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Abstract

Gating mechanisms have been widely utilized, from early models like LSTMs [1]
and Highway Networks [2] to recent state space models [3], linear attention [4], and
also softmax attention [5, 6]. Yet, existing literature rarely examines the specific
effects of gating. In this work, we conduct comprehensive experiments to system-
atically investigate gating-augmented softmax attention variants. Specifically, we
perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts
(MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our
central finding is that a simple modification—applying an head-specific sigmoid
gate after the Scaled Dot-Product Attention (SDPA)—consistently improves perfor-
mance. This modification also enhances training stability, tolerates larger learning
rates, and improves scaling properties. By comparing various gating positions
and computational variants, we attribute this effectiveness to two key factors: (1)
introducing non-linearity upon the low-rank mapping in the softmax attention, and
(2) applying query-dependent sparse gating scores to modulate the SDPA output.
Notably, we find this sparse gating mechanism mitigates ‘massive activation’ [7],
‘attention sink’ [8], and enhances long-context extrapolation performance, and we
also release related codes and models to facilitate future research. Furthermore, the
most effective SDPA output gating is used in the Qwen3-Next models.

1 Introduction

Gating mechanism is well-established in neural networks. Early architectures, such as LSTMs [1],
Highway Networks [2] and GRUs [9], pioneer the use of gating to control information flow across
time steps or layers and improve gradient propagation. This principle persists in modern architectures.
Recent sequence modeling works, including state-space models [3, 10] and attention mechanisms [11,
12, 13, 4, 14, 15, 16, 17, 18, 5, 6] commonly apply gating, often to modulate the outputs of token-
mixer components. Despite its widespread adoption and empirical success, most recent works do not
look into the gating mechanisms like the gating scores and their effect on the model’s hidden states.

Insufficient understanding hinders assessing gating’s true contribution, especially when confounded
with other architectural factors. For instance, while Switch Heads [19, 20] introduces a sigmoid gating
to select top-K attention head experts, our experiments reveal an interesting finding (Appendix A.1):
substantial performance gains persist even when reduced to a single expert, where the gate simply
modulates the value output. This strongly suggests the gating itself provides significant intrinsic value,
separate from the routing mechanism. Similarly, in Native Sparse Attention (NSA) [21], while overall
performance improvements are demonstrated, they do not disentangle the contributions of its gating
mechanism from the effects of the sparse attention design itself. These considerations underscore the
need to rigorously disentangle the effects of gating from other architectural components.
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Figure 1: Left: Investigated positions for applying gating operations within the self-attention layer.; Middle:
Performance comparison (Test PPL and MMLU) of 15B MoE models with gating applied at various positions.
Gating after SDPA (G1) yields the best overall results. Gating after the Value layer (G2) also demonstrates
notable improvements, particularly in PPL. Right: Training loss comparison (smoothed, 0.9 coeff.) over 3T
tokens between baseline and SDPA-gated 1.7B dense models under identical hyperparameters. Gating results in
lower final loss and substantially enhanced training stability, mitigating loss spikes. This stability allows for
potentially higher learning rates and facilitates better scaling.

In this work, we investigate gating mechanisms in the standard softmax attention [22] (Sec.2.2).
Specifically, we introduce gating at distinct positions (Fig. 1): after the query (G4), key (G3), and
value projections (G2); following the Scaled Dot Product Attention (SDPA) outputs (G1); and after
the final dense output layer (G5). Our exploration covers gating variants including elementwise
and headwise, head-specific and head-shared, as well as additive and multiplicative forms. We find
that: (i) applying SDPA output head-specific gating (G1) yields the most significant performance
improvements (e.g., up to 0.2 PPL reduction and 2 points on MMLU); (ii) the SDPA output gating
also improves training stability, nearly eliminating loss spikes, enabling larger learning rates and
enhancing model scalability.

We identify two factors contributing to the efficacy of gating: (i) Non-Linearity. The two consecutive
linear layers - the value (Wv) and dense (WO) projections - can be rewritten into one low-rank
linear projection. Therefore, introducing non-linearity through gating at positions G1 or G2 can
increase the expressiveness of this low-rank linear transformation (Sec. 4.1). (ii) Sparsity. Although
non-linear gating variants consistently enhance performance, we observe that their gains vary. Our
analysis further reveals that the pronounced sparsity of the gating scores is another crucial factor,
introducing input-dependent sparsity to SDPA outputs (Sec. 4.2). Sparse alse gating eliminates
the massive activation [7] and attention sink [8]: the initial tokens have large activation values in
the corresponding hidden states (Tab. 4) and disproportionately dominate attention scores (Fig. 2,
Sec. 4.3). Previous work [8, 7, 23] explains attention sinks as an accumulation of redundant attention
due to non-negative softmax normalization. Empirically, we verify that when query-dependent sparse
gating is applied at the SDPA output, both our dense and MoE models (trained on 3.5T tokens)
exhibit no attention sink. Furthermore, these models demonstrate superior performance in length
generalization, achieving a gain of over 10 points on RULER [24](Sec.4.4).

Practical Recommendation. For best results, apply elementwise SDPA gating G1 (i.e., gating after
the attention-weighted value projection) and train with a moderately increased learning rate.

2 Gated-Attention Layer

2.1 Preliminary: Multi-Head Softmax Attention

Given an input X ∈ Rn×dmodel , where n is the sequence length and dmodel is the model dimension, the
computation of transformer’s attention layer [22] could be divided into four stages.
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Figure 2: Left: Proportion of attention allocated to the initial token per layer (test perplexity dataset). The
baseline model suffers from a significant attention sink, with an average of 46.7% of attention scores across
layers directed towards the first token. Introducing a gate effectively alleviates this, reducing the proportion to
4.8%. Right: Average attention map weights for each head. Layer 21 in the baseline model demonstrates a
strong attention sink (83% on the first token), which is substantially reduced by the gate (4%). In the final output
layer, the gate amplifies the existing tendency for the model to attend to individual tokens within the sequence.

QKV Linear Projections: The input X is linearly transformed into queries Q, keys K, and values
V using learned weight matrices WQ,WK ,WV ∈ Rdmodel×dk and Q,K, V ∈ Rn×dk :

Q = XWQ, K = XWK , V = XWV . (1)

Scaled Product Dot-Product Attention (SDPA): computes attention scores between queries and
keys, followed by a softmax normalization. The output is a weighted sum of the values:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2)

where QKT

√
dk

∈ Rn×n represents the scaled dot-product similarity matrix, and softmax(·) ensures the
attention weights are no-negative and sum to 1 across each row.

Multi-Head Concatenation: In multi-head attention, the above process is repeated for h heads, with
each head having its projection matrices W i

q ,W
i
k,W

i
v . All heads’ outputs are concatenated:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh), (3)

where headi = Attention(QW i
Q,KW i

K , V W i
V ).

Final Output Layer: The concatenated SDPA output is passed to the output layer Wo ∈ Rhdk×dmodel :

O = MultiHead(Q,K, V )Wo. (4)

2.2 Augmenting Attention Layer with Gating Mechanisms

The gating mechanism is formalized as:

Y ′ = g(Y,X,Wθ, σ) = Y ⊙ σ(XWθ), (5)

where Y is the input to be modulated, X is another input used to compute the gating scores1, Wθ

refers to the learnable parameters of gate, σ is an activation function (e.g., sigmoid), and Y ′ is

1We adopt the hidden states after pre-normalization as X .
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the gated output. The gating score, σ(XWθ), effectively acts as a dynamic filter, controlling the
information flow from Y by selectively preserving or erasing its features.

This work comprehensively investigates variants of gating mechanisms within the attention layer.
Our exploration focuses on five key aspects: (1) Positions. We study the effect of applying gating
at different positions, as illustrated in Fig. 1(left): (a) after the Q,K, V projections (Equ. 1), corre-
sponding to positions G2, G3, G4 in Fig. 1(left); (b) following the SDPA (Equ. 3) outputs (G1). (c)
after the final concatenated multi-head attention outputs (Equ. 4, G5). (2) Granularity. We consider
two levels of granularity for the gating score: (a) Headwise: A single scalar gating score modulates
the entire output of an attention head. (b) Elementwise: Gating scores are vectors with the same
dimensionality as Y , enabling fine-grained, per-dimension modulation. (3) Head Specific or Shared.
Given the multi-head nature of attention, we further consider: (a) Head-Specific: each attention head
has its specific gating scores, enabling independent modulation for each head. (b) Head-Shared: Wθ

and gating scores are shared across heads. (4) Multiplicative or additive. For applying gating score
to Y , we consider (a) Multiplicative Gating: The gated output Y ′ is computed as: Y ′ = Y · σ(Xθ).
(b) Additive Gating: Y ′ = Y + σ(Xθ). (5) Activation Function. We mainly consider two common
activation functions: SiLU [25] and sigmoid. We only use SiLU for additive gating due to its
unbounded output range, and sigmoid only gives scores in [0, 1]. Additionally, to further dissect the
mechanisms underlying gating’s effectiveness, we also consider Identity Mapping or RMSNorm [26]
(detailed in Sec 4.1). Unless otherwise specified, we employ head-specific, multiplicative gating
utilizing the sigmoid activation function (σ(x) = 1

1+e−x ).

3 Experiments

3.1 Experimental Setups

Model Architecture and Training Settings We conduct experiments on both MoE models (15B total
parameters with 2.54B activated, 15A2B) and dense models (1.7B total parameters). The 15A2B MoE
models utilize 128 total experts with top-8 softmax gating, fine-grained experts [27], global-batch
LBL [28], and z-loss [29]. We adopt group query attention (GQA) [30] for the attention part. More
detailed model architecture configurations are discussed in Appendix A.2. We train the models on
subsets of a 4T high-quality tokens, encompassing multilingual, math, and general knowledge content.
A sequence length of 4096 is used. More detailed configurations, such as learning rate and batch
size (bsz), will be introduced in each part. Other hyperparameters follow the default values of the
AdamW optimizer. Since the parameters and flops introduced by the gating are relatively small, the
wall-time latency introduced by gating is less than 2%. Evaluation We test the few-shots results on
popular benchmarks, including, Hellaswag [31] for English, MMLU [32] for general knowledge,
GSM8k [33] for math reasoning, HumanEval [34] for coding, C-eval [35] and CMMLU [36] for
Chinese proficiency. We also test the perplexity (PPL) on diverse held-out test sets, including domains
like English, Chinese, Code, Math, Law and Literature.

3.2 Main Results

3.2.1 Gated Attention for MoE models

We first compare different gatings on the training-efficient MoE-15A2B models. All models use
a scheduler that warms up to a maximum LR of 2e-3 in 1k steps and decays using cosine to 3e-5.
We use a global bsz of 1024, comprising 100k optimization steps. The results are summarized in
Tab. 1. To provide a fair comparison, we supplement the vanilla MoE baseline (row 1) with parameter
expansion methods, including increasing the number of key-value heads (row 2), increasing the
number of query heads (row 3), and increasing both the total and activated number of experts (row 4).
These methods introduce a comparable or greater number of parameters than the gating mechanisms.

From Tab. 1, we observe: (i) SDPA and value output gating are effective. Inserting gates at the
output of SDPA (G1) or the value map (G2) is the most effective, achieving lower PPL and better
overall benchmark performance than other variants. We will further investigate why gating at these
two positions is effective in Sec 4.2. (ii) Head-Specific Gating Matters. Applying headwise gating
at G1 and G2 introduces very few additional parameters (less than 2M for the MoE-15A2B model)
but still delivers substantial improvements (rows 10 and 11). When sharing gating scores across
different attention heads (we average over the query head dimension q to obtain an n× dk score from
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Table 1: Gating variant performance and results. We train the 15A2B MoE models on 400B tokens. dk is the
head dim, dmodel is the model’s hidden dim, and n is the number of tokens. q refers to the number of query heads,
k refers to the number of key-value heads. ‘Act Func’ is the activation function in Eq 5. ‘Score Shape’ is the
gating score shape for an input X ∈ Rn,dmodel . ‘added param’ indicates added parameters.

Method Act Func Score Shape Added Param Avg PPL Hellaswag MMLU GSM8k C-eval
Reference Baselines (Baseline uses q = 32, k = 4. All methods use dk = 128.)

(1) Baseline - - 0 6.026 73.07 58.79 52.92 60.26
(2) k = 8 - - 50 5.979 73.51 59.78 52.16 62.26
(3) q = 48 - - 201 5.953 73.59 58.45 53.30 59.67
(4) Add 4 Experts - - 400 5.964 73.19 58.84 52.54 63.19

Gating Position Variants

(5) SDPA Elementwise G1 sigmoid n× q × dk 201 5.761 74.64 60.82 55.27 62.20
(6) v Elementwise G2 sigmoid n× k × dk 25 5.820 74.38 59.17 53.97 61.00
(7) k Elementwise G3 sigmoid n× k × dk 25 6.016 72.88 59.18 50.49 61.74
(8) q Elementwise G4 sigmoid n× q × dk 201 5.981 73.01 58.74 53.97 62.14
(9) Dense Output G5 sigmoid n× dmodel 100 6.017 73.32 59.41 50.87 59.43

Gating Granularity Variants

(10) SDPA Headwise G1 sigmoid n× q 1.6 5.792 74.50 60.05 54.44 62.61
(11) v Headwise G2 sigmoid n× k 0.2 5.808 74.38 59.32 53.53 62.61

Head-Specific v.s. Head-Shared Gating

(12) SDPA Head-Shared G1 sigmoid n× dk 201 5.801 74.34 60.06 53.15 61.01
(13) v Head-Shared G2 sigmoid n× dk 25 5.867 74.10 59.02 53.03 60.61

Multiplicative v.s. Additive

(14) SDPA Additive G1 SiLU n× q × dk 201 5.821 74.81 60.06 53.30 60.98

Activation Variants

(15) SDPA Elementwise G1 SiLU n× q × dk 201 5.822 74.22 60.49 54.59 62.34

the original n× q × dk), the benchmark improvements are smaller than those achieved by headwise
gating (row 12 v.s. 10, 13 v.s. 11). This underscores the importance of applying distinct gating
scores for different attention heads. (iii) Multiplicative Gating is Preferred. Additive SDPA output
gating underperforms the multiplicative one, although it shows improvements over the baselines.
(iv) Sigmoid Activation is Better. Replacing the activation function in the most effective gating
configuration (row 5) with SiLU (row 15) leads to less improvement.

Overall, adding gating at the value layer (G2) and SDPA output (G1) reduces PPL by more than 0.2,
outperforming various parameter-expanding baselines. However, gating at G1 achieves better PPL
and benchmark results. As long as different heads receive distinct gating scores, the granularity of
gating and the choice of activation function have relatively minor impacts. We will further analyze
the reasons behind these observations in Analysis (Sec 4.2).

3.2.2 Gated Attention for Dense Models.

We also conduct experiments on dense models following [37] to validate SDPA output sigmoid
gating. When using gating, we reduce the width of FFN to maintain the parameter size. Most
experiments use optimized hyperparameters for the baseline. For instance, for the 1.7B model
trained on 400B tokens, we use a maximum LR of 4e-3 and a bsz of 1024. For training on 3.5T
tokens, we increase the maximum LR to 4.5e-3 and the bsz to 2048. Prior work has established that
while increased network depth, large learning rates, and large batch sizes can significantly improve
model performance [38, 39, 40] and distributed training efficiency, they often introduce training
instabilities [39, 41, 42]. We observe that applying gating largely reduces the loss spikes [43, 42]
during training (Fig. 2 right), suggesting a promising role for gating in enhancing training stability.
Therefore, we introduce another setting characterized by an increased number of layers, a higher
maximum learning rate, and a larger batch size to further probe gating’s stabilizing effects.

Tab. 2 reveals that: (i) Gating is effective across various settings Across various model configu-
rations (row 1 v.s. 2, 5 v.s. 8), training data (row 3 v.s. 4), and hyperparameters (row 11 v.s. 13),
SDPA output gating consistently yields benefits. (ii) Gating improves stability and facilitates
scaling. Under the 3.5T token setting, gating improves training stability, largely reducing the loss
spike (Fig. 1, right). When increasing the maximum LR, baselines encounter convergence issues (row
6, 12). While adding sandwich norm [44] restores convergence, the improvement is negligible. In
contrast, increasing the maximum LR in models with gating results in a noticeable improvement.
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Table 2: Performance of different methods with varying learning rates, batch sizes and model configurations.
‘SDPA’ refers to the sigmoid gating after SDPA in Eq 3, and ‘sandwitch norm’ [44] indicates normalizing
attention/ffn outputs before adding them to the residual. When using gating, we reduce FFN’s width so that all
methods have the same number of parameters. ‘-’ means the model diverges during training.

Method Max LR Avg PPL HumanEval MMLU GSM8k Hellaswag C-eval CMMLU
28 Layer, 1.7B Parameters, 400B Tokens, Batch Size=1024

(1) Baseline 4.0× 10−3 7.499 28.66 50.21 27.82 64.94 49.15 49.52
(2) SDPA Elementwise 4.0× 10−3 7.404 29.27 51.15 28.28 65.48 50.72 50.72

28 Layer, 1.7B Parameters, 3.5T Tokens, Batch Size=2048

(3) Baseline 4.5× 10−3 6.180 34.15 59.10 69.07 68.02 68.19 64.95
(4) SDPA Elementwise 4.5× 10−3 6.130 37.80 59.61 70.20 68.84 68.52 65.76

48 Layer, 1.7B Parameters, 400B Tokens, Batch Size=1024

(5) Baseline 4.0× 10−3 7.421 28.05 52.04 32.98 65.96 51.11 51.86
(6) Baseline 8.0× 10−3 9.195 21.34 44.28 15.24 57.00 43.11 42.63
(7) Baseline+Sandwich Norm 8.0× 10−3 7.407 30.49 52.07 32.90 66.00 52.04 51.72
(8) SDPA Elementwise 4.0× 10−3 7.288 31.71 52.44 32.37 66.28 52.06 52.29
(9) SDPA Headwise 4.0× 10−3 7.370 31.10 53.83 34.12 65.59 55.07 52.38
(10) SDPA Elementwise 8.0× 10−3 7.325 31.10 54.47 36.62 66.40 53.91 53.80

48 Layer, 1.7B Parameters, 1T Tokens, Batch Size=4096

(11) Baseline 5.3× 10−3 7.363 29.88 54.44 32.22 65.43 53.72 53.37
(12) Baseline 8.0× 10−3 - - - - - - -
(13) SDPA Elementwise 5.3× 10−3 7.101 34.15 55.70 36.69 67.17 54.51 54.68
(14) SDPA Elementwise 8.0× 10−3 7.078 31.71 56.47 39.73 67.38 55.52 55.77

In summary, we identify SDPA element-wise gating as the most effective method to augment the
attention mechanism. Incorporating the SDPA output gate enables stable training under larger learning
rates and batch sizes—regimes where the baseline often becomes unstable. This suggests that the
optimal hyperparameter configuration shifts when using gating. In practice, one effective way to
leverage the gate is to start from the baseline’s optimal batch size and moderately increase the
learning rate. Further jointly tuning batch size and learning rate may yield additional gains.

4 Analysis: Non-Linearity, Sparsity, and Attention-Sink-Free

In this section, we conduct a series of experiments to explore why such a simple gating mechanism
can yield significant improvements in performance and training stability. Here are the takeaways
according to our analysis: (1) Gatings enhancing non-linearity consistently lead to performance gains
(Sec 4.1); (2) The most effective SDPA elementwise gate introduces strong input-dependent sparsity
(Sec 4.2), which then helps to eliminate the ‘massive activation’ and ‘attention sink’ phenomenon.

4.1 Non-linearity Improves the Expressiveness of Low-Rank Mapping in Attention

Table 3: Performance of different (non)-linearity augmentations.
Method Activation Function Avg PPL Hellaswag MMLU GSM8k C-eval
(1) Baseline - 6.026 73.07 58.79 52.92 60.26
(2) SDPA Elementwise Gate Sigmoid 5.761 74.64 60.82 55.27 62.20
(3) v Elementwise Gate Sigmoid 5.820 74.38 59.17 53.97 61.00
(4) SDPA Additive Gate SiLU 5.821 74.81 60.06 53.30 60.98

(5) SDPA GroupNorm RMSNorm 5.847 74.10 60.15 53.75 61.14
(6) SDPA SiLU SiLU 5.975 73.34 59.55 53.19 60.90
(7) SDPA Additive Gate Identity 5.882 74.17 59.20 52.77 59.86

Inspired by prior
works that utilize
group norm for the
SDPA output [14, 45],
with the same setting
in Sec. 3.2.1, we
apply RMSNorm [26]
independently to the
output of each attention head before concatenation. As shown in Tab. 3 row 5, applying RMSNorm,
which introduces almost no additional parameters, also leads to a significant reduction in PPL.

In multi-head attention, the output of the i-th token, corresponding to the k-th head, can be expressed:

oki = (
∑i

j=0
Sk
ij ·XjW

k
V )W

k
O =

∑i

j=0
Sk
ij ·Xj(W

k
V W

k
O), (6)
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where W k
O is the parameters of the output layer WO corresponding to the k-th head2. Here, Sk

ij is the
attention score of the i-th token attending to the j-th token in the k-th head, Xj is the input to the
attention for token j, and XjW

k
V is the value output of token j in the k-th head. From Equ. 6, we can

merge W k
V W

k
O into one low-rank linear mapping applied over all Xj as dk < dmodel. With GQA,

WV is shared among heads within the same group, further diminishing the expressiveness.

Given that adding non-linearity between two linear mappings can improve their expensiveness [46],
we have two modifications to mitigate the low-rank problem:

oki =

(∑i

j=0
Sk
ij · Non-Linearity-Map(XjW

k
V )

)
W k

O, (7)

oki = Non-Linearity-Map
(∑i

j=0
Sk
ij ·XjW

k
V

)
W k

O. (8)

Notably, adding gating at the G2 (Tab. 3 row 3) position corresponds to the first modification (Equ. 7),
while adding gating (row 4) or group normalization (row 5) at the G1 position corresponds to the
second (Equ. 8). This also explains why adding gating or normalization at the G5 position after WO

has no effect (Tab. 1 row 9) — it does not address the lack of non-linearity between WV and WO.

For additive gating at G1, the output of gating passes through SiLU (Tab. 3 row 4), also introducing
some non-linearity, which explains the observed performance gains, albeit smaller than those achieved
by multiplicative gating. Based on these insights, we conduct two additional experiments: (i) Adding
SiLU only at the G1 position without introducing additional parameters (Tab. 3 row 6). Notice this
simple modification also leads to a modest reduction in PPL, but most benchmark scores remain
unchanged. (ii) Removing SiLU from additive gating, such that the output of Xj after gating is
directly added at the G1 position (Tab. 3 row 7). This further diminishes the gains of addictive gating.

In summary, the enhanced performance associated with effective gating variants is likely attributable
to the introduction of non-linearity between WV and WO. Although applying gating at positions G1

and G2 can can both introduce this non-linearity, these applications yield differing performance gains.
This observed difference motivates us to further analyze the impacts of gating at these two positions.

4.2 Gating Introduces Input-Dependent Sparsity

We analyze the gating scores (Tab. 1, ‘Gate Score’ column) of models with gating applied at the
value (G2) and SDPA output (G1) positions, evaluated on the test language modeling data. The mean
gating scores for all layers are presented in Table 4, with the score distributions visualized in Fig. 3
(layer-wise scores in Appendix A.3). Key observations include:

(i) Effective Gating Scores are Sparse. SDPA output gatings (Elementwise/headwise) exhibit
the lowest mean gating scores. Furthermore, the SDPA output gating score distribution shows a
high concentration near 0, indicating substantial sparsity, consistent with its superior performance.
(ii) Head-Specific Sparsity Matters. Enforcing shared gating scores across attention heads increases
the overall gating scores and diminishes performance gains. Observations (i) and (ii) underscore the
importance of head-specific gating, aligning with previous research demonstrating that individual
attention heads capture distinct aspects of the input [47, 48, 49, 50].

(iii) Query-Dependency Matters. The scores for value gating (G2) are higher than those for SDPA
output gating (G1), and the performance is inferior. This suggests that gating score sparsity is more
effective when query-dependent rather than determined by the key and value. Specifically, SDPA
output gating scores are derived from the hidden states corresponding to the current query (e.g. the
Non-Linearity-Map in Eq 8 depends on Xi), whereas value gating scores are derived from hidden
states associated with past keys and values (e.g. the Non-Linearity-Map in Eq 7 depends on each Xj).
This implies that gating score sparsity may filter out irrelevant contextual information for the query.
To further validate the importance of query-dependency, we introduce input-independent gating by
zero-initializing learnable parameters (q × dk), applying a sigmoid function, and multiplying it with
the SDPA output. As shown in row (6), input-independent gating improves upon the baseline, likely
due to the introduction of non-linearity. Moreover, the high gating scores reinforce that effective
sparsity should be input-dependent.

2Note that concatenating outputs from different heads and then multiplying with WO is equivalent to
multiplying each head’s output with its corresponding W k

O before concatenation
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Table 4: Performance of different gating methods with varying activation functions and average gate scores.
‘Act-Func’ refers to the activation function used for computing the gating scores, while ‘M-Act’ denotes the
rounded maximum activation values of the hidden states output by each layer of the model. Additionally, ‘F-Attn’
represents the attention score of the first token, with higher values indicating more pronounced ‘attention sink’.

Method Act-Func Gate Score M-Act F-Attn PPL Hellaswag MMLU GSM8k
(1) Baseline - - 1053 0.467 6.026 73.07 58.79 52.92
(2) SDPA Elementwise Gate Sigmoid 0.116 94 0.048 5.761 74.64 60.82 55.27
(3) SDPA Headwise Gate Sigmoid 0.172 98 0.073 5.792 74.50 60.05 54.44

(4) SDPA Elementwise Head-shared Gate Sigmoid 0.271 286 0.301 5.801 74.34 60.06 53.15

(5) v Elementwise Gate Sigmoid 0.221 125 0.297 5.820 74.38 59.17 51.33
(6) SDPA Input Independent Gate Sigmoid 0.335 471 0.364 5.917 73.64 59.02 52.40

(7) SDPA Elementwise Gate NS-sigmoid 0.653 892 0.451 5.900 74.05 60.05 52.75
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Figure 3: Gating score means and distributions for SDPA elementwise (Left), value Elementwise (Middle), and
SDPA elementwise with head-shared gating (Right). Most gating scores are less than 0.5, indicating that the
gating scores are sparse. Among them, the SDPA output gating score exhibits the strongest sparsity.

(iv) Less Sparse Gating is Worse. To further validate the importance of gating score sparsity, we
reduce sparsity from the gating formulation. Specifically, we replace the sigmoid function with a
modified Non-Sparse (NS) version:

NS-sigmoid(x) = 0.5 + 0.5 · sigmoid(x), (9)

which constrains the gating scores between [0.5, 1.0]. This ensures introducing non-linearity while
removing gating score sparsity. As shown in Tab. 4 row (7), the gains of NS-sigmoid gating are inferior
to those of SDPA output sigmoid gating. In Appendix A.3, we provide a more detailed discussion on
how sparse gating scores affect the sparsity (the proportion of values below the threshold) in SDPA
hidden states. We will discuss the impact of different sparsity levels on model behavior, including
reducing the ‘attention sink’, in the next section.

4.3 SDPA Output Gating Reduces Massive Activation and Attention-Sink

Based on the observation that gating introduces sparsity to the SDPA output in an input-dependent
manner, we hypothesized that this mechanism can filter out context irrelevant to the current query
token, thereby mitigating the attention sink [8, 7]. Correspondingly, early work [51] finds that in
explicit top-k sparse attention—where only the most relevant tokens are attended to—the attention
sink phenomenon does not occur. To verify this, we analyze the distribution of attention scores
(averaged over all heads) and the proportion of attention scores allocated to the first token (Fig. 2,
Tab. 4, ‘F-Attn’ column). Massive activations [7] (large values in hidden states) are belied to lead to
the attention sink to their corresponding tokens. Inspired by this, we also compute the mean of the
maximum hidden state activations across layers, as shown in the ‘M-Act’ column of Tab. 4. More
detailed layer-wise results are provided in the Appendix A.4.

We can observe: (i) Head-wise and element-wise query-dependent sigmoid gating at the SDPA output
(G1) largely reduces the attention score allocated to the first token and decreases massive activations.
(ii) Enforcing shared gating scores across heads or applying gating only after the value projection
(G2) decreases massive activations, but does not reduce attention scores to the first token. This
reinforces the importance of head-specific gating and suggests that massive activations are not a
necessary condition for attention sinks. (iii) Reducing the input-dependence of gating (row 6) or
using NS-sigmoid to reduce sparsity (row 7) intensifies both massive activations and attention sink.

Collectively, these observations indicate that input-dependent, head-specific gating of the SDPA
output introduces significant sparsity, thereby mitigating the attention sink. Furthermore, sparsity in
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the SDPA outputs reduces massive activations within the model, with increased sparsity leading to
smaller activations. This may explain the improved training stability with gating: by reducing massive
activations, the model is less susceptible to numerical errors during BF16 training [52]. We also
observe that massive activations originate primarily from early layers (e.g., layer 5), where the FFN
outputs large values, consistent with [53]. Once added to the residual stream, these activations are
propagated through subsequent layers via the pre-norm mechanism. This aligns with the effectiveness
of sandwich normalization [44] in enhancing training stability (Table 2, row 7): applying LayerNorm
to the FFN output prevents these large activations from entering the residual stream.

4.4 SDPA Output Gating Facilitates Context Length Extension

Table 5: Performance of different methods across varying sequence lengths. ‘YaRN
Extended’ indicates the expanded context length variant. ‘(values)’ indicate the
performance declines after extending the context length.

Method 4k 8k 16k 32k 64k 128k
Baseline 88.89 85.88 83.15 79.50 - -
SDPA-Gate 90.56 87.11 84.61 79.77 - -

YaRN Extended

Baseline 82.90(-6.0) 71.52(-14.4) 61.23(-21.9) 37.94(-41.56) 37.51 31.65
SDPA-Gate 88.13(-2.4) 80.01(-7.1) 76.74(-7.87) 72.88(-6.89) 66.60 58.82

Based on the attention-
sink-free pattern, we
evaluate the SDPA gat-
ing’s effect in the long-
context setting. Specif-
ically, we extend the
context length for the
models trained on 3.5T
tokens. We increase
the RoPE [54] base
from 10k to 1M and continue training on data with a sequence length of 32k for an additional
80B tokens. This gives us models with a context length of 32k. Subsequently, we use YaRN [55]
to extend the context length to 128k. We evaluate models on the RULER benchmark [24] and
summarize results in Tab. 5. We observe the following: (i) Under the 32k setting, models with
gating slightly outperform the baseline. This suggests that within the training length, the attention
sink phenomenon may not hurt the model’s long-context performance. (ii) When the context length
is extended to 128k using YaRN, both the baseline and gated models experience a decline within
the original 32k range. This observation is consistent with previous works on extending context
length by modifying RoPE [56, 55, 57]. Even though the decline is less pronounced for models with
gating. (iii) At context lengths of 64k and 128k, the gated attention models outperform the baseline
signifantly. From these observations, we hypothesize that adding gating helps the model adapt to the
context-length extension. A possible explanation is that baseline models rely on attention sinks to
adjust the distribution of attention scores. [57] derives the effects of changing the RoPE based on
the attention and hidden state distributions. When techniques like YaRN are applied to modify the
RoPE base, the attention sink pattern may struggle to adapt in a training-free manner, leading to a
noticeable drop in performance. In contrast, models with gating primarily rely on input-dependent
gating scores to control information flow, making them more robust to such changes.

5 Related Works

5.1 Gating in Neural Networks

Gating mechanisms have been widely adopted in neural networks. Early works such as LSTMs [1]
and GRUs [9] introduce gates to regulate information flow across time steps, addressing gradient
vanishing/exploding issues by selectively retaining or discarding information. Highway Networks [2]
extend this concept to feedforward networks, enabling the successful training of very deep archi-
tectures. SwiGLU [25] introduce gating mechanisms into transformer FFN layers, enhancing their
expressive power and becoming a standard component in many open-source LLMs [58, 37].

Several works on state-space models [3, 10, 59] and Linear Attention, such as FLASH [4], RetNet [14],
Lightning Attention [17, 60, 61], and Gated Delta Networks [18], also incorporate gating modules to
controlinformation of token-mixer modules. AlphaFold2 [5] and Forgetting Transformer [6] introduce
gating mechanisms to the output of softmax attention. GaAN [11] uses gating to control each attention
head’s importance for learning on graphs. Some works [62, 13, 63, 15, 16, 64, 65, 66] also apply
operations similar to gating to augment softmax attention. Attention on Attention (AoA) [12]
also modulates the attention output with a sigmoid gating, depending on the query. Although
these works demonstrate the effectiveness of gating, a comprehensive understanding of its precise
mechanisms and the reasons behind its effectiveness still needs exploration. This could contribute to
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a broader appreciation of gating’s importance beyond RNNs and facilitate designs that better leverage
gating’s unique advantages. For example, while Switch Heads [20, 19], NSA [21], and MoSA [67]
employ sigmoid-based gating [68] for selection, further investigation into isolating gating’s specific
contribution could offer valuable insights. Comparisons with baselines incorporating similar gating
mechanisms in standard transformers could offer a more refined perspective on the effectiveness
of their proposed selection mechanisms. The work most closely related to ours is Quantizable
Transformers [69], which also finds that applying gating in softmax attention alleviates extreme
attention concentration and outliers in hidden states in encoder models like BERT and ViT. While this
work primarily leverages gating to eliminate outliers for model quantization, we provide a detailed
analysis of various gating variants, uncovering their benefits through enhanced non-linearity and
sparsity, as well as improved training stability. Building on these insights, we scale up gated attention
models, demonstrating gating’s broad applicability and impact.

5.2 Attention Sink

StreamingLLM [8] formally identifies ‘attention sink’, in which specific tokens receive large attention
scores. Similarly, in ViT, some redundant tokens act as ‘registers’ to store attention scores [70].
Later, Massive Activation [7] shows that excessive attention scores are assigned to tokens associated
with massive activation values. However, our work reveals that value output (G2) gating eliminates
massive activations, yet attention sinks persist, indicating that massive activations are necessary for
attention sinks. Similarly, attention sinks are characterized as non-informative ‘key biases’ that store
redundant attention scores, arguing that softmax’s inherent normalization dependency drives this
behavior [23]. Experimental attempts to modify softmax attention, such as replacing softmax with
unnormalized sigmoid attention [71, 23], using explicit top-k sparse attention [51], adding softmax
attention gate or clip [69], calibrating attention scores [72], and modifying softmax computation [73]
and denominator [74], show promise in mitigating attention sinks. Another stream of works try to
move the sink tokens from input tokens to manually added components, like ‘registers’ [70], ‘meta
tokens’ [75] and learnable ‘sink’ [76]. Our work shows that sparse gating after SDPA eliminates
attention sinks in both dense (1B-parameter) and MoE (15B-parameter) models, even when trained
on 3.5T tokens. Furthermore, we uncover the potential of eliminating attention sinks to benefit
context-length extension.

6 Conclusion and Limitations

This work systematically investigates gating mechanisms in softmax-attention, revealing their sig-
nificant impact on performance, training stability, and attention dynamics. This simple mechanism
enhances non-linearity, introduces input-dependent sparsity, and eliminates ‘attention sink’. Ad-
ditionally, gating facilitates context length extension, allowing models to generalize effectively to
longer sequences without retraining. We will release the ‘attention-sink-free’ models, providing a
foundation for future research into attention mechanisms.

The broader implications of non-linearity on the dynamics of attention and the overall training process
remain under-explored. We don’t provide a theoretical explanation for how attention sinks influence
the model’s ability to generalize to longer sequences.
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A Supplement Material

A.1 Switch Head Baselines

In this section, we present detailed experiments related to Switch Heads. The Switch Head paper
demonstrates that introducing sparse activation in attention—where each token selects the top-k
experts from a pool of key/value/output experts via learnable sigmoid routing—enables the model to
achieve comparable results to the baseline. This suggests that, within the Switch Head framework,
both expert parameters and activated parameters are beneficial, with more being better under the
same total parameter budget.

Table 6: Performance of different switch head methods with varying parameter additions and configurations.
‘switch kv’ and ‘switch v’ refer to introducing selective computing in key-value and value components, respec-
tively. ‘Switch kv, 8top8’ means there are 8 key and value map experts, and each token select top8 experts.
Notice ‘Switch v, 1top1’ is equivalent to v Headwise Gate in Tab. 1 row (11).

Method Added Param (M) PPL MMLU GSM8k Hellaswag C-eval
(1) Baseline (q32, kv4) - 6.026 58.79 52.92 73.07 60.26
(2) Switch kv, 8top8 38 5.847 59.17 52.54 73.32 61.01
(3) Switch kv, 4top4 13 5.935 58.14 53.27 73.75 59.67
(4) Switch v, 4top4 13 5.820 59.02 52.77 73.34 61.74
(5) Switch v, 8top2 25 5.870 59.10 53.53 74.17 62.34
(6) Switch v, 1top1 3 5.808 59.32 53.53 74.38 62.61

Looking at the results in Tab. 6, we observe an interesting trend: while increasing the number of
activated kv experts (with the same expert parameter settings) appears to offer some improvement in
PPL (row 4 vs. 5), the gains in overall benchmark performance are less pronounced. Notably, the
best results for both benchmark scores and PPL were achieved by ‘Switch v 1top1’ (row 6), which,
as mentioned earlier, is analogous to applying sigmoid gating directly to the output of the value layer.
These findings raise an intriguing question about the primary driver of the performance improvements
observed in these experiments. It suggests that the introduction of gating itself plays a significant role
in the effectiveness of this approach.

A.2 More Discussion on Sparse Gating Score

In our experiments, we evaluate three distinct LLM architectures: two dense variants with 1.7 billion
parameters and one sparse MoE model with an effective size of approximately 15 billion parameters
(denoted as 15A2B). The two dense models differ primarily in depth and hidden dimension: the
1.7B-28 layer model uses 28 transformer layers with a hidden size of 2048, while the 1.7B-48 layer
variant employs 48 layers but a reduced hidden size of 1536 to maintain a comparable parameter
count. Both dense models tie input and output embeddings and apply query-key normalization
for training stability. Full architectural hyperparameters are summarized in Table 7. To support
reproducibility and future research, we plan to open-source both 1.7B dense models.

A.3 More Discussion on Sparse Gating Score

In this section, we analyze the impact of gating score sparsity on attention output. First, we examine
the mean values of SDPA output before and after applying gating to the hidden states. Specifically,
we calculated the mean absolute values of Y and Y ′ before and after G1 at each layer, as shown in
Fig. 4. We also included results from a baseline without gating for comparison. The results indicate
that: (1) after gating, the mean value of hidden states decreased from 0.71 to 0.05, corresponding to
the generally small gating scores; (2) the gated hidden states closely resemble the baseline, suggesting
that gating might serve a similar function as attention sink in filtering out irrelevant information.

We further analyze the proportion of hidden states below certain thresholds before and after gating,
as shown in Fig 5. The results reveal that: (1) after gating, the sparsity in hidden states significantly
increases across different thresholds. Since the mean gating scores are already small, multiplying
hidden states by a small number naturally pushes some values below the threshold. Therefore, (2)
we further multiply the pre-gating hidden states by the average gating score and observed that the
increase in sparsity is smaller than with original gating. This suggests that sparse gating scores
enhance sparsity in hidden states.
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Table 7: Architectural specifications of the target LLMs used in our experiments. The 15A2B model
is a Mixture-of-Experts (MoE) architecture with 128 experts and top-8 routing. All models use a
head dimension of 128 and apply query-key normalization. Embedding weights are tied in the dense
models but not in the MoE model.

Model 1.7B-28 layer 1.7B-48 layer 15A2B MoE
Layers 28 48 24
Query Heads 16 16 32
Key / Value Heads 8 8 4
Head Dimension 128 128 128
Tie Embedding Yes Yes No
QK Normalization Yes Yes Yes
Hidden Size 2048 1536 2048
FFN Size 6144 4608 768
Number of Experts – – 128
Top-k – – 8
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Figure 4: Mean absolute values before and after gating. The baseline and post-gating values are similar.

A.4 Layerwise Massive Activations and Attention Sinks

In this section, we compare and analyze the presence of massive activations and attention sinks (the
attention score of the first token) within the model. From the results, we observe the following:

For the baseline (row 1), the output of the 6th layer’s FFN contains massive activations, which are
subsequently added to the residual stream, causing large activations to persist in the residuals of
subsequent layers. Correspondingly, significant attention sink phenomena emerge starting from the
6th layer. After applying gating to the SDPA output (row 2), the outputs of the earlier layers in the
network remain relatively small overall, with massive activations growing gradually as the layer depth
increases. Notably, no significant attention sink phenomenon is observed in any layer of the network.

When gating is applied only at the value layer (row 3), the model exhibits massive activations similar
to row 2. However, a certain degree of attention sink phenomenon persists. This indicates that massive
activations are not a necessary condition for the emergence of attention sinks. When enforcing shared
gating scores across different heads (row 4) or modifying the activation function of gating to suppress
sparsity (row 5), the sparsity introduced by gating is reduced. In these cases, both massive activations
and attention sinks become comparable to those observed in the baseline.

These observations suggest that introducing sufficient sparsity within the attention mechanism may
help mitigate the occurrence of massive activations. However, further investigation is needed to fully
understand the interplay between sparsity, massive activations, and attention sinks, particularly in the
context of scaling to deeper and larger models.
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Figure 5: Proportion of SDPA output values below threshold after gating (Left: 1e-2, Right: 1e-3). We also
include sparsity measurements obtained by multiplying the average gating score with pre-gating hidden states.

A.5 More Layerwise Gating Scores

In this section, we analyze the distribution of gating scores under two additional constraints while
using SDPA output gating as the baseline (row 1, elementwise/headwise): (1) enforcing the same
gating score across different heads (row 2, left), and (2) restricting the minimum value of the gating
scores (row 2, right). When enforcing shared gating scores across different heads, the gating scores
for most layers increase. This indicates that different heads require different sparsity, highlighting the
importance of head-specific gating mechanisms.

A.6 Other Attempt to Stabilize Training

We observe that both the addition of sandwich normalization [44] and gating mechanisms eliminate
massive activations while improving training stability. This prompts us to explore whether simpler
methods could prevent large activations within residuals. Specifically, we introduce a clipping
operation to constrain the outputs of attention and FFN layers before they enter the residual connection,
limiting their values to the range (-clip, clip). However, we find that regardless of whether the clip
value was set to 300 or 100, the model still encounters convergence issues at a learning rate of 8e-3.
This suggests that the instability in pre-norm model training is not solely due to large activations
within residuals. It is likely that any layer producing large outputs can lead to stability problems,
indicating the need for further investigation into the root causes of training instability.

A.7 Adding Gating in Continue Training

We also experiment with incorporating an attention output gating mechanism during the continued
training phase. However, we find that this approach neither mitigates the massive activations and
attention sinks already present in the model nor significantly affects the final performance. We believe
this is largely because the effectiveness of gating mechanisms stems primarily from their affects on
the model’s training dynamics, and thus their impact is limited when applied to models that are not
trained from scratch.

A.8 Broader Impacts

This work focuses on improving the efficiency, stability, and context-handling capabilities of LLMs.
The potential positive societal impacts include: Improved Accessibility: More efficient and stable
training methods can lower the computational cost of developing and deploying LLMs, potentially
making them more accessible to researchers and organizations with limited resources. Enhanced
Performance in Long-Context Applications: The ability to handle longer contexts more effectively
can lead to improvements in applications such as document summarization, question answering, and
code generation, where understanding relationships across extended text is crucial. Advancements in
Model Scalability: Our findings offer insights and practical guidance for designing advanced models,
contributing to ongoing efforts to scale LLMs while maintaining or improving their performance and
stability.
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Figure 6: Comparison of massive activations and attention sink phenomena across different gating configurations.
Row 1 (Baseline): Significant massive activations and attention sinks emerge after the 6th layer. Row 2 (SDPA
Gating): Reduced activations and no attention sinks observed. Row 3 (Value Layer Gating): Similar activations
to Row 2 but with residual attention sinks. Rows 4–5 (Reduced Sparsity via cross-head share and NS-sigmoid):
Massive activations and attention sinks resemble the baseline.

A.9 Licenses for Existing Assets

We conduct experiments based on Megatron-LM. We acknowledge the original authors and contribu-
tors of Megatron-LM and respect their licensing terms. The specific license terms are available at
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Figure 7: Distribution of gating scores under different constraints for SDPA output gating variants.

https://github.com/NVIDIA/Megatron-LM/blob/main/LICENSE. Any released code implementing
our proposed gated attention mechanism will be released under the MIT License, allowing for open
research and further development.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We elucidate our contributions in the Abstract and Intrudctions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Sec 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our study is mainly empirical exploration.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We report our detailed training settings in Sec 3.2.1 and Sec 3.2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide a Pytorch version implementation for the main method in the
paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report our detailed training settings including hyperparameters in Sec 3.2.1
and Sec 3.2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: LLMs pre-training consumes a significant amount of computational resources,
making it impractical to conduct multiple experiments to obtain error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discussion computation cost in Sec 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read this code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix A.8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Our study is an empirical exploration and the codes and models we release are
intended solely for further research and are not meant for direct industrial application.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We discuss this in Appendix A.9.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Related codes will be released with suitable license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLM is used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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