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Abstract

Insufficient modeling of human preferences001
within the reward model is a major obstacle for002
leveraging human feedback to improve transla-003
tion quality. Fortunately, quality estimation004
(QE), which predicts the quality of a given005
translation without reference, has achieved im-006
pressive alignment with human evaluations in007
the last two years. In this work, we investigate008
the potential of employing the QE model as the009
reward model (the QE-based reward model) to010
predict human preferences for feedback train-011
ing. We first identify the overoptimization prob-012
lem during QE-based feedback training, man-013
ifested as an increase in reward while transla-014
tion quality declines. We examine the prob-015
lem and argue that the vulnerability of the QE016
model might lead to high rewards for incor-017
rect translations, resulting in overoptimization018
and error propagation. To address the prob-019
lem, we adopt a simple yet effective method020
that uses heuristic rules to detect the incorrect021
translations and assigns a penalty term to the022
QE-based rewards for the detected incorrect023
translations. Experimental results show that the024
proposed QE-based feedback training achieves025
consistent and significant improvements across026
various settings, further verified through hu-027
man preference studies. Our subsequent anal-028
ysis demonstrates the high data efficiency of029
the proposed QE-based feedback training: the030
proposed approach using a small amount of031
monolingual data can outperform systems us-032
ing larger parallel corpora.033

1 Introduction034

Human feedback has greatly contributed to recent035

advances in large language models (LLMs), align-036

ing model behavior with human preferences and037

thereby enhancing the helpfulness and harmless-038

ness of LLMs (Dong et al., 2023; Yuan et al., 2023;039

Zhao et al., 2023; Rafailov et al., 2023). The com-040

mon practice involves using human evaluation data041

to train a reward model as a proxy for human pref-042

erences, followed by feedback training to fine-tune 043

the LLM and maximize the reward score. 044

Early efforts in neural machine translation 045

(NMT) also attempted to integrate feedback to im- 046

prove translation quality. Most works used similar- 047

ity scores (such as sentence-level BLEU (Papineni 048

et al., 2002)) between the predicted translation and 049

a reference translation to simulate feedback rather 050

than employing feedback from humans (Sokolov 051

et al., 2016a,b; Kreutzer et al., 2017; Sokolov et al., 052

2017; Lawrence et al., 2017; Nguyen et al., 2017; 053

Wu et al., 2018; Wieting et al., 2019). Few attempts 054

to use real human feedback have been made, and 055

these efforts either used implicit feedback in lim- 056

ited scenarios (e.g., e-commerce) (Kreutzer et al., 057

2018a) or relied only on a minimal amount of hu- 058

man feedback data (Kreutzer et al., 2018b). There- 059

fore, the integration of real human feedback in 060

NMT has been constrained by inadequate model- 061

ing of human preferences. 062

Fortunately, the field of MT has seen substantial 063

advancements in quality estimation (QE) (Rei et al., 064

2021, 2022b; Wan et al., 2022). A QE model offers 065

a reference-free estimation of translation quality 066

and has been facilitated by the growing availabil- 067

ity of human evaluation data (Specia et al., 2020, 068

2021; Zerva et al., 2022) and the development of 069

pre-trained language models (Devlin et al., 2019; 070

Conneau et al., 2020). Typically, given a source 071

sentence and its translation, a sentence-level QE 072

model can provide a numerical score to indicate the 073

quality of the translation. The most advanced QE 074

models to date have achieved impressive alignment 075

with human evaluations (Freitag et al., 2022). 076

In light of this progress, we explore the potential 077

of utilizing QE models as proxies of human pref- 078

erences and functioning them as reward models 079

in feedback training for the first time. Firstly, we 080

identify the overoptimization problem in feedback 081

training, manifested as an increase in reward while 082

translation quality declines. Our analysis reveals 083
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that the underlying issue lies in the vulnerability of084

QE-based reward models, which, in rare instances,085

assign high scores to patently incorrect translations.086

As a result, these flawed patterns spread through087

subsequent training, leading to divergence from hu-088

man preferences and a training collapse. However,089

the reward keeps rising throughout the whole pro-090

cess. This phenomenon aligns with the observation091

from Fernandes et al. (2023) that “overoptimizing”092

against an imperfect reward model can lead to sys-093

tems “that receive good feedback from the model,094

but not humans”.095

Through manual examination of these flawed096

patterns, we categorize the most prevalent errors097

into two groups: length ratio errors and off-target098

errors (i.e., not the desired target language). Guided099

by this observation, we propose a simple yet effec-100

tive solution to mitigate overoptimization. We first101

detect these errors and then add a negative penalty102

to the reward for these erroneous translations. We103

show that this approach significantly alleviates the104

overoptimization problem and results in notable105

improvements across various settings, which are106

further verified by human preference studies.107

In summary, the contributions of this work are108

detailed as follows:109

• We identify the overoptimization problem110

when using QE-based reward models for feedback111

training and verify the ubiquity of this phenomenon112

across comprehensive settings (12 in total): 3 QE113

models × 2 model architectures (decoder-only114

LLM and encoder-decoder NMT models) × 2 re-115

source settings (high-resource and low-resource).116

• By addressing the overoptimization with a sim-117

ple yet effective method, we successfully integrate118

the QE model into feedback training for the first119

time, achieving remarkable improvements across120

various settings.121

• Through further analysis, we demonstrate the122

high data efficiency of using the QE-based reward123

model for feedback training, showing that it can124

outperform systems using larger parallel corpora125

by only a small amount of monolingual data.126

•We investigate the influence of the base model127

on feedback training, finding that stronger base128

models (larger in size and pretrained) yield greater129

improvements after feedback training. We also130

examine the effect of crucial hyperparameters.131

2 Feedback Training 132

2.1 Formulation 133

We denote an MT model as M = P (y|x; θ), with 134

model parameters θ. It takes a source sentence 135

x (or a prompt) as input and generates a target 136

sentence y according to the distribution PT (y|x; θ), 137

where T is a temperature parameter to control the 138

diversity. We consider the QE-based reward model 139

as r(x, y) whose value indicates the quality of y 140

as the translation of x. Taken D as the training 141

distribution of x, the optimization objective is: 142

max
θ

Ex∼D,y∼P (y|x;θ)r(x, y). (1) 143

We adopt the local ranking version of Reward 144

rAnked FineTuning (RAFT) (Dong et al., 2023) 145

to train the model M . The basic idea of RAFT 146

is to rate the generated candidates from a prompt 147

using the reward model and just learn from the best 148

one of them. It has been proved to be more stable 149

and efficient than Proximal Policy Optimization 150

(PPO) (Schulman et al., 2017). Algorithm 1 shows 151

the details of RAFT.

Algorithm 1 RAFT

Require: Training set X , reward function r(x, y),
initial model M0 = P (y|x; θ0), batch size b,
temperature T , the number of candidate k

1: for iteration i in 0, 1, . . . , N − 1 do
2: Di ← SampleBatch(X , b)
3: B = ∅
4: for x ∈ Di do
5: y1, . . . , yk ∼ PT (y|x; θi)
6: y∗ = argmaxyj∈{y1,...,yk} r(x, yj)
7: B = B ∪ {(x, y∗)}
8: Fine-tune θi on B to obtain Mi+1 =

P (y|x; θi+1).

152

2.2 Addressing Overoptimization Problem 153

Overoptimization Our preliminary experiment 154

observed that as the reward increases, the transla- 155

tion performance deteriorates (shown in Figure 1). 156

This phenomenon is dubbed as overoptimization 157

by Gao et al. (2023). The underlying reason for 158

overoptimization is that the reward model does 159

not serve as a perfect proxy for human prefer- 160

ences. Hence, overoptimizing rewards could steer 161

the model’s behavior away from human prefer- 162

ences. This aligns with Goodhart’s Law, which 163

states, “When a measure becomes a target, it ceases 164

to be a good measure.” 165
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Figure 1: The relationship between reward score and
translation quality (in terms of BLEURT). Each point
represents the average performance of a checkpoint on
the development sets. COMET-QE-DA is used as QE-
based reward model.

Causes We further found that the reward model166

may assign high scores to erroneous translations167

in some cases (as shown in Table 1). These errors168

encompass common error patterns in MT, such as169

length-ratio, off-target errors, and hallucinations1.170

While these errors may not be severe initially, they

Error type Translation Reward
None The rule of drinking Red

Label Whisky:
2.84

Len-ratio
(too long/short translation)

The rule of drinking Red
Label Whisky: 1. Al-
ways drink responsibly.
2. Never drink alone. 3.
Avoid drinking on an
empty stomach. 4. Set lim-
its and stick to them. 5.
Drink in moderation.

5.60

Off-target
(wrong target language)

So trinkt man Red-Label-
Whisky:

4.58

Table 1: A case of Chinese⇒English translation where
the QE model (COMET-QE-DA) assigns higher scores
to length-ratio and off-target errors than an error-free
translation. Error spans are highlighted.

171
can rapidly propagate to subsequent training stages172

(see Figure 2) once they are accorded high reward173

scores, which can lead to disruption of the entire174

training process.175

Solution To alleviate overoptimization, we mon-176

itor length-ratio and off-target errors during train-177

ing and assign negative, punitive rewards for these178

1For sake of simplicity, we categorize repeating errors as
length-ratio errors, and copying-source errors are considered
as one kind of off-target errors.
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Figure 2: Trends in length-ratio and off-target error rates
with the training process. Even though these errors do
not manifest significantly during the early and middle
phases of training, they may still surge in later stages.

errors. Let C(x, y) be true if |y|
|x| /∈ [L,U ] or 179

lang(y) ̸= target language, where [L,U ] is an 180

acceptable length ratio interval and lang(·) is a 181

language identification function (detailed in Ap- 182

pendix A). Then the reward modification can be 183

expressed as: 184

r+(x, y) =

{
r(x, y)− P if C(x, y)

r(x, y) otherwise,
(2) 185

where P is the penalty term that we simply set to 186

−∞ since RAFT is an algorithm based on data 187

selection. We refer to this approach as RAFT+. As 188

depicted in Figure 1, RAFT+ facilitates a trend of 189

concurrent improvement in reward and translation 190

quality. Notably, the relationship between reward 191

and translation quality approximates a linear cor- 192

relation. This suggests that optimizing QE-based 193

reward can be an effective strategy in instances 194

devoid of overoptimization. 195

3 Experiments 196

3.1 Experimental Setup 197

Pipeline We adopt the pipeline of reinforcement 198

learning with human feedback (RLHF) (Ouyang 199

et al., 2022). Starting with the pretrained base 200

model, we carry out the following steps: (1) Super- 201

vised fine-tuning (SFT), where we utilize parallel 202

data to fine-tune the pretrained base model, thereby 203

obtaining an initial MT model. (2) Feedback train- 204

ing, where we train the model using RAFT/RAFT+ 205

to maximize the reward from a QE-based reward 206
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model. Note that this stage only uses monolingual207

data.208

Model For the base models, we adopt:209

• LLAMA-2-7B (Touvron et al., 2023): a decoder-210

only LLM primarily trained in English, with the211

objective to predict the next token.212

• NLLB-200-1.3B (Costa-jussà et al., 2022): an213

encoder-decoder model that trained for multi-214

lingual translation across 200 languages. After215

SFT, it will be adapted to the language pairs we216

considered.217

For QE models, we use:218

• COMET-QE-DA (Rei et al., 2021): A QE model219

trained on Direct Assessments data.220

• COMET-QE-MQM (Rei et al., 2021): Fine-tuned221

COMET-QE-DA model using Multidimensional222

Quality Metric (MQM) data.223

• UNITE-MUP (Wan et al., 2022): A unified224

translation evaluation framework that is jointly225

trained for reference-only, source-only, and226

source-reference-combined evaluation. We only227

use its source-only evaluation.228

Data We consider the settings for both229

high-resource and low-resource language230

pairs. In the high-resource setting, we focus231

on English⇔Chinese and English⇔German.232

In the low-resource setting, our focus is on233

English⇔Ukrainian and Ukrainian⇔Czech.234

It is important to note that both settings are235

multilingual, where all four translation directions236

are trained concurrently within one model, and237

we ensure the balance of all directions to avoid238

introducing other factors. That is, every direction239

has an equal number of training samples. We adopt240

WMT22 (Kocmi et al., 2022) as the test sets for241

all language pairs. For development sets, high242

resource setting uses WMT21, and low resource243

setting uses Flores200 (Goyal et al., 2022). Table 2244

lists the detail of the data.245

Training details For SFT, we conducted train-246

ing for one epoch. For RAFT/RAFT+, we trained247

LLAMA-2-7B for 10 iterations using a learning248

rate of 2e-6, and for NLLB-200-1.3B, we trained249

for 20 iterations with a learning rate of 2e-5. We set250

the batch size b to 1024, the number of candidates251

k to 8, and the temperature T to 0.85.252

High-res Low-res

Train
SFT (para) WMT (2M) Wiki (200K)

FB (mono) CC (85K) Wiki (84K)

Dev WMT21 Flores200
Test WMT22 WMT22

Table 2: Data used in the different phases of our pipeline.
SFT uses parallel data, while FB uses monolingual data.
Numbers indicate the number of samples. “FB” denotes
feedback training. “CC” and “Wiki” denote CCMa-
trix (Schwenk et al., 2021b) and WikiMatrix (Schwenk
et al., 2021a). WMT and CC are both general domain.

Evaluation We use COMET (Rei et al., 2022a) 253

and BLEURT (Sellam et al., 2020) to assess trans- 254

lation quality. These neural metrics show superior- 255

ity over string-based metrics like BLEU (Freitag 256

et al., 2022; Kocmi et al., 2021; Bawden and Yvon, 257

2023). We use Unbabel/wmt22-comet-da 258

and BLEURT-20 checkpoints for these two met- 259

rics. It is worth noting that we also observe 260

the overoptimization problem on COMET, that is, 261

COMET increased but the actual translation quality 262

decreased (see § 3.2). Therefore, we use BLEURT 263

as the main metric, but still report COMET as a 264

reference and conduct human evaluation in § 4.1. 265

We select the best checkpoint based on the perfor- 266

mance on the dev sets, and report the final results 267

on test sets using beam search (beam size = 4). 268

3.2 Results 269

Training curves Figure 3 illustrates the training 270

curves of reward and BLEURT on the development 271

sets when using COMET-QE-DA as the QE-based 272

reward model. Our observations are: 273

• Overoptimization is a phenomenon of high 274

frequency when using vanilla RAFT. Three out 275

of the four settings (Figure 3a, c, d) have the sit- 276

uation that the reward shows an increase while 277

the BLEURT declines. We further verify this phe- 278

nomenon in Appendix C when using COMET-QE- 279

MQM or UNITE-MUP as the reward model. 280

• The severity of overoptimization varies un- 281

der different settings. Figure 3d represents the 282

most severe overoptimization, where the BLEURT 283

score starts decreasing from the onset of the train- 284

ing process. Figure 3a and Figure 3c exhibit a 285

trend of initial increase followed by a decrease. In 286

such scenarios, a relatively good checkpoint can be 287

chosen based on the performance on the develop- 288

ment set. Conversely, Figure 3b does not display 289

overoptimization. We conjecture that the severity 290

of overoptimization could be related to multiple fac- 291
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Figure 3: Training curves under various settings. The metrics are average values for all language pairs on the
development set. The QE-based reward model is COMET-QE-DA.

tors, including language pairs, the reward model,292

and the SFT model.293

• RAFT+ alleviates overoptimization effec-294

tively. The BLEURT scores of RAFT+ in the four295

settings consistently increase as the training pro-296

gresses. At the same time, the growth rate of the297

reward scores in RAFT+ is significantly slower298

than that in RAFT. We even witness a situation299

where the reward decreases in Figure 3c. More-300

over, in Figure 3b where overoptimization did not301

occur originally, RAFT+ can still achieve a perfor-302

mance close to that of RAFT. However, it is worth303

noting that the overoptimization problem has not304

been completely solved, as some errors, like hallu-305

cinations, are challenging to identify. Furthermore,306

we cannot guarantee generalization to all other lan-307

guage pairs since language identification is not re-308

liable for extremely low-resource language (Aji309

et al., 2022), indicating room for improvement. We310

leave a more comprehensive study to future work.311

Main results Table 3 shows the main results on312

test sets when using COMET-QE-DA or COMET-QE-313

MQM as the QE-based reward model. We present314

the results of UNITE-MUP in Appendix D and use315

chrF as the evaluation metric in Appendix E.316

• Feedback training brings significant im-317

provements in general. Regardless of whether318

the resource setting is high or low and irrespec-319

tive of the variation in base models, RAFT+ tends320

to deliver notable enhancements, particularly pro-321

nounced in the low resource setting. This suggests 322

that current QE models are already equipped with 323

the capability to function as reward models after 324

addressing the overoptimization problem. In con- 325

trast, while achieving good gains in most settings, 326

RAFT can suffer from severe overoptimization that 327

might lead to failed training. 328

• The performance of the reward model 329

varies under different resource settings. In the 330

high-resource setting, COMET-QE-MQM outper- 331

forms COMET-QE-DA, while the opposite is true in 332

the low-resource setting, which suggests that QE 333

models still have a lot of room for improvement. 334

• Remarkably, even COMET, a reference- 335

based metric, can be overoptimized. In RAFT 336

training of NLLB-200-1.3B under low-resource 337

setting (bottom of Table 3b), there is a marginal in- 338

crease in COMET scores, yet a significant drop in 339

BLEURT, which is unusual. By inspecting the out- 340

puts, we found that severe off-target errors signifi- 341

cantly hamper the model’s performance. One plau- 342

sible reason might be the similarities between the 343

COMET and COMET-QE models, both of which 344

may be susceptible to these off-target errors. This 345

finding underscores the necessity of treating auto- 346

matic metrics with caution and the importance of 347

employing multiple metrics simultaneously for a 348

more comprehensive evaluation. It also stresses 349

the significance of recognizing a metric model’s 350

vulnerabilities during its development, including 351
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Method
De⇒En En⇒De Zh⇒En En⇒Zh Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

LLAMA-2-7B
SFT 82.5 70.5 80.7 68.2 76.1 62.3 84.9 69.3 81.0 67.6

REWARD MODEL: COMET-QE-DA

RAFT 83.7 72.1 82.8 71.1 78.7 65.3 85.9 70.1 82.8↑1.7 69.7↑2.1
RAFT+ 83.6 72.1 84.4 73.9 79.0 66.1 85.4 69.3 83.1↑2.1 70.3↑2.7

REWARD MODEL: COMET-QE-MQM

RAFT 83.3 72.0 84.8 75.1 77.8 64.3 86.1 70.4 83.0↑2.0 70.5↑2.9
RAFT+ 83.7 72.4 85.6 75.7 78.6 65.6 85.8 70.0 83.4↑2.4 70.9↑3.3

NLLB-200-1.3B
SFT 70.9 52.5 85.3 74.8 66.0 48.4 83.7 69.1 76.5 61.2

REWARD MODEL: COMET-QE-DA

RAFT 73.2 52.2 85.8 75.1 67.9 50.5 84.2 68.9 77.8↑1.3 61.7↑0.5
RAFT+ 74.2 56.7 85.8 75.2 69.0 52.6 84.0 67.9 78.2↑1.7 63.1↑1.9

REWARD MODEL: COMET-QE-MQM

RAFT 82.8 71.3 83.9 73.4 76.1 62.3 84.6 68.6 81.8↑5.3 68.9↑7.7
RAFT+ 83.3 71.8 84.6 74.4 76.7 62.9 84.6 68.4 82.3↑5.8 69.4↑8.2

(a) High-resource language pairs

Method
En⇒Uk Uk⇒En Uk⇒Cs Cs⇒Uk Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

LLAMA-2-7B
SFT 79.2 64.0 76.7 66.0 70.0 53.2 71.2 51.3 74.3 58.6

REWARD MODEL: COMET-QE-DA

RAFT 82.3 68.0 81.4 71.1 82.5 69.5 84.3 69.9 82.6↑8.3 69.6↑11.0
RAFT+ 82.0 67.8 81.5 71.2 82.2 68.8 84.5 70.1 82.6↑8.3 69.5↑10.9

REWARD MODEL: COMET-QE-MQM

RAFT 80.7 65.5 76.7 66.0 75.7 59.9 75.2 54.8 77.1↑2.8 61.5↑2.9
RAFT+ 81.2 67.0 79.2 68.9 77.3 62.3 78.8 60.7 79.1↑4.8 64.8↑6.2

NLLB-200-1.3B
SFT 83.1 70.2 71.1 62.7 73.2 61.5 57.3 43.4 71.2 59.4

REWARD MODEL: COMET-QE-DA

RAFT 85.2 72.5 64.7 33.2 70.5 29.7 73.8 30.1 73.6↑2.4 41.4↓18.0
RAFT+ 84.5 71.3 77.7 67.0 83.1 70.3 72.0 55.1 79.3↑8.1 65.9↑6.6

REWARD MODEL: COMET-QE-MQM

RAFT 85.8 73.2 67.5 50.0 71.1 41.6 71.1 42.7 73.9↑2.7 51.9↓7.5
RAFT+ 84.5 71.8 76.4 66.1 82.1 69.9 71.4 54.5 78.6↑7.4 65.6↑6.2

(b) Low-resource language pairs

Table 3: Translation performance on the test sets under various settings, using COMET-QE-DA and COMET-QE-MQM
as reward models. Results when UNITE-MUP is used as the reward model are presented in Appendix D. Bold
indicates that the average performance of the method exceeds that of SFT and RAFT/RAFT+ within the same QE
model. The subscripts indicate the change in performance relative to the SFT.

adjustments for prevalent translation inaccuracies352

such as length-ratio, off-target errors, hallucina-353

tions, and so forth.354

4 Analysis355

4.1 Human evaluation356

As discussed in § 3.2, automatic metrics may not357

correlate perfectly with actual translation quality.358

Therefore, we perform human preference studies359

on En⇔Zh test sets. For each test sample, our an-360

En-Zh

Zh-En

0% 25% 50% 75% 100%

12.5%

7.5%

55.9%

68.4%

31.4%

24.1%

RAFT+ Win Tie RAFT+ Lose

Figure 4: Human preference evaluation, comparing
RAFT+ to SFT model on En⇔Zh test sets.
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notators (professional translators) were presented361

with a source sentence and two possible transla-362

tions generated by either the SFT or RAFT+ model363

(based on LLAMA-2-7B). They were then tasked364

with selecting the superior translation or determin-365

ing that neither translation was better than the other.366

Figure 4 shows the results of human preference367

studies. We find that RAFT+ achieves better or368

equal translations in 92.5% of the cases for En-Zh369

and 87.3% for Zh-En, compared to SFT, confirming370

the effectiveness of feedback training.371

4.2 Data Efficiency of Feedback Training372
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Figure 5: Comparison between RAFT+ and continuous
training in the low-resource setting.

Data efficiency refers to the capacity to achieve373

good performance with less training data. For low-374

resource language pairs, data efficiency is impor-375

tant since it is costly and labor-intensive to annotate376

high-quality parallel data. Feedback training pro-377

vides an alternative path where humans only need378

to evaluate rather than generate translations.379

We examine the data efficiency of feedback train-380

ing in the low-resource setting. We collected an ex-381

tra 3M of parallel data from WikiMatrix (Schwenk382

et al., 2021a) and continued training the SFT model383

(based on LLAMA-2-7B) using data of different384

sizes. We adopted two continued training strategies:385

full parameter fine-tuning and parameter-efficient386

fine-tuning, specifically employing LoRA (Hu387

et al., 2022). To be fair, we filtered samples with388

length-ratio and off-target errors in the parallel data.389

On the other hand, RAFT+ only consumes 10K390

monolingual data (1024 batch size × 10 iterations).391

Figure 5 depicts their average performance on test392

sets. Unexpectedly, the continuous training with 393

increasing amounts of parallel data fails to yield 394

consistent improvements. This observation aligns 395

with a similar phenomenon reported by Zhou et al. 396

(2023). A plausible explanation could be the low 397

quality of the crawled data for low-resource lan- 398

guages. Conversely, RAFT+ performs markedly 399

better using merely 10K monolingual data, exhibit- 400

ing high data efficiency. It is also worth noting 401

that in RAFT+ the model is only trained on self- 402

generated translations. Therefore, we conjecture 403

that the SFT model already has strong translation 404

potential inherently, and RAFT+ can bring this po- 405

tential to fruition. 406

4.3 Effects of Scaling Model Size and 407

Pretraining 408

△
B

LE
U

RT

-3

1

6

10

Iteration

0 10 20

NLLB-200-3.3B NLLB-200-1.3B
NLLB-200-600M Random-600M

Figure 6: Training curves of RAFT+ (high-resource,
COMET-QE-MQM) under different base models. We
report the change in BLEURT score for each checkpoint
relative to the SFT model.

In this section, we examine the effects of two 409

dimensions of the base model on feedback training: 410

model size and the presence of pretraining. We 411

conduct experiments under the high-resource set- 412

ting, using COMET-QE-MQM as the reward model. 413

For model size, we consider NLLB-200-(600M, 414

1.3B, 3.3B) as base models; for pretraining, we ran- 415

domly initialize NLLB-200-600M and perform the 416

SFT from scratch with 80M parallel data, which 417

we call Random-600M. From Figure 6, we have 418

two obvious phenomena: (1) a larger base model 419

size results in a more significant enhancement from 420

feedback training; (2) feedback training is effective 421

only when the base model has undergone pretrain- 422

ing. Combining the two, we deduce that a stronger 423

base model results in more significant improve- 424

ments from feedback training. A plausible ratio- 425

7



nale for this could be that a well-established base426

model inherently possesses great potential, which427

can be further unlocked by suitable feedback.428

4.4 Effects of Hyperparameters429

B
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Figure 7: Effects of temperature and the number of can-
didates on the final performance (high-resource setting,
LLAMA-2-7B, COMET-QE-DA).

The sampling temperature and the number of430

candidates are two crucial hyperparameters for431

RAFT+. Both influence the diversity of the candi-432

dates. Intuitively, having a broader range of candi-433

dates may provide richer feedback signals, poten-434

tially leading to better final performance. However,435

as illustrated in Figure 7, (1) continuously increas-436

ing the temperature leads to performance degrada-437

tion; (2) the boost from continuously increasing the438

number of candidates approaches saturation. This439

means that the increase in candidate diversity has440

reached its upper limit.441

5 Related Work442

5.1 Feedback Training in MT443

Many early works have attempted to use various444

forms of feedback to improve MT, where the model445

has no access to the gold references but receives446

partial feedback on its output. Depending on the447

source of the feedback, they can be categorized448

into simulated or human feedback.449

Simulated feedback This type of work uti-450

lizes a measure of similarity between the model’s451

output and the reference translation to simulate452

feedback, e.g., sentence-BLEU and cross-entropy453

loss (Sokolov et al., 2016a,b). Kreutzer et al. (2017)454

lifts linear bandit learning to neural sequence-to-455

sequence learning. Lawrence et al. (2017) demon-456

strates the possibility of counterfactual learning457

from deterministic bandit logs. Nguyen et al.458

(2017) propose a training algorithm combining the459

advantage actor-critic algorithm with the attention-460

based neural encoder-decoder architecture. Wiet-461

ing et al. (2019) proposes to use semantic similarity 462

rather than BLEU as simulated feedback. Wu et al. 463

(2018) discusses how to train the MT model us- 464

ing feedback effectively. The main drawback of 465

simulated feedback is that there is no real human 466

involvement, so the metrics being optimized, such 467

as BLEU, do not correlate well with human prefer- 468

ences (Freitag et al., 2022). In addition, the need 469

for references presents a challenge for low-resource 470

language pairs. 471

Human feedback Kreutzer et al. (2018a) uti- 472

lizes implicit human feedback in a constrained e- 473

commerce scenario, which cannot be applied to 474

general MT. Kreutzer et al. (2018b) investigates 475

how to improve translation using human evaluation 476

data but is limited by the small data size (1K). 477

5.2 Aligning LLMs with Human 478

Pretrained on raw text from the internet, LLMs 479

might generate toxic, inaccurate, and unhelpful 480

content (Fernandes et al., 2023). To mitigate these 481

issues, researchers have employed human feedback 482

to better align the behavior of LLMs with human 483

preferences, thereby enhancing their helpfulness 484

and reducing potential harm (Ouyang et al., 2022; 485

Stiennon et al., 2020; Bai et al., 2022). The basic 486

idea involves learning a reward function that cap- 487

turing human preferences and optimizing the LLM 488

using proximal policy optimization (PPO) (Schul- 489

man et al., 2017). Lighter weight training strategies, 490

such as RAFT (Dong et al., 2023) and RRHF (Yuan 491

et al., 2023), use training data ranking based on re- 492

wards to align the LLM. LIMA (Zhou et al., 2023) 493

underscores the importance of high-quality super- 494

vised data for effective alignment. For a compre- 495

hensive understanding of alignment, we recom- 496

mend readers refer to survey papers: Fernandes 497

et al. (2023) and Wang et al. (2023). 498

6 Conclusion 499

We explore the potential of using the current QE 500

model as a reward model. By identifying, ana- 501

lyzing, and mitigating the overoptimization prob- 502

lem, we successfully integrate the QE model into 503

feedback training to refine translation quality. We 504

validate its effectiveness across various settings, in- 505

cluding human evaluation. Further analysis demon- 506

strates the high data efficiency of feedback training 507

using the QE-based reward model. Lastly, we delve 508

into the impact of the base model and hyperparam- 509

eters on feedback training. 510
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Limitations511

Training Algorithm This work only considers512

a simple yet stable training algorithm, RAFT, in513

favor of its ease of use and reduced computational514

requirements. We also implemented the Minimum515

Risk Training (MRT) algorithm (Shen et al., 2016)516

in Appendix B, but found it difficult to train stably.517

While other more commonly used reinforcement518

learning (RL) algorithms such as Proximal Policy519

Optimization (PPO) (Schulman et al., 2017) ex-520

ist, their training stability can be influenced by a521

variety of factors and often demands substantial522

GPU memory (Dong et al., 2023; Zheng et al.,523

2023). Hyperparameters, stability, and computa-524

tional constraints led us to consciously limit our ex-525

ploration to RAFT, thereby not investigating other526

potentially effective but more complex training al-527

gorithms. This choice simplifies the training pro-528

cess but might limit the general applicability of529

the approach in different contexts. Future work530

may explore these alternative algorithms, acknowl-531

edging the trade-offs between complexity, stability,532

and performance.533

Granularity of Quality Estimation This work534

exclusively focuses on sentence-level QE, neglect-535

ing other granularities, such as word-level or536

document-level QE. The choice of granularity in-537

herently limits the scope of our insights and applica-538

tions. Understanding how word-level QE feedback539

might be utilized, or how QE could be employed540

to enhance document translation quality, presents541

exciting avenues for future research.542

Imbalance in Multilingual NMT - Data This543

work does not consider the imbalances present in544

multilingual NMT. In real-world scenarios, the545

quantity of available corpus varies significantly546

across different languages, which might lead to547

biased or suboptimal results. However, considering548

unbalanced scenarios introduces many additional549

factors, such as different ways of sampling train-550

ing data. Therefore, we constrain our focus to the551

balanced situation in this work, recognizing the552

need for future research to address this complex-553

ity and explore methods that can better handle the554

imbalances inherent in multilingual contexts.555

Imbalance in Multilingual NMT - Reward Al-556

though we kept the amount of data the same for557

the different language pairs, we still observed train-558

ing imbalance problems due to “uneven” distribu-559

tion of rewards. Specifically, in Table 3a, neither 560

RAFT nor RAFT+ consistently improves NLLB in 561

En→De and En→Zh (both are from-English di- 562

rection) at the high resource setting. However, 563

on the other hand, the performance of the other 564

two to-English directions (De→En and Zh→En) 565

has been significantly improved by notable mar- 566

gins (BLEURT | De→En: 53.5→71.3, Zh→En: 567

48.4→62.9). This means that during training, the 568

model allocates more “capacity” to the to-English 569

directions than to the from-English directions, i.e., 570

they are not balanced. The intuitive reason is that 571

the model “finds” optimizing the to-English direc- 572

tions offers a quick boost in reward, thereby “ig- 573

noring” the from-English directions which have 574

less room for improvement. This involves how the 575

reward can be reasonably distributed among differ- 576

ent language pairs, which is less discussed in this 577

work, but a meaningful and underexplored future 578

direction. 579

Applicability of the Method to Mitigate Overop- 580

timization The current method for mitigating 581

overoptimization focuses on detecting relatively 582

easy-to-identify errors such as len-ratio and off- 583

target errors. More elusive mistakes, such as hal- 584

lucinations, remain unaddressed and might poten- 585

tially lead to overoptimization as well (Guerreiro 586

et al., 2023). In addition, current language detec- 587

tors are not reliable for extremely low-resource lan- 588

guages (Aji et al., 2022), limiting the applicability 589

in these contexts. 590
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A Error Detection and Penalty927

We penalize for len-ratio errors and off-target er-928

rors. We consider translations whose length ratios929

do not belong to [L,U ] as len-ratio errors. We com-930

puted the distribution of length ratios of the SFT931

data for each language pair (using the tokenizer of932

the corresponding model), taking [L,U ] so that it933

covers the top 50% of the most frequent length ra-934

tios. We adopt language detector from Stahl (2023)935

to detect off-target errors.936

B MRT Implementation937

MRT (Shen et al., 2016) is designed to directly op-938

timize the model with respect to evaluation metrics.939

The risk of MRT can be formulate as:940

R(θ) =
∑

(x,y∗)∈D

Ey∼P (y|x;θ) [∆ (y, y∗)] , (3)941

where y∗ represents the ground-truth translation.942

The ∆ function serves as the loss function and can943

be instantiated using various evaluation metrics, for944

example, 1−BLEU(y, y∗). The objective or MRT945

is to minimizeR(θ).946

In out setting, D is the training distribution of947

x, i.e., monolingual data, and we use QE-based948

reward r(x, y) to indicate the quality of y as the949

translation of x. Therefore, we modify the risk as:950

R(θ) =
∑
x∈D

Ey∼P (y|x;θ) [1− r(x, y)] . (4)951

In practice, we sample k candidates and normal-952

ize the probabilities to approximate the expectation.953

Let Sk denote a set containing k candidates drawn954

from the distribution PT (y|x; θ), where T is the955

sampling temperature. R(θ) is approximated as:956

R̃(θ) =
∑
x∈D

∑
y∈Sk

P̃ (y|x; θ)[1− r(x, y)], (5)957

where958

P̃ (y|x; θ) = P (y|x; θ)α∑
y′∈Sk

P (y′|x; θ)α
, (6)959

and α is a hyperparameter. Algorithm 2 shows the960

details of MRT. Similar to RAFT+, when adding a961

penalty term to reward, we call it MRT+. We set962

the penalty term P = 1 and α = 0.0052, and leave963

other hyperparameters the same as RAFT.964

2We follow the default setting in Sennrich et al. (2017).

Algorithm 2 MRT

Require: Training set X , reward function r(x, y),
initial model M0 = P (y|x; θ0), batch size b,
temperature T , the number of candidate k

1: for iteration i in 0, 1, . . . , N − 1 do
2: Di ← SampleBatch(X , b)
3: B = ∅
4: for x ∈ Di do
5: y1, . . . , yk ∼ PT (y|x; θi)
6: Sk = {y1, . . . , yk}
7: B = B ∪ {(x, Sk)}
8: Fine-tune θi on B to obtain Mi+1 =

P (y|x; θi+1) using MRT risk: R̃(θi).

R
ew

ar
d

0

5

9

14

Iteration
0 6 12 18

MRT
MRT+

B
LE

U
RT

0

23

47

70

Iteration
0 6 12 18

Figure 8: Training curves of MRT and MRT+ under
high-resource setting. NLLB-200-1.3B and COMET-
QE-MQM are used as base model and QE-based reward
model, respectively.

Figure 8 shows that vanilla MRT suffers from 965

the overoptimization problem, manifested as an 966

increase in reward while translation quality de- 967

clines. Additionally, MRT+ also poses challenges 968

in achieving stable convergence. 969

C More Training Curves 970

Figure 9 shows the training curves when using 971

COMET-QE-MQM and UNITE-MUP as the reward 972

models. Consistent with Figure 3, vanilla RAFT 973

suffers from severe overoptimization problems in 974

most cases, which are greatly alleviated by RAFT+. 975

976

D UNITE-MUP as the Reward Model 977

Table 4 presents the test results when UNITE- 978

MUP functions as the reward model. The main 979

trends are consistent with those shown in Table 3. 980

We also observe that neither RAFT nor RAFT+ 981

achieves positive improvement in high-resource 982

language pairs when NLLB-200-1.3B is the base 983

model. We speculate that this lack of improvement 984

is due to overoptimization problems caused by the 985
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(b) UNITE-MUP

Figure 9: Training curves under various settings when using COMET-QE-MQM and UNITE-MUP as reward models.
The metrics are average values for all language pairs on the development set.

presence of errors that are not related to length ratio986

and off-target errors.987

E chrF as the Evaluation Metric988

Table 5 shows the chrF values for main results.989
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Method
De⇒En En⇒De Zh⇒En En⇒Zh Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

LLAMA-2-7B
SFT 82.5 70.5 80.7 68.2 76.1 62.3 84.9 69.3 81.0 67.6

RAFT 83.3 71.6 82.8 71.4 78.3 64.8 85.4 69.6 82.4↑1.4 69.4↑1.8
RAFT+ 83.4 71.6 84.2 73.6 78.9 66.1 85.0 69.0 82.9↑1.9 70.1↑2.5

NLLB-200-1.3B
SFT 70.9 52.5 85.3 74.8 66.0 48.4 83.7 69.1 76.5 61.2

RAFT 72.7 50.9 85.8 75.4 66.5 48.6 84.5 69.1 77.4↑0.9 61.0↓0.2
RAFT+ 72.8 50.3 85.8 75.5 65.5 47.1 84.4 69.0 77.1↑0.6 60.5↓0.7

(a) High-resource language pairs

Method
En⇒Uk Uk⇒En Uk⇒Cs Cs⇒Uk Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

LLAMA-2-7B
SFT 79.2 64.0 76.7 66.0 70.0 53.2 71.2 51.3 74.3 58.6

RAFT 80.9 66.4 80.7 70.2 81.6 68.9 83.6 69.1 81.7↑7.4 68.6↑10.0
RAFT+ 81.3 67.1 81.0 70.5 81.5 68.7 84.0 69.6 81.9↑7.6 69.0↑10.4

NLLB-200-1.3B
SFT 83.1 70.2 71.1 62.7 73.2 61.5 57.3 43.4 71.2 59.4

RAFT 85.1 72.4 64.5 30.9 70.5 26.9 74.1 27.4 73.5↑2.3 39.4↓19.2
RAFT+ 84.3 71.4 77.0 66.5 82.6 70.2 71.6 54.9 78.9↑7.7 65.8↑6.4

(b) Low-resource language pairs

Table 4: Test results under various settings when UNITE-MUP functions as the reward model. Bold indicates that
the average performance of the method exceeds that of SFT and RAFT/RAFT+ within the same QE model. The
subscripts indicate the change in performance relative to the SFT.

Method De⇒En En⇒De Zh⇒En En⇒Zh Average

LLAMA-2-7B
SFT 52.1 51.5 46.3 34.4 46.0

REWARD MODEL: COMET-QE-DA

RAFT 55.4 56.1 50.2 35.5 49.3↑3.3
RAFT+ 56.1 58.8 51.7 34.5 50.3↑4.3

REWARD MODEL: COMET-QE-MQM

RAFT 53.4 56.8 47.2 34.9 48.1↑2.1
RAFT+ 54.5 58.5 49.2 34.8 49.3↑3.3

NLLB-200-1.3B
SFT 35.3 60.4 15.2 30.7 35.4

REWARD MODEL: COMET-QE-DA

RAFT 35.1 60.8 22.8 30.9 37.4↑2.0
RAFT+ 42.6 60.6 27.8 30.7 40.4↑5.0

REWARD MODEL: COMET-QE-MQM

RAFT 48.3 60.7 35.5 30.7 43.8↑8.4
RAFT+ 49.7 60.6 43.2 30.6 46.1↑10.7

(a) High-resource language pairs

Method En⇒Uk Uk⇒En Uk⇒Cs Cs⇒Uk Average

LLAMA-2-7B
SFT 43.1 51.1 28.3 30.2 38.2

REWARD MODEL: COMET-QE-DA

RAFT 46.2 56.4 43.9 47.5 48.5↑10.3
RAFT+ 46.5 56.9 44.5 48.0 49.0↑10.8

REWARD MODEL: COMET-QE-MQM

RAFT 40.6 48.1 30.0 30.3 37.3↓0.9
RAFT+ 44.3 53.5 36.1 38.2 43.0↑4.8

NLLB-200-1.3B
SFT 50.6 45.3 36.6 25.7 39.5

REWARD MODEL: COMET-QE-DA

RAFT 52.1 10.2 10.2 10.3 20.7↓18.8
RAFT+ 51.2 55.1 49.7 43.3 49.8↑10.3

REWARD MODEL: COMET-QE-MQM

RAFT 51.7 31.5 22.5 26.0 33.0↓6.5
RAFT+ 51.5 54.1 48.0 41.5 48.8↑9.3

(b) Low-resource language pairs

Table 5: chrF results of Table 3
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Method
De⇒En En⇒De Zh⇒En En⇒Zh Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

WMT22 Best 85.0 73.8 87.4 77.9 81.0 68.9 86.8 72.8 85.1 73.4

(a) High-resource language pairs

Method
En⇒Uk Uk⇒En Uk⇒Cs Cs⇒Uk Average

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

WMT22 Best 87.8 76.5 85.9 76.6 92.2 82.8 91.6 80.3 89.4 79.1

(b) Low-resource language pairs

Table 6: WMT22 best submissions.
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