Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Tzu-Yuan Lin“! Minghan Zhu“' Maani Ghaffari '

Abstract

This paper proposes an equivariant neural network
that takes data in any finite-dimensional semi-
simple Lie algebra as input. The corresponding
group acts on the Lie algebra as adjoint operations,
making our proposed network adjoint-equivariant.
Our framework generalizes the Vector Neurons, a
simple SO(3)-equivariant network, from 3-D Eu-
clidean space to Lie algebra spaces, building upon
the invariance property of the Killing form. Fur-
thermore, we propose novel Lie bracket layers and
geometric channel mixing layers that extend the
modeling capacity. Experiments are conducted
for the 50(3), s1(3), and sp(4) Lie algebras on var-
ious tasks, including fitting equivariant and invari-
ant functions, learning system dynamics, point
cloud registration, and homography-based shape
classification. Our proposed equivariant network
shows wide applicability and competitive perfor-
mance in various domains.

1. Introduction

For geometric problems in control theory, robotics, com-
puter vision and graphics, Lie group methods provide the
machinery to study continuous symmetries inherent to the
problem (Murray et al., 1994; Liu et al., 2010; Lynch &
Park, 2017; Barrau & Bonnabel, 2017; van Goor et al., 2020;
Yang et al., 2021; Lin et al., 2022; Ghaffari et al., 2022). Lie
algebras are vector spaces that locally preserve the group
structure, enabling efficient computation (Teng et al., 2022;
Lin et al., 2023b). The standard group representation (linear
group action) on Lie algebras is given by conjugation or
adjoint action (Hall, 2013).

The equivariance property preserves the symmetry group
structure, often a Lie group, such that the feature map com-
mutes with the group representation. An equivariant model,
by construction, generalizes over the variations caused by

“Equal contribution 'University of Michigan, Ann Arbor, MI,
USA. Correspondence to: Tzu-Yuan Lin <tzuyuan@umich.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Trajectories (3D)

—— Ground Truth
Lie Neurons

Learned Vector Field

772\

—— Ground Truth x
—— Ground Truth y
—— Ground Truth z
Lie Neurons x
-- Lie Neurons'y
Lie Neurons z

.\\)’

0 2 4 6 8 10 1

(©

Figure 1. Lie Neurons can be applied in learning dynamics. In
this example, we learn the dynamics of a simulated free-rotation
International Space Station, which we pose as an initial value
problem in the Neural ODE framework. This figure shows the
estimated trajectories and the learned vector field from the Lie
Neurons. Detail descriptions can be found in Section 5.2.2.

the group actions. Therefore, it reduces the sampling com-
plexity in learning and improves the robustness and trans-
parency facing input variations. Equivariant models have
gained success in various domains, including but not limited
to the modeling of molecules (Thomas et al., 2018), phys-
ical systems (Finzi et al., 2020), social networks (Maron
et al., 2018), images (Worrall et al., 2017), and point clouds
(Zhu et al., 2023b). Convolutional neural networks (CNNs)
are translation-equivariant, enabling stable image features
regardless of the pixel positions in the image plane. Typical
extensions include rotation (Cohen et al., 2017) and scale
(Worrall & Welling, 2019) equivariance, while more general
extensions are also explored (MacDonald et al., 2022).

In this paper, we propose a new type of equivariant model

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

that captures the symmetry in Lie algebra spaces. For a
given Lie algebra, we represent its elements as vectors by
specifying a set of bases, and represent the adjoint actions
as matrix multiplications, exploiting the isometry structure
of Lie algebras to handle such data in typical vector form.
Through the connection between inner products and the
Killing form, we generalize the architecture of Vector Neu-
rons (Deng et al., 2021), a SO(3)-equivariant network origi-
nally designed for point cloud data in 3-D Euclidean space,
to process data in arbitrary semisimple Lie algebra. We
further build new types of equivariant network layers that
exploit the structure of Lie algebras and extend the flexibil-
ity of the model. Using so(3), s[(3), and sp(4) as examples,
we conduct experiments on various tasks in physics, com-
puter vision, and general function fitting, and show that our
proposed network has wide applicability and competitive
performance.

In particular, the contributions of this work are as follows.

1. We propose a new adjoint-equivariant network archi-
tecture, enabling the processing of finite-dimensional
semisimple Lie algebraic input data. Such models fre-
quently appear in real-world geometric problems.

2. We develop new network designs using the Killing
form and the Lie bracket structure for equivariant acti-
vation and invariant layers for Lie algebraic representa-
tion learning.

3. We propose equivariant channel mixing layers that
enable fusing information across the geometric di-
mension, which was not possible in the previous
work (Deng et al., 2021).

4. The software implementation is available at
https://github.com/UMich-CURLY/LieNeurons.

2. Related Work

Equivariant networks enable the model output to change in
a predicted way as the input goes through certain transfor-
mations. Current equivariant convolutional networks can
be roughly categorized as regular group convolution and
steerable group convolution. The regular group convolu-
tion exploits discretized subgroups to design equivariant
convolutions. It is first introduced in Cohen & Welling
(2016a), in which 90-degree discretizations of the SO(2)
are designed for 2D image processing. The approach is gen-
eralized to other discretized groups in SE(2), SE(3), E(3),
and STM (n) (Hoogeboom et al., 2018; Winkels & Cohen,
2018; Worrall & Brostow, 2018; Chen et al., 2021; Zhu
et al., 2023a; Knigge et al., 2022). Steerable convolution is
proposed in Cohen & Welling (2016b), leveraging the irre-
ducible representations to remove the need for discretization
and facilitate equivariant convolution on continuous groups

in the frequency domain (Worrall et al., 2017; Cohen et al.,
2017; Weiler et al., 2018; Thomas et al., 2018). Beyond con-
volutions, more general equivariant network architectures
are proposed. For example, Fuchs et al. (2020); Hutchinson
et al. (2021); Chatzipantazis et al. (2022) for transform-
ers and Batzner et al. (2022); Brandstetter et al. (2021) for
message passing networks. More recently, Geiger & Smidt
(2022) introduces a generalized library for E(3) equivari-
ance based on variants of steerable equivariant networks.
Vector Neurons (Deng et al., 2021) present a multi-layer
perception (MLP) and graph network that generalize the
scalar features to 3D features to realize SO(3)-equivariance
on spatial data. In addition to group-specific methods, more
general recipes for building equivariant layers that are not
limited to a specific group are also proposed (Kondor &
Trivedi, 2018; Cohen et al., 2019; Weiler & Cesa, 2019; Xu
et al., 2022; Lang & Weiler, 2020; Bekkers, 2019). The
extension of equivariance beyond compact groups is also
explored. Finzi et al. (2021) constructs MLPs equivariant
to arbitrary matrix groups using their finite-dimensional
representations. With the Monte Carlo estimator, equiv-
ariant convolutions are generalized to matrix groups with
surjective exponential maps (Finzi et al., 2020) and all finite-
dimensional Lie groups (MacDonald et al., 2022), where Lie
algebras are used to parameterize elements in the continuous
Lie groups as a lifted domain from the input space. More
recently, Mironenco & Forré (2023) proposes a theoretic
framework for SL(n)-equivariant convolution by decom-
posing the larger groups into manageable subgroups.

Our model structure resembles the MLP style of Vector Neu-
rons (Deng et al., 2021), but our work models the equivari-
ance of arbitrary semisimple groups under adjoint actions.
Different from Vector Neurons, the input domain of our
method is the Lie algebra. When working with s0(3), our
method specializes to Vector Neurons, with an additional
nonlinearity and a geometric mixing layer.

3. Preliminaries

We provide some preliminaries for Lie groups by focusing
on matrix Lie groups. For detailed explanations, we refer the
readers to Hall (2013); Rossmann (2006); Kirillov (2008).

3.1. Lie Group and Lie Algebra

A Lie group G is a smooth manifold whose elements satisfy
the group axioms. The tangent space at the identity of a
Lie group is named Lie algebra, denoted g. A Lie algebra
locally captures the structure of the Lie group.

Every Lie algebra is equipped with an antisymmetric binary
operator called the Lie bracket:

[,]: gxg—g 1)

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

In this work, we focus on finite-dimensional Lie algebras.
Since Lie algebra is a vector space, one can always find a set
of basis E; € g, which are linearly independent matrices of
the vector space. Once we find the basis, we can represent
each Lie algebra element as a linear combination of such
basis by collecting the coefficients of each basis into a R™
vector (Chirikjian, 2011):

Vee :g — R™, 2"+ (") = Z$i€i7 2)
i=1
Hat R™ — g, 2+~ a2" = Z:EiEi, 3)
i=1

where E; € g are linear independent basis in g, and e; are
the canonical basis of R”. An example of the Hat and Vee
operation is provided in Appendix A.1.

3.2. Adjoint Representation

Given an element of the Lie algebra X € g and its corre-
sponding Lie group G, every ¢ € G defines an automor-
phism of the Lie algebra Ad, : g — g by Ad.(X) =
aXa~'. This is called the adjoint representation of the
group G on the Lie algebra g. It amounts to the change of
basis operations on the algebra. Since the adjoint Ad,, is
linear, we can find a matrix that maps the R form of the
Lie algebra to another. That is, for every Ad, and X € g,
we have

Admg,: R™ = R™, z+— Admgx, @)
with Adm, € R™*™ x = XV and Adm,r = (aXa™1)".
This is an important property as it allows us to model the
group adjoint action using a matrix multiplication on R™,
which enables the adjoint equivariant layer design.

Similarly, we can obtain the adjoint representation of the
Lie algebra as adx : g — g by adx(Y) = [X,Y]. This
work focuses on the matrix Lie group, where the Lie bracket
is defined by the commutator: [X,Y] = XY — Y X. It
is worth noticing that the Lie bracket is equivariant un-
der the group adjoint action, i.e., [Ad,(X), Ad,(Y)] =
Ad,([X,Y]),Va € G.

3.3. Killing Form

If a Lie algebra g is of finite dimension and associated with
a field R, a symmetric bilinear form called the Killing form
is defined as (Kirillov, 2008):

B(X,Y):gxg—R, (X,Y)w— tr(adx oady). (5)
Definition 3.1. A bilinear form B(X,Y) is said to be non-
degenerate iff B(X,Y) =0 forall Y € g implies X = 0.

Theorem 3.2. A Lie algebra is semisimple iff the Killing
form is non-degenerate.

Theorem 3.3. The Killing form is invariant under the group
adjoint action Ad, forall a € G, i.e.,

B(Ady(X), Ade(Y)) = B(X,Y).

If the Lie group is also compact, the Killing form is negative
definite, and the inner product naturally arises from the
negative of the Killing form.

4. Methodology

We present Lie Neurons (LN), a general adjoint-equivariant
neural network on Lie algebras. It is greatly inspired by
Vector Neurons (VN) (Deng et al., 2021). Vector Neurons
take 3-dimensional vectors as inputs, typically viewed as
points in Euclidean space. The 3D Euclidean dimension
is preserved in the features (which we call the geometric
dimension), independent from the feature dimension. In
other words, Vector Neurons lift conventional R features
in an MLP to R3*€, allowing the same SO(3) actions to be
applied in the input space and the feature space, facilitating
the equivariance property.

Lie Neurons generalize VN with 3-channel geometric di-
mension to networks with K -channel geometric dimension,
where K is the dimension of any semisimple Lie algebra,
and the networks are equivariant to the adjoint action of
the corresponding Lie group. Similar to how VN takes 3-
dimensional points as input, our networks take elements of
the Lie algebra as input. While a Lie algebra g is a vector
space with non-trivial structures, X € g can be expressed
as a K(-dimensional vector x = XV € R¥ with appropriate
bases using (2). This R¥ form is the core concept for Lie
Neurons.

Lie Neurons operate on the R* form of the Lie algebra.
We denote the input as x € RE*C where C is the feature
dimension. This can be viewed as C' Lie algebra elements in
the RX form. That is, a Lie Neurons model f : g¢* — g©>
can be instantiated as

f:RKxcl %RKXCQ. (6)

Recall from (4) that Adm, € RE*X is the matrix form
of the adjoint operator such that Admgz = (Ad,(X))Y =
(aXa~')V. This means that we can represent the adjoint
action as a left matrix multiplication on the input x. The
equivariance of the network can then be defined as

f(Admgx;0) = Adm, f(x;0). @)

For a set of N input elements {X } v, the learned feature
is {x}y € REXCXN_ We will use a single element to

"This is also known as the Cartan’s Criterion.

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

explain the network components for simplicity, unless noted
otherwise.

A Lie Neuron network can be constructed with linear layers,
two types of nonlinear activation layers, geometric channel
mixing layers, pooling layers, and invariant layers. We start
by discussing the linear layers as follows.

4.1. Linear Layers

Linear layers are the basic building blocks of an MLP. A
linear layer has a learnable weight matrix W € RE*¢",
which operates on input features x € R**C by right matrix
multiplication:

X' = finwin(x; W) = xW € REXC, (8)

A linear layer can be viewed as a matrix multiplication
on the right (feature dimension C'), which does not affect
the adjoint operation as matrix multiplication on the left
(geometric dimension K), thus preserving the equivariance

property:
JinLin(Ady (x); W) = finrin(Admgx; W)
= Adm xW € RE*C
= Admg finvin(x; W)
= Ad,(finwin(x; W)),

©))

It is worth mentioning that we ignore the bias term to pre-
serve the equivariance. Lastly, similar to the Vector Neurons,
the weights may or may not be shared across the elements
xin {x}n.

4.2. Nonlinear Layers

Nonlinear layers enable the neural network to approximate
complicated functions. We propose two designs for the
equivariant nonlinear layers, LN-ReLU and LN-Bracket.

4.2.1. LN-RELU: NONLINEARITY BASED ON THE
KILLING FORM

We can use an invariant function to construct an equivariant
nonlinear layer. The VN leverages the inner product in a
standard vector space, which is invariant to SO(3), to de-
sign a vector ReL.U nonlinear layer. The idea is to “project”
the negative part of a vector back to the zero plane, simi-
lar to how a 1-D ReLU rectifies the negative values. We
generalize this idea by replacing the inner product with the
negative of the Killing form. As described in Section 3,
the negative Killing form falls back to the inner product for
compact semisimple Lie groups, and it is invariant to the
group adjoint action.

For an input x € RX*C a Killing form B(-,-), and a
learnable weight U € R*, the nonlinear layer fin-reLu

is defined as:

X, if B(x,d) <0

x + B(x,d)d, (10

JiNReLU(X) = { .
otherwise,

where d = xU € RE*¢ are learnable reference Lie algebra

features. Optionally, one can also set U € R¢*! so that

d € RE*1 meaning that a single reference Lie algebra is

shared across all C' feature channels.

From Theorem 3.3, we know the Killing form is invariant
under the group adjoint action, and the equivariance of the
learned direction is proven in (9). Therefore, the second out-
put of (10) becomes a linear combination of two equivariant
quantities. As a result, the nonlinear layer is equivariant to
the adjoint action.

We can also construct variants of ReLU, such as the leaky
ReLU in the following form:
JiN-LeakyreLU = X + (1 — @) finreLu(x). (11)

4.2.2. LN-BRACKET: NONLINEARITY BASED ON THE
LIE BRACKET

Lie algebra is a vector space with an extra binary operator
called the Lie bracket, which is equivariant under group
adjoint actions. Since we primarily focus on matrix groups,
we use the commutator to build a novel nonlinear layer.

We use two learnable weight matrices U, V' € R€*¢ to map
the input to different Lie algebra vectors, u = xU, v = xV.
The Lie bracket of u and v becomes a nonlinear function
on the input: x [(xU)", (xV)"]V,REXC — REXC,
Theoretically, we can use this as our nonlinear layer. How-
ever, we note that the Lie bracket essentially captures the
failure of matrices to commute (Guggenheimer, 2012), and
that [X, X] = 0,VX. Thus, the bracket captures the “non-
commutativity” created by the two linear maps, which can
be small in practice. As a result, we add a skip connection
to enhance the information flow, inspired by ResNet (He
et al., 2016). The final design of the LN-Bracket layer
becomes:

fLN-BraCket(x) =X+ [(XU)/\, (XV)/\}V. (12)

The nonlinear layer is often combined with a linear layer to
form a module. In the rest of the paper, we will use LN-LR
to denote an LN-Linear followed by an LN-ReLU, and
LN-LB to denote an LN-Linear with an LN-Bracket
layer.

4.3. Geometric Channel Mixing

One limitation of the Vector Neurons is the lack of a mix-
ing mechanism in the geometric dimension K. In other
words, the learnable weights are always multiplied on the

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

right in the feature dimension, so that the equivariance to
group actions as left matrix multiplications on the geometric
dimension is preserved. However, mixing of the geometric
channels is preferred or even necessary in some applications.
(An example of such can be found in Section 5.2.2.) There-
fore, we proposed a geometric channel mixing mechanism
for so(n).

We construct the channel mixing module as:
x' = finmix(x) = Mx, (13)
where M = x;xJ € RE*X and

X1, X2 = fiN-ReLU(fLN-Linear (X)) € RE*C (14

are two learned equivariant features. One can easily verify
the equivariance of the mixing module:

Sfinmix (Rx) = Rxlx;rRTRx = Rxlx;x
= Rfin-Mix (X), (15)
where R = Admpg € SO(n).

This module enables information mixing in the geometric di-
mension for so(n), which opens up the possibility to model
functions with left multiplication on the inputs. Although
the current mixing module only works for so(n), we conjec-
ture it is possible to extend to any semi-simple Lie algebra
by x' = finmix(x) = xlxz_lx, where x1,xy € REXK,
However, one needs to ensure the invertibility of x5, which
may require post-processing and we leave for future discus-
sion.

4.4. Pooling Layers

Pooling layers provide a means to aggregate global infor-
mation across the N input elements. This can be done by
mean pooling, which is adjoint equivariant. In addition, we
also introduce a max pooling layer. For input {x,}N_; €
REXEXN “and a weight matrix W € RE*C, we learn

a set of directions as: D = {d,})_; = {x, W}, €
REXCXN

We again employ the Killing form, B(-, -), as the invariant
function. For each feature channel ¢ € C, we have the max
pooling function as fin.max (X¢) = X5 ., where

n*(c) = argmax B(d{,x{), (16)
n
and x¢ € RX is the feature in ¢! channel of the nt"
element. Max pooling reduces the feature shape from
REXCXN o REXC The layer is equivariant to the adjoint
action due to the invariance of B(-, -).

4.5. Invariant Layers

Equivariant layers allow steerable feature learning. How-
ever, some applications demand invariant features (Lin et al.,

2023a; Zheng et al., 2022; Li et al., 2021). We introduce
an invariant layer that can be attached to the network when
necessary. Given an input x € R¥*¢, we have:

finam (x) = B(x,x) € RY, (17)

where B(+,) is the adjoint-invariant Killing form.

4.6. Relationship to Vector Neurons

Our method can specialize to the Vector Neurons when
working with s0(3). This is because the linear adjoint matrix
Adm,, is exactly the rotation matrix for so(3). Therefore,
the group adjoint action becomes a left multiplication on the
R3 form of the Lie algebra. Moreover, SO(3) is a compact
group. Thus, the negative Killing form of so(3) defines an
inner product. However, we omit the normalization in VN’s
ReLU layer because the norm is not well defined when the
Killing form is not negative definite. We also do not have a
counterpart to VN’s batch normalization layer for the same
reason.

Despite the similarity in appearance, the R® vectors are
viewed as points in the 3D Euclidean space in Vector Neu-
rons, while they are treated as so(3) Lie algebras in our
framework, enabling a novel Lie bracket nonlinear layer.
The geometric channel mixing layer also makes the model
more flexible.

5. Experiments

Our framework applies to arbitrary semi-simple Lie alge-
bras. We conduct experiments on s0(3) and s[(3) to validate
its general applicability and effectiveness in various tasks.
Implementation details and additional experiments on s[(3)
can be found in the Appendix.

5.1. Experiment on sp(4)

We conduct an experiment on the Symplectic Lie algebra
sp(4,R). The symplectic Lie algebra can be defined as:

sp(2n,R) ={X € GL(2n,R) | MX + XTM = 0},
(18)
0 I, .
I, 0 } The symplectic group and alge-
bra can be used to model Hamilton mechanics and energy-
conservation systems.

with M =

In this task, we aim to regress an invariant function

9(X,Y) =sin(Tr(XY)) + cos(ITr(YY)) (19)
TrYY)

_ Tg + det(XY) + exp(Tr(X X)),

where X,Y € sp(4,R) and T'r(-) is the trace of the ma-
trix. We generate 10,000 training and 10,000 testing data.

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Table 1. The mean squared errors and the invariance errors in sp(4)
invariant function regression.

Testing Augmentation | Invariance Error

‘ Training ‘

\
Model | Augmentation | Num Params | Id | SP(4) |

| | | AVGL | AVGl | AVG |
MLP 256 Id 137,217 0.126 1.360 0.722
MLP 256 SP(4) 137,217 0.192 0.587 0.476
MLP 512 Id 536,577 0.107 0.906 0.585
MLP 512 SP(4) 536,577 0.123 0.446 0.374

Lie Neurons 1d 263,170 2.70x107% | 270 x 10°* | 2.00 x 1074

In addition, during test time, we generate 500 SP(4) ma-
trices to perform test time augmentation. We report two
MLP models with different feature dimensions for compari-
son. We also perform data augmentation during training for
the MLP models. The invariance error captures the output
consistency after the input is augmented.

From Table 1, we can see that Lie Neurons obtain superior
accuracy while maintaining a low number of parameters
compared to the MLP methods. In addition, the invariance
error remains low without data augmentation, which con-
firms the invariant-by-construction property of Lie Neurons
on the symplectic Lie algebra.

5.2. Experiments on s0(3)

As discussed in Section 4.6, our network when applied on
50(3) resembles Vector Neurons (Deng et al., 2021), but
contains more flexible component layers. In this section,
we present our results on the Baker—Campbell-Hausdorff
(BCH) formula regression, dynamics learning, and point
cloud registration.

5.2.1. BAKER—-CAMPBELL-HAUSDORFF FORMULA

The BCH formula provides a way to compute the product of
two exponentials of elements in a Lie algebra locally (Hall,
2013). For X, Y, Z € g, and

e? =eXeY, (20)

the BCH formula relates Z to X, Y in the Lie algebra by an
infinite series:

Z =BCH(X,Y)

:X+Y+%[X,Y]+%[X[X,Y]]er. @1

We note that the BCH formula is adjoint equivariant. This
formula is widely used in robotics and control (Yoon et al.,
2023; Chauchat et al., 2018; Kobilarov & Marsden, 2011).
However, the higher-order terms are often discarded in most
applications, which can result in a significant drop in accu-
racy. An accurate modeling of the BCH formula can have
great benefits in the above field.

We generate 10, 000 training and 10, 000 testing data points
for both X and Y and use (20) to generate the ground truth

Table 2. Experimental results on the regression of BCH formula.
Id represents testing on the original test set. SO(3) represents that

the test set is augmented with adjoint actions.
Id

SO(3)

Method Frobenius Error | Log Error | | Frobenius Error | Log Error |
First Order Approx 0.629 0.464 0.629 0.464
Second Order Approx 0.338 0.247 0.338 0.247
Third Order Approx 0.191 0.136 0.191 0.136
MLP 0.017 0.012 0.295 0.237
MLP Augmentation 0.025 0.018 0.280 0.221
EMLP (Finzi et al., 2021) 2.6x 1073 1.8 x 107% 2.6 x 1073 1.8 x 107*
e3nn (Geiger & Smidt, 2022) 0.641 0.471 0.641 0.471
Vector Neurons (Deng et al., 2021) 0.617 0.454 0.617 0.454

Lie Neurons (Ours) 6.9 x 1074 4.9 x 107 6.9 x 1074 4.9x 1074

value. To ensure an injective exponential function, we limit
the angle to [0, 7). We design the loss function to be:

LIX,Y |0) = [|eXeY e /&Y]|, (22)

where || - || denotes the Frobenius norm, and I is the identity
matrix. The network architecture used in this experiment
can be found in Figure 5 in the Appendix. In addition to
the Frobenius norm, we also report the log error, which is
defined as: Ej,, = ||log(eXeY e /YN where || - ||
is the standard vector norm on R3.

The results are presented in Table 2. We compare Lie
Neurons with Vector Neurons (Deng et al., 2021), a steer-
able equivariant network e3nn (Geiger & Smidt, 2022), the
Equivariant MLP (Finzi et al., 2021), and an MLP with
augmentation. In addition, we report the results obtained
using (21) by truncating to only first-third order terms. Both
EMLP and our method achieve low estimation errors, while
the error of our method is one order of magnitude smaller
than EMLP. Although the MLP is able to produce accept-
able results on the non-conjugated test set, its performance
suffers from a significant drop when the inputs are adjoint-
transformed. With training augmentation, the performance
of MLP is improved on the testing augmentation but is
slightly reduced on the non-conjugated case. The e3nn and
Vector Neurons are unable to converge in this experiment.
Since Lie Neurons specialize to Vector Neurons on so(3) if
only the ReLU layer is used, this experiment demonstrates
the benefits of the proposed bracket non-linear layer.

5.2.2. LEARNING DYNAMICS IN BODY FRAME

Rigid body dynamics can be described using the Euler-
Poincaré equation (Bloch et al., 1996). For a rotating rigid
body, the Euler-Poincaré equation can be written as:

I6(t) + w(t) x Tw(t) = M(t), (23)

where w € R? is the angular velocity, I is the inertia tensor,
and M is the torque input. This equation is an ordinary
differential equation (ODE). Given the ODE and an ini-
tial condition wq at time £y, we can solve the initial value
problem, i.e., predict the trajectory of the system. In this
experiment, we learn the ODE from historic trajectory data

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

m to, tend, At

WOT*“” N ek
Wi

Wend

Figure 2. The framework used in modeling the Euler-Poincaré
equation. Lie neurons learn the dynamic equation, and an off-
the-shelf ODE solver is employed to solve the ODE. Here, m is a
set of learnable equivariant weights.

and predict the trajectories of the learned system given arbi-
trary initial conditions.

As a case study, we aim to learn the dynamics of the free-
rotating (i.e., M (t) = 0) International Space Station (ISS)
from the National Aeronautics and Space Administration
(2002). Specifically, we can rewrite the ODE as the vector
field w = f(w;I) to represent the corresponding system
dynamics, and we fit f using a neural network. When a
change of reference frame is performed, the inertia tensor
undergoes a conjugation action. As a result, f is equivariant
under the change of reference frame: VR € SO(3),

f(Rw; RIR") = Rf(w; I). (24)

We introduce learnable equivariant weights m € R3*¢ as
an implicit representation of the inertia /. When testing for
the change of reference frame performance, we manually
rotate m to inform the network that the system is rotated.”
For the network structure, please refer to Figure 5 in the
Appendix.

We use the Neural ODE (Chen et al., 2018) framework to
train the ODE from trajectory data. As shown in Figure 2,
it consists of a neural network that models f and an ODE
solver. We compare our models with the model used in the
original Neural ODE paper, which is an MLP network. In
addition, we replace the MLP network with EMLP (Finzi
et al., 2021) to serve as a equivariant baseline.

Using the inertia tensor from the National Aeronautics and
Space Administration (2002), we randomly generate 10 tra-
jectories, each containing 25 seconds of data and 1000 data
points. We then evaluate the trained model using 10 un-
seen trajectories in the test set. To analyze the equivariance
property, we rotate the test inputs and trajectories using 10
random rotations, which we denote as SO(3) in Table 3. The
table reports the norm distance between the estimated and
the ground truth trajectories, evaluated at different points
in time. We observe that the baselines are unable to predict
the trajectories on the test set correctly. Therefore, we addi-
tionally report the results when both models are trained and

2t is possible to infer the change of reference frame matrix
from observations of trajectories of the new system via another Lie
Neurons module. Due to the scope of this project, we assume the
change of frame matrix is known in test time.

evaluated on a single trajectory (The training and test sets
are identical).

The proposed method obtains accurate predictions for all
experiments. The prediction error remains low when the
reference frames are changed. In comparison, both the MLP
and EMLP are unable to correctly predict the trajectories
when evaluated on the unseen data. When trained and tested
on the same trajectory, both the MLP and EMLP can overfit
the data. However, the MLP fails to generalize when the ref-
erence frame is rotated, while the EMLP slightly alleviates
such a problem.

We observe that when the mixing layers are not added, the
network is unable to converge. It is likely because, in (23),
the inertia tensor acts on the left of the angular velocity,
which results in mixing in the geometric dimension. Without
the mixing layers, such an operation might not be modeled
correctly, which demonstrates the value of the proposed
mixing layers.

Figure 1 shows the qualitative results from Lie Neurons.
The estimated trajectories closely align with the ground
truth trajectory. Figure 1b visualizes the learned vector field
on the w, = 0 plane. This experiment demonstrates Lie
Neurons’ ability to model equivariant dynamical systems,
which implies its potential in robotics applications.

5.2.3. POINT CLOUD REGISTRATION

In this experiment, we follow the setup in (Zhu et al., 2022)
and implement Lie Neurons in the point cloud registration
task. The inputs are two noisy point clouds with differ-
ent orientations. The goal of the network is to regress an
SO(3) rotation that best aligns the two point clouds in a
correspondence-free manner. The network is trained and
evaluated on ModelNet40, which contains 3D models of
objects in 40 categories.

We compare Lie Neurons with the mixing module against
Vector Neuron. In addition, to demonstrate the benefits of
geometric mixing, we integrate the mixing module in the
original Vector Neuron to serve as an additional baseline.

Table 4 shows the average registration error in degrees. On
average, the mixing module improves the performance of
Vector Neurons. Lie Neurons perform similarly to Vector
Neurons with the mixing module. This experiment once
again demonstrates the benefits of the geometric mixing
layer.

5.3. Experiments on s[(3)

In this section, we instantiate the LN on a noncompact Lie
algebra, s((3), the special linear Lie algebra. sl(3) can
be represented using traceless matrices. The corresponding
special linear group SL(3) can be represented using matrices

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Table 3. The results of the dynamic modeling experiments. We report the norm distance between the ground truth and estimated trajectories
in different time durations. Multiple trajectories denote training on multiple random trajectories and evaluating using unseen data. Single
trajectory denotes training and testing on the same trajectory. Unit: rad/s.

Multiple Trajectories | Id | SO(3)

Time (Sec) ‘ 5 10 15 25 ‘ 5 10 15 20 25
MLP 0.428 0.656 0.717 0.763 0.800 0.474 0.689 0.733 0.768 0.805
EMLP (Finzi et al., 2021) 0.429 0.642 0.775 0.909 1.027 0.415 0.633 0.771 0.907 1.025
Lie Neurons (No Mixing) 0.739 0.842 0.791 0.805 0.809 0.739 0.842 0.791 0.805 0.809
Lie Neurons 0.005s 0.011 0.014 0.016 0.018 | 0.005 0.011 0.014 0.016 0.018
Single Trajectory | Id | SO(3)

Time (Sec) ‘ 5 10 15 25 ‘ 5 10 15 20 25
MLP 0.108 0.137 0.162 0.200 0.225 3.751 4.188 4.135 4.137 4.130
EMLP (Finzi et al., 2021) 0.113 0.124 0.134 0.145 0.147 0.332 0.571 0.846 1.157 1.459
Lie Neurons (No Mixing) 0.720 0.824 0.801 0.821 0.836 0.720 0.824 0.801 0.821 0.836
Lie Neurons 0.064 0.069 0.146 0.324 0.579 0.064 0.069 0.146 0.323 0.579

Table 4. The average registration error in degrees. Mixing denotes
the addition of the geometric channel mixing module.

Model ‘ Average Registration Error (deg) |
Vector Neurons 2.227
Vector Neurons (Mixing) 1.934
Lie Neurons (Mixing) 1.879

with unit determinants. SL(3) has 8 degrees of freedom
and can be used to model the homography transformation
between images (Hua et al., 2020; Zhan et al., 2022).

We perform three experiments for s[(3): a classification of
Platonic solids and 2 function regression tasks. We report
the function regression tasks in Appendix D.

5.3.1. PLATONIC SOLID CLASSIFICATION

The task is to classify polyhedrons from their projection
on an image plane. While rotation equivariance naturally
emerges for the 3D shape, the rotation equivariance relation
is lost in the 2D projection of the 3D polyhedrons. Instead,
the projection yields homography relations, which can be
modeled using the SL(3) group (Hua et al., 2020; Zhan
et al., 2022). When projected onto an image plane, the
two neighboring faces of a polyhedron can be described
using homography transformations, which are different for
each polyhedron type. Therefore, we use the homography
transforms among the projected neighboring faces as the
input for polyhedron classification.

Without loss of generality, we assume the camera intrin-
sic matrix K to be identity. In this case, given a homog-
raphy matrix H € SL(3) that maps one face to another
in the image plane, the homography between these two
faces becomes RHR~' when we rotate the camera by
R € S0O(3) c SL(3).

Three types of Platonic solids are used in this experiment: a
tetrahedron, an octahedron, and an icosahedron. An input
data point refers to the homography transforms between
the projection of a pair of neighboring faces within one

SN

XA

N

(c) Icosahedron

‘L

(b) Octahedron

(a) Tetrahedron

Figure 3. A visualization of the three Platonic solids in our classi-
fication task. The yellow and blue colors highlight a neighboring
pair of faces, between which the homography transforms in the
image plane are taken as input to our models.

image. Figure 3 visualizes an example of the neighboring
face pair for the three Platonic solids. The homographies
of all neighboring face pairs form a complete set of data
describing a Platonic solid. We use these data to learn a
classification model of the three Platonic solids. During
training, we fix the camera and object pose. Then, we test
with the original pose and with rotated camera poses to
verify the equivariance property of our models.

Each network is trained in 5 separate instances to analyze
the consistency of the method. For the detailed architecture,
we again refer the readers to Figure 5. Table 5 shows the
classification accuracy. The LN achieves higher accuracy
than the MLP. Since the MLP is not invariant to the adjoint
action, its accuracy drops drastically when the camera is
rotated. When trained with augmented data, the MLP per-
formance on the rotated test set increases, but the overall
performance decreases. We also notice that the LN-LB
performs slightly worse than the other two formulations.

6. Discussion and Limitations

Lie Neurons are a group adjoint equivariant network by con-
struction. It does not require the Lie group to be compact.
However, the LN-ReLU layer relies on a non-degenerated
Killing form, which limits the operation on semisimple Lie
algebras for such a layer. For general Lie groups, the ad-

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Table 5. The accuracy of the Platonic solid classification task using
the inter-face homography transforms in the image plane as inputs.
1 means the higher, the better.

Model Num Params Acc T Acc (Rotated) T

AVG STD AVG STD
MLP 206,339 95.76% 0.65% 36.54% 0.99%
MLP Augmentation 206,339 81.47% 0.77% 81.20% 2.34%
LN-LR 134,664 99.56% 0.23% 99.51% 0.28%
LN-LB 200,200 99.14% 0.21% 98.78% 0.49%
LN-LR + LN-LB 331,272 99.62% 0.25% 99.61% 0.14%

joint representation might not be irreducible. As a result,
the linear layer may not cover all equivariant maps. How-
ever, given the complex representation theory of semisimple
groups, we use the current linear layer design and increase
flexibility with various nonlinear layers. The current mixing
module only works for sa(n). Nevertheless, we conjecture
it is possible to extend to any semi-simple Lie algebra, as
discussed in Section 4.3. Lie Neurons take elements in the
Lie algebra as inputs, but most modern sensors return mea-
surements in standard vector spaces. Finding equivariant
lifts from the measurement space to the Lie algebraic space
is an important future work. Lastly, this work assumes a
basis can be found for the target Lie algebra, which is valid
for many robotics and computer vision applications.

7. Conclusion

In this paper, we propose an adjoint-equivariant network,
Lie Neurons, that models functions of Lie algebra elements.
Our model is generally applicable to any semisimple Lie
groups, compact or non-compact. Generalizing the Vector
Neurons architecture, our network possesses simple MLP-
style layers and can be viewed as a Lie algebraic extension
to the MLP. To facilitate the learning of expressive Lie alge-
braic features, we propose equivariant nonlinear activation
functions based on the Killing form and the Lie bracket. We
also design an equivariant pooling layer and an invariant
layer to extract global equivariant features and invariant fea-
tures. Furthermore, a geometric mixing layer is proposed
to facilitate information mixing in the geometric dimension,
which was not possible in previous related work.

We demonstrate the effectiveness of the proposed method
on several applications, including function regression on
5p(4), regression of the BCH formula on s0(3), dynamic
modeling of the free-rotating ISS, point cloud registration,
and classification tasks on s[(3). These experiments clearly
show the advantages of an adjoint-equivariant Lie algebraic
network. We believe Lie Neurons could open new possibil-
ities in both equivariant modeling and more general deep
learning on Lie algebras.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments

This work was supported by AFOSR MURI FA9550-23-1-
0400.

References

Barrau, A. and Bonnabel, S. The invariant extended Kalman filter
as a stable observer. IEEE Transactions on Automatic Control,
62(4):1797-1812, 2017.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P.,
Kornbluth, M., Molinari, N., Smidt, T. E., and Kozinsky, B.
E(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature communications, 13(1):
1-11, 2022.

Bekkers, E. J. B-spline cnns on lie groups. In International
Conference on Learning Representations, 2019.

Bloch, A., Krishnaprasad, P., Marsden, J. E., and Ratiu, T. S.
The euler-poincaré equations and double bracket dissipation.
Communications in mathematical physics, 175(1):1-42, 1996.

Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E., and
Welling, M. Geometric and physical quantities improve E(3)
equivariant message passing. arXiv preprint arXiv:2110.02905,
2021.

Chatzipantazis, E., Pertigkiozoglou, S., Dobriban, E., and Dani-
ilidis, K. Se (3)-equivariant attention networks for shape re-
construction in function space. In The Eleventh International
Conference on Learning Representations, 2022.

Chauchat, P., Barrau, A., and Bonnabel, S. Invariant smoothing
on lie groups. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1703-1710. IEEE,
2018.

Chen, H., Liu, S., Chen, W., Li, H., and Hill, R. Equivariant point
network for 3D point cloud analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 14514-14523, 2021.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K.
Neural ordinary differential equations. Advances in neural
information processing systems, 31, 2018.

Chirikjian, G. S. Stochastic models, information theory, and Lie
groups, volume 2: Analytic methods and modern applications,
volume 2. Springer Science & Business Media, 2011.

Cohen, T. and Welling, M. Group equivariant convolutional net-
works. In Proceedings of the International Conference on Ma-
chine Learning, pp. 2990-2999. PMLR, 2016a.

Cohen, T., Geiger, M., Kohler, J., and Welling, M. Con-
volutional networks for spherical signals. arXiv preprint
arXiv:1709.04893, 2017.

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Cohen, T. S. and Welling, M. Steerable cnns. In International
Conference on Learning Representations, 2016b.

Cohen, T. S., Geiger, M., and Weiler, M. A general theory of
equivariant CNNs on homogeneous spaces. Proceedings of the
Advances in Neural Information Processing Systems Confer-
ence, 32, 2019.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi, A., and
Guibas, L. J. Vector neurons: A general framework for SO(3)-
equivariant networks. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 12200-12209, 2021.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. Gener-
alizing convolutional neural networks for equivariance to Lie
groups on arbitrary continuous data. In Proceedings of the In-
ternational Conference on Machine Learning, pp. 3165-3176.
PMLR, 2020.

Finzi, M., Welling, M., and Wilson, A. G. A practical method
for constructing equivariant multilayer perceptrons for arbitrary
matrix groups. In Proceedings of the International Conference
on Machine Learning, pp. 3318-3328. PMLR, 2021.

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. SE(3)-
transformers: 3D roto-translation equivariant attention networks.
Proceedings of the Advances in Neural Information Processing
Systems Conference, 33:1970-1981, 2020.

Geiger, M. and Smidt, T. e3nn: Euclidean neural networks. arXiv
preprint arXiv:2207.09453, 2022.

Ghaffari, M., Zhang, R., Zhu, M., Lin, C. E., Lin, T.-Y., Teng, S.,
Li, T., Liu, T., and Song, J. Progress in symmetry preserving
robot perception and control through geometry and learning.
Frontiers in Robotics and Al, 9:969380, 2022.

Guggenheimer, H. W. Differential geometry. Courier Corporation,
2012.

Hall, B. C. Lie groups, Lie algebras, and representations. Springer,
2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770-778, 2016.

Hoogeboom, E., Peters, J. W., Cohen, T. S., and Welling, M. Hexa-
Conv. In International Conference on Learning Representations,
2018.

Hua, M.-D., Trumpf, J., Hamel, T., Mahony, R., and Morin, P.
Nonlinear observer design on SL(3) for homography estimation
by exploiting point and line correspondences with application
to image stabilization. Automatica, 115:108858, 2020.

Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E., Teh, Y. W.,
and Kim, H. LieTransformer: Equivariant self-attention for
Lie groups. In Proceedings of the International Conference on
Machine Learning, pp. 4533-4543. PMLR, 2021.

Kirillov, A. A. An introduction to Lie groups and Lie algebras,
volume 113. Cambridge University Press, 2008.

Knigge, D. M., Romero, D. W., and Bekkers, E. J. Exploiting
redundancy: Separable group convolutional networks on lie

groups. In International Conference on Machine Learning, pp.
11359-11386. PMLR, 2022.

10

Kobilarov, M. B. and Marsden, J. E. Discrete geometric optimal
control on lie groups. IEEE Transactions on Robotics, 27(4):
641-655, 2011.

Kondor, R. and Trivedi, S. On the generalization of equivariance
and convolution in neural networks to the action of compact
groups. In Proceedings of the International Conference on
Machine Learning, pp. 2747-2755. PMLR, 2018.

Lang, L. and Weiler, M. A Wigner-Eckart theorem for group equiv-
ariant convolution kernels. arXiv preprint arXiv:2010.10952,
2020.

Li, X., Li, R., Chen, G., Fu, C.-W., Cohen-Or, D., and Heng, P-A.
A rotation-invariant framework for deep point cloud analysis.
IEEE Transactions on Visualization and Computer Graphics,
28(12):4503-4514, 2021.

Lin, C. E., Song, J., Zhang, R., Zhu, M., and Ghaffari, M. SE(3)-
equivariant point cloud-based place recognition. In Proceedings
of the Conference on Robot Learning, pp. 1520-1530. PMLR,
2023a.

Lin, T.-Y., Zhang, R., Yu, J., and Ghaffari, M. Legged robot state
estimation using invariant kalman filtering and learned contact
events. In Conference on Robot Learning, pp. 1057-1066.
PMLR, 2022.

Lin, T.-Y., Li, T., Tong, W., and Ghaffari, M. Proprioceptive in-
variant robot state estimation. arXiv preprint arXiv:2311.04320,
2023b.

Liu, Y., Hel-Or, H., Kaplan, C. S., Van Gool, L., et al. Compu-
tational symmetry in computer vision and computer graphics.
Foundations and Trends® in Computer Graphics and Vision, 5
(1-2):1-195, 2010.

Lynch, K. M. and Park, F. C. Modern robotics. Cambridge Uni-
versity Press, 2017.

MacDonald, L. E., Ramasinghe, S., and Lucey, S. Enabling equiv-
ariance for arbitrary Lie groups. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
8183-8192, 2022.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. Invariant
and equivariant graph networks. In International Conference
on Learning Representations, 2018.

Mironenco, M. and Forré, P. Lie group decompositions for equiv-
ariant neural networks. In The Twelfth International Conference
on Learning Representations, 2023.

Murray, R. M., Li, Z., Sastry, S. S., and Sastry, S. S. A mathemati-
cal introduction to robotic manipulation. CRC press, 1994.

Rossmann, W. Lie groups: an introduction through linear groups,
volume 5. Oxford University Press, USA, 2006.

Teng, S., Clark, W., Bloch, A., Vasudevan, R., and Ghaffari, M.
Lie algebraic cost function design for control on Lie groups. In
Proceedings of the IEEE Conference on Decision and Control,
pp. 1867-1874. IEEE, 2022.

the National Aeronautics and Space Administration. On-orbit
assembly, modeling, and mass properties data book volume i,
2002.

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K.,
and Riley, P. Tensor field networks: Rotation-and translation-
equivariant neural networks for 3D point clouds. arXiv preprint
arXiv:1802.08219, 2018.

van Goor, P., Hamel, T., and Mahony, R. Equivariant filter (EqF):
A general filter design for systems on homogeneous spaces. In

Proceedings of the IEEE Conference on Decision and Control,
pp- 5401-5408. IEEE, 2020.

Weiler, M. and Cesa, G. General E(2)-equivariant steerable CNNs.
Proceedings of the Advances in Neural Information Processing
Systems Conference, 32, 2019.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen,
T. S. 3D steerable CNNs: Learning rotationally equivariant
features in volumetric data. Proceedings of the Advances in
Neural Information Processing Systems Conference, 31, 2018.

Winkels, M. and Cohen, T. S. 3D G-CNNs for pulmonary nodule
detection. arXiv preprint arXiv:1804.04656, 2018.

Winternitz, P. Subalgebras of Lie algebras. example of sl(3,R). In
Centre de Recherches Mathématiques CRM Proceedings and
Lecture Notes, volume 34, 2004.

Worrall, D. and Brostow, G. CubeNet: Equivariance to 3D rotation
and translation. In Proceedings of the European Conference on
Computer Vision, pp. 567-584, 2018.

Worrall, D. and Welling, M. Deep scale-spaces: Equivariance
over scale. Proceedings of the Advances in Neural Information
Processing Systems Conference, 32, 2019.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow,
G. J. Harmonic networks: Deep translation and rotation equiv-
ariance. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5028-5037, 2017.

11

Xu, Y., Lei, J., Dobriban, E., and Daniilidis, K. Unified Fourier-
based kernel and nonlinearity design for equivariant networks
on homogeneous spaces. In Proceedings of the International
Conference on Machine Learning, pp. 24596-24614. PMLR,
2022.

Yang, X., Jia, X., Gong, D., Yan, D.-M., Li, Z., and Liu, W.
LARNet: Lie algebra residual network for face recognition.
In Proceedings of the International Conference on Machine
Learning, pp. 11738-11750. PMLR, 2021.

Yoon, Z., Kim, J.-H., and Park, H.-W. Invariant smoother for
legged robot state estimation with dynamic contact event infor-
mation. IEEE Transactions on Robotics, 2023.

Zhan, X., Li, Y., Liu, W., and Zhu, J. Warped convolution networks
for homography estimation. arXiv preprint arXiv:2206.11657,
2022.

Zheng, X., Sun, H., Lu, X., and Xie, W. Rotation-invariant at-
tention network for hyperspectral image classification. /IEEE
Transactions on Image Processing, 31:4251-4265, 2022.

Zhu, M., Ghaffari, M., and Peng, H. Correspondence-free point
cloud registration with SO(3)-equivariant implicit shape repre-
sentations. In Proceedings of the Conference on Robot Learning,
pp- 1412-1422. PMLR, 2022.

Zhu, M., Ghaffari, M., Clark, W. A., and Peng, H. E2PN: Efficient
SE(3)-equivariant point network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
1223-1232, 2023a.

Zhu, M., Han, S., Cai, H., Borse, S., Ghaffari, M., and Porikli,
F. 4d panoptic segmentation as invariant and equivariant field
prediction. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 22488-22498, 2023b.

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

A. Additional Preliminaries
A.1. The Hat and Vee Operator

As introduced in Section 3, the Hat and Vee operators can be defined as (Chirikjian, 2011):

m
Vee :g — R™, 2" (") = Zmiei7
i=1
m
Hat :R™ — g, 22" = inEi,
i=1

where E; =€ g are linear independent basis in g, and e; are the canonical basis of R™.

0 —w. wy
For example, the s0(3) elements are skew-symmetric, | w, 0 —wy| €50(3). One can find the canonical basis as
—Wy Wy 0
follows:
0 0 O 0 0 1 0 -1 0
E,=|0 0 —-1|,E,=1]0 0 O0|,F.=|1 0 0f . 25)
0 1 O -1 0 O 0O 0 O
0 —Ww, Wy
With | w, 0 —wy| €s50(3), we have
—Wy Wy 0
0 —w, Wy
W=\ w, 0 — Wy (26)
—Wwy Wy 0
=we By +w By +w. E, 27
=", (28)
WY =v= [ww,wy,wz]T. (29)

Using the Hat and Vee maps, we can represent an element of the Lie algebra in a neural network using R™, while performing
structure-preserving operations on g. In this work, we use the basis of s0(3) in (25), and s((3) from (Winternitz, 2004) to
construct the Hat and Vee maps.

B. An Illustration of the Proposed Work

Figure 4 shows the comparison between existing equivariant networks and our work. The existing equivariant networks take
in vectors in R™ and are equivariant to the left action of a group. Our adjoint equivariant network takes elements in the Lie
algebra as inputs and is equivariant to the adjoint action, which corresponds to a change of basis operation.

C. Implementation Details

Figure 5 shows the different architecture used in each experiment. For the hyperparameter used in each experiment, we
kindly refer the readers to the open-sourced GitHub repository: https://github.com/UMich-CURLY/LieNeurons.

C.1. Baker-Campbell-Hausdorff Formula

The Lie Neurons structure used in the BCH experiments is shown in Figre 5. It consists of two LN-LB+LN-LR layers. The
feature dimension of each layer is set to 1024, while the last linear layer projects the features back to dimension 3.

For Vector Neurons, we maintain the same architecture as Lie Neurons while changing all the LN-LB to the ReLU layer
from VN. The feature dimension is also set to 1024.

12

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

@8 Underlying objects
g = [} @8 Observations (input data)
nxn ‘ @8 Change of basis

nxn

Existing equivariant networks Our adjoint-equivariant network

Figure 4. Comparison between existing equivariant networks and our work. The existing equivariant networks take in vectors in R™ and
are equivariant to the left action of a group. Our adjoint equivariant network takes elements in the Lie algebra as inputs and is equivariant
to the adjoint action, which corresponds to a change of basis operation.

For EMLP, we construct 3 EMLP blocks, each consisting of a linear layer, a bilinear layer, and a gated nonlinearity. The
channel size is set to 128 for each block. (We were unable to increase the feature dimension due to memory complexity.)
The input representation is set to two 3 x 1 vectors with respect to SO(3), and the output representation is set to one 3 x 1
vector with respect to SO(3).

To construct an e3nn network for comparison, we use equivariant linear layers, batch normalization layers, and activation
layers from the library. We experiment with both norm-based activation layers and spherical point-wise activation layers. We
use type-0 to type-4 features in the hidden layers. We tune the hyperparameters with different choices of depth and feature
dimensions. The reported result is using 6 linear-batchnorm-norm-based-activation layers. The network size is comparable
to other networks in the comparison. In our experiment, the performance of e3nn is similar to Vector Neurons, both of
which cannot successfully regress the BCH formula. It is possible that e3nn might be able to achieve better performance by
designing more complicated architectures, nonlinearities, and further tuning the hyperparameters, but the experiment still
confirms the superiority of our proposed LN model in this equivariant regression task on so(3) algebra.

C.2. Dynamic Modeling

When a change of reference frame is performed to a dynamical system, w undergoes a left rotation action, while the inertia
tensor undergoes a change of basis action. That is RI R~*. The equivariance of the system can be shown using the following
derivation:

flw, 1) = T wx Iw) = T w]x Tw, (30)

where []x means skew symmetric form. Here we are using the fact that the cross product can be replaced with a skew
symmetric matrix multiplication. By using [Rw]x = R[w]«x R~!, we can have

f(Rw;RIR™") = —RI"'R™!(Rw) x RIR ' Rw (31)
= —RI"'R'Rw]xR'RIR'Rw (32)
= —RI"'w]xIw = Rf(w,I) (33)

This means that the symmetry of the system itself is with respect to both w and I. If we force the network to learn the
dynamics using only w as the input, we cannot correctly capture the symmetry of the system. As a result, we introduce m as
steerable and learnable weights as additional input elements. During test time, the weights m are fixed. When we rotate the
system, we apply the same rotation on m. Since m is introduced to address equivariance with respect to the inertia tensor, it
can be viewed as an implicit representation of the inertia tensor. As shown in Figure 5, the learnable weights m pass through

13

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Invariant Regression Equivariant Regression Platonic Solid Classification BCH Regression Learning Dynamics

2] -]

IN-LR IN-LB IN-LRLN-LB 2INLR 2LN-LB A LN-LR IN-LB LN-LRLN-LB m X
ﬂl ﬂl = ﬂl u m ~ en ﬁ* :
- " - - - - u - S .
u ‘ = ~ - — - Lpr.mg

: m " ~ ~ ‘

Figure 5. The network architecture used in each experiment.

two branches of LN—-LR layers. After such, they are mixed with the input data x in a bracket layer. For each layer, we set the
feature dimension as 20.

For the baseline EMLP (Finzi et al., 2021), we introduce the learnable weights m as three 3 x 1 vectors to the system input
to serve as the implicit representation of the inertia tensor. We construct 3 EMLP blocks, each consisting of a linear layer, a
bilinear layer, and a gated nonlinearity. The channel size is set to 128 for each block. The input representation is set to four
3 x 1 vectors with respect to SO(3) (a measurement x and three 3 x 1 vectors for m.), and the output representation is set
to one 3 x 1 vector with respect to SO(3).

C.3. Point Cloud Registration

We modified the open-sourced implementation provided in Zhu et al. (2022) for the point cloud registration task. 3 The
inputs are two noisy point clouds with different orientations. The goal of the network is to regress an SO(3) rotation that
best aligns the two point clouds in a correspondence-free manner. We corrupt both the training and testing data using
Gaussian noise with a standard deviation of 0.01 after normalizing the point cloud to a unit cube. The initial rotation is
sampled from (0,180) degrees randomly. Similar to Zhu et al. (2022), we use PointNet as the encoder backbone for the
network, and we replace the Vector Neurons modules with the Lie Neurons modules. In addition to Lie Neurons, we test the
effect of the mixing layers with Vector Neurons. For that, we add the mixing layers before each ReLU in the original Vector
Neurons while keeping the rest of the structure untouched.

C.4. Platonic Classification

The architectures used in this experiment are shown in Figure 5. Since classification is an invariant task, an invariant layer
is attached to the end of each model. The feature dimension is set to 256 for each layer of the models. We compare our
method with a standard 3-layer MLP, in which we also set the feature dimension to 256.

D. Additional Experiments on s((3)

We present two additional experiments on s[(3), in which we ask the network to regress an invariant and an equivariant
function. Across both experiments, we compare our method with a standard 3-layer MLP by flattening the input to R *¢*N
In addition, we set the feature dimension to 256 for all models.

3We modified the open-sourced code from https://github.com/minghanz/EquivReg.

14

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Table 6. The mean squared errors and the invariant errors on the s[(3) invariant function regression task. | means the lower the better.

Testing Augmentation |

‘ Training ‘ ‘ Equivariance Error

Model | Augmentation | Num Params | Id SL(3) |
| | | AVGl STD | AVGl STD | AVG) STD
MLP Id 136,193 0.148 0.005 6.493 1.282 1.415 0.113
MLP SL(3) 136,193 0.201 0.01 1.119 0.018 0.683 0.006
LN-LR Id 66,562 130 x 1072 324 x107° | 130 x 107 325 x107° | 3.60x 107* 548 x 107°
LN-LB Id 132,098 0.557 1.87 x 1074 0.557 1.87 x 107* | 1.43 x107° 1.42x107¢
LN-LR + LN-LB 1d 263,170 8.84x107% 252x107° | 8.84x10™* 249x107° 4.00x107% 0

D.1. Invariant Function Regression

We begin our evaluation with an invariant function fitting experiment. Given X,Y" € sl(3), we ask the network to regress
the following function:

r 3
9(X,Y) =sin(tr(XY)) + cos(tr(YY)) - @ "

+ det(XY) + exp(tr(X X)).

We randomly generate 10, 000 training samples and 10, 000 testing samples. In addition, in order to evaluate the invariance
of the learned network, we randomly apply 500 group adjoint actions to each test sample to generate augmented testing data.

In this task, we experiment with three different modules, LN-LR, LN-LB, and LN-LR + LN-LB, each followed by an
LN-Inv and a final linear mapping from the feature dimension to a scalar. For each input, we concatenate X and Y in the
feature dimension and have X € REXCXN — R8x2X1 We additionally train the MLP with augmented data to serve as a
stronger baseline.

To show the performance consistency, we train each model 5 separate times and calculate the mean and standard deviation

of the performance. We report the Mean Squared Error (MSE) and the invariance error in Table 6. The invariance error Fi,y,

is defined as:

b i S () — faXie)
mv = NmNa

) (35)

where a € SL(3) are the randomly generated adjoint actions, N, is the number of testing points, and N, is the number of
conjugations. The invariance error measures the extent to which the model is invariant to the adjoint action.

From the table, we see that the LN outperforms MLP except for LN-LB. When tested on the SL(3) augmented test set, the
performance of the LN remains consistent, while the error from the MLP increases significantly. The results of the invariance
error demonstrate that the proposed method is invariant to the adjoint action while the MLP is not. Data augmentation
helps MLP to perform better in the augmented test set, but at the cost of worse Id test set performance, and the overall
performance still lags behind our equivariant models. In this experiment, we observe that LN-LR performs well on the
invariant task, but the LN-LB alone does not. Nevertheless, if we combine both nonlinearities, the performance remains
competitive.

We additionally provide the training curves in Figure 6 to analyze the convergence property of the proposed network. We
can see that the proposed method converges faster than the MLP, which indicates it is more data efficient. In addition, the
MLP overfits to the training set and underperforms on the test set, while our method remains consistent.

D.2. Equivariant Function Regression

In the second experiment, we ask the network to fit an equivariant function that takes two elements on s[(3) back to itself:
h(X,Y) = [[X,Y],Y] + [V, X]. (36)

Similar to the first experiment, we generate 10, 000 training and test samples, as well as the additional 500 adjoint actions

on the test set. For this task, we also train each model separately 5 times to analyze the consistency of the proposed method.
We again report the MSE on the regular test set. For the adjoint-augmented test set, we map the output back with the inverse

15

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Table 7. The mean squared errors and the equivariant errors in s[(3) equivariant function regression.

Testing Augmentation |

‘ Training ‘ ‘

S, Invariance Error
Model | Augmentation | Num Params | Id SL(3) |

| | | AVG | STD | AVGl STD | AVGl STD

MLP Id 538,120 0.011 3.53%x1074 1318 7.08x1072 0.424 0.003

MLP SL(3) 538,120 0.033 2.86x107% 0.452 1.01x1072 0.389 0.001
2 LN-LR Id 197,376 0.213 4.07x107° 0.213 4.08x107° 9.32x107°% 6.65x1076
2 LN-LB Id 328,448 9.83x 1071 1.78x107! | 455 x107®% 8.65x107!! | 6.56 x 10°° 4.22x107"
2 LN-LR + 2 LN-LB Id 590,592 7.65%x107° 3.54x10710 | 541x107% 4.08x107'° | 7.67x107° 1.56x107°

Table 8. The ablation study of the Lie bracket layer in all three tasks. LN-LBN denotes the Lie bracket layer without the residual
connection.

| 5[(3) Invariant Regression | 5[(3) Equivariant Regression | Platonic Solid -Classification

| MSEl MSESL(3) | Eiw | | MSE | MSE SL(3) | Fequiv 4 | Acct Acc (Rotated) 1
LN-LB 0.558 0.558 49%x107° [96x101° 45x10°° 65x10° | 0.986 0.979
LN-LBN | 4.838 4.838 2.4x107° 0.276 0.276 2.7 x107% | 0.967 0.959

adjoint action and compute the MSE with the ground truth value. To evaluate the equivariance of the network, we compute
the equivariance error Feqy as:

Y Y af(Xayt — fa;Xiag)

Brquv = - (37)

In this experiment, we evaluate LN using 3 different architectures. They are 2 LN-LR, 2 LN-LB, and 2 LN-LR + 2 LN-LB,
respectively. Each of them is followed by a regular linear layer to map the feature dimension back to 1.

Table 7 lists the results of the equivariant experiment. We see that the MLP performs well on the regular test set but
fails to generalize to the augmented data. Moreover, it has a high equivariance error. Similar to the invariant task, data
augmentation improves the MLP’s performance on the augmented test set, but at the cost of worse /d test set performance,
and the overall performance still lags behind our equivariant models. Our methods, on the other hand, generalize well on the
adjoint-augmented data and achieve the lowest errors. The 2 LN-LB model performs the best.

The training curves of this experiment is shown in Figure 6. The proposed network converges much faster than the MLP,
which again demonstrates the data efficiency of the equivariant method.

From both the invariant and equivariant experiments, we observe that the LN-LR module works better on invariant tasks,
while the LN-LB module performs better on the equivariant ones. We speculate this is because the LN-LR relies on the
Killing form, which is an adjoint-invariant function, while the LN-LB leverages the Lie bracket, which is adjoint-equivariant.
Nevertheless, if we combine both modules, the network performs favorably on both invariant and equivariant tasks.

E. Ablation Study on Skipping Connection in the Bracket Layer

We introduce the LN-Bracket layer in Section 4.2.2 and discuss how the residual connection improves the performance.
In this subsection, we perform ablation studies on an alternative Lie bracket nonlinear layer design without the residual
connection. That is, fiNBrackerN(X) = [(xU)", (xV)"]Y. We denote this nonlinear layer combined with an LN-Linear
as LN-LBN and show the results of this method in Table 8. From the table, we can clearly see the benefits of having the
residual connection in the Lie bracket layer.

F. Training Curves

We present the training curves for the s((3) invariance and equivariance regression tasks in Figure 6. In both tasks, LN
converges faster than MLPs, showing the data efficiency of the proposed method.

16

Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Invariant Regression Equivariant Regression
Training Loss Training Loss

1 T

i
9]
n 0.6 1)
S & 02 J
w 0.4 i
& @ 0.1 1
0.2 =
0
ol
0 100 200 300 400 -0'10 100 260 300 400
1 ‘ Validativon Loss ' 04 Validation Loss
0.8 1 0.3l J
%) L] wn
§0'6 § 0.2 1
th 04] @ 0.1]
2 .
0.2 =
0
ol
: : ‘ 0.1 :
0 100 200 300 400 0 100 200 300 400
Epochs Epochs

Figure 6. The training curves of the MLP and the proposed method. We can see that in both invariant and equivariant regression tasks, our
equivariant model converges much faster than MLPs, showing the data efficiency of our method.

17

