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ABSTRACT

Diffusion-based samplers learn to sample complex, high-dimensional distribu-
tions using energies or log densities alone, without training data. Yet, they
remain impractical for molecular sampling because they are often slower than
molecular dynamics and miss thermodynamically relevant modes. Inspired by
enhanced sampling, we encourage exploration by introducing a sequential bias
along bespoke, information-rich, low-dimensional projections of atomic coordi-
nates known as collective variables (CVs). We introduce a repulsive potential
centered on the CVs from recent samples, which pushes future samples towards
novel CV regions and effectively increases the temperature in the projected space.
Our resulting method improves efficiency, mode discovery, enables the estimation
of free energy differences, and retains independent sampling from the approximate
Boltzmann distribution via reweighting by the bias. On standard peptide confor-
mational sampling benchmarks, the method recovers diverse conformational states
and accurate free energy profiles. We are the first to demonstrate reactive sampling
using a diffusion-based sampler, capturing bond breaking and formation with uni-
versal interatomic potentials at near-first-principles accuracy. The approach re-
solves reactive energy landscapes at a fraction of the wall-clock time of standard
sampling methods, advancing diffusion-based sampling towards practical use in
molecular sciences.

1 INTRODUCTION

A central goal of statistical mechanics simulations is to estimate macroscopic thermodynamic prop-
erties, such as the energy released in a chemical transformation. These simulations typically employ
molecular dynamics (MD) or Markov chain Monte Carlo (MCMC), which propagate an atomic
structure forward in time or along a chain using energies from quantum mechanical calculations or
their approximations (Marx & Hutter, 2000; Frenkel & Smit, 2023; Jacobs et al., 2025). Over long
times, the distribution of states converges to the Boltzmann distribution ν(x) ∝ exp(−u(x)), where
the reduced energy u encodes the chemical system, temperature, and other thermodynamic vari-
ables. Sampling from this distribution is deceptively difficult, despite having access to its explicit
unnormalized form, due to the large number of possible atomic configurations and the high en-
ergy barriers separating them. Straightforward MD or MCMC often requires an impractically large
number of sequential energy evaluations to capture conformational changes or chemical reactions.

Machine learning (ML)-based samplers attempt to bypass dynamics by reformulating sampling as
statistical inference on the Boltzmann distribution, using its log-likelihood to draw independent and
identically distributed (i.i.d.) samples. Early work focused on normalizing flows (Noé et al., 2019),
while recent approaches employ diffusion-based samplers that steer stochastic differential equations
(SDEs) whose trajectories yield samples consistent with the target distribution (Zhang & Chen,
2021; Vargas et al., 2023a; Havens et al., 2025).1 Although training can amortize effort across mul-
tiple draws, these methods do not inherently reduce the number of energy evaluations required to
obtain accurate equilibrium statistics compared to MD-based approaches (He et al., 2025). Directly
applying diffusion samplers faces a well-known pitfall of mode collapse, where training and sam-
pling concentrate on high-probability basins while underrepresenting rare but thermodynamically
important states. This issue is not only about exploration but also about statistics, since reliable free

1More information about neural and diffusion-based samplers can be found in Appendix A.2.
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energies and ensemble averages depend critically on assigning correct weights to rare configura-
tions, which may be exponentially small. Thus, successful sampling must both reach low-occupancy
modes and attribute the correct equilibrium weights to them.

Prior

Well-Tempered Bias Update

Reweighting

Local Sampling

Samples

Energy
landscape

Energy-Based
Diffusion Sampler Training

Sampling and
Free Energies

Data-Based
Pretraining

Boltzmann ensemble
from weighted samples

Free energy landscape
(PMF) from bias

Figure 1: Scheme for neural enhanced sampling. (Left) Local sampling and pretraining near the reference
configuration. (Middle) Energy-based sampler training with a CV-space bias that is updated online via well-
tempered deposition. (Right) After convergence, the final bias yields the potential of mean force (PMF) along
CVs; also, reweighting recovers the Boltzmann ensemble, including samples and free energy differences.

Inspired by enhanced sampling methods, we augment the diffusion-based sampler with a bias in
collective variable (CV) space. CVs are low-dimensional functions of atomic coordinates that cap-
ture slow, chemically relevant motions and can be chosen from common system characteristics (e.g.,
bond lengths or torsional angles) or identified with ML (Sidky et al., 2020; Bonati et al., 2023). Dur-
ing the training of a diffusion-based sampler, the sampler iteratively proposes configurations and re-
ceives feedback from their energies. An additional online repulsive potential is maintained over the
CVs: regions visited more often accumulate higher bias, which raises their effective energy, discour-
aging repeated visits. This flattens free energy barriers over training progress and mitigates collapse
onto dominant modes. At inference, importance weights remove the effect of the bias, ensuring that
ensemble estimates match the target Boltzmann distribution. The result is broader exploration, in-
cluding rare modes, while preserving statistically correct estimates after reweighting. Furthermore,
compared to MD-based enhanced sampling, the diffusion process mixes more efficiently within the
biased distribution, enabling faster exploration. Our contributions are as follows:

• We propose the Well-Tempered Adjoint Schrödinger Bridge Sampler (WT-ASBS), which aug-
ments the state-of-the-art diffusion-based sampler ASBS (Liu et al., 2025) with a biasing mech-
anism inspired by well-tempered metadynamics (WTMetaD, Barducci et al., 2008), achieving
substantially improved exploration and accurate estimation of free energy differences.

• We develop a protocol for applying WT-ASBS to molecular systems, demonstrating (i) accurate
sampling of peptide conformations in Cartesian coordinates, where the baseline method fails; and
(ii) the first diffusion-based sampling of reactive landscapes, achieving shorter wall-clock times
than WTMetaD. This establishes a new practical role for diffusion-based samplers in chemistry.

2 BACKGROUND

2.1 MOLECULAR SAMPLING

Problem setup In the configurational space X ⊆ Rn×3 for n atoms with elemental identities
a ∈ En with a set of element types E , the potential energy function E : X × En → R defines the
Boltzmann distribution at inverse temperature β = 1/kBT as ν(x; a) ∝ exp(−βE(x; a)). In molec-
ular simulations, the central challenge is to generate configurations representative of the underlying
free energy landscape that describes the relative stability and likelihood of different molecular con-
figurations. Three main downstream applications motivate this task: (i) obtaining a diverse and
statistically meaningful set of configurations for structural analysis, (ii) accurately computing free
energy differences between relevant states, and (iii) uncovering transition mechanisms that govern
rare events that are nevertheless thermodynamically essential. For notational convenience, we omit
elemental identities after this paragraph and write E(x) and ν(x).
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One rarely aims to sample the entirety of X in practice because it includes all configurations con-
sistent with the chosen composition and potential energy function. Instead, sampling is naturally
restricted to an accessible component A ⊂ X that is kinetically connected to a reference conformer
xref ∈ X on the timescales of interest at temperature T by physics. In molecular conformational
sampling, A implies configurations that preserve the bond topology of xref. If one included bond
reorganizations occurring on longer timescales (hours to days), A would have to grow to include
these states. This restriction ensures that the ensemble reflects the connected set of metastable states
and transition pathways relevant to the molecular process of interest, while excluding kinetically
inaccessible or chemically irrelevant configurations, such as incorrect molecular chirality.

While basic sampling algorithms aim to produce i.i.d. samples from ν(x), the exponential depen-
dence of probabilities on E(x) leads to significant undersampling of low-population modes even
at moderate energy differences. This is especially important when high-energy transition configu-
rations are being studied. Consequently, many effective schemes for molecular sampling generate
weighted samples {(Xi,Wi)}Ni=1 with Xi ∈ A and Wi ≥ 0, obtained for example via biased simu-
lations with reweighting. For any bounded observable f : X → R, the self-normalized estimator

ν̂n(f) =
∑N

i=1 Wif(Xi)∑N
i=1 Wi

N→∞−−−−→ Eν [f(X) |X ∈ A] (1)

recovers expectations under the Boltzmann ensemble restricted to A. We now summarize the re-
quirements and discuss the practical realization of these:

1. Restricted Support: Sampling is confined to the relevant metastable state and transitions.
Configurations in X \ A are not produced or receive zero weight.

2. Consistency: The reweighted ensemble converges to the Boltzmann ensemble on A, i.e.,
convergence in Eq. (1) holds for all bounded f .

3. Local Efficiency: Within any chemically relevant region of A, the procedure yields suffi-
cient sample diversity to estimate observables and capture transition mechanisms.

Requirement 1: Restrained sampling Membership in A is governed by the free energy barriers
that separate modes, not by the stability (state free energies) of individual modes. When sampling
is performed by emulating physical dynamics (e.g., MD), high barriers suppress transitions and
trajectories remain within A by construction. For sampling procedures that do not generate time-
correlated frames, one should enforce the restriction explicitly using restraint potentials that are flat
on A while strongly penalizing X \ A. This confines exploration to the intended modes while al-
lowing efficient coverage within them. Practical considerations are further discussed in Section 3.2.

Requirements 2 and 3: Biasing on the CV space High free energy barriers often align with a
small set of slow coordinates, so unbiased exploration in A can waste effort on fast motions while
undersampling rare but important transitions. CVs address this by mapping configurations to a low-
dimensional space ξ : X → S ⊂ Rm with m ≪ n, that capture functionally relevant degrees
of freedom. Examples include peptide backbone torsions (ϕ, ψ) and the center-of-mass distance
between a protein pocket and its ligand. By steering sampling with a bias that depends only on
s = ξ(x), we enhance explorations across modes while leaving orthogonal fluctuations unchanged.
A bias V (s) yields the unnormalized sampling density νV (x) and importance weights w(x) as

νV (x) ∝ exp[−βE(x)− βV (ξ(x))], (2) w(x) ∝ ν(x)
νV (x) ∝ exp[+βV (ξ(x))], (3)

so unbiased expectations are recovered by the estimator in Eq. (1) with Xi ∼ νV and Wi = w(Xi),
ensuring Requirement 2.

Biasing-based enhanced sampling approaches often construct a bias that raises the effective sam-
pling temperature along CV space, introduced by Barducci et al. (2008) as the well-tempered target
distribution. We first define the CV marginal ν̄(s) and the potential of mean force (PMF) F (s) from
the unbiased CV marginal (defined up to a constant)2 using the Dirac delta function δ:

ν̄V (s) ∝
∫
X νV (x)δ[ξ(x)− s] dx, (4) F (s) := − 1

β log ν̄(s). (5)

2The term PMF for F (s) is used interchangeably with the free energy profile/landscape along the CV.
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Now, given a bias factor γ > 1 that acts as a scale factor for T , we define the well-tempered bias
VWT(s) and the corresponding target distribution νWT(x) from Eq. (2) as

VWT(s) = −(1− 1
γ )F (s), (6) νWT(x) ∝ exp[−βE(x) + β(1− 1

γ )F (ξ(x))], (7)

From Eqs. (4), (5) and (7), the well-tempered CV marginal is ν̄WT(s) ∝ exp[−β
γF (s)] = [ν̄(s)]1/γ ,

which shows that the sampled CV behaves as if at a higher effective temperature Teff = γT (βeff =
β/γ), while the orthogonal conditional remains unchanged: νWT(x | ξ(x) = s) = ν(x | ξ(x) = s).
This selective increase in sampling temperature along the CV satisfies Requirement 3. To construct
VWT on-the-fly during simulation, one can stack Gaussian kernels (Barducci et al., 2008), use a
kernel density estimator (Invernizzi & Parrinello, 2020), or obtain the bias variationally (Valsson &
Parrinello, 2014; Bonati et al., 2019).

Mode exploration Requirement 2 is sometimes relaxed so that we generate samples uniformly
across modes without weighting. This is a practically relevant setting that emphasizes capturing the
diversity of metastable modes rather than reproducing their exact Boltzmann probabilities. Mode
exploration is the usual objective of data-driven generative models for molecular conformations
(Jing et al., 2022), protein structures (Watson et al., 2023), and crystalline materials (Jiao et al., 2023;
Miller et al., 2024), which are trained to approximate the empirical distribution of representative
structures extracted from exploratory simulations or experimental data without Boltzmann weights.

2.2 DIFFUSION-BASED NEURAL SAMPLERS

Neural samplers Diffusion-based neural samplers learn a control vector field that steers a stochas-
tic process to gradually transform noise into a target distribution, typically specified by an unnormal-
ized density or energy function. Unlike iterative generative methods trained on data from implicitly
defined distributions (Sohl-Dickstein et al., 2015; Ho et al., 2020; Lipman et al., 2022; Albergo et al.,
2023), neural samplers can generate samples by querying the energy alone. This ability is especially
relevant for Boltzmann distributions (Zhang & Chen, 2021; Berner et al., 2022; Vargas et al., 2023a;
Havens et al., 2025). More information about neural samplers is provided in Appendix A.2.

Adjoint Schrödinger Bridge Sampler (ASBS, Liu et al., 2025) ASBS casts Boltzmann sampling
as the Schrödinger Bridge (SB) problem between source µ(X0) and Boltzmann target ν(X1) ∝
exp(−βE(X1)) that seeks the optimal control uθ w.r.t. the path Kullback-Leibler (KL) objective

minuDKL(p
u∥pbase = pu=0) = EX∼pu

[∫ 1

0
1
2∥uθ(Xt, t)∥2 dt

]
, (8)

s.t. dXt = σtuθ(Xt, t) dt+ σt dWt, X0 ∼ µ(X0), X1 ∼ ν(X1), (9)

where σt is the noise schedule, and pu denotes the law of the SDE in Eq. (9).3 ASBS avoids back-
propagating through the SDE during optimization by introducing the parametrized corrector hϕ(X1)
that debiases the effect of endpoint coupling from base distribution to allow the SOC interpretation
of Eq. (8), which can be converted to Adjoint Matching (AM) objective for the drift (Havens et al.,
2025). The corrector is then learned by optimizing the Corrector Matching (CM) objective:

(AM) u = argminu Epbase
t|0,1p

ū
0,1

[∥uθ(Xt, t) + σt(β∇E(X1) + hϕ(X1))∥2], (10)

(CM) h = argminh Epū
0,1

[∥hϕ(X1)−∇X1 log p
base(X1|X0)∥2], (11)

where ū := stopgrad(u). These paired objectives instantiate iterative proportional fitting (IPF,
Kullback, 1968) and converge to the SB solution. The expectations use closed-form base condition-
als, so no target samples or importance weights are needed, which preserves scalability. Further-
more, the control model supports approximate data-based pretraining (see Appendix C).

ASBS achieved strong performance on synthetic potentials and amortized conformer sampling
(mode exploration setting) compared to previous diffusion-based samplers. However, it missed less
populated modes in alanine dipeptide sampling due to its mode-seeking behavior, motivating the
introduction of an enhanced sampling mechanism in this work.

3While the original ASBS formulation is based on SDEs with general drift f(Xt, t) + σtuθ(Xt, t), here
we only consider the driftless base process with f = 0.
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3 METHODS

Now we augment ASBS with a well-tempered bias on a small set of CVs, updated online from
i.i.d. model samples during training, instantiating a neural enhanced sampler that satisfies the re-
quirements in Section 2.1. We first present the WT-ASBS setup and mechanism together with a
convergence guarantee. We then detail practical strategies with data-based pretraining, WT-ASBS
training, and post-training reweighting to recover the Boltzmann ensemble (scheme in Fig. 1).

3.1 WELL-TEMPERED ADJOINT SCHRÖDINGER BRIDGE SAMPLER

Algorithm 1 Well-Tempered Adjoint Schrödinger Bridge Sampler (WT-ASBS)

Require: prior µ, potential energy E(x), CV ξ(x), control uθ(x, t), corrector hϕ(x)
1: Initialize V0(s)← 0
2: for Outer step k = 0, 1, · · · do
3: for Inner step l = 0, 1, · · · do
4: θ ← argminθ Epbase

t|0,1p
ū
0,1

[∥uθ(Xt, t) + σt(β∇(E + Vk ◦ ξ) + hϕ)(X1)∥2] ▷ Adjoint Matching

5: ϕ← argminϕ Epū0,1
[∥hϕ(X1)−∇X1 log p

base(X1|X0)∥2] ▷ Corrector Matching

6: Sample i.i.d. {X(i)
1,k}

N
i=1 ∼ pu1 , s

(i)
k ← ξ(X

(i)
1,k)

7: Vk+1(s)← Vk(s) + h
∑N

i=1 exp(−
β

γ−1
Vk(s

(i)
k )) exp(− ∥s−s

(i)
k

∥2

2σ2 ) ▷ Well-Tempered Bias Update
8: output Final control u∗

θ(x, t), final bias V ∗(s)

Setup and two-time-scale algorithm We implement WT-ASBS with a well-tempered bias update
through stacking Gaussian kernels (Barducci et al., 2008) to reach the well-tempered target Eq. (6).
Let S ⊂ Rm denote a compact CV region of interest, where bias potentials V : S → R are defined
and constructed, which induces the sampling distribution νV (x) ∝ exp[−β(E(x) + V (ξ(x)))].
WT-ASBS presented in Algorithm 1 is executed via a two-time-scale scheme:

1. Inner step (ASBS training). For fixed Vk, train ASBS with energy E + Vk ◦ ξ until conver-
gence so that the marginal distribution at t = 1 equals νVk

.

2. Outer step (well-tempered bias update). Draw a conditionally i.i.d. batch of configurations
from ASBS {X(i)

1,k}Ni=1 ∼ pu1 , project to CV space s(i)k = ξ(X
(i)
1,k), and update

Vk+1(s) = Vk(s) + h
∑N

i=1 exp (−
β

γ−1Vk(s
(i)
k ))Kσ(s, s

(i)
k ), (12)

with fixed height h > 0 and Gaussian kernel Kσ(s, s
′) = exp(−∥s−s′∥2

2σ2 ).

We further establish a convergence guarantee showing that WT-ASBS provably approaches the de-
sired well-tempered distribution under the two-time-scale update scheme (proof in Appendix B.1):

Proposition 3.1 (Convergence of WT-ASBS). When Algorithm 1 is performed until convergence,
the bias potential Vk converges almost surely to V ∗(s) = −(1 − 1

γ )F (s) + const, and hence the
sampled distribution converges to the well-tempered target Eq. (7).

Remark 3.1. Proposition 3.1 ensures that, upon completion of training, the PMF along the CVs can
be recovered up to a constant from the final bias as F (s) = − γ

γ−1V
∗(s) + const.

Practical implementation In practice, AM uses a replay buffer: gradient signals are not computed
directly from samples of pū0,1 with the current uθ, but rather from subsets drawn from stored samples
in the buffer. Assuming the bias deposition per step is small and AM training is efficient enough
for generated samples to follow the current bias closely, we can merge the outer and inner sample
generation steps by updating the bias during AM training. See Appendix C for details.

Although our biasing mechanism mirrors classical MD-based enhanced sampling, neural samplers
like ASBS generate i.i.d. samples from the current distribution, eliminating the need to wait for
decorrelation before bias deposition occurs. This allows us to exploit the bias deposition mechanism

5
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more efficiently to explore the regions of configurational space. We further discuss recent works
that promote exploration by shaping the annealing path or by modifying the learning objective in
Appendix A.2.

3.2 RECIPE FOR EFFICIENT SAMPLING OF MOLECULAR SYSTEMS

Here, we outline three practical ingredients for deploying WT-ASBS to molecular systems.

Warm-start with localized pretraining In this work, we consider a single reference configura-
tion that defines the accessible component A, corresponding to the initial conformer used to start
MD or MCMC chains. Although Algorithm 1 does not require data samples for training, as in the
original ASBS, the model can be pretrained with available samples to warm-start and improve train-
ing efficiency. Accordingly, we perform short MD simulations (local sampling) to generate samples
from the mode containing the reference configuration and apply bridge matching pretraining (Ap-
pendix C) to initialize the control model. During early-stage local conformational exploration with-
out energetic barriers, correlated samplers such as MD or MCMC are more efficient because they
move locally on the energy landscape, unlike diffusion samplers that must transform noise to physi-
cal samples through hundreds of model evaluations for every sample. Since this is only a pretraining
stage, high accuracy is unnecessary, and we can further reduce computational cost by using approx-
imate energy evaluations (e.g., classical force fields), faster sampling settings, or transfer operator
surrogates (e.g., Schreiner et al., 2023) to create the pretraining data.

WT-ASBS training with CVs and restraints Upon adopting ASBS, the algorithm introduces
several additional hyperparameters governing training. The first is the choice of low-dimensional
CVs that defines the space over which modes are explored. CVs may be selected either from chemi-
cal intuition or from topological changes induced by the underlying transformation, as demonstrated
in Section 4. For more complex systems, CVs can also be parameterized by shallow neural net-
works and trained from available conformations (Sidky et al., 2020; Bonati et al., 2023). Other
hyperparameters follow conventions from prior enhanced sampling studies. However, the improved
mode-mixing behavior of diffusion samplers permits the use of smaller γ values, i.e., the effective
temperature along the CVs can be lower. Similarly, the Gaussian height h must be reduced, since
diffusion samplers generate uncorrelated samples and thus deposit bias more frequently.

To satisfy Requirement 1, we use restraint potentials. The specific combination of restraints is
system dependent, but their application can be formalized through the lens of chemical isomerism.
Since which types of isomerism are suppressed under physical conditions is well understood, these
serve as a natural guide (Canfield et al., 2018). We provide a detailed treatment in Appendix A.3, and
here illustrate the idea with chirality inversion in proteins and peptides. The Cα atom of each amino
acid is a chiral center: while both L- and D-configurations exist, nearly all natural amino acids only
adopt the L-configuration. As the energy function does not inherently distinguish mirror-symmetric
configurations, we introduce flat-bottom harmonic potentials on improper torsional angles defining
chirality, thereby biasing sampling toward the physically relevant L-configurations.

Sampling and refinement Remark 3.1 implies that the PMF along the CVs can be recovered
directly from the final bias. While samples stored in the buffer may be analyzed to characterize
configurations associated with specific regions in CV space, to recover the full weighted con-
formational distribution, one can integrate Eq. (9) to generate samples Xi and assign weights
Wi = exp[βV ∗(ξ(Xi))], yielding the self-normalized estimator in Eq. (1). If desired, these samples
can be refined prior to weighting via short MD or MCMC using E + V ∗ ◦ ξ as the energy.

4 EXPERIMENTS

We demonstrate the efficiency of the WT-ASBS pipeline on four molecular sampling tasks involving
peptides and chemical reactions. Since Requirements 1 and 3 are incorporated into the design of the
method, correctness with respect to Requirement 2 ensures that all requirements are satisfied. We
therefore assess whether the empirical PMF, F̂ (s) = − 1

β log ν̂(s) obtained from reweighted samples
Eq. (1) and the PMF from bias (Remark 3.1) agree with those from reference densities. Accuracy is

6
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computed from the PMF by measuring the free energy of state i in conformational states as

Fi = − 1
β log

∫
S exp(−βF (s))1[s ∈ Si] ds + const, (13)

where Si is the CV region of state i. We report free energy differences ∆Fij = Fj − Fi, thereby
removing the additive constant as it is the same for all Si. We compute multi-state errors with a com-
mon offset. Although weighted sampling required by Requirement 3 is best assessed via PMFs and
free energies, we additionally compare with diffusion samplers on alanine dipeptide in Appendix E
using standard distributional metrics. Our main comparisons are with ASBS and WTMetaD.

4.1 CONFORMATIONAL SAMPLING FOR SMALL PEPTIDES

We first benchmark the WT-ASBS method on two widely studied peptide systems, alanine dipeptide
(Ala2; Ace–Ala–Nme) and alanine tetrapeptide (Ala4; Ace–Ala3–Nme), which serve as standard
testbeds for evaluating molecular sampling methods. Both peptides are modeled with a classical
force field with implicit water solvation, with the chirality restraint applied to all Cα atoms (see Ap-
pendix D). In this work, we focus on sampling the full Cartesian coordinates of the molecules.
Although peptides and proteins adopt a broad range of conformations, these arise largely from
the combinatorial organization of local backbone torsional states, specifically the ϕ and ψ angles
(Fig. 2a), as classically illustrated by Ramachandran et al. (1963). Building on this insight, we
demonstrate that energy-based neural samplers can be made effective for sampling peptides directly
in Cartesian space when augmented with biasing along these torsional angles.

b d e f

c

a

Figure 2: Sampling alanine dipeptide. (a) Molecular structure and torsional CVs (ϕ and ψ). (b) Pretraining
data from a short MD simulation. (c) PMF evolution reconstructed from bias during training. (d) PMF from
reweighting. (e) Reference PMF. (f) Convergence of ∆F over training.

Alanine dipeptide (Ala2) We employ ϕ and ψ torsion angles as CVs (Fig. 2a). The conforma-
tional landscape is broadly divided into two states along ϕ (Fig. 2b). Local sampling within the
more populated state is efficient due to the absence of a significant barrier; thus, we easily sample
pretraining data from a short MD simulation in this region. The pretrained model produces samples
restricted to this state. However, once WT-ASBS training begins, the bias deposition progressively
shifts the sampling distribution away from the explored region, enabling the discovery of confor-
mations in the less populated state. Over training progress, the deposition asymptotically converges
to the bias potential required to reproduce the PMF (Fig. 2c). Fig. 2d shows the PMF obtained
from the generated samples of the fully trained model using weights from the final bias. Both the
bias-derived PMF and the reweighted-sample PMF agree closely with the reference PMF (Fig. 2e),
whereas the baseline ASBS fails to reproduce the correct distribution in the less populated region
(Fig. 7). Moreover, compared to the baseline enhanced sampling method (WTMetaD) with the same
bias factor, WT-ASBS achieves convergence of the ∆F between the two states more accurately.

Alanine tetrapeptide (Ala4) As seen in the Ala2 case, the main energetic barriers separating con-
formational states arise from backbone ϕ torsions. We therefore employ three CVs, ϕ1, ϕ2, and ϕ3.

7
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a b Reference data c d

*

Figure 3: Sampling alanine tetrapeptide. (a) Molecular structure and torsional CVs (ϕ1, ϕ2, ϕ3). (b) Refer-
ence data distribution in torsional space. Pretraining is confined to the mode indicated by ∗. (c) State exploration
during training or simulation. (d) Convergence of state free energies measured by MAE up to a constant.

A long 100-µs reference MD simulation shows that the system occupies eight distinct modes, corre-
sponding to the 23 combinations of the three ϕ torsional states (Fig. 3b). We initialize from a single
conformation in the indicated mode and generate pretraining data from a short MD simulation con-
fined in the mode (Fig. 8). As shown in Fig. 3c, WT-ASBS explores conformational states far more
efficiently than the baseline WTMetaD, discovering all eight modes within the early stages of train-
ing. This advantage arises from its ability to generate uncorrelated samples from the biased potential,
enabling exploration of multiple directions of conformational change simultaneously, whereas MD-
based enhanced sampling explores states sequentially in simulation time. Consequently, WT-ASBS
also achieves effective convergence of free energies (Fig. 3d), as measured by the mean absolute
error (MAE) of free energies up to a constant minc

1
8

∑
i |Fi − F ref

i + c|, within chemical accuracy
(1 kcal/mol), demonstrating the practical applicability of WT-ASBS.

4.2 SAMPLING REACTIVE ENERGY LANDSCAPES

While peptide results highlight the efficiency of WT-ASBS in terms of the number of energy eval-
uations, the computational budgets in diffusion-based sampling in these cases are dominated by
SDE integration with a control network, since classical force fields are extremely fast to evaluate.
However, classical force fields are insufficient for accurate conformational sampling, particularly in
cases involving bond reorganization, while density functional theory (DFT), the standard for accu-
rate energetics, is computationally prohibitive. Recent advances in semiempirical quantum methods
(Froitzheim et al., 2025) and universal ML interatomic potentials (uMLIPs) demonstrate that near-
DFT accuracy can be achieved at a fraction of the compute, and open the door to scalable and
accurate sampling. To illustrate this direction and compare the computational cost in practical set-
tings, we apply WT-ASBS to sample reactive energy landscapes involving bond formation (Trizio
& Parrinello, 2021). We employ a recent uMLIP, UMA-S-1.1 (Wood et al., 2025), which accurately
reproduces DFT energies, as the underlying energy model. For reaction sampling, we cross-check
with WTMetaD results since sampling the transition region with unbiased samplers like MD is prac-
tically impossible (e.g., ∼ 1015 samples required for a 20 kcal/mol barrier at 300 K).

Nucleophilic substitution (SN2) We study a prototypical SN2 reaction (Fig. 4a), where a chloride
ion attacks the tetrahedral carbon and another chloride ion departs, leading to interconversion be-
tween states 1 ↔ 2. We set two C–Cl bond distances as CVs and apply restraints to prevent chloride
ions from diffusing away, ensuring the CV space remains bounded. Given the small system size,
a single configuration (state 1) suffices for pretraining the sampler. Using WT-ASBS, we obtain
the 2-D PMF along the two bond distances (Fig. 4b). The symmetric PMF agrees well with the
WTMetaD result (Fig. 9), and both the location and free energy barrier of the transition state (TS)
coincide with the results from standard saddle-point optimization.

Post-transition-state bifurcation For simple reactions like SN2 with a single reaction channel
between reactants and products, the process can be well characterized by identifying the TS and
evaluating single-point energies, with harmonic approximations describing the local energy land-
scape around the reaction progress (Truhlar et al., 1996; Peters, 2017). However, many realistic
challenges in chemistry involve branched or multimodal energy landscapes that cannot be captured
by such approximations and instead requires explicit sampling. The reaction in Fig. 4c exemplifies
this difficulty: reactant 3 passes through a single TS region that bifurcates into two products 4 and

8
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Figure 4: Sampling reactive landscapes. (a) SN2 reaction scheme and CVs. (b) PMF F (d1, d2) for the SN2
reaction. (c) Cycloaddition reaction scheme with post-TS bifurcation. (d) Three bond-formation distances. (e)
Contact CVs ci derived from distances di. (f,g) 1D F (s1) and 2D F (s1, s2) PMFs for the post-TS bifurcation.

5. Because the TS is not uniquely associated with a single product (i.e., the TS is ambimodal),
characterizing this reaction requires sampling the full reactive landscape.

To construct CVs, we represent the three relevant C–C distances (Fig. 4d) as normalized contacts in
Eq. (55), capturing bond formation progress (Fig. 4e). From these we define two CVs: s1 = c1+c2+
c3, which tracks overall bond formation (a soft bond count), and s2 = c2 − c3, which distinguishes
between products 4 and 5. Details on restraints and settings are provided in the Appendix D. Fig. 4f
and g show the PMFs F (s1) and F (s1, s2), and similarly to SN2 example, the PMFs agree well
with the WTMetaD result (2-D comparison in Fig. 10), providing accurate energetics for complex,
multimodal reactive landscapes that dominate practical challenges in chemistry. Further discussion
on reaction sampling tasks is provided in Appendix E.
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Figure 5: Convergence of
PMFs. PMF MAE from the
final PMF for each reaction.

Computational efficiency We compared wall-clock time on four
A100 80GB GPUs, where the MAE of the current bias relative to the
final one, defined in Eq. (57), is shown in Fig. 5. For the SN2 reaction,
WT-ASBS required 0.77M energy evaluations and 4.3 hours, versus
4.0M and 29 hours for WTMetaD. For the bifurcation reaction, WT-
ASBS used 2.6M evaluations and 23 hours, compared to 6.4M and 48
hours. Although WT-ASBS integrates SDEs with a control model, it
needs fewer energy evaluations, which can be batched during training,
effectively distilling a lighter sampler model from the heavier uMLIP.

5 DISCUSSION

We presented WT-ASBS, which integrates bias deposition over chosen CVs into a diffusion-based
sampler, enabling exploration of unseen conformational modes and recovery of PMFs and impor-
tance sampling weights that reconstruct the Boltzmann distribution. The method unifies diffusion-
based sampling with enhanced sampling and provides a practical and efficient recipe for sampling
molecular systems, which allows diverse methodological extensions, including transition path sam-
pling (Raja et al., 2025) and conformational exploration with system-agnostic CVs (e.g., RMSD).

Limitations WT-ASBS requires the use of CVs, and while we utilized predefined ones, more
complex systems may benefit from ML CVs and iterative cycles that combine exploratory WT-
ASBS with CV training. A fair comparison of enhanced sampling methods is difficult because of
the large number of hyperparameters involved (Hénin et al., 2022), and although WTMetaD may
not be the optimal choice, we use it as a baseline since our enhanced sampling component is based
on WTMetaD. Future work will explore combinations of different enhanced sampling strategies to
provide a more comprehensive analysis. Finally, our approach does not allow amortization in the
current form, while it is possible to construct the target bias variationally using neural networks
(Bonati et al., 2019), which could be applied to systems that share similar slow degrees of freedom.
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Gomes, and José Miguel Hernández-Lobato. No trick, no treat: Pursuits and challenges towards
simulation-free training of neural samplers, 2025. URL https://arxiv.org/abs/2502.06685.
(cited on page 1)

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. (cited on pages 4 and 18)

Chad W Hopkins, Scott Le Grand, Ross C Walker, and Adrian E Roitberg. Long-time-step molecular
dynamics through hydrogen mass repartitioning. Journal of chemical theory and computation, 11
(4):1864–1874, 2015. (cited on page 25)

KN Houk, LJ Luskus, and NS Bhacca. Novel double [6+4] cycloaddition of tropone to dimethylful-
vene. Journal of the American Chemical Society, 92(21):6392–6394, 1970. (cited on page 29)
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A ADDITIONAL BACKGROUND

A.1 ENHANCED SAMPLING

Efficiently sampling molecular configurations requires overcoming high free energy barriers that
cause rare but important states to be visited infrequently. Enhanced sampling methods are a class of
techniques developed in the computational chemistry community to address this challenge. The core
idea is to bias the simulation dynamics to encourage exploration of less-populated regions of phase
space, while applying a compensating weight to recover correct thermodynamic averages. Unlike
unbiased MD or MCMC (which can get trapped in deep energy wells), enhanced sampling methods
add external forces or modify the energy surface so that the system escapes metastable states more
readily.

One foundational approach is umbrella sampling. Introduced by Torrie & Valleau (1977), umbrella
sampling runs simulations with an added bias potential U(s) along a chosen reaction coordinate or
collective variable s = ξ(x). By choosing a series of overlapping bias “umbrellas” that cover the
range of ξ, one can force the system to sample even high-energy configurations in each window.
Each window’s samples are then reweighted by exp(+βU(s)) to reconstruct the unbiased free en-
ergy landscape. This method demonstrated the principle of biasing along important coordinates to
access otherwise inaccessible states. However, it requires a careful tuning of windows.

Metadynamics took adaptive biasing a step further by dynamically building the bias potential during
a single simulation. In the original metadynamics (Laio & Parrinello, 2002), the simulation de-
posits small Gaussian hills on the free energy landscape along the chosen CVs every few timesteps.
These hills accumulate in wells (low free energy regions), gradually filling them and effectively
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raising the energy floor so the system escapes. Over time, the bias Vt(s) approximates the negative
of the underlying free energy −F (s), flattening the CV landscape. Well-tempered metadynamics
(Barducci et al., 2008) refined this approach by gradually reducing the height of added hills as the
bias grows. This means early in the simulation, the bias grows quickly (promoting exploration),
but later it converges towards a finite bias that yields a modified stationary distribution rather than
diverging. Specifically, well-tempering introduces a bias factor γ > 1 so that the deposited bias is
scaled by a factor that depends on the current bias (preventing overfill). The resulting steady-state
is the well-tempered distribution in CV space, in which the free energy barriers are lowered by a
factor of γ, effectively simulating the system at a higher temperature Teff = γT along those CVs.
Importantly, even with bias, samples can be reweighted to recover the true Boltzmann distribution.
Well-tempered metadynamics thus balances exploration and accuracy by never completely flatten-
ing the landscape, avoiding infinitely large weights and ensuring the bias converges asymptotically
to a finite correction.

In the enhanced sampling community, there have been continual improvements to biasing algo-
rithms. Notably, on-the-fly probability enhanced sampling (OPES) by Invernizzi & Parrinello (2020)
is a performant metadynamics variant where the bias is constructed by directly targeting a pre-
defined distribution (often the well-tempered distribution) at each step rather than depositing fixed-
shape hills. This results in smoother bias updates and often faster convergence. Although we do not
explicitly implement OPES, our algorithm likewise targets the well-tempered distribution Eq. (7).
In a sense, WT-ASBS could incorporate OPES-style updates (adjusting the bias based on deviation
between current CV histogram and target distribution), which could be an interesting direction for
future work. Additionally, techniques like variationally optimized enhanced sampling (VES) (Vals-
son & Parrinello, 2014) cast bias finding as an optimization problem of V (s) to minimize the KL
divergence between biased and unbiased ensembles. Such approaches could also be combined with
our generative sampler by using the model’s output to estimate that KL objective. In our current
work, we use the simpler hill-based scheme inspired by WTMetaD.

Beyond metadynamics, numerous enhanced sampling strategies exist. The adaptive biasing force
(ABF) method (Darve et al., 2008) takes a different approach: instead of depositing hills, it contin-
uously estimates the mean force along the CV and subtracts it, effectively flattening the free energy
gradient. ABF and its extensions (e.g., extended ABF in Comer et al. (2015)) guarantee convergence
by driving the observed force toward zero in well-sampled regions. In practice, ABF and metady-
namics often achieve similar outcomes: a nearly uniform sampling of s, but via force-balancing vs.
potential-filling mechanisms. Another family of methods is replica exchange and parallel temper-
ing. In replica exchange MD (Sugita & Okamoto, 1999), multiple copies of the system are simulated
at different temperatures (or Hamiltonians) in parallel. These replicas occasionally swap configura-
tions, allowing a cold replica to receive a configuration from a hot replica that has overcome barriers.
Over many swaps, each replica samples from its designated ensemble (e.g., the lowest-temperature
one samples the target distribution) but benefits from exchanges to traverse phase space faster. Par-
allel tempering effectively raises the chance of barrier crossing by leveraging high-temperature dy-
namics, albeit at the computational cost of running many simulations. It is a powerful method to
explore complex landscapes, though it requires careful selection of the temperature ladder and has
high computational overhead if many replicas are needed.

A.2 NEURAL SAMPLERS

Historical developments As opposed to MCMC and MD methods, generative models can poten-
tially be used to generate samples from multimodal distributions without getting trapped in local
minima or requiring lengthy equilibration times. Using generative models to sample probability
distributions specified by a potential function was originally proposed by Noé et al. (2019); Albergo
et al. (2019), and Nicoli et al. (2020) in the contexts of many-body physics, lattice field theory, and
statistical mechanics, respectively. These initial approaches trained discrete-time normalizing flows
(Tabak & Turner, 2013) by optimizing the KL divergence between the model and the unnormal-
ized target densities. As the use of reverse-KL objective is prone to mode collapse, the community
explored alternative training objectives for flow-based sampling (Vaitl et al., 2022; Midgley et al.,
2022; Máté & Fleuret, 2023). However, using flow-based methods with these approaches presents
challenges. Computing the likelihood of continuous flow models (Chen et al., 2018) is computation-
ally expensive, yet it is a necessary component of many of these potential function-based learning
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objectives. Meanwhile, designing expressive discrete-time normalizing flows is complex due to the
restrictions on their coupling layers (Dinh et al., 2016; Midgley et al., 2023).

Thinking of the sampling task as a problem of measure transport opens up other lines of research
which make use of ideas introduced by denoising diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) and related, more general frameworks for generative modeling (Lipman et al., 2022;
Albergo et al., 2023). In data-based settings, these approaches use intermediate distributions to
transport samples to the target distribution, guided by a local quadratic regression (“matching”)
objective that ensures the correct change of measure. The simulation-free nature of these approaches,
combined with their straightforward training objectives, makes them more scalable and easier to
train than previous methods, establishing them as the leading generative paradigm today. In the
data-free setting, however, since samples are not available, trajectories must be sampled from the
model. The central goal of recent works has thus been to design training objectives that (i) lead to a
correct transport of measures and (ii) do not require backpropagation through the learned dynamics.

Vargas et al. (2023a); Berner et al. (2022) optimize the KL divergence in path space and establish
connections between generative modeling and SOC. Zhang & Chen (2021); Havens et al. (2025)
also approach the problem from the viewpoint of SOC by minimizing the control objective with the
terminal cost defined by the target energy. Richter & Berner (2023) and Vargas et al. (2023b) opti-
mize the variance of Radon–Nikodym derivative between the forward and backward path measures.
Albergo & Vanden-Eijnden (2024) generalizes annealed importance sampling (AIS) by learning an
SDE that minimizes the impact of unbiasing weights of AIS.

Related works Recent methods attempt to alleviate the challenge of energy-based training strug-
gling to capture multiple modes in complex energy landscapes. Schopmans & Friederich (2025)
applied temperature annealing in Boltzmann Generators, and concurrently Akhound-Sadegh et al.
(2025); Rissanen et al. (2025) incorporated inference-time annealing into diffusion models to sam-
ple from Boltzmann densities. These approaches smoothly interpolate from a high-temperature
(smoothed-out) version of the target distribution to the true low-temperature distribution akin to par-
allel tempering. Our method biases the sampler on the fly along specific CVs, which can be seen as
a more targeted form of annealing that raises the effective sampling temperature only along selected
important degrees of freedom.

Another line of related work focuses on directly encouraging exploration during training. Kim
et al. (2025) improved training efficiency by incorporating MCMC with bias from random network
distillation during the search stage, steering exploration toward configurations that would otherwise
be rarely visited, conceptually similar to our goal of amplifying exploration. In recent work, Blessing
et al. (2025) formulate a diffusion-based sampler with a trust-region constrained optimal control
perspective, which effectively adds Lagrange multiplier terms to enforce constraints on the path
distribution. Our approach is unique in that it incorporates an adaptive bias during training that
specifically targets low-dimensional CVs, which is highly effective for exploring rare-event regions
and further enables reconstruction of the PMF.

A.3 MOLECULAR ISOMERISM

This appendix specifies how we operationalize chemical “sameness” and “difference” in terms of
minimal geometric features, their coordination numbers at the atoms that define each stereochemical
element, and the order parameter restraints we apply during sampling. We adopt the IUPAC tax-
onomy (McNaught & Wilkinson, 1997), which separates constitutional isomerism from stereoiso-
merism and further divides stereoisomerism into configurational and conformational classes.

• Constitutional isomers share an elemental formula but differ in bond connectivity and therefore
are different compounds. In our default setup, they are out of scope, except when the declared
reaction of interest explicitly includes bond formation or breaking.

• Stereoisomers have the same connectivity but differ in three-dimensional arrangement. They are
subdivided into:

– Configurational isomers, which are separated by large barriers and are isolable on exper-
imental time scales. This category includes absolute configuration at stereogenic centers
(R/S), geometric isomerism such as E/Z, and helical forms. When only a single stereocen-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ter is inverted, R and S related molecules are enantiomers; with multiple stereocenters, the
possibilities include diastereomers.

– Conformational isomers, which interconvert over low barriers, for example, through rotation
about single bonds or ring flips.

This taxonomy is paired with barrier and half-life delineations that mark fluxional, practically
isolable, and configurationally stable regimes (Canfield et al., 2018).

Accessible component A Let X denote the configurational space for a fixed chemical composi-
tion. We select a reference configuration and restrict attention to the portion of X relevant to the
molecular process under study, which is the sense in which the main text employs the term accessi-
ble component. One can regard configurations at temperature T and study time horizon τ as grouped
by an equivalence relation ∼τ : two configurations belong to the same class if they differ only by
stereochemical elements that interconvert with a half-life shorter than τ , while connectivity is pre-
served unless the chemical transformation of interest explicitly allows bond changes. The accessible
component A is then the connected set, under the physical dynamics, in the quotient space X/ ∼τ

that contains the chosen reference configuration. Because the physical dynamics are stochastic, this
construction relies on a separation of timescales, which is well supported by the exponential scaling
of rates with activation energies and by established isomerism taxonomies.

Isomerism, geometry, and order-parameter restraint The polytope formalism in Canfield et al.
(2018) provides a coordination-centric view of stereochemical change and shows how fundamen-
tal isomerization processes can be enumerated for each coordination number. In our context, this
motivates representing each stereochemical element by the smallest stable geometric feature that
distinguishes its alternatives, together with a numerical order parameter defined on those features.
The order parameter then becomes the target of a light, topology-preserving restraint. Here, we ex-
emplify this with two main types of restraints considered in this work, bond restraint and tetrahedral
center chirality restraint. While not discussed here, other types of isomerism, such as axial, planar,
and helical chirality, can be handled analogously.

(1) Bond restraint: The preservation of molecular topology, i.e., the fixed bond graph of the system,
should be encoded explicitly as a restraint whenever bond connectivity is not supposed to change.
The exceptions are when the simulation potential already contains topological information (e.g.,
non-reactive classical force fields) or the scientific question explicitly involves bond making or bond
breaking. Let rij(X) = ∥xi−xj∥ be the instantaneous bond length between atoms i and j. For each
bonded pair or non-bonded pair to be preserved, we apply a bond restraint or a no-bond restraint,
respectively:

U bond
ij (X) =

1

2
κ[rij(X)− rmax]

2
+, (14)

U no-bond
ij (X) =

1

2
κ[rmin − rij(X)]2+, (15)

where [z]+ := max(z, 0). Here, we set rmax = 1.3(rcov
i + rcov

j ), rmin = 0.7(rvdW
i + rvdW

j ), and
set the force constant κ = 100 eV/Å2, with rcov

i and rvdW
i denoting the covalent and van der Waals

radii of atom i, respectively. For examples in this work, we found that no-bond restraint Eq. (15)
could be omitted in cases where valency of atoms is well-defined by the base potential energy (see
implementation details in Appendix D).

(2) Tetrahedral center chirality restraint: We define the torsion (dihedral) angle of atoms i, j, k, and
l, ϕijkl(X) ∈ (−π, π] as follows:

ϕijkl(X) = atan2 (b2 · ((b1 × b2)× (b2 × b3)), |b2|(b1 × b2) · (b2 × b3)) , (16)

where the displacement vectors are defined as b1 := xj − xi, b2 := xk − xj , and b3 := xl − xk. A
proper torsion is the signed angle between two planes that share a central bond, with three bonds in
sequence, e.g., i–j–k–l, with the torsion angle describing the relative rotation around the bond j–k.
In contrast, an improper torsion does not describe rotation around a bond, but rather the out-of-plane
displacement of one atom relative to a reference plane defined by three others.
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We now consider a tetrahedral stereocenter i with three neighboring atoms j, k, and l (out of its four
substituents). The corresponding improper torsion angle, ϕijkl(X), exhibits a bimodal distribution:
each mode corresponds to a distinct stereoisomer, and in the ideal tetrahedral geometry, the peaks
are centered near ±35◦. To preserve the stereochemical configuration, we introduce the following
flat-bottom harmonic restraint potential on the improper torsion:

U imp
ijkl(X;κ, ϕ0, ϕtol) =

1

2
κ[|w(ϕijkl(X)− ϕ0)| − ϕtol]

2
+ (17)

where w(α) = atan2(sinα, cosα) ∈ (−π, π] is the 2π-periodic wrapping function, ϕ0 is the
reference torsion value, and ϕtol is the flat-bottom tolerance.

For clarity, we illustrate this construction using the Cα stereocenter of an amino acid. In naturally
occurring L-amino acids, the improper torsion defined by (Cα, N, C, Cβ) is positive, whereas the
improper torsion (Cα, N, C, Hα) is negative. Based on this, we define the amino acid chirality
restraint as

U chiral
AA (X) = U imp

Cα,N,C,Cβ
(X;κ,+ϕ0, ϕtol) + U imp

Cα,N,C,Hα
(X;κ,−ϕ0, ϕtol), (18)

where we set κ = 25.0 eV/rad2, ϕ0 = 0.615 rad (35◦), and ϕtol = 0.436 rad (25◦).

B PROOFS AND NOTES

B.1 PROOF FOR PROPOSITION 3.1

Proposition 3.1 (Convergence of WT-ASBS). When Algorithm 1 is performed until convergence,
the bias potential Vk converges almost surely to V ∗(s) = −(1 − 1

γ )F (s) + const, and hence the
sampled distribution converges to the well-tempered target Eq. (7).

Proof. We follow Dama et al. (2014) for the bias decomposition and stochastic approximation
framework, extending it with WT-ASBS-specific derivations and clearer notation.

Step 1: Level and driving parts of the bias and the step size. We split the bias Vk(s) into a level
Lk := 1

|S|
∫
S Vk(s) ds and a driving part Dk(s) := Vk(s) − Lk. Only Dk affects the biased

distribution, and adding the scalar Lk shifts the energy by a constant. Now, a single step of well-
tempered bias update can be split into

Lk+1 = Lk + exp

(
− β

γ − 1
Lk

)
Λ[Dk](sk+1), (19)

Dk+1(s) = Dk(s) + exp

(
− β

γ − 1
Lk

)
Γ[Dk](s, sk+1), (20)

where we define Λ[D](s′) and Γ[D](s, s′) as follows:

Λ[D](s′) :=
1

|S|

∫
S
hKσ(s, s

′) exp

(
− β

γ − 1
D(s′)

)
ds, (21)

Γ[D](s, s′) := hKσ(s, s
′) exp

(
− β

γ − 1
D(s′)

)
− Λ[D](s′). (22)

Now, under mild practical conditions, the driving biasDk(s) stays bounded, and exp(− β
γ−1Dk(s

′))

is bounded above and below by positive constants. Also,
∫
S hKσ(s, s

′) ds is a continuous positive
function of s′ on a compact set, so it also has positive finite bounds. Therefore, from Eq. (21), we
get the following bound with positive constant a and b:

a ≤ Λ[Dk](sk+1)
(19)
= (Lk+1 − Lk) exp

(
β

γ − 1
Lk

)
≤ b. (23)

This result implies that the asymptotic effective step size is bounded by positive multiples of 1
k :

ϵk := exp(− β
γ−1Lk) ≍ 1

k .
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Step 2: Stochastic recursion to a mean-field ODE. Now, we define an auxiliary time scale τ with
τ0 = 0 and τk+1 = τk + ϵk. Then, the driving part update Eq. (20) can be written in stochastic
approximation form

Dk+1(s) = Dk(s) + ϵk(Γ[Dk](s) + ζk+1(s)), (24)
where we rewrite Eqs. (21) and (22) with expectation over S ∼ ν̄D, the CV marginal under the bias
V = L+D,

Λ[D] :=
1

|S|

∫
S
ES∼ν̄D

[
hKσ(s, S) exp

(
− β

γ − 1
D(S)

)]
ds, (25)

Γ[D](s) := ES∼ν̄D

[
hKσ(s, S) exp

(
− β

γ − 1
D(S)

)]
− Λ[D], (26)

and ζk+1 is a martingale difference with bounded second moment. The mini-batch hill update in
Algorithm 1 provides an unbiased estimator of the expectation ES∼ν̄D

. From Step 1, ϵk ≍ 1
k , which

satisfies the Robbins–Monro step condition
∑

k ϵk = ∞ and
∑

k ϵ
2
k < ∞ (Robbins & Monro,

1951). Standard stochastic approximation arguments then imply that the polygonal interpolation
D̂(τk) = Dk, D̂(τ) = Dk + τ−τk

ϵk
(Dk+1 − Dk) for τ ∈ [τk, τk+1) is an asymptotic pseudo-

trajectory of the mean-field ODE d
dτD(τ) = Γ[D(τ)] (Kushner & Yin, 2003). Physically, this

corresponds to the long-time limit equation in Dama et al. (2014), obtained by aggregating many
small hill updates over a fixed τ window while the bias changes only slightly within that window.

Step 3: Fixed points of the asymptotic ODE. At a fixed pointD∗, we have Γ[D∗] ≡ 0. From Eq. (26),
this correspond to∫

S
hKσ(s, s

′) exp

(
− β

γ − 1
D∗(s′)

)
ν̄D∗(s′) ds′ = const. ∀s ∈ S. (27)

For Gaussian Kσ on a compact domain, the associated integral operator is positive definite. Hence,
the solution is unique and satisfies

exp

(
− β

γ − 1
D∗(s)

)
exp(−β(F (s) +D∗(s)))︸ ︷︷ ︸

∝ν̄D∗ (s)

= const. (28)

=⇒ V ∗(s) = L∗ +D∗(s) = −
(
1− 1

γ

)
F (s) + const. (29)

Step 4. Global stability. Now, define the tempering-reweighted instantaneous CV density

pw(s; τ) ∝ exp

(
− β

γ − 1
D(s; τ)

)
exp(−β(F (s) +D(s; τ)))︸ ︷︷ ︸

∝ν̄D(s)

. (30)

Let p∗w denote the target tempering-reweighted distribution, i.e., a normalized solution of∫
S
hKσ(s, s

′)p∗w(s
′) ds′ = const. (31)

For Gaussian hills on a compact S, this solution is unique and equals the uniform density p∗w(s) =
|S|−1. Consider the Lyapunov functional defined as a KL divergence between p∗w and pw(·; τ):

D(τ) := DKL(p
∗
w ∥ pw(·; τ)) =

∫
S

p∗w(s) log
pw(s; τ)

p∗w(s)
ds. (32)

We now show that d
dτD(τ) ≤ 0. First,

d

dτ
D(s; τ) = Γ[D(τ)](s) (33)

(26)
=

∫
S
hKσ(s, s

′) exp

(
− β

γ − 1
D(s′; τ)

)
ν̄D(τ)(s

′) ds′ − Λ[D(τ)] (34)

(30)
= c(τ)

∫
S
hKσ(s, s

′)pw(s
′;Dk) ds

′ − Λ[D(τ)] (35)

(31)
= c(τ)

∫
S
hKσ(s, s

′)[pw(s
′; τ)− p∗w(s

′)] ds′ − C(τ), (36)
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where c(τ) > 0 and C(τ) are constants in s. Also, from Eq. (30), we get

1

pw(s; τ)

d

dτ
pw(s; τ) = − βγ

γ − 1

(
d

dτ
D(s; τ)− Epw

[
d

dτ
D(·; τ)

])
. (37)

Finally, plugging Eqs. (36) and (37) into the time derivative of Eq. (32) yields

d

dτ
D(τ)

(32)
= −

∫
S
p∗w(s)

1

pw(s; τ)

d

dτ
pw(s; τ) ds (38)

(37)
=

βγ

γ − 1

(
Ep∗

w

[
d

dτ
D(·; τ)

]
− Epw

[
d

dτ
D(·; τ)

])
(39)

(36)
= − βγ

γ − 1
c(τ)

∫
S

∫
S
[pw(s; τ)− p∗w(s)]hKσ(s, s

′)[pw(s
′; τ)− p∗w(s

′)] dsds′ ≤ 0,

(40)

since the integral operator with the Gaussian kernel hKσ(·, ·) is positive semidefinite and c(τ) > 0.
The equality in Eq. (40) holds if and only if pw(·; τ) = p∗w, and D is a strict Lyapunov functional
and the ODE solution converges to the unique fixed point.

Hence, the mean-field ODE d
dτD(τ) = Γ[D(τ)] has a globally attracting equilibrium D∗, and one

gets Dk → D∗ and Vk → V ∗ in Eq. (29) almost surely by following the stochastic approximation
Eq. (24). □

C IMPLEMENTATION DETAILS FOR WT-ASBS

C.1 WT-ASBS WITH REPLAY BUFFER

Here, we describe the practical implementation of Algorithm 1, which merges the well-tempered
bias update into the AM replay buffer update within the inner step. The resulting WT-ASBS algo-
rithm with replay buffer is shown in Algorithm 2. After updating the AM replay buffer Badj (line
6), we reuse the same samples, projecting them to CV space to obtain the CV values for Gaussian
kernel deposition (line 7).

Algorithm 2 WT-ASBS with replay buffer

Require: prior µ, potential energy E(x), restraint U(x), CV ξ(x), control uθ(x, t), corrector hϕ(x), replay
buffers Badj and Bcrt

1: Initialize V (s)← 0, h(0)
ϕ ← 0 ▷ Bias and IPF initialization

2: for Stage k = 1, 2, · · · ,K do
3: for AM epoch m = 1, · · · ,Madj do ▷ Adjoint Matching with WT bias update
4: Sample from model {(X(i)

0 , X
(i)
1 )}Ni=1 ∼ pū

(k)

, where ū(k) = stopgrad(u
(k)
θ )

5: Compute adjoint target a(i)t ← stopgrad(clip(∇(E + U + V ◦ ξ)(X(i)
1 ), αmax) + h

(k)
ϕ (X

(i)
1 ))

6: Update replay buffer Badj ← Badj ∪ {(X(i)
0 , X

(i)
1 , a

(i)
t )}Ni=1

7: Update bias with sampled CVs s(i) ← ξ(X
(i)
1 ):

V (s)← V (s) + h
∑N

i=1 exp(−
β

γ−1
V (s(i))) exp(− ∥s−s(i)∥2

2σ2 ) (41)
8: Take L gradient steps∇θLAM w.r.t. the AM objective:

LAM(θ)← Et∼U[0,1],(X0,X1,at)∼Badj,Xt∼pbase(·|X0,X1)

[
λt∥u(k)

θ (t,Xt) + σtat∥2
]

(42)

9: for CM epoch m = 1, 2, · · · ,Mcrt do ▷ Corrector Matching
10: Sample from model {(X(i)

0 , X
(i)
1 )}Ni=1 ∼ pū

(k)

, where ū(k) = stopgrad(u
(k)
θ )

11: Update replay buffer Bcrt ← Bcrt ∪ {(X(i)
0 , X

(i)
1 )}Ni=1

12: Take L gradient steps∇ϕLCM w.r.t. the CM objective:

LCM(ϕ)← E(X0,X1)∼Bcrt

[
∥h(k)

ϕ (X1)−∇X1 log p
base(X1|X0)∥2

]
(43)

13: output Final control u∗
θ(x, t), final bias V ∗(s)

Grid discretization of bias potential Since the bias potential is accumulated over the entire train-
ing history, longer training would require summing over an increasingly large number of Gaussian
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kernels to evaluate ∇(V ◦ ξ). To ensure computational efficiency, we adopt the standard grid dis-
cretization approach commonly used in enhanced sampling simulations. The bias is stored on a
discretized grid with spacing chosen to be smaller than the kernel width σ, and both energies and
forces are obtained through interpolation between grid points.

Pretraining for WT-ASBS As proposed in ASBS (Liu et al., 2025), we warm-start the training
process with the approximate bridge matching objective, which aligns the control model uθ more
closely with available data samples. In our setting, these samples are generated by short MD sim-
ulations that perform local sampling around a reference configuration xref. The bridge matching
objective Lpretrain is defined as follows:

Lpretrain(θ) = Et∼U [0,1],X0∼µ,X1∼q,Xt∼pbase(·|X0,X1)

[
λ̂t∥ut(Xt)− σt∇Xt

log pbase(X1|Xt)∥2
]
,

(44)
where q denotes the empirical distribution of the MD samples, and λ̂t is a time-dependent weight-
ing factor, chosen as κ1|t/σ2

t , where κ1|t is the conditional variance of the base process (see Ap-
pendix C.3). This pretraining is only approximate, since the marginal distribution of the optimal u∗θ
matches q(X1) exactly only when the base process is memoryless (i.e., when X0 and X1 are inde-
pendent). Nevertheless, for warm-start purposes, this approximation is sufficient to rapidly align the
model with a distribution concentrated in a single conformational mode.

C.2 MODEL ARCHITECTURE

We build on PaiNN (Schütt et al., 2021), an E(3)-equivariant graph neural network designed for
molecular energy and force prediction, with minimal modifications: adding time-conditioning in-
puts, incorporating vector product layers (Schreiner et al., 2023) to break parity symmetry, restricting
the model to SE(3)-equivariance, and applying equivariant layer normalization (Liao et al., 2024) to
improve training stability. Each atom is assigned a unique atomic embedding, as the reference con-
figuration used to define the accessible component (Requirement 1) already specifies atom indices.
The model outputs a single vector per atom, which is scaled by σt to produce the final control and
corrector outputs.

C.3 BASE PROCESS

We employ the base distribution in Karras et al. (2022) (EDM), which defines σt through a power-
schedule parameter ρ and yields an analytically integrable variance between two different times
κt|s:

σt :=
[
(1− t)σ1/ρ

max + tσ
1/ρ
min

]ρ
, (45)

κt|s :=

∫ t

s

σ2
τ dτ =

1

2ρ+ 1

σ
2+1/ρ
s − σ

2+1/ρ
t

σ
1/ρ
max − σ

1/ρ
min

. (46)

With the reparametrized time γt :=
κt|0
κ1|0

∈ [0, 1], conditional base distributions for the driftless base
dXt = σtdWt are

pbase
t|0 (Xt|X0) = N (Xt;X0, κt|0I), (47)

pbase
t|0,1(Xt|X0, X1) = N (Xt; (1− γt)X0 + γtX1, γt(1− γt)κ1|0I). (48)

Translational invariance As in AS (Havens et al., 2025), we enforce translational invariance by
projecting the SDE onto the subspace X CoM = {x |

∑n
i=1 x

i = 0} ⊂ X , where xi ∈ R3 is
the position of i-th atom. This is achieved through the projection operator P , which acts on any
y ∈ Rn×3 by subtracting the center of mass from each coordinate yi for i ∈ [n].

x = Py, P =

(
In − 1

n
1n1

⊤
n

)
⊗ Id (49)

dXt = σtPut(Xt) dt+ σtP dWt, X0 = 0 (50)
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Table 1: Hyperparameters for WT-ASBS. Model and training hyperparameters for each experiment.

Hyperparameter Alanine
dipeptide

Alanine
tetrapeptide

Nucleophilic
substitution

Post-TS
bifurcation

Models
Hidden dimension 128 128 64 128
Radial basis 64 64 32 64
Control layers 4 4 3 4
Corrector layers 3 3 3 3
Radial cutoff [Å] 8.0 8.0 8.0 8.0
Batch and replay buffer
AM/CM buffer size 16,384 4,096 4,096 4,096
Buffer samples per epoch 2,048 512 512 512
Batch size 2,048 512 512 512
Base SDE
Source distribution N (0, 1 Å2

) N (0, 1 Å2
) N (0, 1 Å2

) N (0, 1 Å2
)

σmin [Å] 0.001 0.001 0.001 0.001
σmax [Å] 6.0 6.0 5.0 6.0
EDM exponent ρ 3.0 3.0 3.0 3.0
Bias update
Initial Gaussian h [eV] 1× 10−4 5× 10−4 5× 10−4 2× 10−4

Gaussian width σ [0.2, 0.2] rad [0.3, 0.3, 0.3] rad [0.2, 0.2] Å [0.05, 0.05]
CV grid minimum [−π,−π] rad [−π,−π,−π] rad [1.0, 1.0] Å [0.0, -1.0]
CV grid maximum [+π,+π] rad [+π,+π,+π] rad [4.0, 4.0] Å [3.0, 1.0]
CV grid bins [150, 150] [100, 100, 100] [150, 150] [300, 200]
Periodic CV grid True True False False
Bias factor γ 8.0 12.0 12.0 30.0
Training
Pretraining learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Pretraining steps 100,000 100,000 20,000 100,000
Training stages K 4 40 4 2
AM epochs Madj 1,000 1,000 500 1,000
CM epochs Mcrt 500 500 250 500
Initial learning rate 1× 10−4 1× 10−4 3× 10−5 3× 10−5

Final learning rate 3× 10−5 5× 10−5 1× 10−5 1× 10−5

Gradient clipping value 100.0 100.0 100.0 100.0

For the base process, the dynamics are given by

Xt = X0 +

∫ t

0

σsP dWs (51)

Var[Xt|X0] =

∫ t

0

σ2
sPP

⊤ ds = κt|0PP
⊤. (52)

Sampling can be carried out by first drawing Yt ∼ N (X0, κt|0I) and then projecting to obtain
Xt = PYt, which enforces the translational invariance constraint.

Adjoint matching Eq. (10) and corrector matching Eq. (11) are modified accordingly as follows:

u := argmin
u

Epbase
t|0,1p

ū
0,1

[∥P (ut(Xt) + σt(∇E + h(k−1))(X1))∥2], ū = stopgrad(u), (53)

h := argmin
h

E
pu(k)

0,1

[∥P (h(X1)−∇X1 log p
base
1|0 (X1|X0))∥2]. (54)

C.4 HYPERPARAMETERS

Model and training hyperparameters for each experiment are listed in Table 1. For WT-ASBS Al-
gorithm 2, we use L = 100 gradient updates per AM and CM epoch, and αmax = 100.0 to clip
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the energy gradient in the terminal cost. Models were trained with AdamW optimizer (Loshchilov
& Hutter, 2017) using a weight decay of 10−3, and diffusion process was integrated with Euler–
Maruyama method using 250 steps. For the first AM stage, we applied a 50-epoch learning rate
warmup, after which bias deposition began. After completing K training stages, we added a fi-
nal AM stage without further bias deposition. Learning rates followed a cosine annealing schedule
during training, applied independently to AM and CM optimization.

D EXPERIMENT DETAILS

For small peptides, we performed classical force field simulations with OpenMM 8.3.1 (Eastman
et al., 2023), while reactions were modeled using UMA-S-1.1 uMLIP (Wood et al., 2025) as im-
plemented in the fairchem-core 2.3.0 package (Shuaibi et al., 2025) with MD integrators in ASE
3.25.0 (Larsen et al., 2017). All MD-based enhanced sampling (WTMetaD) simulations were car-
ried out with PLUMED 2.9.3 (Tribello et al., 2014; The PLUMED consortium, 2019).

D.1 ALANINE DIPEPTIDE

Energy model The potential energy of the system was described by Amber ff96 force field (Koll-
man et al., 1997) with GBSA-OBC implicit solvation (Onufriev et al., 2004), as implemented in
OpenMM (Eastman et al., 2023).

Restraints We apply the chirality restraint Eq. (18) to the central alanine, U chiral
Ala2 (X), during WT-

ASBS training. This restraint is not used in MD-based sampling because chirality inversion does
not occur under physical dynamics.

Pretraining data We generated pretraining data using a 100 ps molecular dynamics simulation at
300 K with a 4 fs time step, enabled by hydrogen bond constraints and hydrogen mass repartitioning
(HMR; Hopkins et al. (2015)) with hydrogen masses set to 1.5 amu. The system was equilibrated
for 10 ps before sampling 103 frames at 0.1 ps intervals. Simulations employed the Langevin middle
integrator (Zhang et al., 2019) as implemented in OpenMM (Eastman et al., 2023), with a collision
rate of 1 ps−1. In total, pretraining data generation required 2.75× 104 energy evaluations.

Reference data We employed the test split of 107 samples from Midgley et al. (2022), gener-
ated by replica exchange MD with 21 replicas spanning 300 K to 1300 K. Their dataset generation
required 2.3× 1010 energy evaluations.

WTMetaD simulations We performed WTMetaD simulations on the backbone torsion CVs
(ϕ, ψ). The dynamics were propagated with Langevin middle integrator (Zhang et al., 2019) at
300 K with a 1 fs timestep and 1 ps−1 collision rate. Following a 10 ps equilibration at 300 K, Gaus-
sian biases were deposited every 500 steps with widths of 0.2 rad for both variables. The bias update
employed an initial Gaussian height of 1.2 kJ/mol, a bias factor of 8, and a grid covering [−π, π]2
with 150 × 150 bins. Each production run was 10 ns in length, and simulations were repeated four
times to ensure statistical reliability, yielding 4.0× 107 energy evaluations.

D.2 ALANINE TETRAPEPTIDE

Energy model The potential energy of the system was described by Amber ff99SB-ILDN force
field (Lindorff-Larsen et al., 2010) with Amber99-OBC implicit solvation (Onufriev et al., 2004), as
implemented in OpenMM (Eastman et al., 2023).

Restraints We apply the chirality restraints Eq. (18) to three alanine residues, U chiral
Ala2 (X) +

U chiral
Ala3 (X)+U chiral

Ala4 (X), during WT-ASBS training. As in the alanine dipeptide case, these restraints
are not used in MD-based sampling.

Pretraining data We generated pretraining data using a 1 ns molecular dynamics simulation at
300 K with a 4 fs time step, enabled by hydrogen bond constraints and HMR with hydrogen masses
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set to 1.5 amu. The system was equilibrated for 10 ps before sampling 103 frames at 1 ps inter-
vals. Simulations employed the Langevin middle integrator (Zhang et al., 2019) as implemented in
OpenMM (Eastman et al., 2023), with a collision rate of 1 ps−1. In total, pretraining data generation
required 2.52× 105 energy evaluations.

Reference data We generated unbiased alanine tetrapeptide conformations by first performing
parallel tempering simulations to sample initial states, followed by long unbiased molecular dy-
namics runs for data collection. Parallel tempering simulations were carried out with OpenMM and
OpenMMTools (Chodera et al., 2025) using MPI parallelization across 8 replicas, with temperatures
geometrically spaced between 300 K and 600 K. Replicas were propagated with the generalized hy-
brid Monte Carlo (GHMC) integrator (Stoltz et al., 2010) using a 2 fs timestep (with hydrogen bond
constraints), 1 ps−1 collision rate, and 1000 steps between exchange attempts (2 ps). Simulations
were initialized from an energy-minimized structure, equilibrated for 200 ps, and then run for 100
ns of production with replica exchanges attempted every 2 ps.

From the 300 K replica, 64 independent unbiased MD simulations were seeded from randomly
selected frames. Each simulation employed a Langevin middle integrator (Zhang et al., 2019) at
300 K with a 1 fs timestep and 1 ps−1 collision rate. After 100 ps of equilibration, production
simulations were performed for 1.56 µs, yielding a total of 100 µs simulation time across all replicas.
Trajectories were saved every 2 ps, producing 5 × 107 samples in total. Reference data generation
required approximately 1.01× 1011 energy evaluations.

WTMetaD simulations We performed WTMetaD simulations on the three backbone torsion CVs
(ϕ1, ϕ2, ϕ3). The same integrator settings as in the reference data generation were used. Following
a 10 ps equilibration at 300 K, Gaussian biases were deposited every 500 steps with widths of 0.3
rad for each CV. The biasing scheme employed an initial Gaussian height of 1.2 kJ/mol, a bias
factor of 12, and a grid covering [−π, π]3 with 753 bins. Each production run was 20 ns in length,
and simulations were repeated four times to ensure statistical reliability, yielding 8.0 × 107 energy
evaluations.
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Figure 6: Atom index definition for chemical reactions. (a) Nucleophilic substitution (SN2). (b) Cycloaddi-
tion reaction between tropone and dimethylfulvene with post-TS bifurcation.

D.3 NUCLEOPHILIC SUBSTITUTION

Energy model The potential energy of the system was described by the UMA-S-1.1 (Wood et al.,
2025) model with the DFT task label omol, a system charge of –1, and a singlet spin state (total spin
0).

Restraints In WT-ASBS, three C–H bonds (1–2, 1–3, and 1–4 in Fig. 6a) are maintained using
the bond restraint in Eq. (14). For both WT-ASBS and WTMetaD, to keep the accessible CV space
S bounded, the same restraint form is applied to two C–Cl distances (1–5 and 1–6) with rmax = 3.3
Å, preventing chloride ions from escaping the reaction complex.

WTMetaD simulations We performed WTMetaD simulations using (d1, d2) as the CVs. The
dynamics were propagated with a Langevin thermostat at 300 K, a 0.5 fs timestep, and a friction
coefficient of 10 ps−1. Initial velocities were assigned from a Maxwell–Boltzmann distribution, and
the total momentum was removed. Following a 1 ps equilibration at 300 K, Gaussian biases were
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deposited every 250 steps with widths of 0.2 Å for both CVs. The biasing scheme used an initial
Gaussian height of 0.02 eV, a bias factor of 20, and a grid spanning [1.0, 4.0] Å × [1.0, 4.0] Å. Each
production run was 0.5 ns in length, and simulations were repeated four times to ensure statistical
reliability, yielding 4.0× 106 energy evaluations.

D.4 POST-TRANSITION-STATE BIFURCATION

Energy model The potential energy of the system was described by the UMA-S-1.1 (Wood et al.,
2025) model with the DFT task label omol, a system charge of 0, and a singlet spin state (total spin
0).

Collective variables We define a normalized contact ci that maps the bond distance di to a soft
bond indicator,

ci =
1− (di/dref)

6

1− (di/dref)8
∈ [0, 1], (55)

which approaches 1 when di is much smaller than dref and decays to 0 as di increases (bond disso-
ciation). To construct the CVs, we express the three relevant C–C distances (Fig. 4d) as normalized
contacts using Eq. (55) with dref = 1.7 Å, thereby capturing bond formation progress (Fig. 4e). We
then define two CVs: s1 = c1 + c2 + c3, which measures overall bond formation, and s2 = c2 − c3,
which distinguishes between products 4 and 5. A similar approach has been applied to enhanced
sampling of mechanistically related reactions (Nam & Jung, 2023).

Restraints In WT-ASBS, bonds present in the reactant configuration (3, Fig. 4c) are preserved
using the bond restraint in Eq. (14). Furthermore, to prevent tropone (upper reactant) from “tele-
porting” to the opposite face of dimethylfulvene (lower reactant), we enforce an inter-planar distance
defined by three atoms per plane:

d(X) =
(x

(1)
1 − x

(1)
0 )× (x

(1)
2 − x

(1)
0 )

∥(x(1)1 − x
(1)
0 )× (x

(1)
2 − x

(1)
0 )∥︸ ︷︷ ︸

Unit normal of plane 1

·

(
1

3

2∑
m=0

x(2)m − 1

3

2∑
m=0

x(1)m

)
︸ ︷︷ ︸

Inter-centroid displacement

. (56)

d(X) is positive if the centroid of plane 2 lies on the side of plane 1 pointed to by its normal vector,
and negative otherwise. The magnitude is the perpendicular distance between the two centroids
along the normal direction of the first plane. We evaluate d(X) using three pairs of bond-forming
atoms (plane 1: dimethylfulvene atoms 15, 13, 24; plane 2: tropone atoms 2, 3, 7 in Fig. 6b) and
apply a lower harmonic wall restraint Uplane(X) = 1

2κ[−d(X)]2+ with κ = 100 eV/Å2 to enforce
d(X) > 0.

Finally, for both WT-ASBS and WTMetaD, the no-bond restraint in Eq. (15) is applied to atom pairs
C6–C24, C3–C18, and O8–C19 to suppress sampling of irrelevant reactive pathways.

Pretraining data The system was propagated with a Langevin thermostat at 300 K, a 1 fs timestep,
and a friction coefficient of 1 ps−1. Initial velocities were assigned from a Maxwell–Boltzmann dis-
tribution and the total momentum was removed. After 2 ps of equilibration (2000 steps), production
dynamics were carried out for 10 ps (10k steps), saving configurations every 10 fs. In total, pretrain-
ing data generation required 1.2× 104 sequential energy evaluations.

WTMetaD simulations We performed WTMetaD simulations using (s1, s2) as the CVs. The
dynamics were propagated with a Langevin thermostat at 300 K, a 0.5 fs timestep, and a friction
coefficient of 10 ps−1. Initial velocities were assigned from a Maxwell–Boltzmann distribution, and
the total momentum was removed. Following a 1 ps equilibration at 300 K, Gaussian biases were
deposited every 250 steps with widths of 0.05 for both CVs. The biasing scheme used an initial
Gaussian height of 0.02 eV, a bias factor of 20, and a grid spanning [0.0, 3.0] × [−1.0, 1.0]. Each
production run was 0.8 ns in length, and simulations were repeated four times to ensure statistical
reliability, yielding 6.4× 106 energy evaluations.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

E.1 ALANINE DIPEPTIDE

In this section, we extend the alanine dipeptide sampling comparison from the main text to standard
distributional metrics following Liu et al. (2025). Specifically, we report KL divergence for 1-D
marginals of torsion angles, as well as W2 and Jensen–Shannon divergence (JSD) for the joint
distribution of backbone torsions (ϕ, ψ). Results for previous diffusion samplers using internal
coordinate representations (bond distances, angles, and torsions) and for models trained in this work
using Cartesian coordinates are summarized in Table 2. We used 106 samples to compute DKL and
JSD, and randomly selected 104 samples for W2 (with weighted random sampling for WT-ASBS).

Table 2: Distributional metrics for alanine dipeptide. Comparison of diffusion samplers applied in internal
or Cartesian coordinate representations of alanine dipeptide sampling. The KL divergence (DKL) of five 1-D
torsion angle marginals and the Wasserstein-2 distance (W2) and JSD on joint backbone torsion distribution
are reported. ∗Results from Liu et al. (2025). †Result from Choi et al. (2025). ‡Reweighted samples are used.

DKL on 1-D marginal (↓) (ϕ, ψ) joint
Method ϕ ψ γ1 γ2 γ3 W2 (↓) JSD (↓)
Internal coordinates
PIS (Zhang & Chen, 2021)∗ 0.05±0.03 0.38±0.49 5.61±1.24 4.49±0.03 4.60±0.03 1.27±1.19 –
DDS (Vargas et al., 2023a)∗ 0.03±0.01 0.16±0.07 2.44±0.96 0.03±0.00 0.03±0.00 0.68±0.09 –
AS (Havens et al., 2025)∗ 0.09±0.09 0.04±0.04 0.17±0.17 0.56±0.09 0.51±0.06 0.65±0.52 –
NAAS (Choi et al., 2025)† 0.26 0.24 0.27 0.13 0.16 – –
ASBS (Liu et al., 2025)∗ 0.02±0.00 0.01±0.00 0.03±0.01 0.02±0.00 0.02±0.00 0.25±0.01 –
Cartesian coordinates
ASBS (Liu et al., 2025) 0.14±0.03 0.09±0.03 0.02±0.00 0.00±0.00 0.00±0.00 0.45±0.01 0.014±0.003

WT-ASBS (this work)‡ 0.02±0.00 0.04±0.01 0.02±0.00 0.00±0.00 0.00±0.00 0.43±0.02 0.005±0.001

Figure 7: Ramachandran plots for alanine dipeptide. Comparison of backbone torsion distributions (ϕ, ψ)
in log densities, for reference, ASBS (internal coordinates), ASBS and WT-ASBS (Cartesian coordinates), as
in Table 2. All three methods reproduce the more populated regions reasonably well, but their behavior in less
populated regions differs substantially. Negligibly low-density regions are omitted for visual clarity. ∗Taken
from Liu et al. (2025).

Table 2 shows that WT-ASBS performs well on all metrics, with similar W2 performance to base-
line ASBS (Cartesian) and slightly worse than reference ASBS (internal coordinates). However,
the Ramachandran plots in Fig. 7 reveal that WT-ASBS better reproduces the overall density, while
the other two methods either collapse into highly populated regions or leak into sparsely populated
ones. This discrepancy arises because the metrics in Table 2 assume equal weight for all samples.
WT-ASBS, designed to satisfy Requirement 3, incorporates weighted sampling to achieve balanced
efficiency across all relevant modes. Since Boltzmann populations depend exponentially on free
energy, focusing on more populated regions can yield good metrics without capturing the full distri-
bution. Therefore, we emphasize evaluations more closely aligned with the design choices discussed
in the main text.
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E.2 ALANINE TETRAPEPTIDE

In Fig. 8, we show the distribution of pretraining data and compare the PMF obtained by reweighting
(Eq. (1)) for WT-ASBS, the bias (Remark 3.1) for WTMetaD and WT-ASBS, and the reference PMF.
The populations within each mode are well reproduced, while biased sampling methods (WT-ASBS
and WTMetaD) capture the energetic features of the transition region between modes. This region is
inaccessible even with a huge number of unbiased samples (5×107 for the reference), underscoring
the necessity of biased sampling.
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Figure 8: Alanine tetrapeptide PMFs. Columns show pretraining data, PMFs from reweighting (WT-ASBS),
PMFs from WT-ASBS and WTMetaD biases, and the reference PMF. Rows correspond to different torsion
angle pairs (ϕ1, ϕ2), (ϕ1, ϕ3), and (ϕ2, ϕ3). Dotted lines at ϕi = 0 and 2 mark the mode boundaries. All
method reproduces populations within metastable modes, while biased sampling (WT-ASBS and WTMetaD)
captures transition regions inaccessible to unbiased sampling.

E.3 SAMPLING REACTIVE ENERGY LANDSCAPES

To quantify the convergence of PMFs in Fig. 5, we define the PMF MAE between a PMF F (s) and
its reference Fref(s), both shifted to have minimum zero, as

MAE[F, Fref] =
minc

∫
S |F (s)− Fref(s) + c|1[Fref(s) < Fthres] ds∫

S 1[Fref(s) < Fthres] ds
, (57)

i.e., the average absolute deviation (up to an optimal constant shift c) over regions of CV space
where Fref(s) is below the threshold Fthres. We used Fthres of 30 kcal/mol for the SN2 reaction, and
45 kcal/mol for the post-TS bifurcation reaction.

We compare PMFs for reactions obtained with bias from WT-ASBS and WTMetaD in Figs. 9
and 10, and confirm that the final PMFs from both methods agree well. For the post-TS bifurcation,
valuable chemical insights into the mechanistic understanding of reactions can be obtained from the
free energy profiles. For example, while 5 is the experimentally observed product, two competing
mechanisms of 3 → 4 → 5 (Paddon-Row & Warrener, 1974) vs. 3 → 5 (Houk et al., 1970) have
been proposed. The 2-D PMF reveals that the initial reactive flux is biased toward product 4, but
the deeper free energy basin of 5 makes it the thermodynamically favored product, consistent with
previous findings that 4 forms transiently and subsequently converts to 5 (Yu et al., 2017).
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Figure 9: SN2 reaction PMFs. Comparison of PMFs obtained from WT-ASBS and WTMetaD biases. Red
dotted lines mark regions influenced by restraints, gray dotted lines denote the d1 = d2 symmetry lines, and
the purple cross indicates the transition state location.
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Figure 10: Post-TS bifurcation reaction PMFs. Comparison of 1-D PMF F (s1) and 2-D PMF F (s1, s2)
obtained from WT-ASBS and WTMetaD biases. Red dotted lines mark regions influenced by restraints, gray
dotted lines denote the c2 = c3 symmetry lines, and the purple cross indicates the transition state locations.

F LARGE LANGUAGE MODEL STATEMENT

We made limited use of large language models (LLMs) to assist with language refinement and
proofreading. No content, ideas, or analyses were produced by these tools.
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