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ABSTRACT

Modern recommender systems often exhibit an offline-online performance gap.
A major reason for this is missing feedback: offline logged data lack feedback
for items that are never shown by the production system, making it difficult to
evaluate counterfactual outcomes. Large language models (LLMs), with their
broad knowledge and reasoning capabilities, are promising backbones for reward
models that impute this missing feedback. Given a user’s interaction history
and a candidate item, these models can judge whether a recommendation is a
good fit. However, a vanilla LLM bases its judgment almost entirely on semantic
information, ignoring behavioral signals and offering no justification for its assigned
rewards. To overcome these limitations, we propose BRIEF (behavior-infused
evidence-first reasoning), which constrains LLM generation to provide structured
evidence before assigning rewards, and injects behavioral signals through adaptive
logit biasing guided by a collaborative filtering (CF) model. Using online A/B
test results from a mainstream video streaming platform, we show that offline
evaluations from BRIEF correlate strongly with online business metrics. We
also validate BRIEF’s ability to synthesize high-quality rewards: using them for
training-data augmentation improves downstream recommender performance, and
its judgments show strong correlation with real user ratings.

1 INTRODUCTION

Reliable evaluation is vital for developing recommender system algorithms (Castells & Moffat, 2022).
While online A/B tests are the most effective assessment, they are costly and inefficient (Wang et al.,
2023). As a result, offline evaluation remains the primary validation approach before moving to
online experiments, using metrics such as precision and hit rate (Herlocker et al., 2004; Hidasi &
Czapp, 2023). Yet offline metrics can suffer from the offline-online gap existing in implicit-feedback
recommender systems and fail to predict online performance (Krauth et al., 2020). This gap largely
stems from exposure bias: we observe very little to no feedback from an item if the production system
rarely or never surfaces it (Jeunen, 2019); a well-known subtype is popularity bias, where long-tail
items are largely underrepresented (Bellogín et al., 2017).

A widely used approach to narrow the gap is off-policy evaluation (OPE): inverse propensity scoring
(IPS) re-weights logged interactions to provide an unbiased estimate of the reward (Narita et al., 2021),
but cannot handle unseen actions and is sensitive to inaccurate propensity estimates (Felicioni et al.,
2022; Zhang et al., 2023); Direct Methods (DM) train a reward model directly to predict outcomes,
inherit biases from the logged data, and struggle on out-of-distribution items. As large language
models (LLMs) possess broad knowledge and strong reasoning abilities (Wang et al., 2024a), they are
natural candidates for building reward models (see Figure 1(a)) that, given a user’s item-interaction
history and a candidate recommendation, can generate synthetic feedback (Zhang et al., 2024a).

Nevertheless, a vanilla application of LLMs as reward models is insufficient: LLMs have no knowl-
edge of task-specific user–item interaction patterns, and they cannot justify assigned rewards with
evidence. These limitations are shared by both zero-/few-shot prompting and advanced agentic user
simulators (Zhang et al., 2024a; Bougie & Watanabe, 2025). As shown in Figure 1(b), collaborative
signals are vital to recommendation, and LLMs excelling at semantic understanding but ignoring
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Figure 1: (a) A reward model generates synthetic feedback for candidate movies based on the user’s
viewing history. (b) A recommendation can be relevant even with low semantic similarity to the
user’s interaction history when a strong collaborative pattern—users with similar histories also like
the item—supports it. (c) A cross-domain recommender pushes the movie Harry Potter to a user who
has shown strong franchise interest by reading multiple Harry Potter books, so the recommendation
is likely relevant; yet it is labeled negative in offline evaluation because the user has never been
exposed to the film and it is therefore absent from the ground-truth watch list.

behavioral information make unreliable judgments (Zheng et al., 2024; Hong et al., 2025; Wang et al.,
2025b). Moreover, grounding each reward in specific evidence from the user’s history makes the
judgment process transparent and debuggable. Therefore, we propose BRIEF, enabling LLMs to
provide high-quality recommendation evaluation through behavior-infused evidence-first reasoning.
Specifically, it enforces evidence-first constrained generation—producing structured evidence before
assigning rewards—which avoids post-hoc rationalization and creates a single, predictable control
point for injecting behavioral signals by adaptively adjusting output token logits using a collaborative
filtering (CF) model. Unlike methods that integrate collaborative signals by training LLMs with
special item tokenization (Rajput et al., 2023) or through multi-round conversations, BRIEF operates
at the decoding stage and is thus training-free. Consequently, BRIEF is a lightweight approach that
integrates behavioral information and justifies each assigned reward.

We assess BRIEF’s ability to narrow the offline-online gap by comparing its offline scores with
business metrics from online A/B tests on a video streaming platform, measuring how well these
scores predict online performance. Because such offline-online correspondence data are rare, we
conduct additional experiments on public and production datasets: we augment training data with
BRIEF’s synthetic feedback to enhance recommender models, and we show that BRIEF’s judgments
correlate strongly with user ratings, outperforming baselines. We further validate BRIEF in cross-
domain recommendation, where the offline–online gap is especially wide because exploratory signals
that bridge domains are underrepresented in logged data (Figure 1(c)) (Chen et al., 2021; Xu et al.,
2024). We summarize our contributions as follows:

• We introduce BRIEF, a lightweight method that enables LLMs to produce evidence-justified
recommendation evaluations and fuses behavioral with semantic signals via adaptive logit biasing.
To the best of our knowledge, this is the first to infuse collaborative signals at decoding time.

• We demonstrate empirically that BRIEF delivers the most reliable offline evaluation of rec-
ommender models, with additional validation in cross-domain recommendation, where the
offline-online gap is especially large.

• We show that BRIEF directly improves recommendation quality by imputing missing feedback in
training data, and that it produces evaluations that agree with real user ratings.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

Let I = {i1, . . . , in} denote the universe of items. For a given user, let the interaction history be the
set Hu ⊆ I. Given this history and a recommended candidate item ij ∈ I \Hu, our objective is to
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Figure 2: Overview of BRIEF. (1) Evidence-First Semantic Generation, where the LLM provides
structured evidence prior to assigning rewards; (2) Latent Behavioral Signal Extraction, which
computes behavioral intensities using a CF model; and (3) Adaptive Fusion via Logit Biasing,
which adaptively adjusts token logits with behavioral signals.

develop a reward model R that generates a binary reward signal r ∈ {0, 1}, where r = 1 denotes a
positive (relevant) recommendation and r = 0 denotes a negative one. The generated rewards can be
used to evaluate recommender models offline, thereby helping to narrow the offline-online gap.

Our proposed method, BRIEF, consists of three modules—Evidence-First Semantic Generation,
Latent Behavioral Signal Extraction, and Adaptive Fusion via Logit Biasing. An overview of BRIEF
is presented in Figure 2. We introduce each module in turn.

2.2 EVIDENCE-FIRST SEMANTIC GENERATION

Large language models, with extensive world knowledge and reasoning ability, can judge the relevance
of a recommendation through semantic understanding, either from their own knowledge or with
the help of item metadata (e.g., genre, synopsis). This judgment is inherently based on identifying
relationships between a candidate item and a user’s interaction history, such as items belonging to the
same franchise, sharing a genre, or serving as complementary products. Because this reasoning is tied
to specific past items, a trustworthy positive reward must be explicitly supported by citing a subset of
history items as verifiable evidence. Therefore, BRIEF enforces an evidence-gathering step—the
LLM identifies “evidence items” Eu ⊆ Hu if and only if it generates r = 1—reformulating the
task from a simple binary classification into a structured generation problem.

Enforcing Evidence-First Reasoning

Must list evidence title(s) if you decide the rec-
ommendation is relevant; must provide none if
you decide it is irrelevant.
Return only this JSON object:
{

"evidence": ["<title-1>", "..."],
"is_relevant": "<YES|NO>"

}

However, simply generating evidence after
making the relevance decision encourages
post-hoc rationalization, where the model in-
vents plausible but unfaithful explanations
to fit its judgment. Therefore, BRIEF con-
strains the LLM to commit to providing ev-
idence before it can assign a positive re-
ward. This guides the model to follow a more
grounded reasoning path where justification
becomes a precondition for the judgment, not
an afterthought. Nevertheless, a candidate
item may be highly relevant when it exhibits strong behavioral correlation with a user’s past items
despite low semantic similarity. Consequently, evidence-first reasoning alone is insufficient.

2.3 LATENT BEHAVIORAL SIGNAL EXTRACTION

From a behavioral standpoint, a recommendation is a good fit when users with similar tastes have
consumed the candidate item. Such similarity of taste is inferred from user interaction histories,
which reveal latent item co-consumption patterns. Thus, judging relevance requires behavior-driven
similarity scores. This principle underlies modern retrieval-stage recommenders, which embed items,
learn user representations, and retrieve nearest neighbors. Below, we outline two ways to derive latent
behavioral signals:
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User-Item Relevance Scoring A straightforward way is to adopt the standard inference pipeline of
modern sequential recommenders (e.g., GRU4Rec (Hidasi et al., 2015), SASRec (Kang & McAuley,
2018)). These models are trained for next-item prediction by processing a user’s sequence of historical
interactions to learn a dynamic user representation vector. A relevance score for a candidate item is
then computed by taking the dot product of this final user representation and the candidate’s item
embedding. This resulting score can be directly used as the behavioral signal.

Pairwise Item-Item Similarity We can also derive a signal directly from the item embeddings
learned by these recommenders. The item embeddings encode rich behavioral patterns, including
co-consumption and higher-order relationships. We can compute the pairwise similarity between a
candidate item j and each item i in a user’s history Hu as sim(i, j) = cos(ẑi, ẑj) on ℓ2-normalized
embeddings ẑ. The behavioral signal is then calculated as the average of the top-k similarity scores.

Both of these methods yield a collaborative filtering (CF) reward model that, given a user u
and a candidate item i, produces p(r = 1|u, i). However, because these CF models are trained on
logged interactions, they inherently suffer from exposure bias. This limits their ability to generalize to
out-of-distribution items and makes them less effective at bridging the offline-online gap. In contrast,
since LLMs are not trained on these logs, their judgments via zero-shot prompting are not driven by
the same exposure bias, making them particularly beneficial for cold-start items.

2.4 ADAPTIVE FUSION VIA LOGIT BIASING

Because BRIEF constrains the LLM to provide evidence if and only if it assigns a positive reward, the
model’s generative trajectory irrevocably splits between a positive and negative outcome immediately
after emitting the "evidence": trigger: the model must choose between an empty list (a negative
judgment) or beginning a non-empty list (a positive judgment). This process creates a single,
predictable control point during decoding where behavioral signals can be infused to steer the
LLM’s semantic reasoning.

At this control point, we treat the token [ as the YEA token (committing to a positive reward) and
[] as the NAY token. After emitting the "evidence": trigger, BRIEF linearly scales the behavior
signal computed in Section 2.3 to a single intensity score σ ∈ [−1, 1], where a positive value indicates
collaborative support for recommending i to u. Crucially, the intervention strength adapts to the
LLM’s own semantic confidence. A skewed probability distribution over the YEA and NAY logits
implies high confidence that should be respected, while a flat distribution implies uncertainty where
external guidance from behavioral patterns is most useful. We quantify this by computing the entropy
over the YEA and NAY logits and normalizing it to En ∈ [0, 1], where higher En means greater
uncertainty. The final logit bias is

∆ = β · (1 + En) · σ,
with hyperparameter β controlling the base strength. At this decoding step, BRIEF applies a push-pull
update by adding ∆ to the YEA logit and subtracting ∆ from the NAY logit. Through subsequent
softmax and sampling, this (i) reinforces the LLM’s original decision when behavior and semantics
agree, (ii) flips the decision when strong behavioral evidence opposes a low-confidence semantic
judgment, or (iii) leaves the decision unchanged when the LLM is highly confident or σ is too weak.

3 EXPERIMENTS

We measure how well BRIEF’s offline scores correlate with online business metrics, using A/B test
results from a major video streaming platform. Because such offline-online correspondence data are
rare, we supplement this analysis with proxy downstream tasks on both public and internal industrial
datasets to further validate the quality of BRIEF’s synthetic feedback. The details are provided below.

3.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on large-scale internal industrial data and two public datasets
from the Amazon Reviews 2023 collection (Hou et al., 2024): Movies and TV and CDs and Vinyl.
While details of the industrial dataset cannot be disclosed, statistics for the public datasets after
pre-processing are summarized and provided in Table 1.
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Table 2: Offline-online gap (MAE, percentage points; lower is better) across offline evaluation
methods. Normal: using logged ground-truth interactions only. SASRec: behavior-only imputation.
Zero-shot: semantic scoring without behavioral signals. Non-adaptive: BRIEF without entropy-based
adaptive fusion. Best per column in bold, second best underlined. P denotes precision.

Method P@10 P@20 HitRate@10 HitRate@20 nDCG@10 nDCG@20 MAP@10 MAP@20 MRR

Normal 2.9246 2.8206 3.1324 3.2415 2.0410 2.2734 1.1585 1.3330 1.0233
SASRec 2.8992 2.8055 3.1287 3.2565 2.0228 2.2607 1.1406 1.3165 0.9687
Zero-shot 2.8767 2.7443 3.1317 3.2300 2.0505 2.2682 1.1787 1.3418 1.0376

Non-adaptive 2.8965 2.7233 3.1353 3.2333 2.0613 2.2733 1.1947 1.3469 1.0485
BRIEF 2.6879 2.4490 3.1097 3.2105 2.0041 2.2289 1.1285 1.2934 0.9379

Table 1: Statistics of pre-processed public datasets.
Dataset # Users # Items # Ratings
CDs & Vinyl 61,944 56,171 494,376
Movies & TV 303,310 71,543 2,254,458

Large language models We use Qwen3-
32B (Yang et al., 2025) as the backbone
LLM for experiments on internal industrial
data. For public data, BRIEF and all LLM-
based baselines adopt Qwen3-14B to en-
sure a fair comparison. All experiments run
on 4× NVIDIA A100-SXM4-80GB GPUs,
with inference accelerated by vLLM (Kwon et al., 2023). For both models, we use a sampling-based
decoding strategy with a temperature of T = 0.7, top-p = 0.8, and top-k = 20.

Recommender models We adopt SASRec (Kang & McAuley, 2018) to extract latent behavioral sig-
nals within BRIEF. SASRec is also evaluated as a reward model baseline in Sections 3.2 through 3.4.

Advanced baselines We rigorously evaluate BRIEF against several state-of-the-art (SOTA) LLM-
based baselines. These include: a standard zero-shot prompting approach; PUB (Ma et al.,
2025), which constructs detailed user personalities to prompt an LLM for behavior simulation;
Agent4Rec (Zhang et al., 2024a), an LLM agent equipped with dedicated profile and memory mod-
ules to simulate user dynamics; and RecAgent (Wang et al., 2025a), which leverages flexible and
efficient user profile modules to simulate user behaviors. Our implementation of PUB is from scratch,
while our Agent4Rec and RecAgent models are adapted from their official codebases.

3.2 EFFECTIVENESS OF NARROWING THE OFFLINE-ONLINE GAP

We use online A/B test data collected from a mainstream video streaming platform and compare
two recommender treatments, a control (A) and a variant (B). Standard offline evaluation ranks each
model’s top-k recommendations per user and scores them against held-out interactions using recall,
precision, hit rate, normalized discounted cumulative gain (nDCG), mean average precision (MAP),
and mean reciprocal rank (MRR). In our setting, rather than relying only on future interactions,
BRIEF evaluates every recommended item in the top-k that does not match a future interaction; these
additional rewards are then combined with ground-truth interactions to score the treatments. Because
BRIEF assigns rewards only to items that appear in the top-k, the total number of relevant items per
user is unknown, so recall cannot be computed in this setting.

Table 2 reports the offline-online gap for several offline evaluation methods. For each offline metric,
we compute the relative lift of B over A offline as 100 × (MB −MA)/MA and compare it to the
online relative lift measured by the business metric—the total number of streaming hours—computed
as 100× (HB −HA)/HA. The gap for a metric is the mean absolute error (MAE) between these two
lifts (lower is better); e.g., if offline reports +5% and online reports +1%, the MAE is 4%. Values
are averaged over three independent pairs of model treatments.

From Table 2, two patterns stand out. First, MAE is generally smaller for ranking metrics (MAP,
MRR, nDCG) than for count-like metrics (precision, hit rate), suggesting that ranking-style offline
metrics track online streaming hours more closely. Second, method-wise, vanilla zero-shot prompting
reduces the offline-online gap by only 0.08% on average—essentially negligible—whereas SASRec
is a strong second, improving over normal evaluation by 1.18% on average, underscoring the primacy
of behavioral signals in recommendation. Notably, BRIEF is consistently the best across all
metrics and cutoffs, reducing MAE relative to normal evaluation, SASRec, zero-shot prompting,
and the non-adaptive ablation by 4.51%, 3.37%, 4.45%, and 4.84%, respectively. Overall, these
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Table 3: Offline–online gap (MAE, percentage points; lower is better) across offline evaluation meth-
ods in the cross-domain recommendation setting. Best per column in bold, second best underlined.

Method P@10 P@20 HitRate@10 HitRate@20 nDCG@10 nDCG@20 MAP@10 MAP@20 MRR

Normal 4.4748 2.8986 4.4250 3.0373 10.0293 8.4293 13.9234 13.0235 13.0750
Zero-shot 3.1076 2.0553 4.2400 3.0388 9.4839 8.0824 13.3285 12.5841 11.9340

BRIEF 2.9421 2.0578 4.3894 3.0216 9.2220 7.9369 12.7187 12.1501 11.7056

Table 4: MF performance after training on datasets augmented with different reward sources (higher
is better). Random Augmentation: random positives; SASRec: behavior-only labels from collaborative
signals; Zero-shot: semantic-only labels; Non-adaptive: BRIEF without entropy-based adaptive
fusion. Best per column in bold, second best underlined. P denotes precision and R denotes recall.

Method R@5 R@10 R@15 R@20 P@5 P@10 P@15 P@20

No Aug. 4.1013 6.7835 8.9380 10.8518 1.0755 0.9347 0.8390 0.7738
Random Aug. 4.0979 6.7788 8.9366 10.8562 1.0751 0.9340 0.8389 0.7740
SASRec 4.1158 6.8035 8.9566 10.8773 1.0839 0.9391 0.8422 0.7768
Zero-shot 4.1173 6.8024 8.9583 10.8691 1.0829 0.9388 0.8424 0.7766

Non-adaptive 4.1398 6.8210 8.9829 10.9019 1.0916 0.9425 0.8454 0.7796
BRIEF 4.1397 6.8237 8.9848 10.9041 1.0918 0.9430 0.8456 0.7797

results indicate that while semantic understanding helps judge relevance, fusing it with behavioral
signals—and doing so adaptively—yields the closest alignment between offline and online outcomes.

Cross-domain recommendation We evaluate BRIEF in a cross-domain setting where the video
recommendations also leverage users’ book consumption histories, using one pair of model treatments.
From Table 3, MAE values are markedly larger than in Table 2, confirming that the offline–online
gap is especially wide in cross-domain recommendation. In this setting, ranking metrics deviate more
from the online business metric (total streaming hours) than count-like metrics. BRIEF remains
consistently the best across all metrics and cutoffs, increasing its average relative improvement
over normal evaluation to 11.59%. Vanilla zero-shot prompting becomes highly competitive in
this scenario—improving over normal evaluation by 9.97% and trailing BRIEF by only 1.86%—
highlighting the value of pure semantic signals that are not driven by the logged bias in capturing
exploratory signals that bridge domains.

3.3 EFFECTIVENESS OF AUGMENTING RECOMMENDER TRAINING DATA

Because offline–online correspondence data (from A/B tests) are scarce and costly, we additionally
assess reward quality via a proxy task: data augmentation for training recommenders. The premise
is that a higher-quality reward model produces more useful positive labels; training on these labels
should yield better downstream recommender performance.

Internal industrial data We use matrix factorization (MF) as the base recommender and compare five
variants for generating additional positives. Table 4 reports results averaged over three independent
days. Random augmentation slightly degrades performance on average (−0.03%) yet shows small
gains at recall@20 and precision@20, suggesting mild noise can occasionally improve robustness.
Single-signal augmentations—SASRec and vanilla LLM prompting—are nearly tied, improving over
no augmentation by 0.39% and 0.37%, respectively. The non-adaptive fusion further lifts the average
margin to 0.79%. BRIEF is best across almost all metrics and cutoffs, with average improvements
of 0.81% over no augmentation, 0.42% over SASRec, 0.44% over zero-shot prompting, and 0.02%
over Non-adaptive. On this task, BRIEF’s edge over non-adaptive fusion is trivial. However, since
this task is evaluated on logged data, the results may suffer from exposure bias.

Movies & TV dataset We use SASRec as the base recommender and compare methods for generating
additional positives. Augmenting the training data with synthetic positives generated by BRIEF leads
to substantial gains in recommendation performance. As shown in Table 5, our method significantly
outperforms the unaugmented baseline across all evaluation metrics, improving nDCG@20 by
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Table 5: Results for training data augmentation on Movies & TV. We evaluate using recall (R),
precision (P), and nDCG at various cutoffs. Best per column in bold, second best underlined.

Movies & TV
Model R@10 P@10 nDCG@10 R@20 P@20 nDCG@20

No Aug. 0.0263 0.0026 0.0091 0.0395 0.0020 0.0127
Popularity 0.0 0.0 0.0 0.0132 0.0007 0.0034

Zero-shot 0.0395 0.0039 0.0132 0.0395 0.0020 0.0132
PUB 0.0263 0.0026 0.0091 0.0395 0.0020 0.0121
Agent4Rec 0.0658 0.0066 0.0204 0.0921 0.0046 0.0270
RecAgent 0.0 0.0 0.0 0.0132 0.0007 0.0033

BRIEF 0.0714 0.0071 0.0224 0.1266 0.0063 0.0347
item-item 0.0395 0.0039 0.0132 0.0790 0.0039 0.0228
non-adaptive 0.0 0.0 0.0 0.0790 0.0039 0.0185
no-behavior 0.0526 0.0053 0.0157 0.0790 0.0039 0.0222

over 173%. Furthermore, BRIEF surpasses all competing augmentation strategies, with the strong
agent-based model, Agent4Rec, being the next-best competitor.

The performance of the baseline methods highlights the difficulty of effective data augmentation.
Naive strategies like adding popular items (Popularity) or even some advanced methods like RecAgent
degrade the recommender’s performance, demonstrating that the quality and relevance of the synthetic
data are paramount. A standard zero-shot LLM provides a modest lift, suggesting that semantic
understanding alone can uncover some useful signals, but it is not sufficient for achieving significant
gains.

Our ablation studies confirm that BRIEF’s effectiveness stems from its core design principles. The
no-behavior variant, which relies solely on evidence-first semantic reasoning, still outperforms most
baselines but is significantly weaker than the full BRIEF model. This result underscores the critical
role of infusing behavioral signals. Moreover, the poor performance of the non-adaptive variant
demonstrates that simply combining signals is insufficient; the adaptive fusion mechanism, which
accounts for the LLM’s confidence, is essential for generating high-quality training examples that
boost, rather than hinder, performance.

3.4 CORRELATION BETWEEN USER RATINGS AND GENERATED REWARDS

To directly evaluate the quality of the synthetic rewards, we measure their correlation with explicit
user ratings, which act as a ground-truth signal for user preference. We compute Spearman’s ρ and
Kendall’s τ rank correlation between the percentage of positive reward scores generated by each
model and users’ explicit ratings (1− 5). A higher correlation score signifies that a model’s rewards
more accurately reflect genuine user preferences.

The results, presented in Table 6, demonstrate that BRIEF consistently achieves the strongest align-
ment with user ratings across both datasets. It substantially outperforms the standalone collaborative
filtering (SASRec) and vanilla LLM (Zero-shot) approaches. The near-zero correlation of the zero-
shot baseline on the Movies & TV dataset highlights the insufficiency of relying on semantic signals
alone. While advanced agentic baselines like RecAgent show strong performance, BRIEF matches
or exceeds their ability to generate rewards that reflect user taste.

Our ablation studies validate the design of BRIEF. Removing the behavioral signal entirely causes a
dramatic drop in performance, confirming that the fusion of collaborative patterns is essential. Fur-
thermore, the non-adaptive fusion variant struggles on the complex Movies & TV dataset, indicating
that the adaptive mechanism—which adjusts the behavioral signal based on the LLM’s semantic
confidence—is critical for robust performance. This confirms that BRIEF’s ability to dynamically
balance behavioral and semantic signals is key to its success.

3.5 EFFECT OF β
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A Haunted House, Terrifier 2, A Haunted House 2 The Mean One Decision: Yes Decision: Yes ; Evidence: {A Haunted 
House, Terrifier 2, A Haunted House 2}

Movie History Recommendation Zero-shot BrIEF

Blippi Wonders, Dinosaur Friends, Paw Patrol Spiderman: Vexed by Venom Decision: No Decision: No

Ready Player One, Transformers, Bohemian Rhapsody The Super Mario Bros Movie Decision: No Decision: Yes ; Evidence: {Ready Player One, 
Transformers}

Figure 4: Zero-shot prompting vs. BRIEF: recommendation evaluation case studies.

Table 6: Correlation scores (Spearman’s ρ and
Kendall’s τ ). Best scores are highlighted; second-
best are underlined.

Movies & TV CDs & Vinyl

Model Spear. Kend. Spear. Kend.

SASRec 0.6 0.4000 0.8000 0.6

Zero-shot -0.01 0.0 0.5643 0.3162
PUB 0.8207 0.7379 0.2236 0.1195
RecAgent 0.9 0.8 0.8 0.6
Agent4Rec 0.8 0.6 0.6 0.4

BRIEF 0.9000 0.8000 0.9000 0.8000
item-item -0.3 -0.2000 0.6 0.4000
non-adaptive 0.1000 0.0 0.9000 0.8000
no-behavior -0.3 -0.2000 0.2000 0.2000

We investigate the impact of the behavioral sig-
nal’s base strength, controlled by the hyperpa-
rameter β, on the quality of the generated re-
wards. We vary β from 5 to 40 and plot the
Spearman’s rank correlation with users’ ratings
for both public datasets in Figure 3.

The results show that the relationship between
the performance of BRIEF and β follows an
inverted U-shaped curve. For both datasets, the
optimal performance is achieved at β = 25. A
value of β that is too low provides an insufficient
behavioral signal to steer the LLM’s semantic-
only reasoning, leading to poor performance.
Conversely, a value that is too high allows the
behavioral signal to overwhelm the LLM’s judg-
ment, causing the model to ignore valuable se-
mantic information and leading to a sharp decline in reward quality. This analysis confirms that a
carefully balanced fusion of behavioral and semantic signals is crucial for BRIEF.

3.6 QUALITATIVE CASE STUDIES

Figure 3: Effect of β on reward quality. The plot
shows the Spearman correlation between the pro-
duced rewards and users’ ratings on two datasets
(Movies & TV, CDs & Vinyl) as the base strength
of the behavioral signal is varied.

To illustrate BRIEF’s behavior-aware rewards
and justifications, Figure 4 presents three case
studies. We first note that vanilla zero-shot
prompting with Qwen3-32B already yields rea-
sonable judgments. Case 1: both vanilla prompt-
ing and BRIEF return YES; the cited evidence
is consistent with the user’s horror preferences—
slasher/monster elements (Terrifier 2) and hor-
ror parody (A Haunted House)—matching the
dark-comedy and over-the-top gore in The Mean
One. Case 2: both methods return NO because
the candidate (LEGO Marvel Spider-Man) is a
superhero action-adventure for older children,
whereas the history consists of preschool edu-
cational titles (Blippi Wonders, PAW Patrol).
Case 3: BRIEF shows its advantage. Zero-
shot prompting labels The Super Mario Bros.
Movie as irrelevant given a history of PG-13 sci-
fi/action and a music biopic; in contrast, lever-
aging collaborative signals, BRIEF correctly
assigns YES, as the candidate exhibits high behavioral correlation with Ready Player One and
Transformers—capturing shared IP-driven nostalgia not apparent from surface semantics.

4 RELATED WORK

The offline-online gap The offline-online gap in recommender systems—when offline evaluation
fails to predict online performance—arises from many factors, most notably exposure bias: a problem
of missing rewards (Jeunen, 2019; Hidasi & Czapp, 2023; Cañamares et al., 2020; Krauth et al., 2020;
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Wang et al., 2023; Chen et al., 2019; Rossetti et al., 2016). Off-policy evaluation (OPE) attempts
to narrow this gap via methods that estimate how well a new policy would perform using logged
data collected under a different historical policy (Swaminathan et al., 2017; Saito & Joachims, 2021;
Narita et al., 2021). Inverse propensity scoring (IPS) is a key category of OPE methods: it re-weights
observed interactions by propensities to estimate a new model’s performance (Mehrotra et al., 2018).
Example methods include capped IPS (Gilotte et al., 2018), normalized IPS (Powell & Swann, 1966),
normalized capped IPS (Gruson et al., 2019), and self-normalized IPS (Swaminathan & Joachims,
2015; Yang et al., 2018). However, these techniques suffer from high variance (Castells & Moffat,
2022), dependence on accurately estimated propensities (Zhang et al., 2023), and an inability to
handle unseen actions (Felicioni et al., 2022). This motivates building reward models to directly
impute missing rewards, though these models—trained on biased logged data—can also struggle to
extrapolate to items with little or no exposure (Wang et al., 2021).

User simulators and reward models User simulators have long been studied for evaluating recom-
mender models: RecLab introduces six hand-crafted simulators (Krauth et al., 2020), RecSim and
RecoGym provide configurable reinforcement learning platforms (Ie et al., 2019; Rohde et al., 2018),
and Accordion is a trainable Poisson-process simulator (McInerney et al., 2021). Yet these methods
suffer from simplified environments, rigid assumptions, or biases in training data. As large language
models (LLMs) show remarkable capabilities, they have powered agentic recommenders (Wang et al.,
2025a; Zhang et al., 2024b), and researchers are investigating LLM-based user simulators (Yoon
et al., 2024): Agent4Rec and SimUSER equip LLM agents with profile and memory modules (Zhang
et al., 2024a; Bougie & Watanabe, 2025), while AFL couples a user agent and a recommendation
agent in a feedback loop (Cai et al., 2025). These methods still derive rewards from either semantic or
behavioral signals alone. The most relevant study to our work employs a collaborative filtering model
together with an LLM, but its majority-vote fusion is brittle and heuristic (Zhang et al., 2025b).

Infusing behavioral signals into LLMs Research on LLM-based recommenders seeks to overcome
the gap between the models’ strong semantic understanding and their lack of collaborative knowledge
crucial for recommendations. P5 pre-trains a text-to-text model on textualized recommendation
data to internalize collaborative patterns (Geng et al., 2022), whereas TALLRec and SOFT fine-tune
LLM weights with task-specific interaction logs (Bao et al., 2023; Tang et al., 2025). EAGER-LLM,
SeLLa-Rec, and LC-Rec compress behavioral signals into special tokens and fine-tune the LLM to
decode them (Hong et al., 2025; Wang et al., 2025b; Zheng et al., 2024). CoLLM and A-LLMRec
instead freeze the backbone and learn projectors mapping CF embeddings into the LLM embedding
space (Zhang et al., 2025a; Kim et al., 2024). CTRL and LETTER align behavioral and semantic
knowledge via contrastive learning (Li et al., 2023; Wang et al., 2024b). These approaches incur
heavy training cost and inherit exposure bias from training data. CoRAL avoids training by retrieving
user-item interactions, but suffers from long prompts and dependence on high-quality retrieval (Wu
et al., 2024). Our proposed training-free method overcomes the aforementioned challenges.

5 CONCLUSION

Large language models are natural candidates for judging recommendation relevance because of their
extensive knowledge and strong reasoning capabilities. However, they lack behavioral knowledge that
is critical in recommender systems. We introduce BRIEF, a training-free, decoding-time intervention
that adaptively biases output logits using conventional collaborative filtering models and, through
constrained generation, produces structured evidence for positive rewards. Unlike widely adopted
training-based approaches such as Semantic ID, BRIEF operates without finetuning the language
model and, to the best of our knowledge, is the first to infuse behavioral signals at decoding time.
Future work includes scaling BRIEF to larger-scale reward assignment and combining training-based
methods (e.g., Semantic ID) with decoding-time intervention to advance generative recommendation.

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our full implementation, including
the source code for our models, experiment scripts, and evaluation procedures, is made publicly
available in an anonymized GitHub repository at https://github.com/anonymous-submit-code/BrIEF.
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The repository contains a detailed README.md file with instructions for setting up the required
software environment and executing the code to replicate our results.

7 THE USE OF LARGE LANGUAGE MODELS

We utilized the LLM as a general-purpose writing assistant to improve the clarity and polish of the
language, which is in line with ICLR policy.

REFERENCES

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM conference on recommender systems, pp. 1007–1014, 2023.

Alejandro Bellogín, Pablo Castells, and Iván Cantador. Statistical biases in information retrieval
metrics for recommender systems. Information Retrieval Journal, 20(6):606–634, 2017.

Nicolas Bougie and Narimasa Watanabe. Simuser: Simulating user behavior with large language
models for recommender system evaluation. arXiv preprint arXiv:2504.12722, 2025.

Shihao Cai, Jizhi Zhang, Keqin Bao, Chongming Gao, Qifan Wang, Fuli Feng, and Xiangnan He.
Agentic feedback loop modeling improves recommendation and user simulation. In Proceedings
of the 48th International ACM SIGIR conference on Research and Development in Information
Retrieval, pp. 2235–2244, 2025.

Rocío Cañamares, Pablo Castells, and Alistair Moffat. Offline evaluation options for recommender
systems. Information Retrieval Journal, 23(4):387–410, 2020.

Pablo Castells and Alistair Moffat. Offline recommender system evaluation: Challenges and new
directions. AI magazine, 43(2):225–238, 2022.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-k
off-policy correction for a reinforce recommender system. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 456–464, 2019.

Minmin Chen, Yuyan Wang, Can Xu, Ya Le, Mohit Sharma, Lee Richardson, Su-Lin Wu, and Ed Chi.
Values of user exploration in recommender systems. In Proceedings of the 15th acm Conference
on recommender systems, pp. 85–95, 2021.

Nicolò Felicioni, Maurizio Ferrari Dacrema, Marcello Restelli, and Paolo Cremonesi. Off-policy eval-
uation with deficient support using side information. Advances in Neural Information Processing
Systems, 35:30250–30264, 2022.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM conference on recommender systems, pp. 299–315, 2022.

Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé.
Offline a/b testing for recommender systems. In Proceedings of the eleventh ACM international
conference on web search and data mining, pp. 198–206, 2018.

Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney, Samantha Hansen,
Damien Tardieu, and Ben Carterette. Offline evaluation to make decisions about playlistrecommen-
dation algorithms. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining, pp. 420–428, 2019.

Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1):5–53,
2004.

Balázs Hidasi and Ádám Tibor Czapp. Widespread flaws in offline evaluation of recommender
systems. In Proceedings of the 17th acm conference on recommender systems, pp. 848–855, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Minjie Hong, Yan Xia, Zehan Wang, Jieming Zhu, Ye Wang, Sihang Cai, Xiaoda Yang, Quanyu
Dai, Zhenhua Dong, Zhimeng Zhang, et al. Eager-llm: Enhancing large language models as
recommenders through exogenous behavior-semantic integration. In Proceedings of the ACM on
Web Conference 2025, pp. 2754–2762, 2025.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language
and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024.

Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and
Craig Boutilier. Recsim: A configurable simulation platform for recommender systems. arXiv
preprint arXiv:1909.04847, 2019.

Olivier Jeunen. Revisiting offline evaluation for implicit-feedback recommender systems. In
Proceedings of the 13th ACM conference on recommender systems, pp. 596–600, 2019.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung Park.
Large language models meet collaborative filtering: An efficient all-round llm-based recommender
system. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 1395–1406, 2024.

Karl Krauth, Sarah Dean, Alex Zhao, Wenshuo Guo, Mihaela Curmei, Benjamin Recht, and Michael I
Jordan. Do offline metrics predict online performance in recommender systems? arXiv preprint
arXiv:2011.07931, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611–626, 2023.

Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang. Ctrl: Connect collaborative and language
model for ctr prediction. ACM Transactions on Recommender Systems, 2023.

Chenglong Ma, Ziqi Xu, Yongli Ren, Danula Hettiachchi, and Jeffrey Chan. Pub: An llm-enhanced
personality-driven user behaviour simulator for recommender system evaluation. In Proceedings
of the 48th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 2690–2694, 2025.

James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara. Accordion: a
trainable simulator for long-term interactive systems. In Proceedings of the 15th acm conference
on recommender systems, pp. 102–113, 2021.

Rishabh Mehrotra, James McInerney, Hugues Bouchard, Mounia Lalmas, and Fernando Diaz.
Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness
& satisfaction in recommendation systems. In Proceedings of the 27th acm international conference
on information and knowledge management, pp. 2243–2251, 2018.

Yusuke Narita, Shota Yasui, and Kohei Yata. Debiased off-policy evaluation for recommendation
systems. In Proceedings of the 15th ACM Conference on Recommender Systems, pp. 372–379,
2021.

Michael JD Powell and J Swann. Weighted uniform sampling—a monte carlo technique for reducing
variance. IMA Journal of Applied Mathematics, 2(3):228–236, 1966.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. Advances in Neural Information Processing Systems, 36:10299–10315, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou. Recogym:
A reinforcement learning environment for the problem of product recommendation in online
advertising. arXiv preprint arXiv:1808.00720, 2018.

Marco Rossetti, Fabio Stella, and Markus Zanker. Contrasting offline and online results when evalu-
ating recommendation algorithms. In Proceedings of the 10th ACM conference on recommender
systems, pp. 31–34, 2016.

Yuta Saito and Thorsten Joachims. Counterfactual learning and evaluation for recommender systems:
Foundations, implementations, and recent advances. In Proceedings of the 15th ACM Conference
on Recommender Systems, pp. 828–830, 2021.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learning.
advances in neural information processing systems, 28, 2015.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford, Damien
Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. Advances in Neural
Information Processing Systems, 30, 2017.

Heng Tang, Feng Liu, Xinbo Chen, Jiawei Chen, Bohao Wang, Changwang Zhang, Jun Wang,
Yuegang Sun, Bingde Hu, and Can Wang. Bridging the gap: Self-optimized fine-tuning for
llm-based recommender systems. arXiv preprint arXiv:2505.20771, 2025.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024a.

Lei Wang, Jingsen Zhang, Hao Yang, Zhi-Yuan Chen, Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai
Lin, Hao Sun, Ruihua Song, et al. User behavior simulation with large language model-based
agents. ACM Transactions on Information Systems, 43(2):1–37, 2025a.

Wenjie Wang, Fuli Feng, Xiangnan He, Xiang Wang, and Tat-Seng Chua. Deconfounded recommen-
dation for alleviating bias amplification. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 1717–1725, 2021.

Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang, Yongqi Li, Fuli Feng, See-Kiong Ng, and
Tat-Seng Chua. Learnable item tokenization for generative recommendation. In Proceedings of the
33rd ACM International Conference on Information and Knowledge Management, pp. 2400–2409,
2024b.

Xiaojie Wang, Ruoyuan Gao, Anoop Jain, Graham Edge, and Sachin Ahuja. How well do offline
metrics predict online performance of product ranking models? In Proceedings of the 46th
International ACM SIGIR conference on Research and Development in Information Retrieval, pp.
3415–3420, 2023.

Zihan Wang, Jinghao Lin, Xiaocui Yang, Yongkang Liu, Shi Feng, Daling Wang, and Yifei Zhang.
Enhancing llm-based recommendation through semantic-aligned collaborative knowledge. arXiv
preprint arXiv:2504.10107, 2025b.

Junda Wu, Cheng-Chun Chang, Tong Yu, Zhankui He, Jianing Wang, Yupeng Hou, and Julian
McAuley. Coral: collaborative retrieval-augmented large language models improve long-tail
recommendation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 3391–3401, 2024.

Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, and
Junchi Yan. Rethinking cross-domain sequential recommendation under open-world assumptions.
In Proceedings of the ACM Web Conference 2024, pp. 3173–3184, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased
offline recommender evaluation for missing-not-at-random implicit feedback. In Proceedings of
the 12th ACM conference on recommender systems, pp. 279–287, 2018.

Se-eun Yoon, Zhankui He, Jessica Maria Echterhoff, and Julian McAuley. Evaluating large lan-
guage models as generative user simulators for conversational recommendation. arXiv preprint
arXiv:2403.09738, 2024.

An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. On generative agents in
recommendation. In Proceedings of the 47th international ACM SIGIR conference on research
and development in Information Retrieval, pp. 1807–1817, 2024a.

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, Julian McAuley, Wayne Xin Zhao, Leyu
Lin, and Ji-Rong Wen. Agentcf: Collaborative learning with autonomous language agents for
recommender systems. In Proceedings of the ACM Web Conference 2024, pp. 3679–3689, 2024b.

Xiaoying Zhang, Junpu Chen, Hongning Wang, Hong Xie, Yang Liu, John Lui, and Hang Li.
Uncertainty-aware instance reweighting for off-policy learning. Advances in Neural Information
Processing Systems, 36:73691–73718, 2023.

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm: Integrating
collaborative embeddings into large language models for recommendation. IEEE Transactions on
Knowledge and Data Engineering, 2025a.

Zijian Zhang, Shuchang Liu, Ziru Liu, Rui Zhong, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang,
Qidong Liu, and Peng Jiang. Llm-powered user simulator for recommender system. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 13339–13347, 2025b.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 1435–1448. IEEE,
2024.

13


	Introduction
	Methodology
	Problem formulation
	Evidence-first semantic generation
	Latent behavioral signal extraction
	Adaptive fusion via logit biasing

	Experiments
	Experimental setup
	Effectiveness of narrowing the offline-online gap
	Effectiveness of augmenting recommender training data
	Correlation between user ratings and generated rewards
	Effect of 
	Qualitative case studies

	Related work
	Conclusion
	Reproducibility statement 
	The Use of Large Language Models

