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ABSTRACT

Most existing sequence generation models produce outputs in one pass, usually
left-to-right. However, this is in contrast with a more natural approach that hu-
mans use in generating content; iterative refinement and editing. Recent work has
introduced edit-based models for various tasks (such as neural machine transla-
tion and text style transfer), but these generally model a single edit. In this work,
we propose modeling editing processes, modeling the whole process of iteratively
generating sequences. We form a conceptual framework to describe the likeli-
hood of multi-step edits, and describe neural models that can learn a generative
model of sequences based on these multi-step edits. We introduce baseline results
and metrics on this task, finding that modeling editing processes improves per-
formance on a variety of axes on both our proposed task and related downstream
tasks compared to previous single-step models of edits.1

1 INTRODUCTION

Revising and editing are a central part of the the human creative worflow, with most original content
(e.g. art, books, articles, source code) being developed not in a single iteration, but in many iterations
with each more refined than the last. How can we model these editing processes from inception to
completion? In this paper, we attempt to provide a first answer to this question, specifically focusing
on generation of sequential data such as natural language documents or source code.

Most current work on language generation tasks such as machine translation (Vaswani et al., 2017),
language modeling (Baevski & Auli, 2018), or summarization (See et al., 2017) generates the tar-
get sentence or document in a single pass (usually from left to right). There has been a reasonable
amount of work that can generate edits to existing sequences for the purposes of post-editing, gram-
matical error correction (Omelianchuk et al., 2020), text style transfer (Mallinson et al., 2020; Malmi
et al., 2020; Reid & Zhong, 2021), sentence fusion (Malmi et al., 2019), or machine translation (Gu
et al., 2019). However, these works all 1) model only a single editing step and 2) do not fully define
a model of incrementally editing a document from a blank slate to the final text, and thus do not
stand in for the one-pass generative models of sequences described above.

In this context, we propose the task of modeling editing processes in which we look to explicitly
model the likelihood of the entire process of revising a document to a polished form. In particular,
and in contrast to previous works on modeling edits, we hypothesize that in order to edit more accu-
rately, instead of simply learning to predict the next revision given the current revision, we should
have context of multiple previous revisions when deciding when and how to edit the document next.
Given the novelty of this task, this paper simultaneously proposes 1) both baseline and novel mod-
els for the task, 2) evaluation methodology, and 3) evaluation datasets that can be used to compare
model efficacy.

The proposed multi-step editing model predicts discrete edit operations (Levenshtein, 1966) to en-
able progressive refinement as shown in Figure 1, rather than framing sequence editing as a sequence
to sequence task (Reid & Zhong, 2021; Faltings et al., 2021). In the figure, for each step of the edit-
ing process discrete operations (insert, replace, delete, keep) are predicted and then actions (such
as generating a replaced span) are performed based on this. This has two benefits: 1) it allows
the model to scale well with respect to input sequence length, and 2) allows us to make substantial
changes with fewer actions (Grangier & Auli, 2018). We use these edit operations to condition a
semi-autoregressive model that is able to insert and replace multiple spans at once. Combined with

1All data and code will be open-sourced upon acceptance.
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Figure 1: An example of a natural editing process based on the description of “Dog” on Wikipedia.
The legend below denotes the edit operations for each step of this process.

an encoder that is able to quickly specify which spans of text need to be changed and how, this al-
lows for considerable changes to be made to the text (including insertion, deletion, re-ordering, and
replacement) in a relatively simple and cheap manner. Furthermore, this allows us to disentangle
how likely the model is to operate (replace, delete, etc...) on a given span, and how likely the model
thinks the generated text for a given span is. As we are modeling editing processes, and hypothesize
that context from edits applied to the sequence are helpful, we propose a method for edit-aware
sequence compression which can compress sequences into their edit operations and use relative edit
positional embeddings to specify the position of edits relative to each other.

To evaluate the efficacy of proposed and baseline models, we propose an evaluation metric, edit
perplexity (ePPL), which combines both of these ideas for a unified metric to measure edit like-
lihood. However we can easily disentangle this into operation perplexity (oPPL) and generative
perplexity (gPPL) which measures the likelihood of performing a given operation on a span, versus
the likelihood of newly generated text for the next revision.

Given that the task of modeling natural editing processes in itself is novel, we collect new datasets
to study this behavior; WIKIREVISIONS and CODEREVISIONS. These datasets, in the code and
natural language domains respectively, cover over 2.5M and 2.3M natural sequential revisions.

We train and evaluate our proposed models on these datasets. Our experimental results demonstrate
that edit perplexity, generative perplexity, and operation perplexity are all reduced when one mod-
els edits with previous changes/edits as context. We also qualitatively demonstrate the ability of
the model to generate natural edit sequences, and demonstrate the utility of the learned representa-
tions on downstream tasks of commit message generation (Loyola et al., 2017) and edit intention
classification (Yang et al., 2017).

2 PROBLEM DEFINITION

Let X = {x0,x1, . . . ,xN} be a series of N versions of a document, where the ith revised document
is denoted by xi. x0 represents an initial state (generally the null string), and xN represents the
current state of the edited document. The probability of this series of document versions occurring
can be decomposed as

p(X) =

N∏
i=1

p(xi|xi−1
0 ), (1)

where xi−1
0 := x0, . . . ,xi−1 (similarly below). The right hand side is the likelihood of the transfor-

mation of the previous document version xi−1 to the current document version xi given the previous
revision history x<i. We refer to the likelihood of the whole revision process as the edit likelihood,
and judge learned models based on their ability to achieve high edit likelihood on held-out data.
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Note that standard generative models (specifically language models; LMs) calculate the probability
of only the final version p(xN ), whereas the proposed formulation calculates the probability of
the entire sequence of document edits. It nonetheless could be used to calculate the final version’s
likelihood by treating the editing process as latent and marginalizing over it

p(xN ) =
∑

{X̃=x̃N
1 |x̃N=xN}

p(X̃). (2)

Thus our formulation, in contrast to previous single-step models of edits (Yin et al., 2019b; Malmi
et al., 2019; Reid & Zhong, 2021), can also be used to define a generative model over single doc-
uments. It is also worth noting that the final document likelihood is lower-bounded by the edit
likelihood; i.e. p(xN ) ≥ p(X).

3 MODELING EDITING PROCESSES

In this section, we now describe our approach to actually modeling these sequences of edits through
(1) a decomposition of the modeling process into a sequential process of modeling edit operations
then actual edits, and (2) neural model of modeling these operations and edits.

3.1 MODELING OPERATIONS AND OPERATION-CONDITIONED EDITS

While the probability p(xi|xi−1
0 ) of the next document given all previous document versions could

theoretically be modeled with a single neural sequence model, this is infeasible computationally
(and likely infeasible from learning perspective as well). To simplify this problem, we employ the
n-th order Markov assumption, assuming that the probability of the next document is conditioned
only on the previous n documents p(xi|xi−1

i−n). This probability could be modeled directly, and
in fact in the case of n = 1 this becomes analogous to the single-step editing problem tackled by
previous work (Yin et al., 2019b; Malmi et al., 2019; Reid & Zhong, 2021; Faltings et al., 2021). To
our knowledge, no previous work has modeled natural editing processes with n > 1.

However, in the interest of both efficiency and efficacy, we take an alternative approach where we
first predict a set of edit operations ei, and then predict the next document version based on the
previous documents and these edit operations:

p(xi|xi−1
i−n) ≈ p(xi, ei|xi−1

i−n) (3)

= p(xi|ei,xi−1
i−n)p(ei|xi−1

i−n). (4)

The first approximation becomes an equality when the edit operations can be deterministically de-
rived from xi and xi−1, i.e. p(ei|xi,xi−1) = 1, as is the case described below.

Edit Operations. We base the edit operations in e on those calculated by the Levenshtein algorithm
(Levenshtein, 1966), including token-level insertions, deletions, and substitutions. These are ex-
pressed as four operations insert, delete, keep, and replace denoted by {INSERT, DELETE, KEEP,
REPLACE}. For multi-word insertions and replacements, e.g. a replacement of a contiguous span
of words, we apply the the same REPLACE label to all tokens in this span. An example of each
operation is shown in Figure 1.

Decomposed Edit Likelihood. We can then re-define our previous formulation of edit likelihood:

P (xN
1 ) =

N∏
i=1

p(xi|ei,xi−1
i−n)p(ei|xi−1

i−n), (5)

and analogously define edit log-likelihood

Lxe := logP (xN
1 ) =

N∑
i=1

log p(xi|ei,xi−1
i−n) + log p(ei|xi−1

i−n). (6)

We can further decompose this into only the components corresponding to the edit operations Le :=∑N
i=1 log p(ei|xi−1

i−n), or the operation-conditioned edits Lx|e :=
∑N

i=1 log p(xi|ei,xi−1
i−n), both of

which we will utilize for devising evaluation metrics in Section 5.2 below.
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Figure 2: EDITPRO given the examples of modeling p(xi|xi−1) from Figure 1. We feed the input
tokens into an encoder with an autoregressive tag predictor, and then use the predicted edit operations
to condition the generation of REPLACE and INSERT spans.

3.2 EDITPRO

In this section, we propose a model of multi-step editing processes, EDITPRO, which is based on
a semi-autoregressive edit-conditioned encoder-decoder model with a Transformer (Vaswani et al.,
2017). The model (depicted in Figure 2) contains three main components: (1) an edit encoder, (2)
an operation classifier and (3) an insertion-replacement decoder.

Edit Encoder. The encoder fenc takes in a document version xi−1 and feeds it through multiple
self-attention and feedforward layers (Vaswani et al., 2017) to produce contextual representations
for each token. In the case that we perform variable-order edit modeling, we use cross-attention to
feed in representations of previous edit steps. For models where n > 1, we feed in n− 1 additional
edit sequences – we describe this process after describing our methods for edit sequence prediction.

Edit Operation Prediction. We use an autoregressive tagger, using a single Transformer layer
with a causal attention mask, that models the probability of each edit in edit operation sequence
e = eM1 from left to right, p(ej |ej−11 ). Notably, we also performed preliminary experiments with
a tagger that predicts operations independently, but found it was heavily biased towards the KEEP
operation as most words are kept in any single document revision, and thus did not produce coherent
multi-word edit sequences when sampling sequences of edits.

Generating Replacements and Insertions. When editing, given our four Levenshtein operations
(INSERT, REPLACE, KEEP, DELETE), two of them — INSERT and REPLACE— entail generation of
new content conditioned on the current revision of the document. Given our predicted edit operations
e, we propose a semi-autoregressive model with a Transformer decoder that can decode multiple
spans in parallel for efficiency purposes. Each edit span contains the following properties: it has a
start index (denoted by sstart), end index (denoted by send), and an operation type (denoted by stype)
. Note that these can be simply be extracted by looking at contiguous spans of a certain type in an
edit (e.g. REPLACE for descended from→ domesticated descendant of in Figure 1). We use a mean
pooling operation to aggregate the contextual vectors produced by fenc(x) into span representation
x̂s :

x̂s =
1

send − sstart

send∑
t=sstart

fenc(x)t (7)

We then update the span representation x̂s by taking the sum of the appropriate operation embedding
for the span type and the current span representation and feed it to a multi-layer perceptron with an
intermediate non-linearity: x̂s ← MLP(Wop(e)s+x̂s), where Wop denotes an embedding matrix for
each operation. x̂s is then used to initialize the <s> token for the decoder span to further condition
the generative process.

Encoding Edit History. As we look to investigate variable order edit modeling over long sequences
of text, we need a way to be able to represent edits in a way useful for predicting the next editing
steps. Previous work (Yin et al., 2019a; Marrese-Taylor et al., 2021; Yao et al., 2021) has focused
largely on learning a single-vector representation for edits which is compressed but limited in expres-
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Dataset Num. Edits Avg. Len (Max/Min) % Keep % Insert % Replace % Delete

WIKIREVISIONS 2.5M 333 (9992/1) 82.4% 0.1% 8.7% 8.8%
CODEREVISIONS 2.3M 774 (9725/1) 76.9% 0.1% 11.3% 11.7%

Table 1: Dataset statistics on CODEREVISIONS and WIKIREVISIONS, average length is measured
by whitespace tokenization

siveness. One the other hand, a perhaps more intuitive way taken from common Transformer-based
(Vaswani et al., 2017) models would be to use cross-attention between all n previous documents,
which is more expressive but prohibitively expensive when n is scaled upwards.

Instead, we make a compromise between the above approaches, leveraging predicted edits ei−1i−n to
compress the sequence and their derived spans (as discussed above). Given each of these spans,
we compute the edit-compressed sequence, composed of a sequence of vector representations with
each vector representing a different span. For each span in each of the previous revisions in xi−1

i−n),
we mean pool the encoder (pre-edit) and the decoder (post-edit) representations for that span. We
then sum this representation with the operation representing its edit operation and feed it into an
MLP. Once we have done this for each span, we sum a learned relative edit positional embedding,
where we learn an embedding matrix where each index in the matrix represents each order. This is
to specify the order of the previous edits . Finally, we compose these into a sequence and treat that
as the “edit-compressed” sequence representation for that edit.

Turning Pre-trained Encoder-Decoder Models into Editors. Despite the fact that our model
introduces both an edit prediction and a semi-autoregressive component, it is easy to finetune a pre-
trained language model into an editor with our method as it uses vanilla Transformer layers as a
backbone. We perform this by batching various spans and their conditioning variables together and
training the model to adapt to decode these in parallel.

4 DATA

While some datasets of edits exist (Faruqui et al., 2018; Marrese-Taylor et al., 2021), to our knowl-
edge they only consider a single isolated edit, i.e. dealing with a document X = {x0,x1}, N = 1.
As we propose learning to model multi-step edits, we develop new datasets in both the code and nat-
ural language domains. In addition, previous datasets have only concerned themselves with atomic
edits (Faruqui et al., 2018) which only occur at a small scale (usually sentence-level), and we in-
stead look to model larger-scale edits as document level changes, which are more representative of
the natural editing process.

4.1 WIKIREVISIONS

For the natural language domain of Wikipedia, we collect data for each revision using dumps from
English Wikipedia. Given that the dumps are provided in the XML format, we extract the text
with beautifulsoup and remove wikitext (custom Wikipedia markup) with wikiextractor.
With this sanitized data, we gather revision of each document in chronological order removing any
metadata-based edits which were stripped as a result of the sanitization process. Now, with our sets
of revisions we tokenize all text with the sentencepiece model used by Radford et al. (2018); Liu
et al. (2019) for congruence with pre-trained models (see Section 3.2). We pre-compute Levenshtein
operations using python-Levenshtein2 for use during training. In the case that an article
exceeds 2000 tokens, we split the articles into its subsections and treat each subsection as an article
(for the purpose of modeling editing processes). Dataset statistics are shown in Table 1. We note
that there is a significant imbalance for the INSERT operation, this is because we define insertions
to be applied to the token preceding the insertion (as shown in Figure 1), rather than applied to an
entire span (as we do for the deletion, replacement, and keep operations).

Edit Summaries. When extracting each edit we keep the edit summary (akin to a commit message)
supplied by the editor at time of editing. We then curate these comments and develop a dataset

2https://pypi.org/project/python-Levenshtein/
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for usage on downstream tasks—for both edit summary generation (Loyola et al., 2017) and edit-
summary-conditioned text editing (Faltings et al., 2021).

4.2 CODEREVISIONS

When buildling CODEREVISIONS, we scrape a total of 700 Python GitHub repositories using the
MIT License with at least 1000 commits and 500 stars. We extract line-level patches from each
repository’s commit history when forming our code-based corpus and progressively apply each patch
and compute the token-level Levenshtien operations between each revision. Note that we also keep
commit messages for each commit. For this dataset we operate on the file level. For each series of re-
visions, we precompute Levenshtein operations based on tokens derived from a sentencepiece
(Kudo & Richardson, 2018) model with a 10k vocabulary. We also curate a dataset of revisions with
commit messages as described in the previous subsection.

5 EXPERIMENTAL SETUP

5.1 BASELINES

We use the following baseline for our edit modeling task: (1) LEWIS (Reid & Zhong, 2021), a
state-of-the-art single-step editing model, which uses a separate encoder-only tagger and sequence-
to-sequence generator setup during training.

5.2 METRICS

Many previous works on editing (Malmi et al., 2019; Gu et al., 2019; Reid & Zhong, 2021) have
used non-likelihood based metrics such as BLEU or F1, representing the downstream tasks which
they were trained for, however as we look to model the intrinstic editing process (i.e. applying
and generating a sequence of edits) and the likelihood of performing certain edits, we propose the
following metrics. Note that |x| refers to the token count for the newly generated/inserted spans,
and |e| refers to the number of edit operations:

Edit Perplexity (ePPL) is the exponent of the negative log likelihood for both the edit operations
and generated outputs, divided by the length of both sequences, exp( −Lxe

|x|+|e| ).

Generation Perplexity (gPPL) measures the likelihood of generating replaced or inserted spans
when compared with the ground truth edit sequence as follows exp(

−Lx|e
|x| ).

Operation Perplexity (oPPL) exp(−Le

|e| ) is the likelihood of predicting a set of edit operations.

5.3 TRAINING SETUP

We train our models using the Transformer implementation in the HuggingFace (Wolf et al., 2020)
library. We tokenize data using SentencePiece (Kudo & Richardson, 2018), using the same vocabu-
lary employed in Liu et al. (2019); Lewis et al. (2019) for natural language, and using a custom 10k
subword vocabulary for code. We use the Transformer architecture of a hidden dimension of 768,
feed- forward size of 3072, and 6 layers for both the encoder and decoder. We initialize all natu-
ral language models with BART (Lewis et al., 2019), and code models with random initialization.
We set the maximum sequence length for all models to be 2048, using a batch size of 65K tokens
distributed over 8 A100 GPUs.

5.4 DOWNSTREAM TASKS

In addition to assessing our proposed model’s generative capacity, we assess the quality of the
learned representations on downstream tasks:

Conditional Editing We also continue training using the commit messages gathered during
the cleaning process as a conditioning variable, essentially reformulating our p(xi|xi−1

i−n) to
p(xi|xi−1

i−n, c) to add the additional conditional variable c, which we set to be the edit summary
or commit message in this setting. With our model, we append the comment to each document ,
delimiting with a separator token </s> as follows: DOCUMENT </s> COMMENT.
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Edit-conditioned Generation. We define edit-conditioned generation to be tasks which rely on
intermediate edit representations of documents to generate text describing the changes in text, sim-
ilar to that proposed by Loyola et al. (2017) for source-code commit message generation. As we
aim to determine whether the information contained about the edit itself is more informative as we
add additional context, we condition the generation solely on the edit-compressed representations
of the last edit step. To accomplish this, we use a randomly initialized Transformer decoder with
cross-attention on these edit-compressed representations.

Edit-conditioned Classification. In the natural language domain, we also test our representations
on an edit-oriented classification task, namely semantic intent classification (Yang et al., 2017).
In Yang et al. (2017), they classify 5,777 Wikipedia revisions into 10 intention classes, such as
“Clarification”, “Vandalism”, and others with each representing a different intention. We form splits
of 4,601 train examples, 588 valid examples, and 588 test examples.3 Similarly to our setup for
edit-conditioned generation, we also test our classifier (consisting of a self-attentive span extractor
(Lee et al., 2017) and a multi-layer perceptron) on this task.

6 RESULTS

6.1 EDIT MODELING

Results on edit modeling for both CODEREVISIONS and WIKIREVISIONS can be seen in Table 2,
where we measure edit perplexity, operation perplexity, and generative perplexity. We first note
that our model significantly outperforms LEWIS (Reid & Zhong, 2021) on WIKIREVISIONS, by
8.6 ePPL, suggesting that our model formulation is superior at this task. We believe that this stems
from the fact that our model is trained to explicitly generate the newly added spans, and because it
directly connects the operation prediction and generation processes. We also take note that ePPL
decreases when the order of context increases. In particular, we take note of the significant gain
when introducing the notion of editing processes to the model in our 2-order setting (in contrast to a
single edit step), with a reduction of 3.4 ePPL on natural language and 4.4 ePPL on source code.

We also note that while the gPPL consistently decreases as the number of orders increases, opera-
tion perplexity does not perform as consistently. Interestingly, we find that single-order models tend
to be more confident with respect to keeping tokens (the overwhemingly dominant edit operation),
while other operations (deletions, replacements and insertions) are not predicted as well. In con-
trast, learning higher-order editing processes almost universally decreases the oPPL for non-KEEP
operations, indicating the necessity to model longer context to capture these rarer edit operations.

Likely and Unlikely Edits. We perform a qualitative analysis on a subsample 4,000 natural language
edits,4 examining which edits are judged to be likely (or unlikely) and with respect to which metrics.
We do this by identifying outlier values for each metric (significantly above or below the average)
and further analysing these for unique properties.

As a result, we found that many of the edits with higher oPPL were spam and vandalism-type edits,
as many of the edit operations have more of a random nature. However we notice that generative
perplexity was much lower as these edits tend to be repetitive in nature with the same ngrams of-
ten being repeated for long spans. However, we notice that, irrespective of the number of orders,
when editing reverted spam-like content, the oPPL for the REPLACE and DELETE operations are
extremely low (on average 1.07 and 4.4 respectively). The importance of variable-order model-
ing was particularly evident these revisions where the gPPL in the single-order setting averages at
123.90 gPPL, however when using 2-orders we are able to attain 67.83 gPPL indicating that the
edit-compressed sequences provide useful context about the previous revisions. We also notice that
models are able to predict insertions (2.25 INSERT oPPL) significantly better when they come after
the end of a sentence, representative of many insertions in Wikipedia. We also notice that outside
of the above settings, models with extra context generally predict more likely edits supporting the
notion of modeling edit processes compared to modeling changes individually.

3We contacted the authors, but they were no longer able to release the folds they used in their K-fold cross-
validation setup, hence our creation of splits

4A precursory examination found these to be more interpretable than code edits.
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DATASET Model ePPL gPPL oPPL
DEL KEEP REPL INS

WIKIREVISIONS

LEWIS 65.94 48.85 24.29 1.09 19.49 507.76
EDITPRO (1-order) 57.32 42.43 25.53 1.09 18.36 1826.21
EDITPRO (2-order) 53.91 39.87 20.70 1.13 15.49 376.15
EDITPRO (3-order) 50.84 37.66 19.30 1.13 14.88 252.14

CODEREVISIONS
EDITPRO (1-order) 34.22 28.02 125.21 1.05 10.38 544.57
EDITPRO (2-order) 30.85 26.26 84.77 1.05 9.30 304.90
EDITPRO (3-order) 29.47 25.37 75.19 1.06 8.16 441.42

Table 2: Results on Edit Modeling

DATASET Model BLEU F1 ePPL (∆)

WIKIREVISIONS
EDITPRO (1-order) 10.7 57.8 54.72 (-2.60)
EDITPRO (2-order) 11.3 61.3 51.83 (-2.08)
EDITPRO (3-order) 11.6 61.2 49.91 (-0.93)

CODEREVISIONS
EDITPRO (1-order) 13.8 — 33.65 (-0.57)
EDITPRO (2-order) 14.3 — 30.13 (-0.72)
EDITPRO (3-order) 14.5 — 29.08 (-0.39)

Table 3: Results on Edit Generation (BLEU), Edit Classification (measured with micro-F1), and
Conditional Edit Generation (measured Edit Perplexity = ePPL). Note that the ∆ symbol refers to
the change between the model’s non-message conditioned version in Table 2.

6.2 DOWNSTREAM PERFORMANCE

Results on conditional edit generation, edit classification and edit-conditioned generation can be
seen in Table 3 . We note that findings generally follow the edit modeling results, with additional
context improving performance further giving supporting evidence to modeling editing processes.
Specifically, increasing context from single-order to 3-order improves commit message generation
performance by 1.9 and 0.7 BLEU for both natural language and source code respectively. We
also note that ePPL decreases similarly when we add natural language conditioning to the editing
process, which indicates that multi-order editing encodes fine-grained information not found in the
commit message.

Edit Modeling In particular, when performing editing using an editor pre-trained on edit modeling,
we note that when sampling from the autoregressive tagger it almost always predicts KEEP with
extremely high confidence , given the overwhelming class majority. We instead perform a variety
of posterior regularisation (Ganchev et al.), reducing the probability of the KEEP class until the
sampled edit labels to grow closer in proportion to the true distribution of edit operations (Table 1).
Combined with this technique, we are able to generate more diverse edits, which we show in Table 4.

Semantic Coherence In looking at the example generations in Table 4 we note that the generated
text is not perfectly semantically coherent, despite showing topical coherence and some degree of
discourse coherence. We believe this is largely due to the size of the language model we use, being
trained solely on Wikipedia data (which contains a variety of minor edits including spam/vandalism).
Given this, we expect improved semantic coherence upon scaling up data, data diversity and model
scale. However, we note the improved context-awareness of the edit path shown by the 2-order
model over the 1-order model, providing qualitative evidence for modeling editing processes and
looking at different forms of document construction.

7 RELATED WORK

Learning Edit Representations. Previous work on learning properties inherent to editing has
largely focused on learning distributed representations of edits. Yin et al. (2019a) proposed this
task, using an attentional sequence-to-sequence model to learn representations. Marrese-Taylor et al.
(2021) expands upon this approach, introducing an auxiliary loss and a variational setup. More re-
cently, Yao et al. (2021) worked on using this approach for editing tree-structured data. However, in
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Initial Sentence (1-order) Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere.

x2 Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere. Spain is a member of the European Union.

x3 Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere. France is a member of the European Union.

x4 Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere. France is is a lieing country in the world. It is a bunch of crap.

x5 Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere. France is a lieing country in the world. It is a bunch of crap. There
is a type of debate of a group of people who are not considered to be a part of the United
Nations.

Initial Sentence (2-order) Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere.

x2 Europe is a continent located entirely in the Northern Hemisphere and mostly in the
Eastern Hemisphere. The Western South Eastman Islands are also located in Europe.

x3 Europe is .k.ka.j.jf.go.skxklse

x4 Europe is .k.ka.j.jf.go.skxklse a continent in the Northern Hemisphere. The Islands are
also in Europe and they are great.

Table 4: Example generation when sampling with an edit model. We notice that the 2nd order model
is able perform a revert operation given the context fed through the edit-compressed sequence about
the previous revision, whereas the 1-order model although deleting its generated spam, generates
something relatively unrelated. However we note that this reversion is not exact (likely due to the
information loss during edit compression). This corresponds with our observations in our qualitative
study (where likelihood of reverted edits is increased in the 2+ order models).

contrast with this work, these approaches only consider modeling single editing steps instead of the
more general multi-step setting tackled here.

Semi-Autoregressive Sequence Generation. Work in machine translation has explored non-
autoregressive methods that use an iterative generation process. This was first proposed by Lee
et al. (2018) using latent variables and denoising autoencoding. Iterative refinement was then ex-
plored with conditional masked language models (CMLM; Ghazvininejad et al., 2019), simplifying
previously proposed methods, by iteratively replacing predicted tokens with low confidence. Gu
et al. (2019), introduced the Levenshtein Transformer, making this approach more flexible by intro-
ducing insertion and deletion operations. However, these methods have not yet considered modeling
natural editing processes, instead using either random sampling or heuristically determined orders.

Other Editing-based Work. Other work on editing has included editing for sentence fusion (Malmi
et al., 2019), in which one can perform minimal operations to join two sentences together grammat-
ically. Furthermore, with text style transfer in which the difference between sentences in different
styles (e.g. positive vs negative) can be relatively minimal (Reid & Zhong, 2021; Mallinson et al.,
2020). Furthermore, Faltings et al. (2021) explored natural language conditioned editing as a means
for controllable text generation using a T5-based (Raffel et al., 2020) sequence to sequence model.
Also related to our work is text morphing (Huang et al., 2018), in which they look at an edit-based
model to interpolate between two sentences. We also note that diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) can be formulated as a flavor of editing models, where the model learns
to iteratively edit some representation of information in order to construct a final version of said
representation.

8 CONCLUSIONS

In this work, we proposed the novel task of modeling editing processes, in which we model the
likelihood of documents by way of their natural editing processes. We develop new datasets and
curate existing datasets for downstream tasks. We find that modeling editing processes is benefi-
cial to this end, in contrast to modeling single-order edits, as has been done in much of previous
literature. More broadly, we believe that tackling iterative refinement tasks in broader NLP may be
beneficial given its resemblance to the natural generative and creative process. In future work, we
look to investigate methods for transferring pre-trained edit models to a wider range of NLP tasks.

9
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ETHICS STATEMENT

This work has impact in the fields of natural language processing and machine learning, and pro-
poses a new task of modeling editing processes, while proposing new datasets and models to this
end. There are several potential ethical concerns. First, we initialize our models with a pre-trained
model (trained on webtext), which may capture and amplify biases found in the pre-training data.
We further fine tune on natural data which, in addition to benign edits, also contains a portion
of human-generated spam and potentially offensive edits (especially in the natural language case),
which may also amplify and capture biases in that regard. On the other hand, we have also demon-
strated the ability of the proposed model to identify and revert adverse edits performed by spammers
or malicious editors, a potentially useful tool for content moderation, or even detecting automatically
generated spam edits, as has been done in the detection of fake news (Zellers et al., 2019).

REPRODUCIBILITY STATEMENT

As noted on the first page, all code and datasets necessary to reproduce the experiments in this
paper will be released upon conclusion of paper review. Furthermore, all data processing steps are
discussed in Section 4 and Appendix A.1 for both code and natural language.
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A APPENDIX

A.1 FURTHER TRAINING DETAILS

When training, we employ data sharding to enable cheaper, on the fly data processing. We shard
each documents’ into 10 shards and form splits based on these shards. Our train-valid-test splits
are split 90%,5%,5% for commit message generation, commit-conditioned edit modeling, and edit
modeling. We use a dropout value of 0.3 and use the GELU activation for all MLPs. We use a
learning rate of 1e-4 warmed up for 1000 iterations. We also note that we extended the positional
embedding matrix for BART to handle longer sequences.

Wikipedia Dumps Sanitization

XML Extraction

Approximate string
matching

Levenshtein 
pre-computation

...

...

Revisions

Doraemon (明仁) is the current and 125th Emperor of Japan.

[[Akihito]] (明仁) is the current and 125th [[Emperor of Japan]].
Akihito (明仁) is the current and 125th Emperor of Japan.

John White (明仁) is the current and 125th Supreme Ruler.
Akihito (明仁) is the current and 125th King of Japan.

Akihito (明仁) is the current and 125th Emperor of Japan, although
within Japan he is better known as the Heisei (平成) Emperor.

Akihito (明仁) is the current and 125th Emperor of Japan.

Commit
messages
+ other
metadata

Figure 3: An overview of the WIKIREVISIONS data generation process for collecting clean multi-
step revision data.
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A.2 ABLATION STUDY ON THE IMPACT OF COMMENTS ON COMMENT-CONDITIONED EDIT
MODELING

Model ePPL (∆ compared to 2-order)

EDITPRO (2-order) 53.91 (–)
EDITPRO (2-order, only current revision is comment conditioned) 52.06 (-1.85)
EDITPRO (2-order, completely comment-conditioned) 51.83 (-2.08)
EDITPRO (3-order) 50.84 (-3.07)

Table 5: Ablation on the impact of comments in 3-order edit modeling

We include an additional experiment, demonstrating the impact of including comment information in
previous revisions, and not including comment information in comment conditioned edit modeling.
We do this by including a 2-order edit model trained with only the current revision being comment-
conditioned. The results demonstrate that a majority of the performance gain is indeed derived from
modeling an extra revision, with the clear outperformance of 3-order edit modeling versus 2-order
edit modeling. We also note that there is some gain that is derived from modeling previous revisions
to be also comment conditioned, however we note that this is relatively minimal compared to the
comment conditioning of the current revision and modeling an extra order.
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