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Figure 1: DreamTime enables higher-quality 3D generation across different methods, includ-
ing: DreamFusion Poole et al. (2022), Magic3D Lin et al. (2022), Zero123 Liu et al. (2023a),
DreamWaltz Huang et al. (2023), and ProlificDreamer Wang et al. (2023).

ABSTRACT

Text-to-image diffusion models pre-trained on billions of image-text pairs have
recently enabled 3D content creation by optimizing a randomly initialized dif-
ferentiable 3D representation with score distillation. However, the optimization
process suffers slow convergence and the resultant 3D models often exhibit two
limitations: (a) quality concerns such as missing attributes and distorted shape and
texture; (b) extremely low diversity comparing to text-guided image synthesis. In
this paper, we show that the conflict between the 3D optimization process and
uniform timestep sampling in score distillation is the main reason for these limi-
tations. To resolve this conflict, we propose to prioritize timestep sampling with
monotonically non-increasing functions, which aligns the 3D optimization pro-
cess with the sampling process of diffusion model. Extensive experiments show
that our simple redesign significantly improves 3D content creation with faster
convergence, better quality and diversity.

1 INTRODUCTION

Humans are situated in a 3D environment. To simulate this experience for entertainment or re-
search, we require a significant number of 3D assets to populate virtual environments like games
and robotics simulations. Generating such 3D content is both expensive and time-consuming, ne-
cessitating skilled artists with extensive aesthetic and 3D modeling knowledge. It’s reasonable to
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inquire whether we can enhance this procedure to make it less arduous and allow beginners to create
3D content that reflects their own experiences and aesthetic preferences.

Recent advancements in text-to-image generation (Ramesh et al., 2022; Saharia et al., 2022; Rom-
bach et al., 2022) have democratized image creation, enabled by large-scale image-text datasets,
e.g., Laion5B (Schuhmann et al., 2022), scraped from the internet. However, 3D data is not as eas-
ily accessible, making 3D generation with 2D supervision very attractive. Previous works (Poole
et al., 2022; Wang et al., 2022; Lin et al., 2022; Metzer et al., 2022; Chen et al., 2023) have utilized
pre-trained text-to-image diffusion models as a strong image prior to supervise 2D renderings of
3D models, with promising showcases for text-to-3D generation. However, the generated 3D mod-
els are often in low quality with unrealistic appearance, mainly due to the fact that text-to-image
models are not able to produce identity-consistent object across multiple generations, neither can it
provide camera pose-sensitive supervision required for optimizing a high-quality 3D representation.
To mitigate such supervision conflicts, later works orthogonal to ours have explored using generative
models with novel view synthesis capability (Liu et al., 2023a;b) or adapting pre-trained model to
be aware of camera pose and current generation (Wang et al., 2023). However, challenges remain
for creative 3D content creation, as the generation process still suffers from some combination of
the following limitations as illustrated in Fig. 2: (1) requiring a long optimization time to generate
a 3D object (slow convergence); (2) low generation quality such as missing text-implied attributes
and distorted shape and texture; (3) low generation diversity.

As a class of score-based generative models (Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2021b), diffusion models contain a data noising and a data denoising process according to a pre-
defined schedule over fixed number of timesteps. They model the denoising score ∇x log pdata(x),
which is the gradient of the log-density function with respect to the data on a large number of noise-
perturbed data distributions. Each timestep (t) corresponds to a fixed noise with the score contain-
ing coarse-to-fine information as t decreases. For image synthesis, the sampling process respects
the discipline of coarse-to-fine content creation by iteratively refining samples with monotonically
decreasing t. However, the recent works leveraging pre-trained data scores for diffusion-guided 3D
generation (Poole et al., 2022; Wang et al., 2022; Lin et al., 2022; Chen et al., 2023; Qian et al.,
2023) randomly sample t during the process of 3D model optimization, which is counter-intuitive.

In this paper, we first investigate what a 3D model learns from pre-trained diffusion models at each
noise level. Our key intuition is that pre-trained diffusion models provide different levels of visual
concepts for different noise levels. At 3D model initialization, it needs coarse high-level information
for structure formation. Later optimization steps should instead focus on refining details for better
visual quality. These observations motivate us to propose time prioritized score distillation sampling
(TP-SDS) for diffusion-guided 3D generation, which aims to prioritize information from different
diffusion timesteps (t) at different stages of 3D optimization. More concretely, we propose a non-
increasing timestep sampling strategy: at the beginning of optimization, we prioritize the sampling
of large t for guidance on global structure, and then gracefully decrease t with training iteration to
get more information on visual details. To validate the effectiveness of the proposed TP-SDS, we
first analyze the score distillation process illustrated on 2D examples. We then evaluate TP-SDS
against standard SDS on a wide range of text-to-3D and image-to-3D generations in comparison for
convergence speed as well as model quality and diversity.

Our main contributions are as follows:

• We thoroughly reveal the conflict between diffusion-guided 3D optimization and uniform timestep
sampling of score distillation sampling (SDS) from three perspectives: mathematical formulation,
supervision misalignment, and out-of-distribution (OOD) score estimation.

• To resolve this conflict, we introduce DreamTime, an improved optimization strategy for
diffusion-guided 3D content creation. Concretely, we propose to use a non-increasing time sam-
pling strategy instead of uniform time sampling. The introduced strategy is simple but effective
by aligning the 3D optimization process with the sampling process of DDPM (Ho et al., 2020).

• We conduct extensive experiments and show that our simple redesign of the optimization process
significantly improves diffusion-guided 3D generation with faster convergence, better quality and
diversity across different foundation diffusion models and 3D representations.
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Figure 2: Challenging phenomena in optimization-based diffusion-guided 3D generation.

2 RELATED WORK

Text-to-image generation. Text-to-image models such as GLIDE (Nichol et al., 2021), un-
CLIP (Ramesh et al., 2022), Imagen (Saharia et al., 2022), and Stable Diffusion (Rombach et al.,
2022) have demonstrated impressive capability of generating photorealistic and creative images
given textual instructions. The remarkable progress is enabled by advances in modeling such as
diffusion models (Dhariwal & Nichol, 2021; Song et al., 2021a; Nichol & Dhariwal, 2021), as well
as large-scale web data curation exceeding billions of image-text pairs (Schuhmann et al., 2022;
Sharma et al., 2018; Changpinyo et al., 2021). Such datasets have wide coverage of general ob-
jects, likely containing instances with great variety such as color, texture and camera viewpoints.
As a result, text-to-image diffusion models pre-trained on those billions of image-text pairs exhibit
remarkable understanding of general objects, good enough to synthesize them with high quality
and diversity. Recently, generating different viewpoints of the same object has made significant
progresses, notably novel view synthesis from a single image (Liu et al., 2023a;b), which can be
applied to improve the quality of image-to-3D generation, orthogonal to our approach.

Diffusion-guided 3D generation. The pioneering works of Dream Fields (Jain et al., 2022) and
CLIPmesh (Mohammad Khalid et al., 2022) utilize CLIP (Radford et al., 2021) to optimize a 3D
representation so that its 2D renderings align well with user-provided text prompt, without requir-
ing expensive 3D training data. However, this approach tends to produce less realistic 3D models
because CLIP only offers discriminative supervision on high-level semantics. In contrast, recent
studies (Poole et al., 2022; Lin et al., 2022; Chen et al., 2023; Wang et al., 2023; Qian et al., 2023;
Tang et al., 2023) have demonstrated remarkable text-to-3D and image-to-3D generation results by
employing powerful pre-trained diffusion models as a robust 2D prior. We build upon this line of
work and improve over the design choice of 3D model optimization process to enable significantly
higher-fidelity and higher-diversity diffusion-guided 3D generation with faster convergence.

3 METHOD

We first review diffusion-guided 3D generation modules, including differentiable 3D representa-
tion (Mildenhall et al., 2021), diffusion models (Ho et al., 2020), and SDS (Poole et al., 2022) in
Section 3.1. Then, we analyze the existing drawbacks of SDS in Section 3.2. Finally, to alleviate
the problems in SDS, we introduce an improved optimization strategy in Section 3.3.

3.1 PRELIMINARY

Differentiable 3D representation. We aim at generating a 3D model θ that when rendered at any
random view c, produces an image x = g(θ, c) that is highly plausible as evaluated by a pre-trained
text-to-image or image-to-image diffusion model. To be able to optimize such a 3D model, we
require the 3D representation to be differentiable, such as NeRF (Mildenhall et al., 2021; Müller
et al., 2022), NeuS (Wang et al., 2021) and DMTet (Shen et al., 2021).
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Figure 3: Visualization of SDS gradients under different timesteps t. (Left) Visualization of SDS
gradients throughout the 3D model (in this case NeRF) optimization process, where the green curved
arrow denotes the path for more informative gradient directions as NeRF optimization progresses. It
can be observed that a non-increasing timestep t is more suitable for the SDS optimization process.
(Right) We provide more examples to illustrate the effects of timestep t on SDS gradients. Small t
provides guidance on local details, while large t is responsible for global structure.

Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) estimate the denoising score
∇x log pdata(x) by adding noise to clean data x ∼ p(x) in T timesteps with pre-defined schedule
αt ∈ (0, 1) and ᾱt :=

∏t
s=1 αs, according to:

xt =
√
ᾱtx+

√
1− ᾱtϵ, where ϵ ∼ N (0, I), (1)

then learns to denoise by minimizing the noise prediction error. In the sampling stage, one can
derive x from noisy input and noise prediction, and subsequently the score of data distribution.

Score Distillation Sampling (SDS) (Poole et al., 2022; Lin et al., 2022; Metzer et al., 2022) is a
widely used method to distill 2D image priors from a pre-trained diffusion model ϵϕ into a differen-
tiable 3D representation. SDS calculates the gradients of the model parameters θ by:

∇θLSDS(ϕ,x) = Et,ϵ

[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (2)

where w(t) is a weighting function that depends on the timestep t and y denotes a given text or
image prompt. SDS optimization is robust to the choice of w(t) as mentioned in Poole et al. (2022).

Remark. Our goal is to optimize a differentiable 3D representation by distilling knowledge from
pre-trained Stable Diffusion (Rombach et al., 2022) or Zero123 (Liu et al., 2023a) given a text or
image prompt, respectively. In the training process, SDS is used to supervise the distillation process.

3.2 ANALYSIS OF EXISTING DRAWBACKS IN SDS

A diffusion model generates an image by sequentially denoising a noisy image, where the denois-
ing signal provides different granularity of information at different timestep t, from structure to
details (Choi et al., 2022; Balaji et al., 2022). For diffusion-guided 3D content generation, however,
SDS (Poole et al., 2022) samples t from a uniform distribution throughout the 3D model optimiza-
tion process, which is counter-intuitive because the nature of 3D generation is closer to DDPM
sampling (sequential t-sampling) than DDPM training (uniform t-sampling). This motivates us to
explore the potential impact of uniform t-sampling on diffusion-guided 3D generation.

In this subsection, we analyze the drawbacks of SDS from three perspectives: mathematical formu-
lation, supervision alignment, and out-of-distribution (OOD) score estimation.

Mathematical formulation. We contrast SDS loss:

LSDS(ϕ,xt) = E
t∼U(1,T )

[
w(t)∥ϵϕ(xt; y, t)− ϵ∥22

]
(3)
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Figure 4: Illustration of OOD issue using web-data pre-trained diffusion model for denoising NeRF
rendered images, in pixel and frequency domain. We provide an extreme case to show the frequency
domain misalignment: (c) adding small noise to NeRF’s rendering at initialization. (d) illustrates
that TP-SDS avoids such domain gap by choosing the right noise level.

Seed=0 Seed=1 Seed=2 Seed=3Normal Initial.NeRF Initial. Seed=0 Seed=1 Seed=2 Seed=3

Figure 5: Low-frequency bias of initial rendered image leads to low-diversity generation. To demon-
strate this, we provide SDS-optimized 2D generated results using text prompt “gingerbread man”.
Compared to normal initialization (Right), NeRF initialization (Left) exhibits low frequency and
leads to the OOD issue, failing to produce diverse results.

with DDPM sampling process, i.e., for t = T → 1 :

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵϕ(xt; y, t)

)
+ σtϵ, (4)

where ϵ ∼ N (0, I), αt is training noise schedule and σt is noise variance, e.g.,
√
1− αt.

Note that for SDS training, t is randomly sampled as shown in Eqn. 3 with red color, but for DDPM
sampling, t is strictly ordered for Eqn. 4 as highlighted in blue. Since diffusion model is a general
denoiser best utilized by iteratively transforming noisy content to less noisy ones, we argue that
random timestep sampling in the optimization process of 3D model is unaligned with the sampling
process in DDPM.

Supervision Misalignment. For diffusion models, the denoising prediction provides different gran-
ularity of information at different timestep t: from coarse structure to fine details as t decreases. To
demonstrate this, we visualize the update gradient ∥ϵϕ(xt; y, t)−ϵ∥ for 3D NeRF model renderings
in Figure 3. From the left visualization, it is evident that as NeRF optimization progresses, the dif-
fusion timestep that is most informative to NeRF update changes (as highlighted by curved arrow in
Figure 3). We provide more examples to reveal the same pattern on the right. Uniform t sampling
disregards the fact that different NeRF training stages require different granularity of supervision.
Such misalignment leads to ineffective and inaccurate supervision from SDS in the training process,
leading to slower convergence and lower-quality generations (lack of fine details), respectively.

Out-of-distribution (OOD). For pre-trained ϵϕ to provide a well-informed score estimation, xt

needs to be close to the training data distribution which are noised natural images. However, at the
early training stages, the renderings of NeRF are obviously out-of-distribution (OOD) to pre-trained
Stable Diffusion. Evident frequency difference exists between the rendered images and diffusion
model’s training data, as shown in Figure 4. We further show in Figure 5 with 2D examples that the
lack of high-frequency signal at early stage of content creation directly contributes to mode collapse
(low-diversity models given the same prompt) as observed in Poole et al. (2022).
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3.3 TIME PRIORITIZED SCORE DISTILLATION

Drawbacks of uniform t-sampling in vanilla SDS motivate us to sample t more effectively. Intu-
itively, non-increasing t-sampling (marked by the curved arrow in Figure 3) is more effective to
the 3D optimization process, since it provides coarse-to-fine supervision signals which are more in-
formative to the generation process, and initiates with large noise to avoid the OOD problem caused
by low-frequency 3D renderings.

Based on this observation, we first try a naive strategy that decreases t linearly with optimization
iteration. However, it fails with severe artifacts in the final rendered image, as shown in App. Fig. 13.
We observe that decreasing t works well until later optimization stage when small t dominates. We
visualize the SDS gradients (lower-right box within each rendered image) and notice that at small
t, variance of the SDS gradients are extremely high, which makes convergence difficult for 3D-
consistent representation. In fact, different denoising t contributes differently (Choi et al., 2022) to
content generation, so it is non-optimal to adopt a uniformly decreasing t. In result, we propose a
weighted non-increasing t-sampling strategy for SDS.

Weighted non-increasing t-sampling aims to modulate the timestep descent process based on a
given normalized weight function W (t). Specifically, W (t) represents the importance of a diffusion
timestep t and controls its decreasing speed. For example, a large value of W (t) corresponds to a
flat decrease, while a small one corresponds to a steep decline.

To sample the timestep t(i) of the current iteration step i, weighted non-increasing t-sampling can
be easily implemented by:

t(i) = arg min
t′

∣∣∣∣∣
T∑

t=t′

W (t)− i/N

∣∣∣∣∣ , (5)

where N represents the maximum number of iteration steps, and T denotes the maximum training
timestep of the utilized diffusion model.

Prior weight function W (t) cannot be trivially derived. As shown in App. Fig. 13, a naively
designed constant W (t) (i.e., t decreases linearly) causes training to diverge. To this end, we propose
a carefully designed weight function of the form W (t) = 1

ZWd(t) ·Wp(t), where Wd(t) and Wp(t)
respectively takes into account the characteristics of the diffusion training and the 3D generation
process, and Z =

∑T
t=1 Wd(t) ·Wp(t) is the normalizing constant.

• For Wd(t), we derive it from an explicit form of the SDS loss:

LSDS(ϕ,x) = Et,ϵ

[
1

2
w′(t) ∥x− stop grad(x̂0)∥22

]
, (6)

where
x̂0 =

(
xt −

√
1− ᾱtϵϕ(xt; y, t)

)
/
√
ᾱt (7)

is the estimated original image, and the SDS loss can be seen as a weighted image regression loss.
For simplicity, we start our derivation for Wd(t) by setting w′(t) = 1 in Eqn. 6. Then, by substi-

tuting Eqn. 1 and Eqn. 7 to Eqn. 6, we can reduce Eqn. 6 to Eqn. 3, with w(t) =
√

1−ᾱt

ᾱt
, which

we naturally set as Wd(t). Importantly, the term
√

1−ᾱt

ᾱt
is also the square root for reciprocal of

a diffusion model’s signal-to-noise ratio (SNR) (Lin et al., 2023), which characterizes the training
process of a diffusion model.

• For Wp(t), we notice that denoising with different timesteps (w.r.t. noise levels) focuses on the
restoration of different visual concepts (Choi et al., 2022). When t is large, the gradients provided
by SDS concentrate on coarse geometry, while t is small, the supervision is on fine details which
tends to induce high gradients variance. Thereby we intentionally assign less weights to such
stages, to focus our model on the informative content generation stage when t is not in the extreme.
For simplicity, we formulate Wp(t) to be a simple Gaussian probability density function, namely,

Wp(t) = e−
(t−m)2

2s2 , where m and s are hyper-parameters controlling the relative importance of
the three stages illustrated in Fig. 6 (b). Analysis on the hyper-parameters m and s is presented
in App. C. The intuition behind our Wp formulation is that a large diffusion timestep t induces
gradients that are of low-variance but rather coarse, lacking necessary information on details,
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Figure 6: The proposed prior weight function W (t) to modulate the non-increasing t-sampling
process t(i) for score distillation, as described in Eqn. 5. Weight functions W (t), Wd(t), and Wp(t)
are normalized to 0-1 for best visualization. Notice that Wd skews W to avoid small diffusion
timesteps that induce high-variance gradients. Such steps and their induced gradient variance are
illustrated in (b) as the Detailed stage.

while a small t highly raises gradient variance that can be detrimental to model training. Thus we
employ a bell-shaped Wp so as to suppress model training on extreme diffusion timesteps.

• To sum up, our normalized weight function W (t) is:

W (t) =
1

Z
·
√

1− ᾱt

ᾱt
e−

(t−m)2

2s2 . (8)

Time Prioritized SDS. To summarize, we present the algorithm for our Time Prioritized SDS (TP-
SDS) in Alg. 1. We also illustrate the functions Wd, Wp and W in Figure 6 (a), where one should
notice that Wd skews W to put less weight on the high-variance stage, where t is small. The
modulated monotonically non-increasing timestep sampling function is illustrated in Fig. 6 (b).

Discussion. The merits of our method include:

• The prior weight function W (t) assigns less weight to those iteration steps with small t, thereby
avoiding the training crash caused by high variance in these steps.

• Instead of directly adjusting w(t) from Eqn. 3 to assign various weights to different iteration
steps, which can hardly affect the 3D generation process (Poole et al., 2022), TP-SDS modifies
the decreasing speed of t in accordance with the sampling process of diffusion models. This way,
the updates from those informative and low-variance timesteps dominate the overall updates of
TP-SDS, making our method more effective in shaping the 3D generation process.

4 EXPERIMENT

We conduct experiments on the generation of 2D images and 3D assets for a comprehensive evalua-
tion of the proposed time prioritized score distillation sampling (TP-SDS). For 2D experiments, the
generator g (recall definitions in Sec. 3.1) is an identity mapping while θ is an image representation.
For 3D experiments, g is a differentiable volume renderer that transforms 3D model parameters θ
into images.

4.1 FASTER CONVERGENCE

We empirically find that the proposed non-increasing t-sampling strategy leads to a faster conver-
gence, requiring ∼ 75% fewer optimization steps than the uniform t-sampling. This is likely due
to more efficient utilization of information, e.g., it is wasteful to seek structure information at later
stage of optimization when the 3D model is already in good shape. We conduct both qualitative and
quantitative evaluation to demonstrate the fast convergence of our TP-SDS.
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Figure 7: Faster Convergence. Qualitative comparisons of the SDS baseline (first row in each exam-
ple) and the proposed TP-SDS (second row in each example) under different iteration steps (from
500 to 10000). The proposed TP-SDS leads to faster content generation than the SDS baseline.
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Figure 8: R-Precision curves of 2D generation results pro-
duced by SDS and our TP-SDS, given 153 text prompts
from object-centric COCO validation set. We use three
CLIP models: B/32, B/16, and L/14, for R-Precision evalua-
tion. The R-Precision for TP-SDS have a steeper growth rate
compared to those of SDS, signifying faster convergence.

Qualitative comparison. Figure 7
shows the 3D generation results with
different max iteration steps, using
the vanilla SDS and our TP-SDS. It
is clear that with TP-SDS, the emer-
gence of content (e.g., object struc-
tures) is faster with better appearance
and details.

Quantitative evaluation. Given the
153 text prompts from object-centric
COCO validation set, we show in
Figure 8 the R-Precision scores of
2D generation results at different it-
eration steps using the vanilla SDS
and our TP-SDS. The growth rate of
TP-SDS curves is consistently higher
across various CLIP models, which
implies a faster convergence requir-
ing significantly fewer optimization
steps to reach the same R-Precision
score. This leads to the production of
superior text-aligned generations at a
quicker pace with fewer resources.

4.2 BETTER QUALITY

In this subsection, we demonstrate the effectiveness of TP-SDS in improving visual quality. We
argue that some challenging problems in text-to-3D generation, such as unsatisfactory geometry,
degenerate texture, and failure to capture text semantics (attribute missing), can be effectively alle-
viated by simply modifying the sampling strategy of timestep t.

Qualitative comparisons. We compare our method with the SDS (Poole et al., 2022) baseline,
which is a DeepFloyd (Saharia et al., 2022)-based DreamFusion implementation using publicly-
accessible threestudio codebase (Guo et al., 2023).

• More accurate semantics. The contents highlighted in orange in Figure 9 shows that our gener-
ations align better with given texts and are void of the attribute missing problem. For example,
SDS fails to generate the mantis’ roller skates described by the text prompt as TP-SDS does.

• Better generation shape and details. In Figure 9, the contents highlighted in red and green
respectively demonstrate that TP-SDS generates 3D assets with better geometry and details. It
noticeably alleviates shape distortion and compromised details. For example, in contrast to SDS,
TP-SDS successfully generates a robot dinosaur with the desired geometry and textures.

• Widely applicable. As shown in Fig. 1, the proposed TP-SDS is highly general and can be readily
applicable to various 3D generation tasks, such as text-to-3D scene generation, text-to-3D avatar
generation, etc., to further improve the generation quality.
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Figure 9: Qualitative comparisons between the original SDS (Poole et al., 2022) (upper row) and TP-
SDS (lower row). Our method alleviates the problems of attribute missing, unsatisfactory geometry,
and compromised object details at the same time, as highlighted by the colored circles.

SDS

TP-SDS

(Ours)

Seed=0 Seed=1 Seed=2 Seed=3 Seed=0 Seed=1 Seed=2 Seed=3

“a baby bunny sitting on top of a stack of pancakes” “an ice cream sundae”

Figure 10: Higher Diversity. We compare the diversity of text-to-3D generations between TP-SDS
and SDS. The text prompts are provided in the figure. Given different random seeds, TP-SDS is able
to generate visually distinct objects, while the results produced by DreamFusion all look alike.

4.3 HIGHER DIVERSITY

A key ingredient of AIGC is diversity. In 2D scenarios, given a text prompt, Stable Diffusion is able
to generate a countless number of diverse samples while respecting the given prompt. However,
the success has not yet been transplanted to its 3D counterpart. Current text-to-3D generation ap-
proaches reportedly suffer from the mode collapse problem (Poole et al., 2022), i.e., highly similar
3D assets are always yielded for the same text prompt whatever the random seed is. In Figure 5,
we illustrate with 2D generations that the problem of mode collapse is largely caused by the low-
frequency nature of initial NeRF renderings, and that the proposed TP-SDS is able to circumvent
it by applying large noise (i.e., with a large t) during the early training process. Figure 10 further
demonstrates that the 3D generations produced by TP-SDS are much more diverse visually than
those from DreamFusion (Poole et al., 2022).

5 CONCLUSION

Conclusion. We propose DreamTime, an improved optimization strategy for diffusion-guided con-
tent generation. We thoroughly investigate how the 3D formation process utilizes supervision from
pre-trained diffusion models at different noise levels and analyze the drawbacks of commonly used
score distillation sampling (SDS). We then propose a non-increasing time sampling strategy (TP-
SDS) which effectively aligns the training process of a 3D model parameterized by differentiable
3D representations, and the sampling process of DDPM. With extensive qualitative comparisons and
quantitative evaluations we show that TP-SDS significantly improves the convergence speed, qual-
ity and diversity of diffusion-guided 3D generation, and considerably more preferable compared to
accessible 3D generators across different design choices such as foundation generative models and
3D representations. We hope that with DreamTime, 3D content creation can be more accessible for
creativity and aesthetics expression.

Social Impact. Social impact follows prior 3D generative works such as DreamFusion. Due to our
utilization of Stable Diffusion (SD) as the 2D generative prior, TP-SDS could potentially inherit the
social biases inherent in the training data of SD. However, our model can also advance 3D-related
industries such as 3D games and virtual reality.
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A IMPLEMENTATION DETAILS

Our implementation are based on the publicly-accessible threestudio codebase (Guo et al., 2023),
and only the timestep sampling strategy is modified. We provide the algorithm flow of TP-SDS as
shown in Alg. 1.

Algorithm 1: Time Prioritized SDS (TP-SDS).
Input: A differentiable generator g with initial parameters θ0 and number of iteration steps N ,

pre-trained diffusion model ϕ, prior weight function W (t), learning rate lr, and text
prompt y.

1 for i = 1, ..., N do
2 t(i) = arg min

t′

∣∣∣∑T
t=t′ W (t)− i/N

∣∣∣;
3 θi = θi−1 − lr · ∇θLSDS(ϕ, g(θi−1); y, t(i));
4 end

Output: θN .

B ABLATION STUDY

In this section we evaluate the 3D generation ability of TP-SDS by formulating W (t) as various
functions, to investigate the effects of the prior weight function (recall that T denotes the maximum
training timestep of the utilized diffusion model):

• Baseline: We provide the results produced by the random timestep schedule for reference.

• Linear: W (t) = 1
T , which induces a linearly decaying time schedule.

• Truncated linear: W (t) = 1
T , but we constrain t(i) to be at least 200, instead of 1. This is for

assessing the influence of gradient variance induced by small t.

• Wp only: W (t) = Wp(t).

• Wt only: W (t) = Wd(t).

• TP-SDS: W (t) = Wd(t) ·Wp(t).

The results are shown in Fig. 11. Evidently, naive designs such as baseline, linear and linear (trun-
cated) fail to generate decent details, where a valuable observation is that linear (truncated) gen-
erates finer details than that of linear, validating our claim that small t hinges 3D generation with
high gradient variance. Moreover, applying Wp or Wd alone cannot produce satisfying 3D results,
suffering either over-saturation or loss of geometrical details. In comparison, our proposed prior
weight function circumvents all the deficiencies and generates delicate 3D.

Ours
(𝑊𝑑 only)

Ours
(𝑊𝑝 only)

OursLinearRandom
(Baseline)

Linear
(truncated)

Figure 11: Ablation study. We investigate the effects of the prior weight function by modifying
its formulation and comparing the text-to-3D generation results. The text is “Chichen Itza, aerial
view”.
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C HYPER-PARAMETER ANALYSIS

TP-SDS improves generation efficiency, quality, and diversity compared to the SDS baseline. How-
ever, the proposed prior weight function W (t) parameterized by {m, s} introduces extra hyper-
parameters. Thus we explore the influence of these hyper-parameters on text-to-3D generation,
which can serve as a guide for tuning in practice. In Figure 12, we illustrate the impact of hyper-
parameters on the generated results in a large search space. Specifically, a large s significantly
increases the number of optimization steps spent on both the coarse and the high-variance detailed
stages, degrading the generation quality. m controls the model to concentrate on different diffusion
timesteps, and a rule of thumb is to make m close to T

2 .

𝑚 = 400𝑚 = 300 𝑚 = 500 𝑚 = 600 𝑚 = 700𝑚 = 200 𝑚 = 800

𝑠 = 125𝑠 = 100 𝑠 = 167 𝑠 = 250 𝑠 = 500𝑠 = 10 𝑠 = 50

Figure 12: Influence of the time prior configuration {m, s} on 3D generations. The text prompt is
“a DSLR photo of a green monster truck”. s is set to 125 for the experiments on the first row while
m = 500 for the rest.

D TIMESTEP ANALYSIS

𝑖=10K, 𝑡=1𝑖=6K, 𝑡=400 𝑖=7K, 𝑡=300 𝑖=8K, 𝑡=200 𝑖=9K, 𝑡=100𝑖=5K, 𝑡=500𝑖=4K, 𝑡=600𝑖=3K, 𝑡=700𝑖=1K, 𝑡=900 𝑖=2K, 𝑡=800

Figure 13: Visualization of NeRF optimization with SDS using a naive t-sampling strategy, where
t decreases linearly with the iteration step i. Severe artifacts appear in the final rendered image due
to large gradients variance with small t.

t=900 (fixed) t=700 (fixed) t=500 (fixed) t=300 (fixed) t=100 (fixed)

Figure 14: Illustration of information capacity for different diffusion timesteps. Here we train 3D
assets supervised by SDS with the diffusion timestep t fixed throughout. Notably, for small t, e.g.,
100, the gradient variance becomes too high for the model to generate a 3D successfully, while
a large t like 900 makes the generation lack local details. Only those t not in the extreme can
prompt SDS to produce decent 3D generations, for which we believe that such timesteps are most
informative and consequently make our model training concentrate on the “content” stage consisting
of such timesteps. The text prompt is “a DSLR photo of a baby bunny sitting on a pile of pancakes”.
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E QUANTITATIVE EVALUATION ON DIFFERENT METHODS

0
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DreamFusion TextMesh Fantasia3D

(Geo. Only)

Magic3D Zero-1-to-3

6.9

15.7
21.8

25.2 23.6

93.1

84.3
78.2

74.8 76.4

SDS (Baseline) TP-SDS (Ours)

Figure 15: User preference studies of SDS and our TP-SDS on five popular 3D generation methods:
DreamFusion (Poole et al., 2022), TextMesh (Tsalicoglou et al., 2023), Fantasia3D (Chen et al.,
2023), Magic3D (Lin et al., 2022), and Zero-1-to-3 (Liu et al., 2023a). The implementation of
these methods follows threestudio (Guo et al., 2023). We use 415, 100, 100, 100, and 50 prompts
as evaluation sets respectively for the above five methods, each evaluated by 10 participants. Our
proposed TP-SDS consistently achieves higher preference scores (%).

F COMPARISONS WITH TIMESTEP SCHEDULES PROPOSED IN HIFA AND
PROLIFICDREAMER

Ours𝑝 = 0. 5
HiFA

𝑝 = 0.25 𝑝 = 3.0𝑝 = 2.0𝑝 = 1.0
Linear

(a) Comparison of our method with the timestep schedule proposed in HiFA (Zhu & Zhuang, 2023), which
adopts an exponential t-annealing strategy with a power of 0.5. The results of HiFA variants with different
powers (denoted in p) are also provided for comprehensive comparison.

4-Stage3-Stage Ours1-Stage
Random

5-Stage2-Stage
ProlificDreamer

(b) Comparison of our method with the timestep schedule proposed in ProlificDreamer (Wang et al., 2023),
which adopts a two-stage random t-sampling strategy. The results of ProlificDreamer variants with different
number of stages are also provided for comprehensive comparison.

Figure 16: Comparisons of our method with the timestep schedules proposed in HiFA (Zhu &
Zhuang, 2023) and ProlificDreamer (Wang et al., 2023).
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G IMPLEMENTATION DETAILS AND MORE RESULTS OF TP-VSD

To produce the VSD-based results presented in Figure 1 and Figure 17, we follow the Prolific-
Dreamer (Wang et al., 2023) implementation by threestudio (Guo et al., 2023) and modify its
timestep schedule. Specifically, we adopt the random uniform t-sampling for VSD, and use our
proposed timestep schedule for TP-VSD. We emphasize that we adopt the same hyper-parameter
configuration {m = 500, s = 125} for both TP-SDS and TP-VSD throughout this paper. Further
tuning of hyper-parameters might yield better results.

“a DSLR photo of a hamburger inside a restaurant”

VSD TP-VSD VSD TP-VSD

“a DSLR photo of a table with dim sum on it”

VSD TP-VSD VSD TP-VSD

“a DSLR photo of an ice cream sundae

inside a shopping mall”

“a Matte painting of a castle made of cheesecake 

surrounded by a moat made of ice cream”

“bathroom, rustic style, realistic, 4k” (Top: VSD, Bottom: TP-VSD)

Figure 17: More examples of VSD (Wang et al., 2023) and our proposed TP-VSD. Our method is
better at generating details and improving clarity, as highlighted with red and green bounding boxes.
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H EFFECTIVENESS ON DIFFERENT 3D REPRESENTATIONS

Our proposed t-annealing schedule is an improvement on the diffusion-guided optimization process
and therefore is universally applicable to various 3D representations, such as NeRF (Mildenhall
et al., 2021), NeuS (Wang et al., 2021), and DMTet (Shen et al., 2021).

Both quantitative and qualitative evaluations demonstrate the effectiveness of our method on differ-
ent 3D representations. For quantitative evaluations in Figure 15, DreamFusion and Zero-1-to-3 are
NeRF-based methods, TextMesh is a NeuS-based method, Fantasia3D is a DMTet-based method,
Magic3D is a hybrid (NeRF + DMTet) method. For qualitative evaluations, we provide NeRF-based
results in Figure 7, Figure 9, Figure 10, Figure 17, and Figure 21 (the first to third rows), NeuS-based
results in Figure 19 and Figure 22, DMTet-based results in Figure 18 and Figure 21 (the fourth row).

“a DSLR photo of a baby dragon hatching out of a stone egg”

SDS (Baseline) TP-SDS (Ours)

“a brightly colored mushroom growing on a log”

SDS (Baseline) TP-SDS (Ours)

Figure 18: Qualitative comparison of SDS and TP-SDS based on the threestudio (Guo et al., 2023)
implementation of Fantasia3D (Chen et al., 2023).
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“a confused beagle sitting at a 

desk working on homework”

“a crocodile playing

a drum set”

“a cute steampunk elephant”

“a DSLR photo of a baby 

dragon drinking boba”

“a DSLR photo of a cake covered 

in colorful frosting with a slice 

being taken out, high resolution”

“a DSLR photo of a cat magician 

making a white dove appear”

Figure 19: Qualitative comparison of SDS and TP-SDS based on the threestudio (Guo et al., 2023)
implementation of TextMesh (Tsalicoglou et al., 2023).

18



Published as a conference paper at ICLR 2024

I VISUALIZATIONS OF SDS-BASED OPTIMIZATION ON NEUS AND WITH
INITIALIZED NERF

As a complement to Figure 3, we further provide two cases: (a) NeuS Wang et al. (2021) optimized
by DeepFloyd-IF and (b) SMPL-initialized NeRF Mildenhall et al. (2021) optimized by Stable-
Diffusion, and visualized the SDS gradients under different timesteps, as shown in Figure 20.

The supervision misalignment issue described in Section 3.2 can also be observed in Figure 20,
indicating that using a decreasing timestep schedule remains a good principle. Additionally, for
well-initialized NeRF, optimization with large timesteps should be avoided.

k

T
im

es
te

p
 𝑡

Rendered 

Image 𝑥

1

250

500

750

1000

Optimization Process under SDS Guidance

(a) NeuS optimized by DeepFloyd-IF. (b) Initialized NeRF optimized by Stable-Diffusion.

Optimization Process under SDS Guidance

Figure 20: Visualization of SDS gradients under different timesteps t. Two cases: (a) NeuS opti-
mized by DeepFloyd-IF and (b) initialized NeRF optimized by Stable-Diffusion, are provided. In
particular, initialized NeRF is pre-trained on the images rendered from SMPL Bogo et al. (2016)
mesh template. The supervision misalignment issue described in Section 3.2 can also be observed.
We use an imaginary green curved arrow to denote the path for more informative gradient directions
as optimization progresses under SDS guidance.
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J EXAMPLES OF ALLEVIATING BLURRINESS AND COLOR DISTORTION

We provide more examples to show that the proposed timestep schedule can alleviate the issues of
blurriness and color distortion, as shown in Figure 21.

“a DSLR photo of a pair of tan cowboy boots, studio 

lighting, product photography uniform”

“a DSLR photo of a kitten standing on top of a giant tortoise” “a DSLR photo of a corgi standing up drinking boba”

“a beautiful dress made out of fruit, on a mannequin. 

Studio lighting, high quality, high resolution”

SDS (Baseline) TP-SDS (Ours) SDS (Baseline) TP-SDS (Ours)

SDS (Baseline) TP-SDS (Ours)SDS (Baseline) TP-SDS (Ours)

“a beautiful dress made out of garbage bags, on a 

mannequin, studio lighting, high quality, high resolution”

“a beautiful rainbow fish”

SDS (Baseline) TP-SDS (Ours)SDS (Baseline) TP-SDS (Ours)

“a DSLR photo of baby elephant jumping on a trampoline”“a zoomed out DSLR photo of a ladybug”

SDS (Baseline) TP-SDS (Ours)SDS (Baseline) TP-SDS (Ours)

Figure 21: Examples to demonstrate that our method can alleviate blurness and color distortion
issues, as highlighted with blue and green bounding boxes, respectively. The first three rows are the
results of DreamFusion (Poole et al., 2022), and the fourth row is the results of Magic3D (Lin et al.,
2022), implemented by threestudio (Guo et al., 2023).
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K EFFECTIVENESS ON TEXT-TO-AVATAR GENERATION

In figure 1, we show that our proposed TP-SDS facilitates ControlNet-based text-to-avatar genera-
tion work DreamWaltz (Huang et al., 2023), avoiding texture and geometry loss. Here we further
demonstrate that another popular text-to-avatar work, AvatarCraft (Jiang et al., 2023), can also ben-
efit from our method, achieving more detailed textures and avoiding color over-saturation, as shown
in Figure 22.
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SDS (Baseline) TP-SDS (Ours)

Figure 22: Qualitative comparison of SDS and our TP-SDS based on the popular text-to-3D-avatar
generation work, AvatarCraft (Jiang et al., 2023). Compared to the SDS baseline, our method can
lead to more detailed faces and avoid color over-saturation.
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