

Theorem 5.1 (Perturbation Stability). If the HGNN fθ(X, ·) is L-Lipschitz w.r.t. the Frobenius
norm,

E
[∥∥∥fθ(X, H̃)− fθ(X,E[H̃])

∥∥∥
F

]
≤ L ·

√∑
v,e

H2
v,epv,e(1− pv,e). (9)

Here the expectation E[H̃] quantifies the average connectivity across sparsified subhypergraphs
sampled from the model. This theorem suggests that, as the learned mask becomes more determin-
istic (pv,e → 1 or 0), the model’s output becomes more stable.

Convergence of retention probabilities pv,e.
Theorem 5.2 (Convergence of Fine-Grained Mask Parameters). Let the mask be defined by proba-
bilities P = σ(S) ∈ [0, 1]n×m, where each entry pv,e = σ(sv,e) is a sigmoid-transformed logit.

If the gradient of the loss with respect to each pv,e maintains a fixed sign and the logits are updated
via gradient descent, then for any small ϵ > 0, the time to convergence (either pv,e < ϵ or pv,e >
1− ϵ) follows

τ ≥ O (1/ϵ)

This theorem suggests that one can ensure pv,e(τ) reaches within ϵ of its limiting value or at least
(1− ϵ); it suffices to train for #epochs proportional to 1/ϵ.

6 EXPERIMENTS

We focus on semi-supervised node classification task in the transductive setting. Note that, we
have also evaluated EdgeMask-HGNN on unsupervised node clustering task (see Appendix G). We
randomly split the nodes into training/validation/test samples using 50%/25%/25% splitting per-
centages Chien et al. (2021). Unless stated otherwise, we have used HGNN (Feng et al., 2019) as
a backbone in our implementation. We follow Chien et al. (2021) to set the hyperparameters of
various base HGNN models. We average the results of 10 experiments using multiple random splits
and initializations. All experiments are run on a system with 1 TB RAM and NVIDIA H200 GPU
with 141 GB of HBM3e memory.
Datasets. The hypergraph datasets and their statistics are presented in Table 1. It includes 3 re-
cently proposed heterophilic benchmarks (Actor, Twitch, Pokec) from Li et al. (2025). The rest
of the datasets are well-known in the hypergraph learning literature, originating from works such
as Yadati et al. (2019); Chien et al. (2021) where they are discussed in detail.
Baselines. The baseline algorithms include i) Full: the HGNN model is trained on the entire hy-
pergraph, ii) Degdist: top-k nodes are sampled from the distribution Top-k Categorical(d) with
dv being the normalized degree of node v. All node, hyperedge connections involving the sampled
nodes are kept in the sparsified hypergraph, iii) Random: drops a node-hyperedge connection (u, e)
if an i.i.d uniform random variable r ∼ U [0, 1] satisfies r < k/|E|, and finally, iv) Spectral: We
sample top-κ hyperedges based on their effective resistance. We approximated effective resistance

Table 1: Dataset statistics.

Cora Citeseer Pubmed Cora-CA DBLP-CA 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart Actor Twitch Pokec

|V | 2708 3312 19717 2708 41302 16242 8124 2012 12311 50758 1290 88860 16255 16812 14998
|E| 1579 1079 7963 1072 22363 100 298 2012 12311 679302 341 69906 10164 2627 2406
feature 1433 3703 500 1433 1425 100 22 100 100 1862 100 100 50 7 65
class 7 6 3 7 6 4 2 67 40 9 2 11 3 2 2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

R(e) ≈
∑

v∈e

(
L†)

vv
for efficiency purposes. Here L† indicates the Moore–Penrose pseudoinverse

of the Hypergraph Laplacian (Zhou et al., 2006). Note that there are no task-relevant methods in
the HGNN literature, hence our comparison had to be limited to unsupervised approaches. The
model parameters, hyperparameters of the algorithms, ablation studies, convergence of retention
probabilities, and node-clustering experiments can be found in the Appendix. Our source codes:
https://github.com/toggled/ehgnn.

6.1 EXPERIMENTAL EVALUATION

I. Effectiveness and Scalability. Table 2 highlights the effectiveness of EdgeMask-HGNN over
the baselines. We observe several things:

Supervised vs Unsupervised sparsifiers: On most datasets, EHGNN variants consistently outperform
Random and degree-based sparsification. This highlights the importance of task-aware learning
of sparsification masks, which can retain task-relevant incidences or hyperedges while discarding
noisy ones. On large-scale datasets, spectral methods face memory issues, which highlight the
computational challenges to preserving the Laplacian spectrum.

Full training vs Sparsification: On several (8 out of 15) datasets, EdgeMask-HGNNs actually out-
performs full HGNN training, such as ModelNet40, Actor, DBLP-CA, House, Pokec, Pubmed,
Walmart, and Yelp. This demonstrates that pruning of irrelevant pairs can enhance generalization
by improving the signal-to-noise ratio during message passing.

Fine-grained vs Coarse-grained EdgeMasking and variants: EHGNN-C is slightly better than
EHGNN-F, often outperforming on datasets like 20news, CiteSeer, Cora, Cora-CA, DBLP-CA, and
PubMed. Since co-authorship and co-citation datasets contain semantically coherent hyperedges
(papers) and rich bag-of-words features, the model does not need fine-grained incidence-level filter-
ing to extract meaningful training signals. Instead, pruning at the hyperedge level is sufficient. In
contrast, EHGNN-F excels on ModelNet40, NTU2012 (where class counts are large), and Walmart,
House, Actor, and Pokec, where hyperedges are more noisy, and may group together items or people
that aren’t strongly related to the prediction task. In such conditions, fine-grained incidence pruning
provides a stronger signal-to-noise filtering.

II. Memory efficiency. Table 3 reports peak GPU memory across methods at the same sparsity
budget. Note that, peak GPU usage during HGNN training is dominated by activations (messages,
pooled edge features, and autograd buffers) that scale with # incidences after sparsification k =∑

e∈H̃ |e|, and feature dimension d, not by the parameter overhead (see Table 6, Appendix B).

On small-scale datasets: On small datasets, all methods exhibit similar peak memory because the
entire incidence structure fits comfortably on a GPU. The incidence and hyperedge counts are not
large enough to pose scalability challenges, thus, sparsification strategies bring little practical dif-

Table 2: Accuracy (± std) across different datasets for each algorithm at sparsity = 50%. OOM=Out-
of-Memory. Bold (underline) denotes the best (2nd best) result per dataset not counting Full.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor CiteSeer Cora-CA DBLP-CA

Full 81.40 ± 0.04 94.88 ± 0.06 97.76 ± 0.31 87.67 ± 0.24 64.58 ± 0.03 69.93 ± 0.46 82.25 ± 0.22 91.14 ± 0.04

Random 55.26 ± 0.66 64.03 ± 1.01 84.19 ± 1.25 59.80 ± 2.55 65.86 ± 0.67 27.29 ± 1.14 42.72 ± 3.33 52.63 ± 1.90
Degdist 59.02 ± 0.60 50.25 ± 1.05 74.19 ± 1.25 44.53 ± 1.45 63.57 ± 0.16 40.39 ± 0.20 52.64 ± 2.68 57.64 ± 0.26
Spectral 72.80 ± 0.02 82.53 ± 0.03 97.74 ± 0.12 65.45 ± 0.43 63.93 ± 0.03 35.85 ± 0.28 64.14 ± 0.28 OOM

EHGNN-F 78.00 ± 0.04 95.25 ± 0.08 96.42 ± 0.41 87.40 ± 0.18 76.99 ± 0.03 67.92 ± 0.43 79.38 ± 0.39 88.00 ± 0.10
EHGNN-C 81.10 ± 0.28 94.90 ± 0.08 96.23 ± 1.13 87.36 ± 0.30 74.07 ± 0.05 69.03 ± 0.33 82.25 ± 0.28 91.33 ± 0.04

EHGNN-F (cond.) 78.54 ± 0.08 95.52 ± 0.05 94.92 ± 0.61 87.28 ± 0.54 78.75 ± 0.04 68.43 ± 0.48 75.95 ± 0.59 86.28 ± 0.09
EHGNN-C (cond.) 74.82 ± 0.26 94.52 ± 0.10 97.46 ± 0.30 85.33 ± 0.41 77.55 ± 0.04 67.05 ± 0.16 75.39 ± 0.34 87.11 ± 0.18

Cora House Pokec PubMed Twitch Walmart Yelp Avg. Rank

Full 78.35 ± 0.34 73.99 ± 0.44 58.55 ± 0.05 85.61 ± 0.05 51.22 ± 0.05 94.78 ± 0.02 30.48 ± 0.68

Random 41.57 ± 1.28 61.73 ± 0.71 53.34 ± 0.29 46.24 ± 0.31 49.88 ± 0.78 55.70 ± 0.20 29.78 ± 0.28 6.29
Degdist 59.32 ± 1.01 52.14 ± 5.18 54.15 ± 0.05 49.04 ± 0.03 50.44 ± 0.59 56.28 ± 0.14 27.82 ± 0.65 6.00
Spectral 56.90 ± 0.12 57.59 ± 0.54 52.92 ± 0.06 49.07 ± 0.00 51.05 ± 0.12 65.90 ± 0.03 OOM 5.21

EHGNN-F 74.00 ± 0.43 87.93 ± 0.22 58.70 ± 0.04 85.59 ± 0.03 50.67 ± 0.03 95.16 ± 0.01 30.57 ± 0.46 2.58
EHGNN-C 77.52 ± 0.28 74.74 ± 0.17 58.46 ± 0.09 85.69 ± 0.05 51.10 ± 0.04 93.72 ± 0.09 30.12 ± 0.60 2.21

EHGNN-F (cond.) 73.65 ± 0.44 100.00 ± 0.00 59.14 ± 0.07 85.55 ± 0.07 50.89 ± 0.04 98.38 ± 0.01 29.13 ± 0.44 2.43
EHGNN-C (cond.) 75.86 ± 0.47 73.07 ± 0.95 59.01 ± 0.05 85.48 ± 0.04 50.67 ± 0.03 94.73 ± 0.04 29.17 ± 0.18 3.29

7

https://github.com/toggled/ehgnn

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Maximum GPU memory usage (in GB) across datasets for each algorithm at sparsity =
50%. Avg. Rank computed over all datasets with OOM (Out-of-memory) treated as the worst rank.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor CiteSeer Cora-CA DBLP-CA

Full 1.3 ± 0.0 (1.3) 1.3 ± 0.0 (1.3) 1.0 ± 0.0 (1.0) 0.9 ± 0.0 (0.9) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 3.9 ± 0.0 (3.9)
Random 1.0 ± 0.0 (1.0) 1.0 ± 0.0 (1.0) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.0 ± 0.0 (1.0) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.5 ± 0.0 (1.5)
Degdist 1.1 ± 0.0 (1.1) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.5 ± 0.0 (1.5)
Spectral 8.0 ± 0.1 (8.1) 7.7 ± 1.4 (8.5) 3.0 ± 0.1 (3.0) 1.2 ± 0.0 (1.2) 12.0 ± 2.1 (13.3) 1.5 ± 0.0 (1.5) 1.3 ± 0.0 (1.3) 64.6 ± 19.8 (76.1)

EHGNN-F 1.1 ± 0.0 (1.1) 1.1 ± 0.0 (1.1) 1.0 ± 0.0 (1.0) 0.8 ± 0.0 (0.8) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 1.7 ± 0.0 (1.7)
EHGNN-C 1.2 ± 0.1 (1.3) 1.2 ± 0.1 (1.2) 1.0 ± 0.0 (1.0) 0.9 ± 0.0 (0.9) 1.2 ± 0.1 (1.2) 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 2.3 ± 0.5 (2.6)
EHGNN-F (cond.) 1.1 ± 0.0 (1.1) 1.1 ± 0.0 (1.1) 1.0 ± 0.0 (1.0) 0.8 ± 0.0 (0.8) 1.1 ± 0.0 (1.1) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 5.5 ± 0.0 (5.5)
EHGNN-C (cond.) 1.1 ± 0.0 (1.1) 1.1 ± 0.0 (1.1) 1.0 ± 0.0 (1.0) 0.8 ± 0.0 (0.8) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 2.4 ± 0.0 (2.4)

Cora House Pokec PubMed Twitch Walmart Yelp Avg. Rank

Full 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 1.0 ± 0.0 (1.0) 1.2 ± 0.0 (1.2) 1.0 ± 0.0 (1.0) 13.3 ± 0.0 (13.3) 98.9 ± 21.2 (111.2) 4.25
Random 0.8 ± 0.0 (0.8) 0.8 ± 0.0 (0.8) 0.9 ± 0.0 (0.9) 1.0 ± 0.0 (1.0) 0.9 ± 0.0 (0.9) 5.2 ± 0.7 (5.6) 38.9 ± 0.1 (38.9) 1.92
Degdist 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 0.9 ± 0.0 (0.9) 1.1 ± 0.0 (1.1) 0.9 ± 0.0 (0.9) 8.0 ± 0.0 (8.0) 104.4 ± 48.1 (130.1) 2.83
Spectral 1.3 ± 0.0 (1.3) 1.1 ± 0.0 (1.1) 8.6 ± 1.2 (9.3) 15.5 ± 2.5 (17.0) 10.4 ± 1.4 (11.3) 135.8 ± 2.2 (135.2) OOM 7.75

EHGNN-F 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.0 ± 0.0 (1.0) 1.1 ± 0.0 (1.1) 1.0 ± 0.0 (1.0) 7.2 ± 0.0 (7.2) 110.0 ± 47.2 (135.7) 3.00
EHGNN-C 0.9 ± 0.0 (0.9) 0.9 ± 0.0 (0.9) 1.0 ± 0.0 (1.0) 1.2 ± 0.0 (1.2) 1.0 ± 0.0 (1.0) 7.4 ± 0.0 (7.4) 104.9 ± 22.3 (117.8) 3.50
EHGNN-F (cond.) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.0 ± 0.0 (1.0) 1.2 ± 0.0 (1.2) 1.0 ± 0.0 (1.0) 7.1 ± 0.0 (7.1) 138.2 ± 0.3 (138.1) 3.83
EHGNN-C (cond.) 0.9 ± 0.0 (0.9) 0.8 ± 0.0 (0.8) 1.0 ± 0.0 (1.0) 1.1 ± 0.0 (1.1) 1.0 ± 0.0 (1.0) 83.3 ± 65.5 (101.7) 118.1 ± 37.3 (139.5) 3.92

ference in this regime. We also find that Spectral methods require noticeably large memory in this
regime.

On large, but less-dense hypergraphs (DBLP-CA, Walmart): The differences emerge clearly on
large hypergraphs where the activations dominate the memory footprint. Spectral sparsification
is the most memory-hungry due to Laplacian computations on dense adjacency matrix. Random
and degree-based pruning yield good memory savings, but their accuracy significantly degrades
compared to Full training. EHGNN-F and EHGNN-C are better alternatives, since with a similar
memory footprint as Random and degree-based pruning, they yield better accuracy.

On large, but more-dense hypergraph (Yelp): As density increases, the additional buffers for mask
parameters and stochastic sampling cause peak activation memory to also increase. As a result, all
EHGNN variants consume more memory than the full HGNN on Yelp. The effect is pronounced
for feature-conditioned variants, where pooling and scorer MLPs introduce extra activations, while
coarse EHGNN-C without conditioning shows smaller overhead but still exceeds the Full baseline.

Fine- versus coarse-grained masking: Among our methods, EHGNN-F attains the best average rank
(3.00) and shows the most stable reductions overall, since incidence-level pruning directly lowers
the number of active node–edge pairs k. EHGNN-C (3.50) can also save memory by keeping fewer
parameters and retaining smaller edges, but due to randomness in sampling, sometimes it may cause
large activations (large k) by retaining large edges, consequently increasing the memory footprint.

To summarize, memory footprint is determined by the # retained incidences k and per-layer activa-
tions. EHGNN-F directly reduces k and is therefore the most reliable way to shrink peak memory.
EHGNN-C reduces m (#edges) but can retain large hyperedges, keeping k high. Feature condition-
ing at the hyperedge level adds pooling/MLP activations and can further increase peak usage.

III. Accuracy/Runtime vs sparsity trade-off. We analyze the trade-off between accuracy (on
DBLP-CA) and sparsity due to edge pruning by our proposed EdgeMask-HGNN in Figure 3a, while
the impact of sparsity on the end-to-end runtime (Training + Evaluation time) is presented in Fig-
ure 3b. We observe that with more edges retained in the sparsification, the accuracy increases at the
cost of a higher runtime.

10 20 30 40 50 60 70 80 90
% edges retained

82

84

86

88

90

Ac
cu

ra
cy

 (%
)

(a) Accuracy vs. Sparsity

10 20 30 40 50 60 70 80 90
% edges retained

10
11
12
13
14
15
16

En
d-

to
-E

nd
 ru

nt
im

e
(s

)

(b) End-to-end runtime vs. Sparsity

Yelp Walmart DBLP-CA
Dataset

0.00

0.05

0.10

0.15

0.20

Tr
ai

n.
 ti

m
e/

ep
oc

h
(s

)

Full
Random
Degdist
EHGNN-F
EHGNN-C

(c) Training time
Figure 3: (a-b) Impact of sparsity on EHGNN-F’s performance (DBLP-CA dataset) (c) Training
time efficiency of the methods.

IV. Runtime efficiency. Figure 3c compares the average training time/epoch across three large-
scale datasets. On Yelp, the full model incurs the highest cost (∼0.17s), while EHGNN-F reduces

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: End-to-end execution time (in seconds) as mean ± std across datasets for each algorithm at
sparsity = 50%.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor Citeseer Cora-CA DBLP-CA

Full 18.37 ± 0.37 17.43 ± 1.08 17.39 ± 0.99 16.98 ± 1.10 16.90 ± 0.40 8.20 ± 0.14 10.39 ± 1.11 12.75 ± 0.33

Random 17.99 ± 0.38 16.90 ± 0.32 17.02 ± 0.44 16.78 ± 0.26 16.91 ± 0.32 7.57 ± 0.25 8.92 ± 0.61 11.29 ± 0.12
Deg 16.84 ± 0.40 17.10 ± 0.32 16.96 ± 0.27 16.92 ± 0.36 18.35 ± 0.55 7.76 ± 0.17 9.92 ± 0.63 12.43 ± 0.44

Spectral 74.98 ± 0.30 45.34 ± 1.28 25.17 ± 1.02 18.38 ± 1.35 88.38 ± 0.21 8.42 ± 0.19 10.66 ± 1.26 18.64 ± 0.32

EHGNN-F 17.89 ± 0.49 18.52 ± 0.72 18.22 ± 0.79 18.06 ± 0.72 18.50 ± 0.79 9.16 ± 0.49 10.84 ± 0.34 12.93 ± 0.70
EHGNN-C 17.50 ± 0.61 19.08 ± 0.34 17.52 ± 0.34 18.27 ± 0.32 19.28 ± 0.19 8.86 ± 0.24 11.15 ± 0.79 13.76 ± 0.78

EHGNN-F (cond.) 19.18 ± 0.13 18.39 ± 0.46 18.15 ± 0.47 17.90 ± 0.44 18.57 ± 0.73 9.32 ± 0.21 10.68 ± 0.43 14.51 ± 0.50
EHGNN-C (cond.) 16.22 ± 1.27 18.53 ± 0.37 18.15 ± 0.32 17.89 ± 0.36 18.49 ± 0.24 8.64 ± 0.45 11.90 ± 0.62 13.77 ± 0.43

Cora House Pokec PubMed Twitch Walmart Yelp Avg. Rank

Full 10.14 ± 1.23 18.23 ± 1.13 15.99 ± 1.09 17.25 ± 0.77 11.58 ± 3.04 22.82 ± 3.70 84.42 ± 1.25

Random 8.94 ± 0.39 17.84 ± 0.26 7.62 ± 0.47 17.61 ± 0.46 7.98 ± 0.93 19.30 ± 0.35 35.88 ± 0.28 1.53
Deg 9.65 ± 0.10 16.01 ± 1.86 7.66 ± 0.51 17.64 ± 0.34 12.47 ± 4.02 20.19 ± 0.32 59.95 ± 2.60 2.13

Spectral 10.04 ± 0.26 18.48 ± 0.64 12.83 ± 0.38 98.80 ± 0.89 9.70 ± 0.24 62.17 ± 0.94 OOM 5.43

EHGNN-F 11.41 ± 0.52 17.36 ± 0.58 17.72 ± 0.29 18.50 ± 0.84 12.58 ± 3.32 20.84 ± 0.57 41.97 ± 2.92 4.47
EHGNN-C 10.28 ± 0.66 17.91 ± 0.72 15.91 ± 2.28 17.95 ± 0.30 14.32 ± 4.27 21.15 ± 0.45 39.75 ± 0.36 4.53

EHGNN-F (cond.) 10.95 ± 0.34 19.11 ± 0.56 17.90 ± 0.73 18.56 ± 0.15 14.19 ± 3.93 21.79 ± 0.71 162.61 ± 11.45 5.43
EHGNN-C (cond.) 11.43 ± 1.02 17.73 ± 0.26 17.71 ± 1.12 18.13 ± 0.26 11.60 ± 3.38 22.52 ± 0.73 109.33 ± 36.23 4.37

Table 5: Comparing various state-of-the-art HGNNs and their EHGNN-F enhanced counterparts
(sparsity = 50%).

Models Actor Cora Cora-CA House ModelNet40 NTU PubMed
AllSetTrans. 68.77 ± 0.60 76.93 ± 0.41 83.34 ± 0.77 100.00 ± 0.00 97.80 ± 0.07 90.30 ± 0.71 88.58 ± 0.12
AllSetTrans.+EHGNN-F 85.73 ± 0.36 76.54 ± 0.75 79.41 ± 0.44 99.94 ± 0.14 97.43 ± 0.11 88.91 ± 0.43 88.49 ± 0.16

CE-GAT 70.84 ± 4.40 74.39 ± 0.67 73.26 ± 0.54 96.78 ± 2.69 90.65 ± 0.15 78.33 ± 1.13 84.76 ± 0.16
CE-GAT+EHGNN-F 74.67 ± 1.76 73.65 ± 0.70 73.83 ± 1.15 99.57 ± 0.28 92.27 ± 0.29 77.46 ± 1.06 84.45 ± 0.69

CE-GCN 57.27 ± 0.37 52.51 ± 0.19 50.66 ± 0.40 51.98 ± 0.39 43.21 ± 0.37 35.20 ± 0.43 61.01 ± 0.06
CE-GCN+EHGNN-F 62.76 ± 0.03 53.29 ± 0.12 52.44 ± 0.49 52.63 ± 0.31 44.58 ± 0.62 35.55 ± 0.45 61.08 ± 0.05

training time substantially, with Random being the fastest. On DBLP-CA, the EHGNN variants
take slightly longer than Full HGNN. This is because our methods introduce mask-learning steps
(scoring, sampling, straight-through estimation) that add a fixed computational overhead. Table 4
shows that, on small datasets (ModelNet40, NTU2012, Cora, Citeseer), message passing itself is
inexpensive, so this additional overhead dominates, leading to a slightly higher runtime than Full.
On larger datasets, such as Walmart and Yelp, EHGNN achieves training times comparable to or
better than Full, as incidence-level sparsification reduces the dominant message-passing cost.

V. Adaptability to existing HGNNs. EdgeMask-HGNN is model-agnostic and easily adaptable to
different hypergraph architectures. To demonstrate this, we have employed EHGNN-F into AllSet-
Transformer, CE-GCN, and CE-GAT architectures Chien et al. (2021) and present the results in
Table 5. We observe that EHGNN-F achieves comparable and sometimes better performance across
these three HGNN backbones. This indicates that the sparsification mechanism is flexible and can
act as a plug-in module without significantly degrading existing HGNNs’ representational power.

7 CONCLUSION AND FUTURE WORKS

We introduced EdgeMask-HGNN, a novel task-aware sparsification framework that effectively re-
duces memory overhead without sacrificing predictive performance of HGNNs. We proposed two
learnable masking strategies: fine-grained masking and coarse-grained masking– both trained end-
to-end using feedback from downstream tasks. Furthermore, EdgeMask-HGNN is theoretically
grounded in terms of stability and convergence of the learned sparsifiers.

Extensive experiments across diverse and challenging benchmarks and multiple HGNN backbones
underscore the adaptability and effectiveness of EdgeMask-HGNN. In particular, the fine-grained
variant not only improves accuracy over full hypergraph training in many cases, but also achieves
slightly smaller execution time on large hypergraphs with a comparable memory footprint. Finally,
our approach consistently outperforms unsupervised and spectral baselines in accuracy, with a com-
parable or better memory footprint.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and
Dingqi Yang. A survey on hypergraph representation learning. ACM Computing Surveys, 56
(1):1–38, 2023.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification
for graphs and hypergraphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 910–928. IEEE, 2019.

András A Benczúr and David R Karger. Approximating st minimum cuts in Õ(n2) time. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 47–55, 1996.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences, 115
(48):E11221–E11230, 2018.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. arXiv preprint arXiv:2106.13264, 2021.

Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clustering: From
blockmodels to modularity. Science Advances, 7(28):eabh1303, 2021.

Siddhartha Shankar Das, Naheed Anjum Arafat, Muftiqur Rahman, SM Ferdous, Alex Pothen, and
Mahantesh M Halappanavar. Sgs-gnn: A supervised graph sparsification method for graph neural
networks. arXiv preprint arXiv:2502.10208, 2025.

Chao Deng, Hong-Dong Li, Li-Shen Zhang, Yiwei Liu, Yaohang Li, and Jianxin Wang. Identifying
new cancer genes based on the integration of annotated gene sets via hypergraph neural networks.
Bioinformatics, 40:i511–i520, 2024.

Mehmet Deveci, Kamer Kaya, and Ümit V Çatalyürek. Hypergraph sparsification and its application
to partitioning. In 2013 42nd International Conference on Parallel Processing, pp. 200–209.
IEEE, 2013.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
Graph Representation Learning and Beyond workshop, 2020.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. Advances
in Neural Information Processing Systems, 36:12087–12099, 2023.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3181–3199, 2022.

Thomas Gaudelet, Noël Malod-Dognin, and Natasa Przulj. Higher-order molecular organization as
a source of biological function. Bioinformatics, 34(17):i944–i953, 2018.

Yi Han, Bin Zhou, Jian Pei, and Yan Jia. Understanding importance of collaborations in co-
authorship networks: a supportiveness analysis approach. In SIAM International Conference
on Data Mining (SDM), pp. 1112–1123, 2009.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight bounds
for spectral sparsification of hypergraphs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 598–611, 2021.

Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph
sparsifiers of nearly linear size. In 2021 IEEE 62nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 1159–1170. IEEE, 2022.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6534–6544. Associa-
tion for Computing Machinery, 2024.

James R Lee. Spectral hypergraph sparsification via chaining. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, pp. 207–218, 2023.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 631–636, 2006.

Ming Li, Yongchun Gu, Yi Wang, Yujie Fang, Lu Bai, Xiaosheng Zhuang, and Pietro Lio. When
hypergraph meets heterophily: New benchmark datasets and baseline. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 18377–18384, 2025.

Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, and Tanmoy Chakraborty.
Dphgnn: A dual perspective hypergraph neural networks. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2548–2559. Association
for Computing Machinery, 2024.

Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2570–2581. SIAM, 2019.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

Jianling Wang, Kaize Ding, Ziwei Zhu, and James Caverlee. Session-based recommendation with
hypergraph attention networks. In Proceedings of the 2021 SIAM international conference on
data mining (SDM), pp. 82–90. SIAM, 2021.

Yaxiong Wang, Li Zhu, Xueming Qian, and Junwei Han. Joint hypergraph learning for tag-based
image retrieval. IEEE Transactions on Image Processing, 27(9):4437–4451, 2018.

Yifan Wang, Gonzalo R Arce, and Guangmo Tong. Generalization performance of hypergraph
neural networks. In Proceedings of the ACM on Web Conference 2025, pp. 1273–1291, 2025.

Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. Self-
supervised hypergraph convolutional networks for session-based recommendation. In AAAI Con-
ference on Artificial Intelligence, pp. 4503–4511, 2021.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha
Talukdar. Nhp: Neural hypergraph link prediction. In Proceedings of the 29th ACM international
conference on information & knowledge management, pp. 1705–1714, 2020.

Yang Ye and Shihao Ji. Sparse graph attention networks. IEEE Transactions on Knowledge and
Data Engineering, 35(1):905–916, 2021.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. Advances in neural information processing systems, 19, 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL ANALYSIS

We first prove the following lemma that will be used later in Stability proof.
Lemma A.1 (Expectation of Masked Structure). Let P ∈ [0, 1]n×m be the matrix of marginal
inclusion probabilities, i.e., pv,e = P(Mv,e = 1). Then,

E[H̃] = H ⊙ P .

Proof.

E[H̃v,e] = E[Hv,e · Mv,e]

= Hv,e · E[Mv,e]

= Hv,e · pv,e
⇒ E[H̃] = H ⊙ P

Theorem 5.1 (Perturbation Stability). If fθ(X, ·) is L-Lipschitz w.r.t. the Frobenius norm,

E
[∥∥∥fθ(X, H̃)− fθ(X,E[H̃])

∥∥∥
F

]
≤

L ·
√∑

v,e

H2
v,epv,e(1− pv,e).

Proof. Since we assumed the HGNN fθ to be L-Lipschitz,

∥fθ(X, H̃1)− fθ(X, H̃2)∥F ≤ L · ∥H̃1 − H̃2∥F
for all incidence matrices H̃1, H̃2.

Let H̄ = E[H̃]. As per Lemma A.1, E[H̃] = H ⊙ P . Thus

∥fθ(X, H̃)− fθ(X, H̄)∥F ≤ L · ∥H̃ − H̄∥F

Taking expectation

EH̃

[
∥fθ(X, H̃)− fθ(X, H̄)∥F

]
≤ L · EH̃

[
∥H̃ − H̄∥F

]
By Jensen’s inequality, for any matrix A

E[∥A∥] ≤
√

E[∥A∥2]

⇒ E[∥H̃ − H̄∥F] ≤
√

E[∥H̃ − H̄∥2F]

Since the entries H̃v,e are independent:

E[(H̃v,e − H̄v,e)
2] = Var[H̃v,e] = H2

v,e · pv,e(1− pv,e)

It follows that,

E
[
∥H̃ − H̄∥2F

]
=

∑
v,e

Var[H̃v,e] =
∑
v,e

H2
v,epv,e(1− pv,e)

Thus,

EH̃

[
∥fθ(X, H̃)− fθ(X,E[H̃])∥F

]
≤ L ·

√∑
v,e

H2
v,e · pv,e(1− pv,e)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Convergence of Fine-Grained Mask Parameters). Let the mask be defined by proba-
bilities P = σ(S) ∈ [0, 1]n×m, where each entry pv,e = σ(sv,e) is a sigmoid-transformed logit.

If the gradient of the loss with respect to each pv,e maintains a fixed sign and the logits are updated
via gradient descent, then for any small ϵ > 0, the time to convergence (either pv,e < ϵ or pv,e >
1− ϵ) follows

τ ≥ O
(
1

ϵ

)
Proof. Each probability pv,e ∈ (0, 1) is parameterized as a sigmoid function:

pv,e = σ(sv,e) =
1

1 + e−sv,e

For simplicity, we ignore the normalisation of the scores. Its derivative with respect to the logit is:

dpv,e
dsv,e

= pv,e(1− pv,e)

This gradient is positive and bounded by 1
4 , ensuring smooth and monotonic updates.

Using chain rule, the gradient descent update on the logit becomes

dsv,e
dτ

= −η · ∂Ltask

∂pv,e
· dpv,e
dsv,e

= −η · gv,e · pv,e(1− pv,e),

where

gv,e := sign
(
∂Ltask

∂pv,e

)
.

is assumed fixed throughout training. There are two cases to consider.

(I) gv,e > 0. If gv,e > 0, the gradient descent step decreases sv,e, pushing pv,e → 0, which
implies (1 − pv,e) → 1. Hence we are in the low-probability regime, where we can approximate
pv,e(1− pv,e) ≈ pv,e. Thus,

dpv,e
dτ

=
dpv,e
dsv,e

· dsv,e
dτ

= pv,e(1− pv,e) · (−ηgv,epv,e(1− pv,e))

= −ηgv,e (pv,e(1− pv,e))
2

≈ −ηgv,ep
2
v,e

This is a first-order linear differential equation. Solving this differential equation yields

pv,e ≈
1

ηgv,eτ
.

To reach a desired threshold pv,e ≤ ϵ, we solve:

τ ≥ 1

ηgv,eϵ
≈ O(1/ϵ).

(II) gv,e < 0. If gv,e < 0, the gradient descent step increases sv,e, pushing pv,e → 1, which implies
(1 − pv,e) → 0. In this high-probability regime, we can approximate pv,e(1 − pv,e) ≈ 1 − pv,e.
Thus,

d(1− pv,e)

dτ
= −dpv,e

dτ

≈ η|gv,e|(1− pv,e)
2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Solving this differential equation yields

1− pv,e ≈
1

ηgv,eτ

To reach a desired threshold 1− pv,e ≤ ϵ ⇒ pv,e ≥ 1− ϵ, we require

τ ≥ 1

ηgv,eϵ
≈ O(1/ϵ)

Thus, convergence to an ϵ-confidence threshold is in O(1/ϵ).

B COMPUTATIONAL COMPLEXITY

We compare the per-layer computational complexity of full HGNNs with our fine-grained (EHGNN-
F) and coarse-grained (EHGNN-C) sparsification variants. Let n,m, t, d, and k denote the #nodes,
#hyperedges, #node-hyperedge incidence pairs in H , feature dimensions, and #node-hyperedge
incidence pairs in H̃ respectively. Table 6 shows that EHGNN-F reduces activation and computation
overhead via incidence-level sparsification, but incurs a higher parameter cost. EHGNN-C reduces
parameter overhead by scoring hyperedges via a shared MLP over pooled node features, sacrificing
fine-grained control for scalability. Both variants are more scalable than full HGNN.

Let, n = |V | denotes the number of nodes, m = |E| denotes the number of hyperedges, t =∑
e∈E |e| denotes the number of incidence pairs (nonzeros in H ∈ {0, 1}n×m), d denotes the input

feature dimensionality, k denotes the number of retained node–edge pairs after sparsification, h
denotes hidden layer size, and κ denotes the number of hyperedges retained after sparsification,
meaning, κ ≈ m.k/t.

Full HGNN. Node-to-edge and edge-to-node aggregations per layer is typically done via sparse
matrix–dense matrix multiplication (SpMM). In particular, node-to-edge aggregation is done via
HTX ∈ Rm×d to construct hyperedge embedding, while edge-to-node aggregation is done via
H(HTX) ∈ Rn×d to construct embedding of the nodes in the next layer. Both aggregations has
a time complexity O(td). The space complexity to hold the intermediate results is O(td). This is
because there are t non-zero entries in H , for each we need to conduct d elementwise multiply-add
operations. There is no additional parameter overhead involved in Full HGNN training.

Fine-grained masking (EHGNN-F). Time complexity: EHGNN-F incurs computational cost in
two main stages: sparsification and message passing. During sparsification, the model computes
sigmoid scores for all t incidence logits in O(t) time. To select the top-k incidences, it uses top-
k Categorical sampling, costing O(t log k). Once the top-k mask is applied, message passing is
executed over the reduced incidence matrix containing k incidence pairs. Each such pair involves
computations over feature vectors of dimension d, resulting in a total message passing cost of O(kd).
Summing these components, the overall time complexity per forward pass is: O(kd+ t log k).

Space complexity: The space complexity of EHGNN-F consists of both the memory required for
storing scores sv,e and intermediate activations stored during the forward pass. First, the model
learns a scalar mask logit sv,e for every incidence pair (v,e), totaling O(t) persistent memory. During
forward propagation, all t scores are passed through a sigmoid and retained in memory for use in
the straight-through estimator, contributing an additional O(t) temporary memory. The model then

Table 6: Time and space (activation) complexity, and parameter overhead comparison. Here m =
|E| is the original # hyperedges, t =

∑
e∈E |e| is the original incidence size, k ≈ t.κ/m indicates

the reduced incidence size after sparsification, and κ indicates the #hyperedges after sparsification.

Method Time Space/Activation Param. overhead
Full HGNN O(td) O(td) None
EHGNN-F (Fine) O(t log k + kd) O(t+ kd) O(t)
EHGNN-F w/ cond. (Fine) O(t log k + kd+ td) O(t+ kd) O(d2)
EHGNN-C (Coarse) O(td+m log κ+ kd) O(m+ kd) O(m)
EHGNN-C w/ cond. (Coarse) O(td+md2 +m log κ+ kd) O(m+ kd) O(d2)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ModelNet40 NTU MushroomCora-CA House Cora CiteSeer PubMed Actor Pokec Twitch 20news Walmart DBLP-CA
Datasets

0

20

40

60

80

100

Ac
cu

ra
cy

EHGNN-F EHGNN-F w/ Bernouli sampling + L2 reg.

ModelNet40 NTU MushroomCora-CA House Cora CiteSeer PubMed Actor Pokec Twitch 20news Walmart DBLP-CA
Datasets

100

101

102

M
ax

. M
em

or
y

(G
B)

EHGNN-F EHGNN-F w/ Bernouli sampling + L2 reg.

Figure 4: Ablation study of hard mask sampling from soft probabilities.

selects the top-k incidences and performs message passing only over this pruned subset, requiring
storage of O(kd) for the selected node or edge features. Thus, the total space complexity is: O(t+
kd). This becomes prohibitive in large, dense hypergraphs where t ≫ n,m; however, it is still more
efficient than Full HGNN’s space complexity O(td).

Parameter overhead: The parameter overhead in EHGNN-F originates from its fine-grained masks.
For each incidence pair, the model maintains a dedicated scalar parameter. This leads to a total
parameter count of: O(t).

Coarse-grained masking (EHGNN-C w/ cond.). Time Complexity: The runtime overhead of
EHGNN-C consists of edge scoring and sparse message passing. First, node features are aggregated
to hyperedges via HTX , requiring O(td) elementwise multiply-add operations. Then, the edge-
level MLP scores each of the m hyperedges in O(md2) time if a single-layer MLP is used. Selecting
the top-κ edges costs O(m log κ). Finally, sparse message passing occurs over k incidence pairs
costs O(kd). Thus, the total time complexity per forward pass is: O(td + md2 + m log κ + kd).
This reflects an efficient sparsification process, in particular for dense hypergraphs where the number
of hyperedges m ≪ t.

Space Complexity: EHGNN-C requires memory primarily for intermediate activations and edge-
level mask scores. During message passing, only the top-κ hyperedges are retained which contribute
to roughly k incidence pairs that participate in message passing. Thus, message-passing activations
are stored for k node–edge pairs, each of feature size d, totaling O(kd). Additionally, the model
stores m scalar scores (se) for edge selection, which adds O(m) space. The total space complexity
during forward propagation is: O(m + kd). This is significantly better than EHGNN-F’s space
complexity in dense hypergraphs where m ≪ t.

Parameter overhead: The parameter overhead of EHGNN-C comes from its coarse-grained scoring
MLP, which is applied once per hyperedge. For a single shared MLP (across all edges), the num-
ber of parameters is O(d2), assuming one hidden layer. More importantly, the parameter count is
independent of the number of node-edge incidences t. This makes EHGNN-C far more parameter-
efficient than EHGNN-F, especially for large-scale hypergraphs with millions of incidences but only
thousands of hyperedges.

C PARAMETER SETTINGS OF EHGNN-C AND EHGNN-F

Recall that EHGNN-C (cond.) and EHGNN-F (cond.) passes the node features of the nodes in a
hyperedge to an MLP (shared with other hyperedges) to compute edge-level scores for each hyper-
edge. Table 7 reports the #neurons in the hidden layer of the MLP on various datasets. The reported
setting produced the best accuracy on the test set.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Parameter settings of EHGNN-C (cond.) and EHGNN-F (cond.)

Dataset # Hidden layers of MLP
20news 8
Actor 16
CiteSeer 16
Cora 32
Cora-CA 8
DBLP-CA 16
House 8
ModelNet40 16
Mushroom 32
NTU 16
Pokec 32
PubMed 32
Twitch 16
Walmart 32
Yelp 16

Table 8: Comparison (accuracy ± std) of EHGNN-F and its variant without Probabilistic Normal-
ization across datasets.

Model 20news ModelNet40 Mushroom NTU2012 Actor Citeseer Cora-CA DBLP-CA

EHGNN-F w/o Norm. 77.96 ± 0.10 95.28 ± 0.05 96.30 ± 0.49 87.28 ± 0.42 76.82 ± 0.21 70.87 ± 0.72 80.71 ± 0.43 88.44 ± 0.08
EHGNN-F 77.94 ± 0.11 95.24 ± 0.07 96.35 ± 0.41 87.40 ± 0.18 76.68 ± 0.14 70.94 ± 0.37 80.77 ± 0.46 88.37 ± 0.07

Cora House Pokec Pubmed Twitch Walmart Yelp

EHGNN-F w/o Norm. 75.92 ± 0.43 87.80 ± 1.19 58.76 ± 0.03 85.57 ± 0.07 50.71 ± 0.07 95.16 ± 0.02 30.92 ± 0.14
EHGNN-F 75.42 ± 0.57 87.93 ± 0.22 58.82 ± 0.09 85.59 ± 0.03 50.72 ± 0.11 95.17 ± 0.02 30.57 ± 0.46

D ABLATION STUDIES

We analyze the various design choices for EHGNN-F. To that end, we conduct two studies: (a)
whether it is worth normalizing σ(sv,e) during the computation of probabilities pv,e, and (b) whether
the Bernoulli sampling performs better than Top-k Categorical sampling.

(a) In Table 8, we observe that in most of the datasets (9 out of 15), normalization slightly helps
improve the performance. As normalization is a constant-time operation, we decided to do so in
EHGNN-F for an additional boost in performance. (b) In Figure 4, we find that the Bernoulli sam-
pling, along with enforcing the budget constraint via L2 regularization, does not boost accuracy,
but rather consumes more memory. Thus, instead, we opted for Top-k Categorical sampling in
EHGNN-F.

E ADDITIONAL EXPERIMENTS

E.1 EFFECTIVENESS ON HETEROPHILIC HYPERGRAPHS.

Li et al. (2025) proposed a synthetic dataset containing hypergraphs with various homophily ra-
tios. We compare EHGNN-F and EHGNN-C with this dataset to understand the effectiveness of
EdgeMask-HGNN on heterophilic hypergraphs. The results are presented in Figure 5.

On heterophilic hypergraphs (e.g., homophily ratio = 0.3), where connected nodes often have dis-
similar labels, EHGNN-F slightly outperforms EHGNN-C. This suggests that a more flexible fine-
grained masking may better preserve diverse cross-class connections, which are important for in-
formation propagation in heterophilic settings. In contrast, EHGNN-C may prematurely prune such
informative edges due to its more selective sparsification criteria. The performance of EHGNN-C
becomes slightly better than EHGNN-F as hypergraphs become more homophilic (e.g., homophily
ratio = 0.9).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.3 0.4 0.8 0.9
Node homophily ratio

49.0

49.2

49.4

49.6

49.8

50.0

50.2

50.4

50.6

Te
st

 A
cc

ur
ac

y
(%

)

EHGNN-F
EHGNN-C

Figure 5: Performance of EdgeMask-HGNN on hypergraphs with various node homophily ratios.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Standard Deviation 1e 6

0

100

200

300

400

500

600

Co
un

t

Std of Retention Probabilities

0.0 0.2 0.4 0.6 0.8 1.0
Mean Probability

0

50

100

150

200

250

300

350

400

Co
un

t

Mean Retention Probability

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Epochs Selected

0

50

100

150

200

250

300

350

400

Co
un

t

Top-k Selection Frequency

Figure 6: Analysing the retention probabilities of EHGNN-F on Cora (sparsity = 1%)

E.2 CONVERGENCE OF RETENTION PROBABILITIES.

We analyze the retention probabilities pv,e in EHGNN-F to better understand their convergence
behavior. Figure 6 presents the results regarding (a) the standard deviation of p(t)v,e across epochs t
(left plot), (b) the mean p

(t)
v,e across epochs t. (middle plot), and (c) the proportion of epochs where

the pairs (v, e) were selected to be in the top-k (right plot).

(a) From the left plot, we observe that the vast majority of (v, e) pairs have low standard deviation,
indicating that their retention probabilities remain stable across training epochs. This demonstrates
strong convergence of the learned mask, as the model consistently assigns very similar probabilities
across epochs.

(b) The mean probabilities are evenly distributed across the full [0, 1] range, forming a near-uniform
bell shape. This suggests the model learns a broad spectrum of importance scores, effectively distin-
guishing task-relevant vs. irrelevant incidence pairs. This reflects the model’s ability to differentiate
between task-relevant and irrelevant pairs, reinforcing the value of the learned masking.

(c) The selection frequencies also follow a wide and symmetric distribution. Some edges are con-
sistently selected, appearing in the top-k mask in most epochs. These are likely critical incidence
pairs, showing high agreement between learned probabilities and sampled mask selections. While
others are rarely selected, reinforcing that the model has converged to a sparse and discriminative
selection pattern.

F MODEL PARAMETER SIZES

We report the model parameter sizes in Table 9 for a complete understanding of the parameter
overhead, which was discussed earlier theoretically. Recall that EHGNN-C and EHGNN-F have
parameter overhead of O(d2) and O(t), respectively, where d represents the dimension of node

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Number of model parameters (integers) across datasets for each algorithm at sparsity =
50%. OOM=Out-of-Memory.

Algorithms 20news ModelNet40 Mushroom NTU2012 Actor Citeseer Cora-CA DBLP-CA

Full 53764 72745 12802 86083 27651 1899526 737799 733190
Random 53764 72745 12802 86083 27651 1899526 737799 733190
Degdist 53764 72745 12802 86083 27651 1899526 737799 733190
Spectral 53764 72745 12802 86083 27651 1899526 737799 OOM
EHGNN-F 119215 134300 53422 96143 81023 1902979 742384 832751
EHGNN-F (cond.) 60229 79210 14275 92548 30916 2136583 829576 824455
EHGNN-C 119215 134300 53422 96143 81023 1902979 742384 832751
EHGNN-C (cond.) 57029 76010 13571 89348 29316 2018087 783720 778855

Cora House Pokec Pubmed Twitch Walmart Yelp

Full 737799 2562 34818 258051 5122 11787 958473
Random 737799 2562 34818 258051 5122 11787 958473
Degdist 737799 2562 34818 258051 5122 11787 958473
Spectral 737799 2562 34818 258051 5122 OOM OOM
EHGNN-F 742585 14405 40320 292680 21478 472417 5482067
EHGNN-F (cond.) 829576 2755 39043 290116 5635 12556 1077706
EHGNN-C 742585 14405 40320 292680 21478 472417 5482067
EHGNN-C (cond.) 783720 2691 36963 274116 5411 12204 1018122

features and t =
∑

e∈E |e| is the number of node–hyperedge pairs. Note that d does not depend on
|V | or |E| and it’s a constant, but t does. Hence, we observe that EHGNN-C has a smaller parameter
overhead than EHGNN-F in general.

EHGNN-F has a higher parameter overhead than Full, Random, Degdist, and Spectral due to the
fact that it needs to learn the mask conditioned on the supervision signal from the downstream task,
requiring additional parameters. While EHGNN-F introduces a higher parameter overhead, its mem-
ory usage (O(t+ kd)) is dominated by sparsified message passing layers. The substantial reduction
in active node–hyperedge incidences (k ≪ t) leads to a much smaller activation footprint. Thus,
despite having more parameters, EHGNN-F consumes roughly equal and oftentimes less memory
than the Full training (see Table 3).

G EVALUATING EDGEMASK-HGNN ON NODE CLUSTERING TASK

We adopt an unsupervised autoencoder framework, where the encoder learns node embeddings
Z ∈ Rn×d from the hypergraph. The decoder reconstructs the incidence structure H from the em-
beddings. The encoder-decoder are trained based on reconstruction loss (e.g. Binary cross-entropy
loss). Finally, we run a standard clustering algorithm (e.g., k-means) on the learned embedding Z.

Encoder. Given the hypergraph H = (X,H), an HGNN (Feng et al., 2019) encoder fθ produces
node embeddings:

Z = fθ(X,H) ∈ Rn×d.

The encoder may also include a sparsification mask (EHGNN-F or EHGNN-C), in which case the
effective incidence is:

H̃ = H ⊙M , M ∈ {0, 1}n×m,

where M is the learned binary mask as discussed in section 4.

Decoder. The decoder reconstructs the incidence matrix H from Z. Each hyperedge e ∈ E is
represented by aggregating its node embeddings:

he =
1

|e|
∑
v∈e

Zv, he ∈ Rd.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Node clustering Accuracy (± std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40 Mushroom NTU2012 pokec pubmed twitch Avg. Rank

Full 0.41 ± 0.02 0.41 ± 0.02 0.41 ± 0.03 0.67 ± 0.00 0.93 ± 0.00 0.84 ± 0.05 0.69 ± 0.01 0.51 ± 0.01 0.52 ± 0.08 0.51 ± 0.00
EHGNN-F 0.41 ± 0.03 0.40 ± 0.05 0.42 ± 0.04 0.61 ± 0.03 0.92 ± 0.02 0.69 ± 0.07 0.67 ± 0.02 0.51 ± 0.00 0.53 ± 0.07 0.51 ± 0.00 2.00
EHGNN-C 0.43 ± 0.03 0.41 ± 0.04 0.41 ± 0.02 0.58 ± 0.05 0.90 ± 0.02 0.75 ± 0.10 0.67 ± 0.02 0.51 ± 0.00 0.52 ± 0.08 0.51 ± 0.00 2.60

EHGNN-F (cond.) 0.41 ± 0.03 0.39 ± 0.04 0.40 ± 0.04 0.59 ± 0.02 0.91 ± 0.01 0.70 ± 0.08 0.66 ± 0.01 0.51 ± 0.01 0.53 ± 0.07 0.51 ± 0.00 2.90
EHGNN-C (cond.) 0.42 ± 0.03 0.41 ± 0.04 0.41 ± 0.02 0.61 ± 0.05 0.91 ± 0.01 0.75 ± 0.10 0.65 ± 0.01 0.51 ± 0.00 0.53 ± 0.07 0.51 ± 0.00 2.50

Table 11: Node clustering NMI (± std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40 Mushroom NTU2012 pokec pubmed twitch Avg. Rank

Full 0.00 ± 0.00 0.20 ± 0.03 0.24 ± 0.02 0.22 ± 0.00 0.92 ± 0.00 0.41 ± 0.11 0.82 ± 0.00 0.00 ± 0.00 0.12 ± 0.06 0.00 ± 0.00
EHGNN-F 0.00 ± 0.00 0.18 ± 0.04 0.22 ± 0.03 0.14 ± 0.04 0.92 ± 0.00 0.14 ± 0.07 0.80 ± 0.00 0.00 ± 0.00 0.13 ± 0.06 0.00 ± 0.00 2.30
EHGNN-C 0.00 ± 0.00 0.18 ± 0.03 0.23 ± 0.03 0.10 ± 0.07 0.91 ± 0.00 0.24 ± 0.12 0.80 ± 0.00 0.00 ± 0.00 0.12 ± 0.07 0.00 ± 0.00 2.50

EHGNN-F (cond.) 0.00 ± 0.00 0.17 ± 0.04 0.22 ± 0.04 0.12 ± 0.03 0.92 ± 0.00 0.15 ± 0.08 0.80 ± 0.01 0.00 ± 0.00 0.14 ± 0.06 0.00 ± 0.00 2.90
EHGNN-C (cond.) 0.00 ± 0.00 0.19 ± 0.03 0.23 ± 0.03 0.14 ± 0.08 0.91 ± 0.00 0.24 ± 0.12 0.80 ± 0.00 0.00 ± 0.00 0.13 ± 0.06 0.00 ± 0.00 2.30

Table 12: Node clustering ARI (± std) across datasets. Bold denotes the best non-Full result
per dataset. Avg. Rank computed over datasets where all non-Full algorithms report accuracies
(10 datasets: actor, citeseer, cora, house-committees, ModelNet40, Mushroom, NTU2012, pokec,
pubmed, twitch).

Algorithms actor citeseer cora house-committees ModelNet40 Mushroom NTU2012 pokec pubmed twitch Avg. Rank

Full 0.01 ± 0.00 0.16 ± 0.02 0.18 ± 0.03 0.12 ± 0.00 0.90 ± 0.00 0.48 ± 0.13 0.65 ± 0.01 0.00 ± 0.00 0.11 ± 0.06 0.00 ± 0.00
EHGNN-F 0.01 ± 0.00 0.13 ± 0.03 0.16 ± 0.03 0.05 ± 0.02 0.91 ± 0.01 0.16 ± 0.10 0.62 ± 0.03 0.00 ± 0.00 0.13 ± 0.07 0.00 ± 0.00 2.10
EHGNN-C 0.01 ± 0.00 0.14 ± 0.03 0.16 ± 0.04 0.04 ± 0.05 0.88 ± 0.02 0.29 ± 0.16 0.63 ± 0.04 0.00 ± 0.00 0.11 ± 0.08 0.00 ± 0.00 2.60

EHGNN-F (cond.) 0.01 ± 0.00 0.12 ± 0.03 0.15 ± 0.03 0.04 ± 0.02 0.90 ± 0.01 0.18 ± 0.12 0.61 ± 0.02 0.00 ± 0.00 0.13 ± 0.07 0.00 ± 0.00 2.80
EHGNN-C (cond.) 0.01 ± 0.00 0.14 ± 0.03 0.16 ± 0.03 0.06 ± 0.05 0.90 ± 0.01 0.29 ± 0.16 0.60 ± 0.02 0.00 ± 0.00 0.12 ± 0.07 0.00 ± 0.00 2.50

The probability that node v belongs to hyperedge e is modeled as:

Ĥv,e = σ (⟨WnZv,Wehe⟩) ,

where Wn,We ∈ Rd×d are learnable projections of the decoder, ⟨·, ·⟩ denotes the dot product, and
σ is the sigmoid activation function.

Reconstruction Loss. We sample the same number of positive incidences (v, e) where Hv,e = 1,
and negatives (v, e) where Hv,e = 0. The reconstruction loss is binary cross-entropy loss:

Lrecon = −
∑

(v,e)∈Ω+

log Ĥv,e −
∑

(v,e)∈Ω−

log(1− Ĥv,e),

where Ω+ = {(v, e) : Hv,e = 1} and Ω− is a set of sampled negatives.

The encoder parameters θ, and decoder projections (Wn,We) are optimized jointly to minimize
Lrecon.

Observations. We observe that all algorithms (including Full) perform poorly on heterophilic hy-
pergraph benchmarks (Actor, Pokec, twitch). We believe the reason is the following: on heterophilic
hypergraphs node neighbors often have different labels which renders laplacian-style averaging over
incident nodes under homophily assumption ineffective. As there are currently no studies on the
node-clustering performance of HGNNs on heterophilic hypergraphs, addressing this issue not only
under full training but also sparsified training setting would be an interesting future work.

19

	Introduction
	Related Works
	Problem Statement
	EdgeMask-HGNN: Learnable Hypergraph Sparsification
	Fine-grained Incidence-level Masking (EHGNN-F)
	Coarse-grained Edge-Level Masking (EHGNN-C)

	Theoretical Guarantees
	Experiments
	Experimental evaluation

	Conclusion and Future works
	Theoretical Analysis
	Computational Complexity
	Parameter settings of EHGNN-C and EHGNN-F
	Ablation Studies
	Additional Experiments
	Effectiveness on heterophilic hypergraphs.
	Convergence of retention probabilities.

	Model Parameter Sizes
	Evaluating EdgeMask-HGNN on Node Clustering task

