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ABSTRACT

Graph neural networks have achieved great success in representing structured data
and its downstream tasks such as node classification. The key idea is to recursively
propagate and aggregate information along the edges of a given graph topology.
However, edges in real-world graphs often have varying degrees of difficulty, and
some edges may even be noisy to the downstream tasks. Therefore, existing graph
neural network models may lead to suboptimal learned representations because
they usually consider every edge in a given graph topology equally. On the other
hand, curriculum learning, which mimics the human learning principle of learning
data samples in a meaningful order, has been shown to be effective in improving
the generalization ability and robustness of representation learners by gradually
proceeding from easy to more difficult samples during training. Unfortunately,
most existing curriculum learning strategies are designed for independent data
samples and cannot be trivially generalized to handle data with dependencies. In
order to address these issues, in this paper we propose a novel curriculum learn-
ing method for structured data to leverage the various underlying difficulties of
data dependencies to improve the quality of learned representations on structured
data. Specifically, we design a learning strategy that gradually incorporates edges
in a given graph topology into training according to their difficulty from easy
to hard, where the degree of difficulty is measured by a self-supervised learning
paradigm. We demonstrate the strength of our proposed method in improving the
generalization ability and robustness of learned representations through extensive
experiments on nine synthetic datasets and nine real-world datasets with different
commonly used graph neural network models as backbone models.

1 INTRODUCTION

Learning powerful representations of data samples with dependencies has become a core paradigm
for understanding the underlying network mechanisms and performing a variety of downstream tasks
such as social network analysis (Wasserman et al., 1994) and recommendation systems (Ying et al.,
2018; Fan et al., 2019). As a class of state-of-the-art representation learning methods, graph neural
networks (GNNs) have received increasing attention in recent years due to their powerful ability
to jointly model data samples and their dependencies in an end-to-end fashion. Typically, GNNs
treat data samples as nodes and their dependencies as edges, and then follow a neighborhood ag-
gregation scheme to learn data sample representations by recursively transforming and aggregating
information from their neighboring samples.

On the other hand, inspired by cognitive science studies (Elman, 1993; Rohde & Plaut, 1999) that
humans can benefit from the sequence of learning basic (easy) concepts first and advanced (hard)
concepts later, curriculum learning (CL) (Bengio et al., 2009; Kumar et al., 2010) suggests training
a machine learning model with easy data samples first and then gradually introducing more hard
samples into the model according to a designed pace, where the difficulty of samples can usually be
measured by their training loss. Many previous studies have shown that this easy-to-hard learning
strategy can effectively improve the generalization ability of the model (Bengio et al., 2009; Jiang
et al., 2018; Han et al., 2018; Gong et al., 2016; Shrivastava et al., 2016; Weinshall et al., 2018).
Furthermore, previous studies (Jiang et al., 2018; Han et al., 2018; Gong et al., 2016) have shown that
CL strategies can increase the robustness of the model against noisy training samples. An intuitive
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explanation is that in CL settings noisy data samples correspond to harder samples and CL learner
spends less time with the harder (noisy) samples to achieve better generalization performance.

However, existing CL algorithms are typically designed for independent data samples (e.g. image)
while designing effective CL strategy for data samples with dependencies has been largely under-
explored. In dependent data, not only the difficulty of learning individual data samples can vary
but also the difficulty of perceiving the dependencies between data samples. For example, in social
networks, the connections between users with certain similar characteristics, such as geological loca-
tion or interests, are usually considered as easy edges because their formation mechanisms are well
expected. Some connections from unrelated users, such as advertisers or even bots, can usually be
considered hard as they are not well expected or even noisy such that the likelihood of these connec-
tions can positively contribute to the downstream task, e.g. community detection, is relatively low.
Therefore, as the previous CL strategies indicated that an easy-to-hard learning sequence on data
samples can improve the learning performance, an intuitive question is whether a similar strategy on
data dependencies that iteratively involving easy-to-hard edges in learning can also benefit.

Unfortunately, there exists no trivial way to directly generalize existing CL strategies on independent
data to handle data dependencies due to several unique challenges: (1) Difficulty in designing a
feasible principle to select edges by properly quantifying how well they are expected. Existing
CL studies on independent data often use supervised computable metrics (e.g. training loss) to
quantify sample complexity, but how to quantify how well the dependencies between data samples
are expected which has no supervision is challenging. (2) Difficulty in designing an appropriate
pace to gradually involve edges based on model status. Similar to the human learning process, the
model should ideally retain a certain degree of freedom to adjust the curriculum according to its own
learning status. It is extremely hard to design a general pacing policy suitable for different real-world
scenarios. (3) Difficulty in ensuring convergence and a numerical steady process for optimizing
the model. Since GNN models work by propagating and aggregating message information over the
edges, due to discrete changes in the number of propagating messages by CL strategy, the learning
process of incremental edges increases the difficulty of finding optimal parameters.

In order to address the aforementioned challenges, in this paper, we propose a novel CL algorithm
named Relational Curriculum Learning (RCL) to improve the generalization ability of representa-
tion learners on data with dependencies. To address the first challenge, we propose a self-supervised
learning approach to select the most K easiest edges that are well expected by the model. Specifi-
cally, we jointly learn the node-level prediction task and estimate how well the edges are expected by
measuring the relation between learned node embeddings. Second, to design an appropriate learning
pace for gradually involving more edges in training, we present the learning process as a concise op-
timization model under the self-paced learning framework (Kumar et al., 2010), which lets the model
gradually increase the numberK of selected edges according to its own status. Third, to ensure con-
vergence of optimizing the model, we propose a proximal optimization algorithm with a theoretical
convergence guarantee and an edge reweighting scheme to smooth the structure transition. Finally,
we demonstrate the superior performance of RCL compared to state-of-the-art comparison methods
through extensive experiments on both synthetic and real-world datasets.

2 RELATED WORK

Curriculum learning (CL). Bengio et al. (2009) first proposed the idea of CL in the context
of machine learning, aiming to improve model performance by gradually including easy to hard
samples in training the model. Self-paced learning (Kumar et al., 2010) measures the difficulty
of samples by their training loss, which addressed the issue in previous works that difficulties of
samples are generated by prior heuristic rules. Therefore, the model can adjust the curriculum of
samples according to its own training status. Following works (Jiang et al., 2015; 2014; Zhou et al.,
2020) further proposed many supervised measurement metrics for determining curriculums, for ex-
ample, the diversity of samples (Jiang et al., 2014) or the consistency of model predictions (Zhou
et al., 2020). Meanwhile, many empirical and theoretical studies were proposed to explain why CL
could lead to generalization improvement from different perspectives. For example, studies such as
MentorNet (Jiang et al., 2018) and Co-teaching (Han et al., 2018) empirically found that utilizing
CL strategy can achieve better generalization performance when the given training data are noisy.
Gong et al. (2016) provided theoretical explanations on the denoising mechanism that CL learners
waste less time with the noisy samples as they are considered harder samples.
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Despite great success, most of the existing designed CL strategies are for independent data such as
images, and there is little work on generalizing CL strategies to samples with dependencies. Few
existing attempts, such as Wang et al. (2021); Chu et al. (2021); Wei et al. (2022); Li et al. (2022),
simply treat nodes or graphs as independent samples and then apply CL strategies of independent
data, which ignore the fundamental and unique dependency information that carried by the topolog-
ical structure in data, thus can not well handle the correlation between data samples. Furthermore,
these models are mostly based on heuristic-based sample selection strategies (Chu et al., 2021; Wei
et al., 2022; Li et al., 2022), which largely limit the generalizability of their proposed methods.
Graph structure learning. Another stream of existing studies that are related to our work is graph
structure learning. Recent studies have shown that GNN models are vulnerable to adversarial attacks
on graph structure (Dai et al., 2018; Zügner et al., 2018; Jin et al., 2021; Wu et al., 2019). In order to
address this issue, studies in graph structure learning usually aim to jointly learn an optimized graph
structure and corresponding graph representations. Existing works (Entezari et al., 2020; Chen et al.,
2020; Jin et al., 2020; Zheng et al., 2020; Luo et al., 2021) typically consider the hypothesis that the
intrinsic graph structure should be sparse or low rank from the original input graph by pruning
“irrelevant” edges. Thus, they typically use pre-deterministic methods (Dai et al., 2018; Zügner
et al., 2018; Entezari et al., 2020) to preprocess graph structure such as singular value decomposition
(SVD), or dynamically remove “redundant” edges according to the downstream task performance
on the current sparsified structure (Chen et al., 2020; Jin et al., 2020; Luo et al., 2021). However,
modifying the graph topology will inevitably lose potential useful information lying in the removed
edges. More importantly, the modified graph structure is usually optimized for maximizing the
performance on the training set, which can easily lead to overfitting issues.

3 PRELIMINARIES

Graph Neural Networks Graph neural networks (GNNs) are a class of methods that have shown
promising progress in representing structured data in which data samples are correlated with each
other. Typically, the data samples are treated as nodes while their dependencies are treated as edges
in the constructed graph. Formally, we denote a graph as G = (V, E), where V = {v1, v2, . . . , vN}
is a set of nodes that N = |V| denotes the number of nodes in the graph and E ⊆ V × V is the set
of edges. We also let X ∈ RN×b denote the node attribute matrix and A ∈ RN×N represents the
adjacency matrix. Specifically, the attribute of node vi can be expressed as a b dimensional vector
xi ∈ Rb. Aij = 1 denotes there is an edge connecting nodes vi and vj ∈ V , otherwise Aij = 0.
A GNN model f maps node feature matrix X associated with the adjacency matrix A to the model
predictions ŷ = f(X,A), and get the loss LGNN = L(ŷ,y), where L is the objective function and
y is the ground-truth label of nodes. The loss on one node vi is denoted as li = L(ŷi, yi).
Curriculum Learning In order to leverage the information carried by the various difficulties of
data samples into the training process, Curriculum Learning (CL) (Bengio et al., 2009; Kumar et al.,
2010), which is inspired by the cognitive process of human learning principles that learning concepts
in a meaningful order (Elman, 1993), is a popular training strategy that can improve the generaliza-
tion ability of representation learners. Specifically, instead of randomly presenting all training sam-
ples to the model as in traditional machine learning algorithms, CL learners start with easy samples
and gradually include harder ones during the training process, where the difficulty of samples can
be measured by a predetermined policy or a supervised computable metric (e.g. training loss).

4 METHODOLOGY

As previous CL strategies have shown that an easy-to-hard learning sequence of independent data
samples can improve the generalization ability and robustness of the representation learner, the goal
of this paper is to develop an effective CL strategy for handling data with dependencies, which is
extremely difficult due to several unique challenges: (1) Difficulty in designing a feasible principle
to select edges by properly quantifying their difficulties. (2) Difficulty in designing an appropriate
pace of curriculum to gradually involve more edges in training based on model status. (3) Difficulty
in ensuring convergence and a numerical steady process for optimizing the model.

In order to address the above challenges, we propose a novel CL method named Relational
Curriculum Learning (RCL). The sequences, which gradually include edges from easy to hard, are
called curriculums and learned in different grown-up stages of training. In order to address the first
challenge, we propose a joint learning module Incremental Edge Selection (IES), which as shown
in Figure 1(a), to select edges that are mostly expected by the current model in a self-supervised
manner. Specifically, we jointly learn the node-level prediction task and quantify the difficulty of
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Figure 1: The overall framework of RCL. (a) The Incremental Edge Selection module first extracts
the latent node embedding by GNN model given the current training structure, then jointly learn the
node prediction label y and reconstruct the input structure. A small residual error on an edge indi-
cates the corresponding dependency is well expected and thus can be added to the refined structure
for the next iteration. (b) The iterative learning process of RCL. Model starts with an empty struc-
ture and gradually includes more edges until the training structure converges to the input structure.

edges by their residual error in reconstructing the input structure, then K most expected edges are
selected for next iteration, where the details are elaborated in section 4.1. To address the second
challenge, which is to design an appropriate pace for gradually including more edges, we present a
self-paced learning framework in section 4.2, as shown in Figure 1(b), to automatically increase the
number of selected edges K in training given its own training status. Finally, to ensure convergence
of optimization, we propose a proximal optimization algorithm with theoretical convergence guar-
antee in section 4.2 algorithm 1 and we further introduce an edge reweighting scheme to address the
numerical issue of discretely incrementing the training structure between iterations in section 4.3.

4.1 INCREMENTAL EDGE SELECTION BY QUANTIFYING TOPOLOGY COMPLEXITIES

As mentioned above, we need a novel way to select edges by first quantifying their difficulty levels.
However, as existing works on independent data typically use supervised training loss of samples
to quantify their difficulty level, there exists no supervised metrics on edges. In order to address
this issue, we propose a method to quantify the difficulty of edges by measuring how well the
edges are expected from the learned embeddings of their connected nodes. Specifically, the node
embedding of the GNN model, which is learned by transforming and aggregating nodes and their
neighbors’ features through a message-passing fashion, can be considered a high-level semantic
representation of data samples and their dependencies. To measure how well the dependencies
between data samples are expected, we restore the node embeddings to the original graph structure,
which is called the reconstruction of the original graph structure. The residual graph, which is
defined as the degree of mismatch between the input adjacency matrix A and the reconstructed
adjacency matrix Ã(t), can be considered a strong indicator for describing how well the edges are
expected by the current model. Specifically, smaller residual errors indicate a higher probability of
being a well-expected edge. In particular, as shown in figure 1(a) that at iteration t, we learn the
node-level prediction ŷ(t) and extract the latent node embedding Z(t) from the current GNN model
f (t). Then the latent embedding is restored to the original graph structure to reconstruct the input
adjacency matrix. The residual graph R is defined as the degree of mismatch between the input
adjacency matrix A and the reconstructed adjacency matrix Ã(t).

With the developed self-supervised method to measure how well edges are expected, here we formu-
late the key learning paradigm of selecting the top K well-expected edges from the input structure.
Specifically, to obtain the training adjacency matrix A(t) that will be fed into the GNN model f (t),
we introduce a learnable binary mask matrix S with each element Sij ∈ {0, 1}. Thus, the training
adjacency matrix at iteration t can be represented as A(t) = S(t)⊙A. To filter out the edges withK
smallest residual error, we penalize the summarized residual errors over the selected edges, which
can be represented as

∑
i,j SijRij . Therefore, the learning objective can be presented as follows:

min
w
LGNN + β

∑
i,j

SijRij ,

s.t. ∥S∥1 ≥ K,

(1)
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where the first term LGNN = L(f(X,A(t);w),y) is the node-level predictive loss, e.g. cross-
entropy loss for node classification, the second term

∑
i,j SijRij aims at penalizing the residual

errors on the edges selected by the mask matrix S that β is a hyperparameter to tune the balance
between terms. The constraint is to guarantee only the most K well-expected edges are selected.

Mathematically, the value of a residual edge Ã
(t)
ij ∈ [0, 1] can be computed by a non-parametric

kernel function κ(z(t)i , z
(t)
j ), e.g. the inner product kernel. Then the residual error Rij between

the input structure and the reconstructed structure can be defined as
∥∥∥Ã(t)

ij −Aij

∥∥∥, where ∥·∥ is
commonly chosen to be the squared ℓ2-norm. A smaller residual error of edge Aij denotes that this
edge is well-expected, which will be added to the training structure A(t) at an early stage of training.

4.2 SELF-PACED LEARNING OF THE INCREMENTAL STRUCTURE

In order to dynamically include more edges into training, an intuitive way is to iteratively increase
the value of K in equation 1 to allow more edges to be selected. However, directly solving equa-
tion 1 is difficult since S is a binary matrix where each element Sij ∈ {0, 1}, optimizing S would
require solving a discrete constraint program at each iteration. Besides, it is difficult to determine
an appropriate value of K according to the training status of the model. In order to solve this issue,
we first relax the problem into continuous optimization so that each Sij can be allowed to take any
value in the interval [0, 1]. Then we treat the constraint as a Lagrange multiplier and solve an equiv-
alent problem by substituting the constraint to a regularization term g(S;λ), thus, our overall loss
function can be written as:

min
w,S

LGNN + β
∑
i,j

SijRij + g(S;λ), (2)

where g(S;λ) = λ ∥S−A∥ and ∥·∥ is commonly chosen to be the squared ℓ2-norm. Since the
training adjacency matrix A(t) = S(t)⊙A, as λ→ ∞, more edges in the input topology are included
until the training adjacency matrix A(t) converges to the input adjacency matrix A. Specifically, the
regularization term g(S;λ) controls the learning scheme by the age parameter λ, where λ = λ(t)
grows with the number of iterations. By monotonously increasing the value of λ, the regularization
term g(S;λ) will push the mask matrix gradually approach the input adjacency matrix A, resulting
in more edges involved in the training structure.

Optimization of learning objective. It is worth noting that optimizing our objective function in
equation 2 requires jointly optimizing parameter w of GNN model f and the mask matrix S. In
order to address this problem, we propose a proximal alternating optimization schema to iteratively
update w and S in sequence. The full algorithm is presented in Algorithm 1. As we can see, our
algorithm takes the input of node feature matrix X and original adjacency matrix A, a stepsize µ
to control the increasing pace of age parameter λ, and a hyperparameter γ to tune the proximal
terms. After initializing the parameters w and S, it alternates between two updating steps until it
finally converges: (1) Step 3 first learns the optimal parameter of GNN model f with the current
training adjacency matrix; (2) Step 4&5 extracts the latent node embedding by fixing the GNN
model parameter and build the reconstructed adjacency matrix by the kernel function; (3) Step 6
learns the optimal mask matrix S with the reconstructed adjacency matrix and regularization term;
(4) Step 7 refines the training adjacency matrix with respect to the updated mask matrix; (5) The
age parameter λ is increased when the training adjacency matrix A(t) is still different from the input
adjacency matrix A, thus more edges will be included in the next iteration of the training.
Theorem 1. We have the following convergence guarantees for Algorithm 1:
[Avoidance of Saddle Points] If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are con-
tinuous, then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm1
with random initializations will not converge to a strict saddle point of F almost surely.
[Second Order Convergence] If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are con-
tinuous, and L(f(X,A(t);w),y) and g(S;λ) satisfy the Kurdyka-Łojasiewicz (KL) property (Wang
et al., 2022), then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm
1 with random initialization will almost surely converge to a second-order stationary point of F .

We prove this theorem by Theorem 10 and Corollary 3 from Li et al. (2019) and the complete
mathematical proof can be found in Appendix B.
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Algorithm 1 Proximal Alternating Minimization Algorithm for Equation 2
Input Node features X, adjacency matrix A, a stepsize µ and hyperparameter γ
Output The model parameter w of GNN model f .

1: Initialize w(0), S(0), λ
2: while Not Converged do
3: w(t) = argminw L(f(X,A

(t−1);w),y)+β
∑

i,j Sij

∥∥∥Ã(t−1)
ij −Aij

∥∥∥+ γ
2

∥∥w −w(t−1)
∥∥

4: Given w(t), extract latent nodes embedding Z(t) from GNN model f
5: Calculate reconstructed structure Ã

(t)
ij = κ(z

(t)
i , z

(t)
j ) for all pairs of i, j

6: S(t) = argminS β
∑

i,j Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥+ g(S;λ) + γ
2

∥∥S− S(t−1)
∥∥

7: Compute A(t) = S(t) ⊙A
8: if A(t) ̸= A then increase λ by stepsize µ
9: end while

10: return w

4.3 SMOOTH TRAINING STRUCTURE BY EDGE REWEIGHTING

Note that in the algorithm 1, the optimization process requires iteratively updating the parameters
w of the GNN model f with respect to the training adjacency matrix A(t), where the training adja-
cency matrix A(t) varies discretely due to the inherent discrete nature of graph topology. However,
since state-of-the-art GNN models mostly work in a message-passing fashion, which computes node
representations along edges by recursively aggregating and transforming information from neigh-
boring nodes, discretely modifying the number of edges will result in a great drift of the optimal
model parameters between iterations. Therefore, the numerical issue caused by discrete changes in
the training structure can increase the difficulty of finding optimal parameters and sometimes even
hurt the generalization ability of the model. Besides the numerical problem caused by discretely
increasing the number of edges, another problem raised by the CL strategy in Section 4.1 is the
trustworthiness of the estimated edge difficulty. Recall that the estimated difficulty is inferred from
the residual error on the edges, where the reconstructed structure is built based on the learned latent
node embedding. Although the residual error can reflect how well edges are expected in the ideal
case, the quality of the learned latent node embeddings may affect the validity of this metric and
also compromise the quality of the designed curriculum by CL strategy.

To address both issues, we adopt an edge reweighting scheme to (1) smooth the transition of the
training structure between iterations, and (2) reduce the influence of edges that connect nodes with
relatively low confidence latent embeddings. Formally, we use a smoothed version of structure Ā(t)

to substitute A(t) for training the GNN model f in step 5 of algorithm 1, where the mapping from
A(t) to Ā(t) can be represented as:

Ā
(t)
ij = β

(t)
ij A

(t)
ij , (3)

where β(t)
ij is the weight imposed to edge eij at iteration t, and is calculated by considering the

counted occurrences of edge eij until the iteration t and the confidence of the latent embedding for
the connected pair of nodes vi and vj :

β
(t)
ij = ρ(vi)ρ(vj)ψ(eij), (4)

where ψ is a function that reflects the number of edge occurrences and ρ is a function to reflect the
degree of confidence for the latent node embedding. The details of these two functions are as follow.
Smooth the transition of the training structure between iterations. In order to obtain a smooth
transition of the training structure between iterations, we take the learned curriculum on selected
edges by the CL strategy into consideration. Formally, we model ψ by a smooth function of the
edge selected times compared to the model iteration times before the current iteration:

ψ(eij) = t(eij)/t, (5)
where t is the number of current iterations and t(eij) represents the counting number of selecting
edge eij . Therefore, we transform the original discretely changing training structure into a smoothly
changing one by taking the historical edge selection curriculum into consideration.
Reduce the influence of nodes with low confidence latent embeddings. As introduced in our
algorithm 1 line 6, the estimated structure Ã is inferred from the latent embedding Z that is extracted
from the trained GNN model f . Such estimated latent embedding may possibly shift from the true
underlying embedding, which results in the inaccurately reconstructed structure around the node.
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In order to alleviate this issue, similar to previous CL strategies on inferring the complexity of
data samples by their supervised training loss, we model the function ρ by the training loss on
nodes, which indicates the confidence of their latent embedding. Specifically, a larger training loss
indicates a low confident latent node embedding. Mathematically, the weights ρ(vi) on node vi can
be represented as a distribution of their training loss:

ρ(vi) ∼ e−li (6)
where li is the training loss on node vi. Therefore, a node with a larger training loss will result in a
smaller value of ρ(vi), which reduces the weight of the edges connected to that node.

5 EXPERIMENTS

In this section, the experimental settings are introduced first in Section 5.1, then the performance
of the proposed method on both synthetic and real-world datasets are presented in Section 5.2. We
further present the robustness test on our CL method against topological structure adversarial attack
in Section 5.3. Intuitive visualizations of the edge selection curriculum are shown in Section 5.4. In
addition, we verify the effectiveness of all components of the method through ablation studies and
measure the parameter sensitivity of our proposed method in Appendix A.2 due to the space limit.

5.1 EXPERIMENTAL SETTINGS

Synthetic datasets To evaluate the effectiveness of our proposed method on datasets with ground-
truth difficulty labels on structure, we follow previous studies (Karimi et al., 2018; Abu-El-Haija
et al., 2019) to generate a set of synthetic datasets, where the formation probability of an edge
is designed to reflect its likelihood to positively contribute to the node classification job, which
indicates its difficulty level. Specifically, the nodes in each generated graph are divided into 10
equally sized node classes 1, 2, . . . , 10, and the node features are sampled from overlapping multi-
Gaussian distributions. Each generated graph is associated with a homophily coefficient (homo)
which indicates the probability of a node forming an edge to another node with the same label. For
the rest edges that are formed between nodes with different labels, the probability of forming an
edge is inversely proportional to the distances between their labels. Therefore, the probability of
forming an edge in the synthetic graph can reflect the likelihood that this edge can contribute to the
prediction. Specifically, edges with a higher formation probability, e.g. connecting nodes with close
labels, meaning that there is a higher chance that this connection will positively contribute to the
prediction. We vary the value of homo from 0.1, 0.2, . . . , 0.9 to generate nine graphs in total. More
details and a visualization illustrating the synthetic dataset can be found in Appendix A.1.
Real-world datasets. To further evaluate the performance of our proposed method in real-world
scenarios, nine benchmark real-world attributed network datasets, including four citation network
datasets Cora, Citeseer, Pubmed (Yang et al., 2016) and ogbn-arxiv Hu et al. (2020), two coauthor
network datasets CS and Physics (Shchur et al., 2018), two Amazon co-purchase network datasets
Photo and Computers (Shchur et al., 2018), and one protein interation network Hu et al. (2020). We
follow the data splits from Chen et al. (2018) on citation networks and use a 5-fold cross-validation

Homo ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GCN 50.84±1.03 56.50±0.50 65.17±0.48 77.94±0.54 87.15±0.44 93.27±0.24 97.48±0.25 99.10±0.17 99.93±0.03

GNNSVD 54.96±0.76 58.45±0.56 63.06±0.63 70.23±0.61 80.51±0.41 85.02±0.46 90.31±0.27 94.23±0.22 96.74±0.23
ProGNN 47.87±0.87 54.59±0.55 65.39±0.44 76.96±0.49 87.76±0.51 93.16±0.34 97.60±0.31 99.04±0.19 99.94±0.03

NeuralSparse 51.42±1.35 57.99±0.69 65.10±0.43 75.37±0.34 87.40±0.29 93.54±0.28 97.16±0.15 99.01±0.22 99.83±0.07
PTDNet 48.21±1.98 55.52±2.82 65.82±0.94 79.37±0.45 89.17±0.39 94.19±0.18 98.61±0.12 99.51±0.09 99.81±0.05

CLNodes 50.37±0.73 56.64±0.56 65.04±0.66 77.52±0.48 86.85±0.44 93.10±0.47 97.34±0.25 99.02±0.18 99.88±0.04
RCL 57.57±0.43 62.06±0.28 73.98±0.55 84.54±0.75 92.69±0.09 97.42±0.17 99.62±0.05 99.89±0.02 99.93±0.06
GIN 48.33±1.89 53.62±1.39 64.08±0.99 77.55±1.10 85.31±0.75 90.57±0.36 97.82±0.18 99.59±0.11 99.91±0.02

GNNSVD 43.21±1.60 45.68±1.66 54.90±1.16 68.29±0.79 79.76±0.52 85.63±0.44 93.65±0.39 97.22±0.17 98.94±0.17
ProGNN 45.76±1.40 52.96±1.01 64.12±1.07 76.95±0.87 85.13±0.71 89.96±0.55 96.54±0.48 99.51±0.12 99.78±0.05

NeuralSparse 50.23±2.05 54.12±1.52 62.81±0.75 76.98±1.17 85.14±0.94 92.57±0.44 98.02±0.20 99.61±0.12 99.91±0.05
PTDNet 53.23±2.76 56.12±2.03 65.81±1.38 77.81±1.02 86.14±0.65 93.21±0.74 97.08±0.41 99.51±0.18 99.91±0.03

CLNodes 45.36±1.42 51.10±1.15 62.53±0.88 75.83±1.07 87.76±0.90 94.25±0.44 98.30±0.26 99.60±0.09 99.92±0.03
RCL 57.63±0.66 62.08±1.17 71.02±0.61 80.61±0.69 88.62±0.43 94.88±0.36 98.19±0.19 99.32±0.08 99.89±0.04

GraphSage 62.57±0.55 67.33±0.64 71.06±0.74 80.88±0.54 85.88±0.51 91.42±0.37 95.26±0.33 97.78±0.16 99.52±0.13
GNNSVD 64.42±0.80 65.71±0.39 67.12±0.58 68.47±0.50 77.70±0.65 82.86±0.50 87.81±0.71 91.61±0.55 95.01±0.50
ProGNN 58.57±2.09 66.75±0.91 72.14±0.64 81.27±0.44 86.89±0.47 92.10±0.39 95.21±0.30 97.51±0.23 99.50±0.11

NeuralSparse 61.70±0.77 66.65±0.66 70.60±0.79 79.65±0.45 84.19±0.91 91.31±0.54 94.86±0.53 97.16±0.23 99.55±0.19
PTDNet 65.72±1.08 69.25±0.92 72.60±0.77 79.65±0.45 86.54±0.56 91.79±0.53 96.10±0.58 97.98±0.13 99.78±0.08

CLNodes 69.41±0.66 70.83±0.58 75.51±0.36 82.65±0.43 87.08±0.56 91.58±0.41 95.91±0.38 98.33±0.26 99.57±0.14
RCL 68.03±0.37 71.39±0.51 76.99±0.99 83.76±0.55 88.24±0.30 93.34±0.56 97.66±0.52 98.86±0.28 99.64±0.08

Table 1: Node classification accuracy on synthetic datasets (%). The best-performing method on
each backbone GNN model is highlighted in bold, while the second-best method is underlined.
In situations where RCL’s performance is not strictly the best among all methods, we can see that
almost all methods can achieve a near-perfect performance and RCL is still close to the best methods.
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Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-proteins
# nodes 2,708 3,327 19,717 18,333 34,493 7,650 13,752 169,343 132,534
# edges 10,556 9,104 88,648 163,788 495,924 238,162 491,722 1,166,243 39,561,252

# features 1,433 3,703 500 6,805 8,415 745 767 100 8
GCN 85.74±0.42 78.93±0.32 87.91±0.09 93.03±0.32 96.55±0.15 93.25±0.70 88.09±0.40 71.74±0.29 72.51±0.35

GNNSVD 83.24±1.03 74.80±0.87 88.81±0.38 93.79±0.11 96.11±0.13 89.63±0.73 86.49±0.77 67.44±0.51 66.92±0.64
ProGNN 85.66±0.61 74.78±0.55 87.22±0.33 94.04±0.19 96.75±0.26 92.07±0.67 88.72±0.59 - -

NeuralSparse 85.95±0.98 76.24±0.48 86.83±0.40 92.31±0.47 95.56±0.30 90.57±0.90 88.62±0.83 - -
PTDNet 83.84±0.95 77.54±0.42 87.89±0.08 93.60±0.43 96.56±0.09 88.92±0.87 87.52±0.70 - -
CLNode 85.67±0.33 78.99±0.57 89.50±0.28 93.83±0.24 95.76±0.16 93.39±0.83 89.28±0.38 70.95±0.18 71.40±0.32

RCL 87.15±0.44 79.79±0.55 89.79±0.12 94.66±0.32 97.02±0.23 94.41±0.76 90.23±0.23 74.08±0.33 75.19±0.26
GIN 84.43±0.65 74.87±0.20 85.72±0.40 91.48±0.36 95.62±0.30 93.02±0.91 86.94±1.58 69.26±0.34 74.51±0.32

GNNSVD 82.23±0.65 72.11±0.70 88.31±0.15 91.40±0.87 95.30±0.29 89.49±1.11 82.66±2.26 67.79±0.41 70.65±0.53
ProGNN 85.02±0.41 78.12±0.93 87.82±0.51 - - 92.23±0.67 83.54±1.48 - -

NeuralSparse 84.92±0.58 75.44±0.87 86.11±0.49 89.66±0.82 95.05±0.57 93.28±0.83 87.22±0.54 - -
PTDNet 83.02±1.01 75.00±0.74 88.04±0.29 91.01±0.21 95.57±0.40 90.70±0.76 87.08±0.65 - -
CLNode 83.52±0.77 75.82±0.58 86.92±0.61 91.71±0.41 95.75±0.46 92.78±0.90 85.93±1.53 70.58±0.17 73.97±0.31

RCL 86.64±0.39 77.60±0.18 89.17±0.29 93.92±0.27 96.75±0.17 93.88±0.51 89.76±0.19 72.55±0.15 78.76±0.22
GraphSage 86.22±0.27 77.27±0.23 88.50±0.16 94.22±0.18 96.26±0.34 93.82±0.51 88.62±0.21 71.49±0.27 77.68±0.20
GNNSVD 83.11±0.82 73.19±0.49 88.42±0.38 93.86±0.36 95.96±0.12 89.31±0.53 81.46±1.15 69.82±0.34 71.82±0.39
ProGNN 86.23±0.42 74.45±0.83 88.52±0.45 - - 90.89±0.69 89.34±0.54 - -

NeuralSparse 84.60±0.52 76.32±0.55 89.02±0.39 93.89±0.58 96.67±0.20 90.78±1.06 88.37±0.37 - -
PTDNet 86.03±0.60 76.07±0.58 86.78±0.45 93.78±0.43 95.32±0.31 92.96±0.87 84.89±1.47 - -
CLNode 86.60±0.64 77.23±0.54 88.76±0.57 94.13±0.34 96.87±0.45 93.90±0.42 89.57±0.62 71.54±0.20 78.40±0.41

RCL 86.90±0.39 78.95±0.18 90.14±0.43 95.05±0.23 96.88±0.19 95.06±0.52 90.47±0.38 73.13±0.14 79.89±0.35

Table 2: Node classification results on real-world datasets (%). The best-performing method on each
backbone is highlighted in bold and second-best is underlined. (-) denotes an out-of-memory issue.

setting on coauthor and Amazon co-purchase networks. All data are from Pytorch-geometric li-
brary (Fey & Lenssen, 2019) and basic statistics are reported in Table 2.

Comparison methods. We incorporate three commonly used GNN models, including GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2018), as the baseline
model and also the backbone model for RCL. In addition to evaluating our proposed method against
the baseline GNNs, we further leverage two categories of state-of-the-art methods in the experi-
ments: (1) We incorporate four graph structure learning methods GNNSVD (Entezari et al., 2020),
ProGNN (Jin et al., 2020), NeuralSparse (Zheng et al., 2020), and PTDNet (Luo et al., 2021); (2)
We further compare with a curriculum learning method CLNode (Wei et al., 2022) which gradually
select nodes in the order of the difficulties defined by a heuristic-based strategy. More details about
the comparison methods and model implementation details can be found in Appendix A.1.

5.2 EFFECTIVENESS ANALYSIS ON SYNTHETIC AND REAL-WORLD DATASETS.

Table 1 presents the node classification results of the synthetic datasets. We report the average
accuracy and standard deviation for each model against the homo of generated graphs. From the
table, we observe that our proposed method RCL consistently achieves the best or most competitive
performance to all the comparison methods over three backbone GNN architectures. Specifically,
RCL outperforms the second best method on average by 4.17%, 2.60%, and 1.06% on GCN, GIN,
and GraphSage backbones, respectively. More importantly, the proposed RCL method performs
significantly better than the second best model when the homo of generated graphs is low (≤ 0.5), on
average by 6.55% on GCN, 4.17% on GIN, and 2.93% on GraphSage backbones. These demonstrate
that our proposed RCL method significantly improves the model’s capability of learning an effective
representation to downstream tasks especially when the complexities vary largely in the data.

We report the experimental results of the real-world datasets in Table 2. The results demonstrate the
strength of our proposed method by consistently achieving the best results in all 9 datasets by GCN
backbone architecture, all 9 datasets by GraphSage backbone architecture, and 6 out of 9 datasets
by GIN backbone architecture. Specifically, our proposed method improved the performance of
baseline models on average by 1.86%, 2.83%, and 1.62% over GCN, GIN, and GraphSage, and
outperformed the second best models model on average by 1.37%, 2.49%, and 1.22% over the three
backbone models, respectively. The results demonstrate that the proposed RCL method consistently
improves the performance of GNN models in real-world scenarios.

Our experimental results are statically sound. In 43 out of 48 tasks our method outperforms the
second-best performing model with strong statistical significance. Specifically, we have in 30 out of
43 cases with a significance p < 0.001, in 8 out of 43 cases with a significance p < 0.01, and in 5
out of 43 cases with a significance p < 0.05. Such statistical significance results can demonstrate
that our proposed method can consistently perform better than the baseline models in all datasets.

5.3 ROBUSTNESS ANALYSIS AGAINST ADVERSARIAL TOPOLOGICAL STRUCTURE ATTCK

To further examine the robustness of the RCL method on extracting powerful representation from
complex data samples, we follow previous works (Jin et al., 2020; Luo et al., 2021) to randomly
inject fake edges into real-world graphs. This adversarial attack can be viewed as adding random
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noise to the topological structure of graphs. Specifically, we randomly connectM pairs of previously
unlinked nodes in the real-world datasets, where the value of M varies from 10% to 100% of the
original edges. We then train RCL and all the comparison methods on the attacked graph and
evaluate the node classification performance. The results are shown in Figure 2, we can observe
that RCL shows strong robustness to adversarial structural attacks by consistently outperforming all
compared methods on all datasets. Especially, when the proportion of added noisy edges is large
(> 50%), the improvement becomes more significant. For instance, under the extremely noisy ratio
at 100%, RCL outperforms the second best model by 4.43% and 2.83% on Cora dataset, and by
6.13%, 3.47% on Citeseer dataset, with GCN and GIN backbone models, respectively.
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Figure 2: Node classification accuracy (%) on Cora and Citeseer under random structure attack.
The attack edge ratio is computed versus the original number of edges, where 100% means that the
number of inserted edges is equal to the number of original edges.

5.4 VISUALIZATION OF LEARNED EDGE SELECTION CURRICULUM

Besides the effectiveness of the RCL method on downstream classification results, it is also inter-
esting to verify whether the learned edge selection curriculum satisfies the rule from easy to hard.
Since real-world datasets do not have ground-truth labels of difficulty on edges, we conduct exper-
iments on synthetic datasets, where the difficulty of each edge can be indicated by its formation
probability. Specifically, we classify edges into three categories according to their difficulty: easy,
medium, and hard. Here, we define all homogenous edges that connect nodes with the same class as
easy, edges connecting nodes with adjacent classes as medium, and the remaining edges connecting
nodes with far away classes as hard. We report the proportion of edges selected for each category
during training in Figure 3. We can observe that RCL can effectively select most of the easy edges
at the beginning of training, then more easy edges and mostly medium edges are gradually included
during training, and most hard edges are left unselected until the end stage of training. Such model
behavior is consistent with the idea of designing a curriculum for edge selection, which verifies that
our proposed method can effectively design curriculums to select edges according to their difficulty
from easy to hard, regardless of the backbone model choice.
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Figure 3: Visualization of edge selection on the synthetic dataset.
6 CONCLUSION

This paper focuses on developing a novel CL strategy to improve the generalization ability of GNN
models on data samples with dependencies. The proposed method Relational Curriculum Learning
(RCL) effectively addresses the unique challenges in designing CL strategy for handling depen-
dencies. First, a self-supervised learning module is developed to select appropriate edges that are
expected by the model. Then an optimization model is presented to iteratively increment the training
structure according to the model training status and a theoretical guarantee of the convergence on the
optimization algorithm is given. Finally, an edge reweighting scheme is proposed to steady the nu-
merical process by smoothing the training structure transition. Extensive experiments on synthetic
and real-world datasets demonstrate the strength of RCL in improving the generalization ability.
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of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 761–769, 2016.

Junxiang Wang, Hongyi Li, and Liang Zhao. Accelerated gradient-free neural network training by
multi-convex alternating optimization. Neurocomputing, 487:130–143, 2022.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Curgraph: Curriculum learning
for graph classification. In Proceedings of the Web Conference 2021, pp. 1238–1248, 2021.

Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods and applications.
1994.

Xiaowen Wei, Weiwei Liu, Yibing Zhan, Du Bo, and Wenbin Hu. Clnode: Curriculum learning for
node classification. arXiv preprint arXiv:2206.07258, 2022.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
and experiments with deep networks. In International Conference on Machine Learning, pp.
5238–5246. PMLR, 2018.

Richard Lee Wheeden and Antoni Zygmund. Measure and integral, volume 26. Dekker New York,
1977.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversar-
ial examples for graph data: deep insights into attack and defense. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pp. 4816–4823, 2019.

11



Under review as a conference paper at ICLR 2023

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label de-
tection to noisy label self-correction. In International Conference on Learning Representations,
2020.
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A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

A.1 ADDITIONAL EXPERIMENTAL SETTINGS

Synthetic datasets To evaluate the effectiveness of our proposed method on datasets with ground-
truth difficulty labels on structure, we first follow previous studies (Karimi et al., 2018; Abu-El-Haija
et al., 2019) to generate a set of synthetic datasets, where the difficulty of edges in generated graphs
are indicated by their formation probability. Specifically, as shown in Figure 4, each generated
graph is with 5,000 nodes, which are divided into 10 equally sized node classes 1, 2, . . . , 10. The
node features are sampled from overlapping multi-Gaussian distributions. Each generated graph is
associated with a homophily coefficient (homo) which indicates the likelihood of a node forming a
connection to another node with the same label (same color in Figure 4). For example, a generated
graph with homo = 0.5 will have on average half of the edges formed between nodes with the
same label. For the rest edges that are formed between nodes with different labels (different colors
in Figure 4), the probability of forming an edge is inversely proportional to the distances between
their labels. Mathematically, the probability of forming an edge between node u and node v fol-
lows pu→v ∝ e−|cu−cv|, where the distances between labels |cu − cv| means shortest distance of
two classes on a circle. Therefore, the probability of forming an edge in the synthetic graph can
reflect how well this edge is expected. Specifically, edges with a higher formation probability, e.g.
connecting nodes with the same label or close labels, meaning that there is a higher chance that this
connection will positively contribute to the prediction (less chance to be a noisy edge). Conversely,
edges with a lower formation probability, e.g., connecting nodes with faraway labels, mean that there
is a higher chance that this connection will negatively contribute to the prediction (higher chance to
be a noisy edge). We vary the value of homo from 0.1, 0.2, . . . , 0.9 to generate nine graphs in total.
Similar to previous works (Karimi et al., 2018; Abu-El-Haija et al., 2019), we randomly partition
each synthetic graph into equal-sized train, validation, and test node splits.

Figure 4: Visualization of synthetic datasets. Each color represents a class of nodes. Node attributes
are sampled from overlapping multi-Gaussian distributions, where the attributes of nodes with close
labels are likely to have short distances. Homogeneous edges represent edges that connect nodes of
the same class (with the same color). The probability of connecting two nodes of different classes
decreases with the distance between the center points of their class distribution. Therefore, the
formation probability of a node denotes the edge difficulty, since edges between nodes with close
classes are more likely to positively contribute to the prediction under the homogeneous assumption.

Initializing graph structure by a pre-trained model. It is worth noting that the model needs
an initial training graph structure A(0) in the initial stage of training. An intuitive way is that we
can initialize the model to work in a purely data-driven scenario that starts only with isolated nodes
where no edges exist. However, an instructive initial structure can greatly reduce the search cost
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and computational burden. Inspired by many previous CL works (Weinshall et al., 2018; Hacohen
& Weinshall, 2019; Jiang et al., 2018; Zhou et al., 2020) that incorporate prior knowledge of a pre-
trained model into designing curriculum for the current model, we initialize the training structure
A(0) by a pre-trained vanilla GNN model f∗. Specifically, we follow the same steps from line 4 to
line 7 in the algorithm 1 to obtain the initial training structure A(0) but the latent node embedding
is extracted from the pre-trained model f∗.

Implementation Details We use the baseline model (GCN, GIN, GraphSage) as the backbone
model for both our RCL method and all comparison methods. For a fair comparison, we require all
models follow the same GNN architecture with two convolution layers. For each split, we run each
model 10 times to reduce the variance in particular data splits. Test results are according to the best
validation results. General training hyperparameters (such as learning rate or the number of training
epochs) are equal for all models. For the pre-trained model to initialize the training structure, we
utilize the same model as the backbone model utilized by our method. For example, if we use GCN
as the backbone model for RCL, the pre-trained model to initialize is also GCN. All experiments are
conducted on a 64-bit machine with four NVIDIA Quadro RTX 8000 GPUs. The proposed method
is implemented with Pytorch deep learning framework (Paszke et al., 2019).

The following describes the details of our comparison models.

Graph Neural Networks (GNNs). We first introduce three baseline GNN models as follows.

(i) GCN. Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) is a commonly used GNN,
which introduces a first-order approximation architecture of the Chebyshev spectral convolution
operator;

(ii) GIN. Graph Isomorphism Networks (GIN) (Xu et al., 2018) is a variant of GNN, which has
provably powerful discriminating power among the class of 1-order GNNs;

(iii) GraphSage. GraphSage Hamilton et al. (2017) is a GNN method that computes the hidden
representation of the root node by aggregating the hidden node representations hierarchically from
bottom to top.

Graph structure learning. We then introduce four state-of-the-art methods for jointly learning the
optimal graph structure and downstream tasks.

(i) GNNSVD. GNNSVD (Entezari et al., 2020) first apply singular value decomposition (SVD) on
the graph adjacency matrix to obtain a low-rank graph structure and apply GNN on the obtained
low-rank structure;

(ii) ProGNN. ProGNN (Jin et al., 2020) is a method to defend against graph adversarial attacks by
obtaining a sparse and low-rank graph structure from the input structure;

(iii) NeuralSparse. NeuralSparse (Zheng et al., 2020) is a method to learn robust graph representa-
tions by iteratively sampling k-neighbor subgraphs for each node and sparsing the graph according
to the performance on the node classification;

(iv) PTDNet. PTDNet (Luo et al., 2021) learns a sparsified graph by pruning task-irrelevant edges,
where sparsity is controlled by regulating the number of edges.

Curriculum learning on graph data. We introduce a recent curriculum learning work on node
classification as follows.

(i) CLNode. CLNode (Wei et al., 2022) regards nodes as data samples and gradually incorporates
more nodes into training according to their difficulty. They apply a heuristic-based strategy to mea-
sure the difficulty of nodes, where the nodes that connect neighboring nodes with different classes
are considered difficult.

Searching space for hyperparameters.
Number of epochs trained: {150, 500};
Learning rate for model: {1e−2, 5e−3, 1e−3};
Number of GNN layers: {2};
Dimension of hidden state: {64};
Age parameter λ : {1, 2, 3, 4, 5} (A larger value indicates faster pacing for adding edges, where 1
denotes the training structure will converge to the input structure at the final iteration).
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A.2 ADDITIONAL EXPERIMENTS

Synthetic1 Synthetic2 Citeseer CS Computers
Full 73.98±0.55 97.42±0.17 79.79±0.55 94.66±0.22 90.23±0.23

w/o edge appearance 70.70±0.43 95.77±0.16 77.77±0.65 94.39±0.21 89.56±0.30
w/o node confidence 72.38±0.41 96.86±0.17 78.72±0.72 94.34±0.13 90.03±0.62

w/o pre-trained model 72.56±0.69 93.89±0.14 78.28±0.77 94.50±0.14 89.80±0.55

Table 3: Ablation study. Here “Full” represents the original method without removing any compo-
nent. The best-performing method on each dataset is highlighted in bold.

Ablation study Here we investigate the impact of the proposed components of RCL. We first con-
sider variants of removing the structural smoothing components mentioned in Section 4.3. Specif-
ically, we consider two variants w/o edge appearance and w/o node confidence, which remove the
smoothing function of the edge appearance ratio and the component to reflect the degree of confi-
dence for the latent node embedding in RCL, respectively. In addition to examining the effective-
ness of components in structural smoothing, we further consider a variant w/o pre-trained model
that avoids using a pre-trained model, which is mentioned in Appendix A.1, to initialize the training
structure by a pre-trained model and instead starts with inferred structure from isolated nodes with no
connections. We present the results of two synthetic datasets (homophily coefficient= 0.3, 0.6) and
three real-world datasets in Table 3, where we can observe a significant performance drop consis-
tently for all variants. The results validate that all structural smoothing and initialization components
can benefit the performance of RCL on the downstream tasks.

Parameter sensitivity analysis Recall that RCL learns a curriculum to gradually add edges in
a given input graph structure to the training process until all edges are included. An interesting
question is how the speed of adding edges will affect the performance of the model. Here we conduct
experiments to explore the impact of age parameter λ which controls the speed of adding edges to
the model performance. Here a larger value of λ means that the training structure will converge to
the input structure earlier. For example, λ = 1 means that the training structure will probably not
converge to the input structure until the last iteration, and λ = 5 means that the training structure
will converge to the input structure around half of the iterations are complete, and then the model
will be trained with the full input structure for the remaining iterations. We present the results on
two synthetic datasets (homophily coefficient= 0.3, 0.6) and two real-world datasets in Figure 5. As
can be seen from the figure, the classification results are steady that the average standard deviation
is only 0.41%. It is also worth noting that the peak values for all datasets consistently appear around
λ = 3, which indicates that the best performance is when the training structure converges to the full
input structure around two-thirds of the iterations are completed.
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Figure 5: Parameter sensitivity analysis on four datasets. Here a larger value of λ means the training
structure will converge to the original structure at an earlier training stage.

B MATHEMATICAL PROOF

Theorem 1. We have the following convergence guarantees for Algorithm 1:
[Avoidance of Saddle Points] If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are con-
tinuous, then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm1
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with random initializations will not converge to a strict saddle point of F almost surely.
[Second Order Convergence] If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are
continuous, and L(f(X,A(t);w),y) and g(S;λ) satisfy the Kurdyka-Łojasiewicz (KL) property
(Wang et al., 2022), then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by
Algorithm 1 with random initialization will almost surely converges to a second-order stationary
point of F .

Proof. We prove this theorem by Theorem 10 and Corollary 3 from Li et al. (2019).
[Avoidance of Saddle Points] Because the sequence (w(t),S(t)) is bounded, and the second
derivatives of L and g are continuous, then they are bounded. In other words, we have
max{

∥∥∇2
wL(f(X,A

(t);w(t)),y)
∥∥ ,∥∥∇2

Sg(S
(t);λ)

∥∥} ≤ p, where p > 0 is a constant. Simi-

larly, it is easy to check that the second derivative of the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2
2

is bounded,

i.e., max{
∥∥∥∥∇2

w

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2
2

∥∥∥∥ ,∥∥∥∥∇2
S

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2
2

∥∥∥∥} ≤ q, where q > 0 is

constant and Ã is a function of w. Therefore, it means that the objective F is bi-smooth, i.e.
max{

∥∥∇2
wF

∥∥},∥∥∇2
SF

∥∥} ≤ p+ q. In other words, F satisfies Assumption 4 from Li et al. (2019).
Moreover, the second derivative of F is continuous. For any γ > p + q, any bounded sequence
(w(t),S(t)) generated by Algorithm 1 will not converge to a strict saddle of F almost surely by
Theorem 10 from Li et al. (2019).
[Second Order Convergence] From the above proof of avoidance of saddle points, we know that
F satisfies Assumption 4 from Li et al. (2019). Moreover, because L and g satisfy the KL property,

and the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2
2

satisfies the KL property, we conclude that F satisfy the KL
property as well. From the proof above, we also know that the second derivative of F is continuous.
Because continuous differentiability implies Lipschitz continuity Wheeden & Zygmund (1977), it
infers that the first derivative of F is Lipschitz continuous. As a result, F satisfies Assumption 1
from Li et al. (2019). Because F satisfies Assumptions 1 and 4, then for any γ > p+q, any bounded
sequence (w(t),S(t)) generated by Algorithm 1 will almost surely converges to a second-order sta-
tionary point of F by Corollary 3 from Li et al. (2019).

While the convergence of Algorithm 1 entails the second-order optimality conditions of f and g,
some commonly used f such as the GNN with sigmoid or tanh activations and some commonly
used g such as the squared ℓ2 norm satisfy the KL property, and Algorithm 1 is guaranteed to avoid
a strict saddle point and converges to a second-order stationary point.
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