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Abstract

Graph contrastive learning (GCL) aims at nar-
rowing positives while dispersing negatives, often
causing a minority of samples with great similari-
ties to gather as a small group. It results in two la-
tent shortcomings in GCL: 1) local cohesion that
a class cluster contains numerous independent
small groups, and 2) global sparseness that these
small groups (or isolated samples) dispersedly
distribute among all clusters. These shortcom-
ings make the learned distribution only focus on
local similarities among partial samples, which
hinders the ability to capture the ideal global
structural properties among real clusters, espe-
cially high intra-cluster compactness and inter-
cluster separateness. Considering this, we design
a novel fuzzy boundary by extending the origi-
nal cluster boundary with fuzzy set theory, which
involves fuzzy boundary construction and fuzzy
boundary contraction to address these shortcom-
ings. The fuzzy boundary construction dilates
the original boundaries to bridge the local groups,
and the fuzzy boundary contraction forces the dis-
persed samples or groups within the fuzzy bound-
ary to gather tightly, jointly mitigating local co-
hesion and global sparseness while forming the
ideal global structural distribution (Zhang et al.,
2024). Extensive experiments demonstrate that
a graph auto-encoder with the fuzzy boundary
significantly outperforms current state-of-the-art
GCL models in both downstream tasks and quan-
titative analysis.
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1. Introduction
Recent years have seen the rapid development of self-
supervised graph representation learning (SSGRL) (You
et al., 2021), which expects to extract critical features by
mining intrinsic characteristics from raw graph data, such
as commonalities and discriminalities (Wang & Liu, 2022;
Jiang et al., 2021). Graph contrastive learning (GCL) as one
of the most well-known SSGRL paradigms, learns discrimi-
nalities by dispersing negatives and mines commonalities
by closing the positives (Xu et al., 2024a; Zou & Liu, 2023).
Unfortunately, the learned distribution in the embedding
space only reflects local similarities within each cluster, and
fails to showcase global structural distribution with high
intra-cluster compactness and inter-cluster separateness.
As a matter of fact, the problem can be traced to two in-
grained shortcomings in GCL, namely local cohesion and
global sparseness.

To shed light on the shortcomings intuitively, we present the
t-SNE visualization (Van der Maaten & Hinton, 2008) from
three cornerstone models in Figure 1, where DGI (Velick-
ovic et al., 2019) views nodes in the raw graph as positives
and those in the corrupt graph are negatives; GRACE (Zhu
et al., 2020) treats corresponding nodes between two con-
gruent views as positives while other nodes are negatives;
BGRL (Thakoor et al., 2022) selects positives in the same
way as GRACE but scatters the negatives in a latent fash-
ion. The t-SNE of these models reveals the two common
shortcomings in GCL: 1) Local cohesion results in numer-
ous small groups. The sample selection strategies in GCL
tend to gather a minority of samples with great similarities,
which leads to numerous independent small groups in a real
cluster. 2) Global sparseness across cluster distributions.
These small groups (or isolated samples) are discretely dis-
tributed in each cluster, which only occupy part locations
while leaving considerable blank space in each cluster. The
crux of the shortcomings may be attributed to the fact that
existing GCL models have no access to label supervision
for building reliable boundaries. Unreliable boundaries,
such as excessive boundaries that incur samples from other
clusters, or limited boundaries that are unable to involve
sufficient samples from the same cluster, are harmful to the
structural distribution (Chen et al., 2023).
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(a) DGI (b) GRACE (c) BGRL (d) Ours

Figure 1. t-SNE for our model and three representative GCL models on the Citeseer dataset, i.e., DGI, GRACE, and BGRL. The boundaries
for green and blue clusters are outlined. The two clusters exhibit global sparseness and local cohesion that forms numerous small groups
(shown in red circles). Besides, near the boundary, the samples from the two clusters are interwoven together.

Boundaries are closely related to the aforementioned short-
comings but are seldom taken into consideration in GCL.
Considering this, we design a novel learnable boundary
called fuzzy boundary by fusing fuzzy set theory to ex-
tend the original clusters for addressing the local cohesion
and global sparseness. The fuzzy boundary is concerned
with fuzzy representations and crisp representations, where
the fuzzy representations are the learned representations
applied with fuzzy set theory, or crisp representations oth-
erwise. The proposed fuzzy boundary includes the fuzzy
boundary construction phase and the fuzzy boundary con-
traction phase. In the fuzzy boundary construction phase,
we transform the crisp representation space to the fuzzy rep-
resentation space with fuzzy set theory, where we expand
the original cluster boundaries as the new-born fuzzy bound-
aries to further bridge the local groups through learning
the fuzzy positives of crisp representations. When turning
the fuzzy boundary contraction phase, we narrow the fuzzy
boundaries and the corresponding cluster prototypes while
pushing the fuzzy boundaries away from other cluster proto-
types, effectively tightening the dispersed samples or groups
within the fuzzy boundaries. Finally, the local groups or
isolated samples within each cluster become interconnected
and the ideal global structural distribution with high intra-
cluster compactness and inter-cluster separateness gradually
emerges, forming more distinct boundaries. Our contribu-
tions are summarized as follows.

• We first attend to two ingrained shortcomings causing
the inferior global structural distribution in GCL: local
cohesion and global sparseness, and disclose that these
shortcomings suffer from unreliable boundaries.

• We propose a novel fuzzy boundary to bridge the dis-
crete local groups and isolated samples, and tighten
each cluster, which effectively alleviates the local co-
hesion and global sparseness, and realizes ideal global
structural distributions.

• We implement the fuzzy boundary on a pre-trained
graph auto-encoder (GAE), which makes the model
performance enhanced and comparable with current
state-of-the-art SSGRL models in the downstream
tasks and quantitative analysis.

2. Related Work
2.1. Fuzzy Set Theory

Fuzzy set theory generalizes classical set theory that deter-
mines whether an object belongs to a set, and incorporates
the idea that elements have membership degrees in a set
(Zadeh, 1965). Here, we introduce the critical definitions of
the fuzzy set theory in the following:

Definition 2.1. A universe U is defined as a set of all possi-
ble terms occurring in a certain domain.

Definition 2.2. A function fA: U −→ L ⊆ R is called a
membership function.

Definition 2.3. A pair composed of the universe and the
membership function A = (U, fA) is called a fuzzy set.

A fuzzy set A in the universe U is characterized by a mem-
bership function fA (x) which associates each point in U
with a real value in [0, 1]. The value of fA (x) represents
the membership degree of x in A. The fuzzy set theory pro-
vides a powerful framework for reasoning about sets with
uncertainty, but the specification of membership functions
depends on the domain that the objective task is located in
(Zhelezniak et al., 2018). Following the definitions, when
L = [0, 1], A is a fuzzy set. When the membership func-
tion takes on only two values 0 and 1, namely L = {0, 1}
according to whether x belongs to A, in this case, A reduces
to a classical set, also called a crisp set.
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Figure 2. Overview of the proposed model. Firstly, the GNN encoder is pre-trained with the reconstruction loss Lrec. Secondly, the output
representation H is used to obtain real clusters through the K-means clustering algorithm. Then the original boundaries (in solid lines)
are extended as fuzzy boundaries (in dashed lines) to incorporate isolated samples and local groups. Finally, the fuzzy boundaries are
contracted to tighten samples within the fuzzy boundaries while separating different clusters by prototypical contrastive loss Lpro.

2.2. Self-Supervised Graph Representation Learning

Exempt from the supervision of downstream tasks, self-
supervised graph representation learning (SSGRL) focuses
on extracting generalized and invariant features from the
raw graph data. Early works were mainly based on random
walk, which only took structure information into considera-
tion. Subsequent works integrated feature information and
turned to deep learning methods because of their tremen-
dous fitting power to approximate complicated functions (Lv
et al., 2024). Deep SSGRL models are roughly categorized
into GAEs (Hou et al., 2022), graph generative adversarial
networks (Wang et al., 2019), and graph contrastive mod-
els. Among them, graph contrastive models stand out for
the simple-yet-effective concept that narrows positive pairs
while dispersing negative pairs to maximize the lower bound
of mutual information (Hu et al., 2024; Zhang et al., 2023a).
Despite showing competitive performance, existing GCL
models still exhibit two shortcomings, i.e., local cohesion
and global sparseness, which cause inferior global structural
distribution but are never addressed from the perspective of
boundaries. Actually, good boundaries alleviate these short-
comings and form a reliable global structural distribution,
which becomes the motivation of the proposed model.

3. Method
The proposed model includes a pre-training phase and a
fine-tuning phase, where the pre-training phase includes a
GAE framework to train a GNN encoder, and the fine-tuning
phase contains the fuzzy boundary construction process and
the fuzzy boundary contraction process for fine-tuning the
GNN encoder. The output representation H of the pre-
trained GNN is implemented on the K-means clustering
algorithm to attain reliable real clusters, which is used in
the fine-tuning phase. The whole architecture is shown in
Figure 2. To provide details of the model for convenience,
we introduce the following notations.

Notations. In this paper, a graph is denoted as G = (V, E),
where V = {v1, v2, · · · , vN} is the node set with N nodes
and E ⊂ V × V is the edge set. The node attribute matrix
and adjacency matrix are denoted as X ∈ RN×D and A ∈
{0, 1}N×N respectively. xi represents the attribute of node
vi, and Aij = 1 describes a relation between vi and vj , or
Aij = 0 otherwise. Our purpose is to train an L-layer graph
encoder f : RN×D × {0, 1}N×N → RN×dL to produce
low-dimensional node representations via raw attribute and
structure contents, where dL is the dimension of the L-th
layer, D is the dimension of the raw attribute and dL ≪ D.
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3.1. Pre-Training Process

To obtain relatively reliable clusters for constructing the
fuzzy boundaries, we adopt a GAE (Thomas & Welling,
2016) for pre-training. During the pre-training process, we
reconstruct the attribute matrix with O (ND) complexity
instead of the adjacency matrix with O

(
N2
)

complexity,
which is defined as

H = GNN(X,A), X̂ = MLP (H) ,Lrec =
∥∥∥X− X̂

∥∥∥
F
,

(1)
where X̂ is the reconstructed attribute matrix, and ∥·∥F is
F -norm. Since D ≪ N holds in general, restoring the
embeddings to the raw attributes saves much more over-
head than reconstructing the adjacency matrix. To avoid the
over-smoothing problems caused by numerous GNN layers
(Rong et al., 2019), we employ an asymmetric GAE back-
bone where GNNs and multi-layer perceptrons (MLPs) are
implemented on encoding and decoding processes respec-
tively as (Xiao et al., 2022; 2023). Specifically, we adopt a
graph convolutional network (GCN) (Kipf & Welling, 2017;
Xu et al., 2023) as the GNN encoder, and the encoding and
decoding processes are given by

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W(l) + b(l)

)
,

Ĥ(t) = σ
(
Ĥ(t−1)W(t) + b(t)

)
,

(2)

where H(l) and Ĥ(t) are the output representation matrices
from the l-th layer encoder and the t-th layer decoder re-
spectively, W(l), W(t), b(l), and b(t) are trainable weight
matrices or bias vectors, D̃ is a diagonal matrix with diag-
onal element D̃ii =

∑
j Ãij , Ã = A + IN . σ (·) is the

non-linear activation function, and it is not implemented on
the last layer of the MLP decoder.

The pre-training process unleashes the capability of the
graph model to mine commonalities and discriminalities,
and encourages to generate relatively reliable clusters for
constructing the fuzzy boundary. For convenience, we cen-
tralize all the node representations by subtracting their cor-
responding prototypes C as Z, and utilize Z to construct the
fuzzy boundaries, where the corresponding prototypes C
are obtained by applying the K-means clustering algorithm
on the output representation H of the GNN encoder. To save
the costs on the clustering process, we execute the K-means
clustering algorithm every T epochs.

3.2. Fuzzy Boundary

3.2.1. FUZZY BOUNDARY CONSTRUCTION

The proposed model transfers the fundamental concept that
a crisp set can be viewed as a special type of fuzzy set into
representation learning, where a crisp representation is re-
garded as a particular type of fuzzy representation, which
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Figure 3. The construction process of fuzzy boundary in 2-
dimension space. For one specific representation , it is firstly
utilized to calculate the fuzzy representation , which is then
mapped to be the element of the fuzzy boundary .

is utilized to find the appropriate elements of the fuzzy
boundaries. These elements are expected to have two essen-
tial characteristics consistent with fuzzy representations. i)
Semantics-positive. Since the constructed fuzzy boundary
is assumed as a critical part of one real cluster, the elements
scatted in the fuzzy boundary ought to share the common-
alities with the samples within the real cluster, namely the
elements of the fuzzy boundaries are the positives of the
cluster samples. ii) Learnable. The fuzzy boundaries rely
on the learnable membership functions, making the fuzzy
boundaries adaptive to regulate the spectrum of a cluster in
the training process. Among various membership functions,
the Gaussian membership function is the most widely used
(Zhang et al., 2023b; Li et al., 2024).

Generally, one Gaussian membership function is in accor-
dance with one specific fuzzy semantics, and in this paper,
we set K membership functions to enrich the fuzzy seman-
tics of the representations. For each value of one feature
vector, its k-th membership degree is computed by

ski,j = exp

{
−
(
zi,j −mk

j

)2
2
(
δkj
)2

}
, j = 1, 2, · · · , d, (3)

where zi,j is the j-th value of the centralized feature vector
zi and ski,j is corresponding membership degree, d is the
dimension of zi, mk

j and δkj are the learnable mean and stan-
dard deviation of the k-th Gaussian membership function
respectively. These membership degrees are then unified by
a Union operator to output the final one as

s̃i,j = Union
{
ski,j
}
, k = 1, 2, · · · ,K. (4)

The choice of the Union operator is explained in Section
3.2.2, and the final membership degrees from the Union
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operator define the fuzzy representations as

Z̃ = S̃⊙ Z, (5)

where S̃ is the membership degree matrix, Z is the central-
ized representation matrix, and Z̃ is the fuzzy representa-
tion matrix that rescales the crisp representations matrix Z
via the adaptive membership degree matrix S̃. Crisp rep-
resentations and fuzzy representations are assumed to be
positives, thus the coordinate difference between them is
deemed acceptable semantics difference between positives.
Considering this, we employ the acceptable discrepancy to
expand the cluster boundary, and the process is called fuzzy
boundary construction, which is shown in Figure 3. The
calculated coordinates of fuzzy representations, obtained
through Eq. (5), are utilized to compute the corresponding
boundary elements by

Z = Z̃+ 2
(
1− S̃

)
⊙ Z =

(
2− S̃

)
⊙ Z, (6)

where 1 and 2 are two real value matrices whose each
element is 1 and 2 respectively, and Z contains the elements
of the fuzzy boundary. It is worth noting that the fuzzy
boundary won’t deteriorate into the crisp boundary, and it
effectively connects the independent groups and isolated
samples to mitigate the local cohesion.
Theorem 3.1. Assuming that N samples have different
features, K Gaussian membership functions have different
means, and K < N , fuzzy boundaries never deteriorate
into crisp boundaries.

Proof: For Gaussian membership functions, the membership
degree is 1 only when the feature element equals the mean.
Suppose S̃ = 1, which implies that the feature element must
equal the mean of the Gaussian function. However, since
the features of the N samples are all different and the means
of the K Gaussian functions are also different, the means
of the K Gaussian functions can match at most K feature
elements. Therefore, it is impossible to obtain S̃ = 1 and
the fuzzy boundaries won’t deteriorate.

3.2.2. UNION OPERATOR DETERMINATION

The fuzzy boundary elements are considered the critical
part of the corresponding cluster, and the variances of the
extended fuzzy clusters could reflect the compactness of
the real clusters. Thus, the Union operator is crucial to
adjust the cluster variances for realizing the intra-cluster
compactness and inter-cluster separateness.
Theorem 3.2. When Union operator adopts max-pooling,
the overall variances within each cluster are minimized.

The detailed proof is provided in Appendix A.1. Addition-
ally, the Union operator has another advantage, namely the
distances between crisp representations and fuzzy represen-
tations are minimal in the representation space. According

to the fuzzy representation defined in Eq. (5), when we use
the ordinary distance function Dis (·) such as Euclidean
distance to measure the distances between one crisp repre-
sentation and the corresponding fuzzy representation, we
have the following conclusion as

Dis ({s̃min}i ⊙ zi, zi) ≥ Dis ({s̃other}i ⊙ zi, zi)

≥ Dis ({s̃max}i ⊙ zi, zi) ,
(7)

where {s̃min}i is the membership degree vector of node
vi, which is filled with minimal membership degrees, and
its element is {s̃min}i,j = mink{ski,j}. Similarly, we have
{s̃max}i,j = maxk{ski,j}. {s̃other}i denotes other simple
Union operators, such as mean-pooling. This inequation
means that the max-pooling is in line with searching for
the representations with maximal similarities in the fuzzy
representation space, and also implies that samples inside
the constructed fuzzy boundary are likely to be part of this
class cluster with great (membership) degrees.

3.2.3. FUZZY BOUNDARY CONTRACTION

During the fuzzy boundary contraction phase, it is hard
to achieve the inter-cluster separateness in a centralized
representation space since the centralized clusters are con-
centrated around the origin points, so we need to restore
the coordinates of fuzzy representations as H̃ by adding
their corresponding prototypes C. Considering the restored
fuzzy boundaries correspond to new-born fuzzy prototypes
F, and we need to balance C and F to obtain more ideal
prototypes. A naive method like the convex combination to
fuse the fuzzy prototype and the crisp prototype is always
suboptimal in practice, and we apply an MLP g (·) to better
balance the relationship of both as

P = g (F ∥ C) , (8)

where P ∈ RCp×d is the fused prototype matrix, Cp is
the number of clusters, C ∈ RCp×d is the crisp prototype
matrix obtained by applying clustering algorithms on rep-
resentation H, F ∈ RCp×d is the fuzzy prototype matrix
by averaging the fuzzy boundary elements for each cluster,
and ∥ is the concatenation operator. To densify the cluster
distribution and differentiate different clusters, we apply one
prototype loss between the prototypes and fuzzy boundaries,
which is defined as

Lpro = − 1

N

N∑
i=1

log
e−τ∥h̃i−pi∥2

2∑Cp

j=1 e
−τ∥h̃i−pj∥2

2

, (9)

where pi is the fused prototype that node vi belongs to and
is computed by Eq. (8). h̃i is the restored fuzzy bound-
ary elements, τ is the temperature coefficient, and higher τ
weighs the intra-cluster compactness more. Through con-
tracting each cluster, the samples or local groups in the
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Table 1. Results in node classification. The best results are highlighted in bold, and the second-best results are highlighted with underline.
“OOM” indicates that the graph models raise the out-of-memory failure.

Dataset Cora Citeseer Pubmed DBLP Ogbn-arxiv Amazon
Photo

Amazon
Computers

DeepWalk 74.6 ± 0.2 50.8 ± 0.1 80.1 ± 0.2 76.0 ± 0.7 63.6 ± 0.4 89.4 ± 0.1 85.7 ± 0.1
DGI 82.6 ± 0.4 68.8 ± 0.7 86.0 ± 0.1 83.2 ± 0.1 67.9 ± 0.4 91.6 ± 0.2 84.0 ± 0.5
GMI 83.8 ± 0.8 72.8 ± 0.8 85.5 ± 0.1 82.3 ± 0.2 67.1 ± 0.2 90.7 ± 0.2 82.2 ± 0.3

GRACE 83.3 ± 0.4 72.1 ± 0.5 86.7 ± 0.1 84.2 ± 0.1 67.4 ± 0.4 92.8 ± 0.5 89.5 ± 0.4
GCA 82.8 ± 0.3 71.5 ± 0.3 86.0 ± 0.2 83.1 ± 0.2 68.2 ± 0.2 92.2 ± 0.2 87.5 ± 0.5

COAST 84.3 ± 0.2 72.9 ± 0.3 86.0 ± 0.2 84.5 ± 0.1 62.1 ± 0.1 92.6 ± 0.5 88.3 ± 0.0
AFGRL 83.3 ± 0.9 71.5 ± 0.8 85.2 ± 0.2 83.1 ± 0.1 56.1 ± 0.1 93.2 ± 0.3 89.9 ± 0.3
SUGRL 85.2 ± 0.6 73.5 ± 0.6 86.7 ± 0.2 83.0 ± 0.2 68.7 ± 0.0 93.2 ± 0.4 88.9 ± 0.2

iGCL 84.0 ± 0.5 72.9 ± 0.9 86.2 ± 0.3 83.7 ± 0.2 65.6 ± 0.0 93.1 ± 0.3 90.1 ± 0.4
NCLA 85.3 ± 0.4 73.2 ± 0.5 85.5 ± 0.4 84.0 ± 0.2 58.4 ± 0.0 93.5 ± 0.2 89.1 ± 0.4

GREET 85.7 ± 0.5 73.3 ± 0.6 86.9 ± 0.3 83.8 ± 0.1 OOM 92.9 ± 0.3 87.9 ± 0.4
HomoGCL 85.4 ± 0.9 72.3 ± 0.4 86.3 ± 0.2 84.4 ± 0.2 62.5 ± 0.5 93.3 ± 0.2 89.2 ± 0.5

S2GAE 85.5 ± 0.3 73.4 ± 0.5 86.5 ± 0.1 84.1 ± 0.0 60.9 ± 0.0 93.5 ± 0.2 90.0 ± 0.1
SGRL 85.4 ± 0.2 73.2 ± 0.2 86.2 ± 0.0 84.1 ± 0.0 65.7 ± 0.0 93.8 ± 0.0 90.0 ± 0.0
PiGCL 84.6 ± 0.8 73.5 ± 0.6 86.3 ± 0.3 84.3 ± 0.3 OOM 93.1 ± 0.3 89.3 ± 0.3

Bandana 85.5 ± 0.8 73.0 ± 0.8 86.4 ± 0.3 83.9 ± 0.0 66.8 ± 0.0 93.4 ± 0.1 89.6 ± 0.1
Ours 85.9 ± 0.6 74.1 ± 0.6 87.0 ± 0.3 84.8 ± 0.2 69.5 ± 0.1 93.7 ± 0.2 90.8 ± 0.2

cluster gather more tightly, which alleviates local cohesion
and global sparseness.

The overall loss function L composed of prototypical loss
and reconstruction loss is defined as

L = Lpro + αLrec, (10)

where α is the penalty coefficient. The overall loss function
expects that the representations reserve more critical infor-
mation to restore the raw data, and the cluster distributions
in the representation space realize intra-cluster compactness
and inter-cluster separateness at the same time.

Theorem 3.3. The GAE with the fuzzy boundary achieves a
higher generalization than a vanilla one.

We provide detailed proof to explain how the fuzzy boundary
enhances the model generalization in Appendix A.2.

4. Experiments
In this section, seven public graph datasets are used for
testing the model performance, which ranges from citation
networks to co-purchase networks. To show the effective-
ness of our model, we compare it with numerous advanced
self-supervised graph models proposed recently, i.e., Deep-
Walk (Perozzi et al., 2014), DGI (Velickovic et al., 2019),
GMI (Peng et al., 2020), GRACE (Zhu et al., 2020), GCA
(Zhu et al., 2021), COAST (Zhang et al., 2022), SUGRL
(Mo et al., 2022), AFGRL (Lee et al., 2022), iGCL (Li
et al., 2023a), NCLA (Shen et al., 2023), GREET (Liu
et al., 2023), HomoGCL (Li et al., 2023b), PiGCL (He
et al., 2024b), and SGRL (He et al., 2024a). We employ
two common downstream tasks, namely node classification

and node clustering to demonstrate the superiority of our
model. All experiments are implemented in PyTorch and
conducted on a server with RTX 3090.

4.1. Node Classification

In the node classification task, we encode the raw graph to
obtain corresponding node representations and use a linear
classifier to examine the quality of representations. We re-
peat the experiments 10 times to obtain stable classification
results, and mean accuracies with standard deviations are
listed in Table 1.

From the results, we find that the proposed model is com-
petitive or surpasses other advanced models across all
the datasets. Particularly, our model shows 0.6%, 0.8%,
and 0.7% improvements on Citeseer dataset, Ogbn-Arxiv
dataset, and Amazon Computers dataset, respectively. Be-
sides, we have the following observations:

(1) Compactness and separateness affect the model perfor-
mance jointly. Several GCL models without dispersing
negatives explicitly, such as AFGRL and iGCL, concen-
trate on aligning positives to realize compactness. However,
they exhibit inferior performance when compared with other
models on most datasets, which means separateness also
plays a significant role in representation learning.

(2) Global structural distributions with high intra-class com-
pactness and inter-class separateness are easily delimited by
our model. Existing GCL models realize compactness and
separateness by closing positives and dispersing negatives,
but these properties not well reflected by the cluster distri-
bution are likely to limit the model performance. As the
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Table 2. Results in node clustering. The best results are highlighted in bold, and the second-best results are highlighted with underline.

Datasets Metrics iGCL GREET HomoGCL SGRL PiGCL Ours
Acc 68.56 ± 2.16 71.83 ± 3.40 70.68 ± 3.85 64.76 ± 0.04 64.68 ± 2.64 72.85 ± 0.02

MaF1 62.65 ± 3.31 64.77 ± 5.31 66.10 ± 5.87 63.82 ± 0.02 61.45 ± 3.55 71.50 ± 0.01
NMI 51.28 ± 1.34 55.41 ± 1.16 56.44 ± 1.77 48.28 ± 0.04 51.87 ± 1.78 54.71 ± 0.01

Cora

ARI 45.39 ± 2.05 50.42 ± 4.32 49.97 ± 2.85 39.83 ± 0.07 42.84 ± 2.68 50.11 ± 0.01
Acc 66.10 ± 0.58 68.78 ± 0.18 65.65 ± 0.83 64.48 ± 0.05 65.45 ± 1.32 70.25 ± 0.09

MaF1 61.61 ± 3.67 63.57 ± 0.08 61.65 ± 0.73 61.97 ± 0.05 61.10 ± 1.00 65.10 ± 0.05
NMI 39.42 ± 0.41 43.62 ± 0.21 39.50 ± 0.58 39.67 ± 0.10 39.71 ± 0.69 44.99 ± 0.03

Citeseer

ARI 40.03 ± 0.45 44.57 ± 0.31 39.73 ± 0.08 43.65 ± 0.24 39.97 ± 0.94 46.68 ± 0.09
Acc 67.72 ± 3.67 58.96 ± 4.15 74.30 ± 1.69 53.39 ± 1.47 58.31 ± 3.48 76.71 ± 0.06

MaF1 65.88 ± 2.58 55.51 ± 1.74 69.03 ± 0.64 49.49 ± 2.13 55.49 ± 2.86 75.85 ± 0.82
NMI 59.87 ± 2.50 50.35 ± 0.60 64.21 ± 2.11 46.81 ± 1.51 47.48 ± 2.02 67.72 ± 1.22

Amazon
Photo

ARI 45.65 ± 3.40 38.76 ± 2.11 54.95 ± 3.26 27.44 ± 2.51 30.51 ± 2.42 57.84 ± 1.11
Acc 53.49 ± 2.47 51.27 ± 0.15 46.75 ± 4.87 48.75 ± 0.96 41.88 ± 0.68 55.04 ± 0.78

MaF1 48.35 ± 3.03 39.19 ± 0.36 33.10 ± 4.73 46.05 ± 0.64 33.75 ± 0.89 48.79 ± 0.61
NMI 49.87 ± 1.30 46.66 ± 0.11 42.53 ± 2.61 45.35 ± 1.27 40.94 ± 0.39 56.29 ± 0.62

Amazon
Computers

ARI 29.75 ± 1.70 32.22 ± 0.22 26.91 ± 2.59 31.11 ± 1.27 28.01 ± 0.42 36.38 ± 0.78

classifier is a simple linear classifier, its performance heavily
depends on the qualities of global structural distributions.

In summary, the success of our model contributes to over-
coming the two shortcomings, namely local cohesion and
global sparseness, which form the ideal global structural
distributions to facilitate the downstream tasks.

4.2. Node Clustering

The clustering task is also a common task to evaluate the
model performance (Xu et al., 2022; 2024b), where we
apply the K-means clustering algorithm to examine the en-
coded node representations. We repeat the experiments 20
times to harvest reliable outcomes, and adopt the commonly-
used accuracy (Acc), normalized mutual information (NMI),
adjusted rand index (ARI), and macro-F1 (MaF1) metrics
to evaluate the clustering performance. Table 2 displays the
result comparisons between our proposed model and other
advanced graph models.

Similar to node classification, the proposed model almost re-
ceives the best outcomes across four datasets, and it exhibits
wonderful Acc and MaF1 particularly. It illustrates that pro-
duced node representations of our model are clustered more
accurately, and implies that the intra-cluster compactness
of the model is indeed effective, namely the samples in one
cluster are more likely to share the same label. Besides,
the proposed model behaves well in both classification and
clustering tasks, which implies that the proposed model
is able to generate satisfactory cluster distributions in the
embedding space.

4.3. Quantitative Analysis

In this experiment, we propose two specific metrics, “Mean
Groups” and “Total Isolated Nodes” for evaluating the
model’s ability to address local cohesion and global sparse-
ness. Additionally, we present the “Group List” and the
“List of Isolated Nodes” to help understand these two met-
rics. The specific explanations and definitions of these met-
rics are provided in the Appendix B.3. “Group List” and
“Mean Groups” reflect the local cohesion, where “Group
List” details the number of independent groups in each class
cluster and “Mean Groups” calculates the mean of groups
from all class clusters. The value of “Mean Groups” ap-
proaches 1 is more expected. “List of Isolated Nodes”, “To-
tal Isolated Nodes”, and “Mean Groups” reflect global
sparseness jointly, where “List of Isolated Nodes” details
the number of isolated nodes for each class cluster, and “To-
tal Isolated Nodes” records the total number of the isolated
nodes for each dataset. The value of “Total Isolated Nodes”
approaches 0 is more expected.

For the experiment setting, we apply DBSCAN (Ester et al.,
1996) on the produced node representations to collect the
number of independent groups and isolated nodes for each
class, and the results are displayed in Table 3. “Eps” is a
hyperparameter of DBSCAN that limits the maximal dis-
tances between the representations in a detected local group.
Here, we execute the DBSCAN algorithm with Eps = 0.5
and Eps = 0.7. In general, when “Eps” becomes greater,
DBSCAN gets more expected outcomes, namely smaller
“Mean Groups” and “Total Isolated Nodes”.

The results in Table 3 strongly demonstrate the existence
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Table 3. Quantitative analysis to evaluate global sparseness and local cohesion. The minimal Mean Groups (MGs) and Total Isolated
Nodes (TINs) are highlighted in bold.

Datasets Eps Models Group List MGs ↓ List of Isolated Nodes TINs ↓

Citeseer

0.5

iGCL [14, 42, 43, 54, 53, 53] 43.2 [204, 403, 439, 421, 358, 278] 2,103
GREET [8, 9, 12, 21, 15, 12] 12.8 [223, 540, 603, 592, 517, 440] 2,915

HomoGCL [16, 49, 25, 49, 41, 42] 37.0 [187, 259, 247, 271, 167, 188] 1,319
SGRL [13, 21, 8, 14, 3, 14] 12.2 [123, 141, 112, 149, 62, 89] 676
PiGCL [8, 5, 9, 8, 2, 9] 6.8 [90, 72, 74, 89, 53, 66] 444
Ours [5, 5, 3, 3, 3, 4] 3.8 [24, 14, 24, 14, 11, 23] 110

0.7

iGCL [17, 52, 33, 47, 45, 41] 39.2 [183, 252, 258, 258, 167, 164] 1,282
GREET [17, 37, 21, 28, 28, 25] 26.0 [179, 397, 473, 437, 341, 316] 2,143

HomoGCL [20, 34, 19, 34, 18, 34] 26.5 [157, 178, 170, 208, 100, 145] 958
SGRL [6, 1, 1, 7, 1, 4] 3.3 [40, 38, 35, 46, 20, 29] 208
PiGCL [7, 2, 5, 4, 1, 4] 3.8 [66, 65, 60, 88, 35, 56] 370
Ours [2, 1, 1, 2, 1, 3] 1.7 [17, 15, 18, 9, 7, 12] 78

Amazon
Photo

0.5

iGCL [1, 17, 7, 4, 3, 4, 7, 1] 5.5 [17, 199, 29, 61, 30, 38, 74, 23] 471
GREET [4, 18, 6, 10, 8, 8, 18, 3] 9.4 [172, 661, 213, 383, 526, 296, 1076, 253] 3,580

HomoGCL [3, 16, 2, 5, 35, 1, 1, 6, 31, 2] 10.2 [39, 251, 21, 67, 445, 18, 13, 55, 225, 33] 1,167
SGRL [7, 27, 14, 15, 12, 15, 16, 12] 14.8 [58, 750, 106, 400, 258, 199, 258, 195] 2,224
PiGCL [1, 5, 4, 1, 2, 3, 5, 1] 2.8 [12, 102, 20, 35, 17, 30, 56, 3] 275
Ours [1, 3, 2, 2, 1, 1, 2, 2] 1.8 [6, 15, 10, 4, 15, 5, 10, 3] 68

0.7

iGCL [1, 8, 4, 1, 2, 3, 4, 1] 3.0 [8, 108, 21, 38, 18, 29, 52, 4] 278
GREET [3, 6, 4, 6, 6, 1, 12, 2] 5.0 [59, 282, 97, 183, 232, 99, 472, 142] 1,566

HomoGCL [1, 10, 6, 4, 6, 3, 9, 2] 5.1 [17, 144, 37, 67, 45, 41, 85, 21] 457
SGRL [2, 22, 4, 8, 4, 5, 6, 2] 6.6 [22, 338, 36, 100, 49, 56, 79, 47] 727
PiGCL [1, 3, 3, 1, 2, 1, 2, 1] 1.8 [5, 67, 17, 26, 10, 23, 42, 1] 191
Ours [1, 1, 2, 1, 1, 1, 1, 1] 1.1 [5, 6, 2, 3, 1, 5, 4, 1] 27

Amazon
Computers

0.5

iGCL [2, 10, 1, 6, 25, 1, 1, 7, 22, 2] 7.7 [14, 161, 24, 50, 329, 16, 14, 43, 165, 30] 846
GREET [5, 21, 3, 5, 66, 1, 3, 8, 26, 3] 14.1 [310, 1024, 263, 155, 2157, 25, 135, 205, 977, 64] 5,315

HomoGCL [3, 16, 2, 5, 35, 1, 1, 6, 31, 2] 10.2 [39, 251, 21, 67, 445, 18, 13, 55, 225, 33] 1,167
SGRL [1, 13, 4, 4, 16, 1, 3, 5, 18, 5] 7.0 [95, 480, 142, 96, 494, 20, 50, 189, 429, 56] 2,051
PiGCL [3, 5, 2, 3, 15, 1, 1, 3, 8, 3] 4.4 [15, 147, 22, 39, 293, 13, 6, 44, 132, 16] 727
Ours [3, 4, 2, 1, 9, 3, 1, 4, 6, 3] 3.6 [20, 89, 18, 18, 119, 6, 10, 27, 103, 18] 428

0.7

iGCL [2, 6, 3, 2, 19, 1, 1, 6, 14, 3] 5.7 [16, 129, 26, 29, 267, 12, 10, 53, 131, 16] 689
GREET [4, 10, 2, 5, 28, 2, 1, 1, 16, 2] 7.1 [46, 237, 9, 42, 443, 12, 23, 33, 255, 24] 1,124

HomoGCL [3, 6, 1, 3, 15, 1, 1, 5, 13, 2] 5.0 [7, 114, 11, 33, 255, 16, 12, 23, 108, 20] 599
SGRL [1, 3, 1, 1, 8, 1, 1, 5, 5, 2] 2.8 [25, 113, 18, 22, 234, 10, 7, 53, 123, 21] 626
PiGCL [2, 3, 2, 2, 8, 1, 1, 2, 6, 2] 2.9 [3, 75, 5, 20, 185, 11, 4, 19, 64, 12] 398
Ours [2, 2, 1, 2, 2, 1, 1, 2, 2, 1] 1.6 [6, 18, 6, 4, 21, 2, 2, 7, 9, 7] 82

of global sparseness and local cohesion in GCL, where the
groups and isolated nodes in the clusters are much higher
than ideal conditions, namely “Mean Groups” is 1 and “To-
tal Isolated Nodes” is 0. We also observe that the proposed
model has the most expected “Mean Groups” and “Total
Isolated Nodes” when compared with other advanced GCL
models under all the settings, which means the proposed
fuzzy boundary effectively alleviates the two shortcomings.

4.4. Benefits from Compactness

In this experiment, we project the raw data into a 3-
dimension hypersphere for visualization, and the representa-
tions after pre-training and fine-tuning are shown in Figure
4(a) and (b) respectively. Since the raw high-dimension data
are condensed into a 3-dimension space, it leads to abundant

information loss, and the result after pre-training is terrible.
Even so, under the guidance of fuzzy boundaries, the distri-
bution of each cluster becomes clearer, and the samples of
each cluster get more compact. Since fuzzy boundaries are
the outside of the real clusters, narrowing the distances be-
tween prototypes and their corresponding fuzzy boundaries
effectively tighten the real clusters.

5. Conclusion
In this paper, we first attend to two shortcomings of existing
GCL models, namely global sparseness and local cohe-
sion, which lead to inferior global structural distribution.
Such a distribution imperils the representation generaliza-
tion and expressiveness, and is adverse to downstream tasks.
Considering this, we design a novel fuzzy boundary that
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(a) (b)

Figure 4. Representation distributions after pre-training and fine-
tuning on the Cora dataset. (a) is the representation distribution
after pre-training and it is mixed, but becomes distinct with the
fuzzy boundary after fine-tuning as (b).

includes fuzzy boundary construction and fuzzy boundary
contraction phases. By implementing the fuzzy boundary
on a pre-trained GAE, the cluster distributions achieve pre-
mium global structural properties, namely high intra-cluster
compactness and inter-cluster separateness. The extensive
experiments on two downstream tasks and the quantitative
analysis comprehensively illustrate the merits of the fuzzy
boundary to address these shortcomings.
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A. Theoretical Proof
A.1. Theorem 3.2

Proof: Since we use the centralized representations for constructing the fuzzy boundary, the overall variances within each
cluster are formed as

minJ = min

Cp∑
c=1

∑
i∈Cc

∥zi∥22

= min

Cp∑
c=1

∑
i∈Cc

∥(2− s̃i)⊙ zi∥22

= min

N∑
i=1

∥(2− s̃i)⊙ zi∥22,

(11)

where Cp is the number of the clusters, Cc is the index set including the node indices of the c-th cluster. For the j-th element
of s̃i, We have following observation:

∂J
∂s̃i,j

= −2 (2− s̃i,j) · z2i,j ≤ 0. (12)

Therefore, J is a monotonically decreasing function of s̃i,j . When applying max-pooling as the Union operator, we have

∥(2− {s̃max}i)⊙ zi∥22
=
∑
j

[(2− {s̃max}i,j) · zi,j ]2

≤
∑
j

[(2− {s̃other}i,j) · zi,j ]2

≤
∑
j

[(2− {s̃min}i,j) · zi,j ]2 .

(13)

where {s̃min}i is the membership degree vector of node i, which is filled with minimal membership degrees, and its element
is {s̃min}i,j = mink{ski,j}. Similarly, we have {s̃max}i,j = maxk{ski,j}. {s̃other}i denotes other simple Union operators.
Then we have the following conclusion as

N∑
i=1

∥(2− {s̃max}i)⊙ zi∥22

≤
N∑
i=1

∥(2− {s̃other}i)⊙ zi∥22

≤
N∑
i=1

∥(2− {s̃min}i)⊙ zi∥22.

(14)

Finally, we get the minimum of J is
∑N

i=1 ∥(2 − {s̃max}i) ⊙ zi∥22, when the Union operator is max-pooling as s̃i,j =
Union

{
ski,j
}
= maxk

{
ski,j
}

.

A.2. Theorem 3.3

We first introduce Definition A.1 and Lemma A.2, which are the core of the theorem proof.
Definition A.1. Complexity Measure based on the Davies-Bouldin Index. The Davies-Bouldin Index is calculated by the
ratio of intra-cluster compactness to inter-cluster separateness (Natekar & Sharma, 2020), and it stands for the consistency
within a cluster and the difference among clusters. Mathematically, it is defined by

B =
1

Cp

Cp−1∑
m=0

max
m ̸=n

Qm +Qn

Um,n
, (15)

12
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where

Qm =

(
1

Nm

∑
i

∥Zm
i − µm∥22

) 1
2

, for m = 1, · · · , Cp,

Um,n = ∥µm − µn∥2, for m,n = 1, · · · , Cp.

(16)

m and n are the m-th cluster and n-th cluster, Cp is the number of clusters, Zm
i denotes representation of the i-th sample

in the m-th cluster, µm is the prototype of the m-th cluster, Qm measures the intra-cluster compactness of cluster m, and
Um,n measures the inter-cluster separateness between cluster m and cluster n (Davies & Bouldin, 1979; Natekar & Sharma,
2020).

Lemma A.2. The fuzzy boundary leads to a lower bound of the complexity measure B, which is in line with a higher
generalization bound of the model.

Proof: We follow the proof idea of (Huang et al., 2024). For simplicity, we consider the condition with two clusters. In this
case, the complexity measure B is Q0+Q1

U0,1
. We assume the probability that a node belongs to cluster i is Pi. For calculating

B, we firstly compute the cluster prototypes µ0 and µ1 as

µ0 = E[Z0
i ] = E

W
Xi +

∑
j∈N (vi)

1

di
Xj

 = W (P0 · µX0
+ (1− P0) · µX1

) ,

µ1 = W (P1 · µX1 + (1− P1) · µX0) .

(17)

where W is the parameter matrix of the encoder, µXi
is the prototype of cluster i in the original feature space, N (vj) stands

for the neighbors of node vj .

Therefore, Q0 and Q1 are calculated as

Q0 =
√

Q2
0 ≈

√
E [∥Z0

i − µ0∥22]

=
√

E [P 2
0 (X0 − µX0

)TWTW(X0 − µX0
)] + E [(1− P0)2(X1 − µX1

)TWTW(X1 − µX1
)]

=
√

P 2
0E [∥W(X0 − µX0

)∥22] + (1− P0)2E [∥W(X1 − µX1
)∥22],

Q1 =
√

P 2
1E [∥W(X1 − µX1

)∥22] + (1− P1)2E [∥W(X0 − µX0
)∥22].

(18)

Let σ2
i = E

[
∥W(Xi − µXi

)∥22
]
, then we have

Q0 =
√
P 2
0 σ

2
0 + (1− P0)2σ2

1 ,

Q1 =
√
P 2
1 σ

2
1 + (1− P1)2σ2

0 .
(19)

And let Q′
0 = P 2

0 σ
2
0 + (1− P0)

2σ2
1 , we can calculate ∂Q′

0

∂P ′
0
= 0 and get P ∗

0 =
σ2
1

σ2
0+σ2

1
. Substitute P ∗

0 into Q0, we can obtain

Q0 ≥
√
2σ0σ1√
σ2
0 + σ2

1

. (20)

Similarly, we also obtain

Q1 ≥
√
2σ0σ1√
σ2
0 + σ2

1

. (21)

Let Q̃ = σ0σ1√
σ2
0+σ2

1

, we find that

∂Q̃

∂σ0
=

σ3
1

3
√

(σ2
0 + σ2

1)
2
≥ 0,

∂Q̃

∂σ1
=

σ3
0

3
√
(σ2

0 + σ2
1)

2
≥ 0. (22)
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Therefore, Q0 and Q1 increase when σ0 and σ1 increase respectively, and the complexity measure B has the lower bound as

B =
Q0 +Q1

U0,1
≥ 2

√
2σ0σ1√

σ2
0 + σ2

1∥µ0 − µ1∥
. (23)

Let (σ′
i)

2 = E
[
∥W(Xi − µ′

Xi
)∥22
]

and µ′
i be the variance and prototype of real cluster when applying fuzzy boundary

respectively. Since a vanilla model applies the fuzzy boundary would increase the inter-cluster separateness and reduce the
intra-cluster compactness of the embedding distribution, we can get σ′

i ≤ σi and ∥µ0 − µ1∥ ≤ ∥µ′
0 − µ′

1∥. Then we finally
obtain the following equation as

B ≥ 2
√
2σ0σ1√

σ2
0 + σ2

1∥µ0 − µ1∥
≥ 2

√
2σ′

0σ
′
1√

(σ′
0)

2 + (σ′
1)

2∥µ′
0 − µ′

1∥
. (24)

which means the fuzzy boundary could reduce the lower bound of B. Following the conclusion of (Natekar & Sharma, 2020;
Huang et al., 2024), a lower bound of the complexity measure corresponds to an upper bound of the generalization ability.

B. Experiments
B.1. Datasets

We conduct experiments on seven well-known public datasets, and the detailed statistics are summarized in Table 4. Cora,
CiteSeer, Pubmed, and DBLP are the famous citation networks. Every node in these datasets is a paper, and the link
between two nodes means the citation relationship. Each dimension of the node attribute vector refers to a keyword of the
paper. Amazon Photo and Amazon Computers are two co-purchase graphs where the nodes are products, and the edges
between the two products show they are frequently bought together. Every node feature is constructed by a bag-of-words
representation. Ogbn-arxiv is extracted from the Microsoft Academic Graph (Hu et al., 2020). It is a citation network
constructed by Computer Science arXiv papers, whose nodes denote papers and edges are citation relations. Each node is
obtained by averaging the skip-gram word embeddings from the title and abstract.

Table 4. Statistics of different graph datasets.

Dataset Cora Citeseer Pubmed DBLP
Amazon

Photo
Amazon

Computers Ogbn-arxiv

Nodes 2,708 3,327 19,717 17,716 7,650 13,752 169,343
Edges 5,429 4,732 44,338 52,867 119,081 491,722 1,166,243

Features 1,433 3,703 500 1,639 745 767 128
Classes 7 6 3 4 8 10 40

B.2. Hyperparameter Setting

The hyperparameter setting is listed in Table 5. Pre Epochs, Pre Lr, and Pre Wd are the training epochs, the learning rate,
and the weight decay applied in the pre-trained processes. Dim Hid, Dim Emb, and Dim Proj are the hidden dimension of
the GNN encoder, the output dimension of the GNN encoder, and the hidden dimension of the projection head, respectively.
Act is the used activation function for all components of the proposed model. FT Lr, FT Epochs, and FT Wd are the
learning rate, the training epochs, and the weight decay applied in the fine-tuning processes. T is used for updating crisp
prototypes. K is the number of the membership functions for each element of a centralized feature vector z, τ is set to
weigh the significance of the distances between the fuzzy boundary and the prototypes, Cp is the number of the clusters for
each dataset, α is the penalty coefficient.

B.3. Details on Quantitative Analysis

The quantitative analysis measures the model ability to address the local cohesion and global sparseness, where we propose
two metrics “Mean Groups” and “Total Isolated Nodes” to measure the local cohesion and global sparseness for the
quantitative analysis, and present “Group List” and “List of Isolated Nodes” to assist in understanding the two metrics. Here,
we provide some definitions and explanations for them:
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Table 5. Hyperparameter setting on different datasets.

Dataset Cora Citeseer Pubmed DBLP
Amazon

Photo
Amazon

Computers Ogbn-arxiv

Pre Epochs 900 900 1900 800 500 600 30
Pre Lr 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 3e-5

Pre Wd 1e-5 1e-5 5e-6 5e-6 5e-6 1.5e-4 1e-5
Dim Hid 512, 512 512, 512 1024 512 512 512 256, 256
Dim Emb 256 256 1024 256 256 256 256

Act ELU ELU ELU ELU ELU ELU ELU
Dim Proj 512 512 2048 512 512 512 512

FT Lr 5e-5 5e-5 5e-5 8e-5 7e-5 8e-5 1e-5
FT Wd 2e-5 6e-6 1e-5 5e-6 1e-4 1e-4 1e-4

FT Epochs 700 300 4500 5000 6500 6000 30
T 40 20 40 40 40 40 40

Dropout ratio 0.5 0.5 0.5 0.5 0.5 0.5 0.5
K 5 5 5 5 5 5 5
τ 3.5 3.2 7.0 4.5 3.2 3.5 6.0
Cp 30 30 550 250 100 150 1000
α 0.9 0.0 0.3 1.0 0.9 1.1 0.8

(1) “Group List” and “Mean Groups” reflect the local cohesion. “Group List” is a list containing the number of groups
detected within each class cluster, with each element in the list corresponding to the number of groups in a given cluster. A
group is a set of nodes that are close to each other in the embedding space, with the maximal distance between each node
pair smaller than pre-defined “Eps”, where “Eps” is a hyperparameter of DBSCAN to limit the maximal distance between
the representations in a detected local group. “Mean Groups” calculates the mean number of groups from all the classes.
The calculation of “Mean Groups” is given by

Mean Groups =
1

C

C∑
i=1

Gi, (25)

where C is the number of classes, Gi is the number of groups for the i-th class cluster. For an ideal cluster distribution, all
the samples with the same label are supposed to be gathered in one cluster, so each element in the “Group List” is expected
to approach 1, the same as “Mean Groups”.

(2) “List of Isolated Nodes”, “Total Isolated Nodes”, and “Mean Groups” reflect global sparseness jointly. “List of Isolated
Nodes” details the number of isolated nodes for each class cluster, and the isolated nodes are the nodes whose distances
between themselves and any other group are greater than “Eps”, and these nodes are not assigned to any group and
contribute to global sparseness. “Total Isolated Nodes” records the total number of isolated nodes for each dataset. The
calculation of “Total Isolated Nodes” is given by

Total Isolated Nodes =

C∑
i=1

Ii, (26)

where Ii is the number of isolated nodes for the i-th class cluster. Generally, ideal cluster distributions hardly have isolated
nodes. According to the aforementioned explanations, smaller “Mean Groups” and “Total Isolated Nodes” could reflect
better clustering performance in general.

B.4. Hyperparameter Analysis

We analyze two hyperparameters directly related to the loss function, namely the temperature coefficient τ and penalty
coefficient α, whose results are exhibited in Figure 5. Not surprisingly, temperature coefficient τ plays a significant role in
the model performance as it weighs the distances between the prototypes and the fuzzy boundaries. Greater τ makes the
distances between prototypes and their corresponding fuzzy boundaries much closer than those between different prototypes.
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Figure 5. Results of hyperparameter sensitivity analysis, τ affects the model performance significantly and α influences slightly.

In other words, relatively larger τ balances the intra-cluster compactness and inter-cluster separateness. In contrast to the
function of τ , α influences the model performance slightly. Even so, it functions to preserve the critical information as much
as possible.

B.5. Visualization

In this experiment, we draw the t-sne of our model after pre-training and fine-tuning respectively to show how the fuzzy
boundary forms the ideal global structural distribution in Figure 6. We find that after pre-training, the cluster distributions
display global sparseness. However, after fine-tuning, the global sparseness disappears and the ideal properties of cluster
distributions, namely intra-cluster compactness and inter-cluster separateness gradually appear. Besides, by comparing
Figure 6(b) with (c), we find that the fuzzy boundaries indeed extend the spectrums of the real clusters. And when we realize
the contraction on outer fuzzy boundaries, the inner real clusters gather more tightly. Except for improving intra-cluster
compactness, the fuzzy boundaries implicitly enhance inter-cluster separateness. Concretely, the fuzzy clusters, namely the
clusters that include both real samples and fuzzy boundary elements are separatable (in Figure 6(b)), and when the fuzzy
clusters further distance each other, the distances between the inner real clusters are saliently enlarged (in Figure 6(c)). As a
result, the clusters embody high intra-cluster compactness and inter-class separateness merits.

B.6. Complexity

The complexity of the proposed model mainly includes the encoding process, K-means clustering algorithm, centralization
process, calculation of fuzzy boundary, calculation of the reconstruction loss, and calculation of the prototypical contrastive
loss. The encoding process demands O (LEd) complexity, where L is the layer number of the encoder, E is the number
of the edges, d is the dimension of the output representation. The K-means clustering algorithm demands O (CpNd)
complexity, where Cp is the number of prototypes, N is the number of samples. The centralization process, the calculation
of fuzzy boundary, and the reconstruction loss all demand O (Nd) complexity. The prototypical contrastive loss demands
O
(
CpNd2

)
complexity. Overall, the whole complexity of the proposed model is O

(
LEd+ CpNd+ 3Nd+ CpNd2

)
.

B.7. Ablation Study

Table 6 lists the node classification results in the ablation study, where Pre-training means the results for pre-trained
GAE, Fuzzy Boundary corresponds to the model with the fuzzy boundary, Lpro is the contrastive loss, and Lrec is the
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(a) (b) (c)

Figure 6. t-SNE results after pre-training and fine-tuning on Citeseer dataset, where (a) includes the crisp representations after pre-training,
(b) includes both crisp representations and the fuzzy boundary elements after fine-tuning, and (c) is solely composed of the node
representations after fine-tuning. Cluster distributions of (b) and (c) show ideal intra-cluster compactness and inter-cluster separateness.

Table 6. Results of ablation study on node classification task, which are concerned with the functions of pre-training, fuzzy boundary,
prototypical contrastive loss Lpro, and reconstruction loss Lrec.

Pre-training
Fuzzy

Boundary
Lpro Lrec Cora DBLP

Amazon

Photo

Amazon

Computers

✓ 84.83 ± 0.75 83.40 ± 0.35 93.21 ± 0.20 89.72 ± 0.24

✓ ✓ 85.24 ± 0.55 84.33 ± 0.16 93.43 ± 0.21 90.03 ± 0.15

✓ ✓ ✓ 85.73 ± 0.62 84.67 ± 0.17 93.60 ± 0.21 90.54 ± 0.20

✓ ✓ ✓ 84.83 ± 0.75 84.35 ± 0.14 93.53 ± 0.19 90.46 ± 0.22

✓ ✓ ✓ ✓ 85.90 ± 0.56 84.80 ± 0.17 93.71 ± 0.20 90.75 ± 0.20

reconstruction loss. Compared with models without fuzzy boundary, the models with fuzzy boundary behaves better, which
means the fuzzy boundary significantly enhances model performance. By combing Lpro with Lrec, the model performance
is further improved.
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