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Abstract

The proximal policy optimization (PPO) algorithm stands as one of the most pros-
perous methods in the field of reinforcement learning (RL). Despite its success,
the theoretical understanding of PPO remains deficient. Specifically, it is unclear
whether PPO or its optimistic variants can effectively solve linear Markov decision
processes (MDPs), which are arguably the simplest models in RL with function
approximation. To bridge this gap, we propose an optimistic variant of PPO for
episodic adversarial linear MDPs with full-information feedback, and establish a
Õ(d3/4H2K3/4) regret for it. Here d is the ambient dimension of linear MDPs,
H is the length of each episode, and K is the number of episodes. Compared with
existing policy-based algorithms, we achieve the state-of-the-art regret bound in
both stochastic linear MDPs and adversarial linear MDPs with full information.
Additionally, our algorithm design features a novel multi-batched updating mech-
anism and the theoretical analysis utilizes a new covering number argument of
value and policy classes, which might be of independent interest.

1 Introduction

Reinforcement learning (RL) [34] is a prominent approach to solving sequential decision making
problems. Its tremendous successes [19, 32, 33, 5] can be attributed, in large part, to the advent of
deep learning [22] and the development of powerful deep RL algorithms [24, 28, 29, 11]. Among
these algorithms, the proximal policy optimization (PPO) [29] stands out as a particularly signifi-
cant approach. Indeed, it continues to play a pivotal role in recent advancements in large language
models [27].

Motivated by the remarkable empirical success of PPO, numerous studies seek to provide theoretical
justification for its effectiveness. In particular, Cai et al. [6] develop an optimistic variant of the PPO
algorithm in adversarial linear mixture MDPs with full-information feedback [4, 25], where the
transition kernel is a linear combination of several base models. Theoretically, they show that the
optimistic variant of PPO is capable of tackling problems with large state spaces by establishing
a sublinear regret that is independent of the size of the state space. Building upon this work, He
et al. [14] study the same setting and refine the regret bound derived by Cai et al. [6] using the
weighted regression technique [44]. However, the algorithms in Cai et al. [6], He et al. [14] and
other algorithms for linear mixture MDPs [4, 44] are implemented in a model-based manner and
require an integration of the individual base model, which can be computationally expensive or even
intractable in general. Another arguably simplest RL model involving function approximation is
linear MDP [38, 17], which assumes that the reward functions and transition kernel enjoy a low-rank
representation. For this model, several works [17, 15, 3, 13] propose value-based algorithms that
directly approximate the value function and provide regret guarantees. To demonstrate the efficiency
of PPO in linear MDPs from a theoretical perspective, one potential approach is to extend the results
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Table 1: A comparison with closely related works on policy optimization for linear MDPs. Here
“Sto.” and “Adv.” represent stochastic rewards and adversarial rewards, respectively. Additionally,
“Bandit” and “Full-infor.” signify bandit feedback and full-information feedback. We remark that
Zanette et al. [40] do not consider the regret minimization problem and the regret reported in the
table is implied by their sample complexity. We will compare the sample complexity provided in
Zanette et al. [40] and the complexity implied by our regret in Remark 3.2.

Sto. + Bandit Adv. + Full-infor. Adv. + Bandit Regret
[40] ✓ ✗ ✗ Õ(d3/4H13/4K3/4)

[8] ✓ ✓ ✓ Õ(d2/3A1/9H20/9K8/9)

[31] ✓ ✓ ✓ Õ(dH2K6/7)

Our Work ✓ ✓ ✗ Õ(d3/4H2K3/4)

of Cai et al. [6], He et al. [14] to linear MDPs. However, this extension poses significant challenges
due to certain technical issues that are unique to linear MDPs. See §1.1 for a detailed description.

In this paper, we address this technical challenge and prove that the optimistic variant of PPO is
provably efficient for stochastic linear MDPs and even adversarial linear MDPs with full-information
feedback. Our contributions are summarized below.

• In terms of algorithm design, we propose a new algorithm OPPO+ (Algorithm 1), an optimistic
variant of PPO, for adversarial linear MDPs with full-information feedback. Our algorithm fea-
tures two novel algorithm designs including a multi-batched updating mechanism and a policy
evaluation step via average rewards.

• Theoretically, we establish a Õ(d3/4H2K3/4) regret for OPPO+, where d is the ambient dimension
of linear MDPs, H is the horizon, and K is the number of episodes. To achieve this result, we
employ two new techniques. Firstly, we adopt a novel covering number argument for the value
and policy classes, as explicated in §C. Secondly, in Lemma 4.3, we meticulously analyze the drift
between adjacent policies to control the error arising from the policy evaluation step using average
rewards.

• Compared with existing policy optimization algorithms, our algorithm achieves a better regret
guarantee for both stochastic linear MDPs and adversarial linear MDPs with full-information
feedback (to our best knowledge). See Table 1 for a detailed comparison.

In summary, our work provides a new theoretical justification for PPO in linear MDPs. To illustrate
our theory more, we highlight the challenges and our novelties in §1.1.

1.1 Challenges and Our Novelties

Challenge 1: Covering Number of Value Function Class. In the analysis of linear MDPs (see
Lemma B.3 or Lemma B.3 in Jin et al. [17]), we need to calculate the covering number of Vk

h , which
is the function class of the estimated value function at the h-th step of the k-th episode and takes the
following form:

Vk
h = {V (·) = ⟨Qk

h(·, ·), πk
h(· | ·)⟩A},

where Qk
h and πk

h are estimated Q-function and policy at the h-th step of the k-th episode, respec-
tively. For value-based algorithms (e.g., LSVI-UCB in Jin et al. [17]), πk

h is the greedy policy with
respect to Qk

h. Then we have

Vk
h = {V (·) = max

a
Qk

h(·, a)}.

Since maxa is a contraction map, it suffices to calculate N (Qk
h), where Qk

h is the function class of
Qk

h and N (·) denotes the covering number. By a standard covering number argument (Lemma D.4
or Lemma D.6 in Jin et al. [17]), we can show that logN (Qk

h) ≤ Õ(d2). However, for policy-
based algorithms such as PPO, πk

h is a stochastic policy, which makes the log-covering number
logN (Vk

h) may have a polynomial dependency on the size of action space A (log-covering number
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Figure 1: Algorithm diagram. The entire K episodes are partitioned into L = K/B batches,
with each batch containing B consecutive episodes. The policy/value updating only occurs at the
beginning of each batch. The policy evaluation uses the reward function in the last batch.

of |A|-dimensional probability distributions is at the order of |A|). We also remark that linear
mixture MDPs are more amenable to theoretical analysis compared to linear MDPs, as they do not
necessitate the calculation of the covering number of Vk

h [4, 6]. As a result, the proof presented by
Cai et al. [6] is valid for linear mixture MDPs, but cannot be extended to linear MDPs. See §A for
more elaboration of technical challenges.

Novelty 1: Multi-batched Updating and A New Covering Number Argument. Our key obser-
vation is that if we improve the policy like PPO (see (3.2) or Schulman et al. [29], Cai et al. [6]), πk

h
admits a softmax form, i.e.,

πk
h(· | ·) ∝ exp

( l∑
i=1

Qki

h (·, ·)
)
.

Here {ki}li=1 is a sequence of episodes, where ki ≤ k for all i ∈ [l], denoting the episodes in
which our algorithm performs policy optimization prior to the k-th episode. By a technical lemma
(Lemma C.3), we can show that

logN (class of πk
h) ≲

l∑
i=1

logN (Qki

h ) ≲ Õ(l · d2).

If we perform the policy optimization in each episode like Cai et al. [6], Shani et al. [30], l may
linear in K and the final regret bound becomes vacuous. Motivated by this, we use a multi-batched
updating scheme. In specific, OPPO+ divides the whole learning process into several batches and
only updates policies at the beginning of each batch. See Figure 1 for visualization. For example,
if the number of batches is K1/2 (i.e., each batch consists of consecutive K1/2 episodes), we have
l ≤ K1/2 and the final regret is at the order of Õ(K3/4). Here we assume K1/2 is a positive integer
for simplicity. See §C for details.

Challenge 2: Adversarial Rewards. Compared with previous value-based algorithms [e.g., 17],
one superiority of optimistic PPO is that they can learn adversarial MDPs with full-information
feedback [6, 30]. In Cai et al. [6], Shani et al. [30], the policy evaluation step is that

Qk
h = rkh + P̂k

hV
k
h+1 + bonus function, ∀h ∈ [H], V k

h+1 = 0,

where rkh is the adversarial reward function and P̂k
hV

k
h+1 is the estimator of the expected next step

value of V k
h+1. This policy evaluation step is invalid if we use the multi-batched updating. Consider

the following case, if the number of batches is K1/2 and

rkh(·, ·) =
{

0 k ∈ {iK1/2 + 1}K1/2

i=0
arbitrary otherwise

.

Then the algorithm only uses zero rewards to find the optimal policy in hindsight with respect to
arbitrary adversarial rewards, which is obviously impossible.
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Novelty 2: Policy Evaluation via Average Reward and Smoothness Analysis. To tackle the above
challenge, we adopt the following policy evaluation step at the beginning of each batch

Qk
h = r̄kh + P̂k

hV
k
h+1 + bonus function, ∀h ∈ [H], V k

h+1 = 0,

where r̄kh the average reward of the last batch:

r̄kh =

∑
(reward functions of the last batch)

batch size
.

Let πki denote the policy executed in the i-th batch. Intuitively, πki+1 is the desired policy within
i-th batch since its calculation only uses the rewards in the first (i−1) batches (cf. Figure 1). Hence,
compared with Cai et al. [6], Shani et al. [30], we need to handle the gap between the performance
of πki+1 and πki in the i-th batch. Fortunately, this error can be controlled due to the “smoothness”
of policies in adjacent batches. See Lemma 4.3 for details.

1.2 Related Works

Policy Optimization Algorithms. The seminal work of Schulman et al. [29] proposes the PPO
algorithm, and a line of following works seeks to provide theoretical guarantees for it. In particular,
Cai et al. [6] proposes the optimistic PPO (OPPO) algorithm for adversarial linear mixture MDPs
and establishes regret Õ(d

√
H4K) for it. Then, He et al. [14] improve the regret to Õ(d

√
H3K) by

the weighted regression technique [44]. Besides their works on linear mixture MDPs, Shani et al.
[30], Wu et al. [37] provide fine-grained analysis of optimistic variants of PPO in the tabular case.
The works of Fei et al. [9], Zhong et al. [42] show that optimistic variants of PPO can solve non-
stationary MDPs. However, none of these works show that the optimistic variant of PPO is provably
efficient for linear MDPs.

There is another line of works [2, 10, 40] proposes optimistic policy optimization algorithms based
on the natural policy gradient (NPG) algorithm [18] and the policy-cover technique. But their works
are limited to the stochastic linear MDPs, while our work can tackle adversarial rewards. Compared
with their results for stochastic linear MDPs, our work can achieve a better regret and compatible
sample complexity. See Table 1 and Remark 3.2 for a detailed comparison. Several recent works
[26, 23, 20, 8, 31] study the more challenging problem of learning adversarial linear MDPs with
only bandit feedback, which is beyond the scope of our work. Without access to exploratory policies
or even known transitions, their regret is at least Õ(K6/7) [31], while our work achieves a better
Õ(K3/4) regret with the full-information feedback assumption.

RL with Linear Function Approximation. Our work is related to previous works proposing
value-based algorithms for linear MDPs [38, 17]. The work of Yang and Wang [38] develops the first
sample efficient algorithm for linear MDPs with a generative model. Then Jin et al. [17] proposes
the first provably efficient algorithms for linear MDPs in the online setting. The results of Jin
et al. [17] are later improved by [35, 15, 13, 3]. In particular, Agarwal et al. [3], He et al. [13]
show that the nearly minimax optimal regret Õ(d

√
H3K) is achievable in stochastic linear MDPs.

Compared with these value-based algorithms, our work can tackle the more challenging adversarial
linear MDPs with full-information feedback.

There is another line of works [4, 25, 6, 41, 14, 45, 44, 43] studying linear mixture MDPs, which
is another model of RL with linear function approximation. It can be shown that linear MDPs
and linear mixture MDPs are incompatible in the sense that neither model is a special case of the
other. Among these works, Zhou et al. [44], Zhou and Gu [43] establishes nearly minimax regret
Õ(d
√
H3K) for stochastic linear mixture MDPs. Our work is more related to Cai et al. [6], He et al.

[14] on adversarial linear mixture MDPs with full-information feedback. We have remarked that it
is nontrivial to extend their results to linear MDPs.

2 Preliminaries

Notations. We use N+ to denote the set of positive integers. For any H ∈ N+, we denote
[H] = {1, 2, . . . ,H}. For any H ∈ N+ and x ∈ R, we use the notation min{x,H}+ =
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min{H,max{0, x}}. Besides, we denote by ∆(A) the set of probability distributions on the set
A. For any two distributions P and Q over A, we denote KL(P∥Q) = Ea∼P [log dP (a)/dQ(a)].

Episodic Adversarial MDPs. We consider an episodic MDPM, which is denoted by a tuple
(S,A, H,K, {rkh}(k,h)∈[K]×[H],P = {Ph}h∈[H]),

where S is the state space, A is the action space, H is the length of each episode, K is the number
of episodes, rkh : S × A 7→ [0, 1] is the deterministic1 reward function at the h-th step of k-th
episode, Ph is the transition kernel with Ph(s

′ | s, a) being the transition probability for state s to
transfer to the next state s′ given action a at the h-th step. We consider the adversarial MDPs with
full-information feedback, which means that the reward {rkh}h∈[H] is adversarially chosen by the
environment at the beginning of the k-th episode and revealed to the learner after the k-th episode.

A policy π = {πh}h∈[H] is a collection of H functions, where πh : S 7→ ∆(A) is a function that
maps a state to a distribution over action space at step h. For any policy π and reward function
{rkh}h∈[H], we define the value function V π,k

h : S 7→ R and Q-function Qπ,k
h : S ×A 7→ R as

V π,k
h (x) = Eπ

[ H∑
h′=h

rkh′(xh′ , ah′)

∣∣∣∣xh = x

]
,

Qπ,k
h (x, a) = Eπ

[ H∑
h′=h

rkh′(xh′ , ah′)

∣∣∣∣xh = x, ah = a

]
,

for any (x, a, k, h) ∈ S × A × [K] × [H]. Here the expectation Eπ[·] is taken with respect to the
randomness of the trajectory induced by policy π and transition kernel P . It is well-known that the
value function and Q-function satisfy the following Bellman equation for any (x, a) ∈ S ×A,

V π,k
h (x) = ⟨Qπ,k

h (x, ·), πh(· | x)⟩A, Qπ,k
h (x, a) = rkh(x, a) + (PhV

π,k
h+1)(x, a), (2.1)

where ⟨·, ·⟩A denotes the inner product over the action spaceA and we will omit the subscript when
it is clear from the context. Here Ph is the operator defined as

(PhV )(x, a) = Ex′∼Ph(·|x,a)[V (x′)], ∀V : S 7→ R. (2.2)

Interaction Process and Learning Objective. We consider the online setting, where the learner
improves her performance by interacting with the environment repeatedly. The learning process con-
sists of K episodes and each episode starts from a fixed initial state x1

2. At the beginning of the k-th
episode, the environment adversarially chooses reward functions {rkh}h∈[H], which can depend on
previous (k−1) trajectories. Then the agent determines a policy πk and receives the initial state xk

1 =
x1. At each step h ∈ [H], the agent receives the state xk

h, chooses an action akh ∼ πk
h(· | xk

h), receives
the reward function rkh, and transits to the next state xk

h+1. The k-th episode ends after H steps.

We evaluate the performance of an online algorithm by the notion of regret [7], which is defined as
the value difference between the executed policies and the optimal policy in hindsight:

Regret(K) = max
π

K∑
k=1

(
V π,k
1 (x1)− V πk,k

1 (x1)
)
.

For simplicity, we denote the optimal policy in hindsight by π∗, i.e., π∗ =

argmaxπ
∑K

k=1 V
π,k
1 (x1).

Linear MDPs. We focus on the linear MDPs [38, 17], where the transition kernels are linear in a
known feature map.
Definition 2.1 (Linear MDP). We say an MDP (S,A, H,K, {rkh}(k,h)∈[K]×[H],P = {Ph}h∈[H])

is a linear MDP if there exists a known feature ϕ : S × A 7→ Rd such that for any (x, a, k, h) ∈
S ×A× [K]× [H], we have

Ph(x
′ | x, a) = ϕ(x, a)⊤µh(x

′),

where µh = (µ
(1)
h , . . . , µ

(d)
h ) are d unknown signed measures over S satisfying ∥µh(S)∥2 ≤

√
d.

1This assumption is without loss of generality since our subsequent results are ready to be extended to the
stochastic reward case.

2Our subsequent analysis can be generalized to the case where the initial state is chosen from a fixed distri-
bution across all episodes.
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Algorithm 1 OPPO+
Require: Batch size B ∈ N+, regularization parameter λ > 0, and confidence radius β > 0.

1: Initialize {Q0
h}, {rkh}−B≤k≤0 as zero functions and {π0

h} as uniform distributions on A, ∀h ∈
[H].

2: Let L = K/B, i = 1, and ki = (i− 1) ·B + 1 for 1 ≤ i ∈ [L].
3: for episode k = 1, 2, . . . ,K do
4: Receive the initial state xk

1 .
5: if k = ki then
6: V k

H+1(·)← 0.
7: for step h = 1, 2, . . . ,H do
8: Update the policy by πk

h(· | ·) ∝ πk−1
h (· | ·) · exp{α ·Qk−1

h (·, ·)}.
9: end for

10: for step h = H,H − 1, . . . , 1 do
11: Λk

h ←
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · Id.
12: wk

h ← (Λk
h)

−1
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h) · V k

h+1(x
τ
h+1).

13: r̄kh(·, ·)← (
∑ki−1

j=ki−1
rjh(·, ·))/B.

14: Γk
h(·, ·)← β · [ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·)]1/2.

15: P̂k
hV

k
h+1(·, ·)← min{ϕ(·, ·)⊤wk

h + Γk
h(·, ·), H − h}+.

16: Qk
h(·, ·)← r̄kh(·, ·) + P̂k

hV
k
h+1(·, ·).

17: V k
h (·)← ⟨Qk

h(·, ·), πk
h(· | ·)⟩A.

18: end for
19: i← i+ 1
20: else
21: Qk

h ← Qk−1
h , V k

h ← V k−1
h , πk

h ← πk−1
h , r̄kh ← r̄k−1

h ∀h ∈ [H].
22: end if
23: for h = 1, 2, . . . ,H do
24: Take the action following akh ∼ πk

h(· |xk
h).

25: Observe the reward function rkh(·, ·) and receive the next state xk
h+1.

26: end for
27: end for

Since we have access to the full-information feedback, we do not assume the reward functions are
linear in the feature map ϕ like Jin et al. [17]. We also remark that the adversarial linear MDP with
full-information feedback is a more challenging problem than the stochastic linear MDP with bandit
feedback studied in Jin et al. [17]. In fact, for stochastic linear MDPs, we can assume the reward
functions are known without loss of generality since learning the linear transition kernel is more
difficult than the linear reward.

3 Algorithm

In this section, we propose a new algorithm OPPO+ (Algorithm 1) to solve adversarial linear MDPs
with full-information feedback. In what follows, we highlight the key steps of OPPO+.

Multi-batched Updating. Due to the technical issue elaborated in §1.1, we adopt the multi-batched
updating rule. In specific, OPPO+ divides the total K episodes into L = K/B batches and each
batch consists of B consecutive episodes. Here we assume K/B is a positive integer without loss of
generality3. For ease of presentation, we use ki = (i − 1) · B + 1 to denote the first episode in the
i-th batch. When the k-th episode is the beginning of a batch (i.e, k = ki for some i ∈ [L]), OPPO+
performs the following policy improvement step and policy evaluation step.

Policy Improvement. In the policy improvement step of the k-th episode (k = ki for some i ∈ [L]),
OPPO+ calculates πk based on the previous policy πk−1 using PPO [29]. In specific, OPPO+ updates

3We can only consider the first B · ⌊K/B⌋ episodes since the remaining episodes will lead at most BH
regret, which is a non-dominant term in final regret bound
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πk by solving the following proximal policy optimization problem:

πk ← argmax
π

{
Lk−1(π)− α−1 · Eπk−1

[ H∑
h=1

KL
(
πh(· | xh)∥πk−1

h (· | xh)
)]}

, (3.1)

where α > 0 is the stepsize that will be specified in Theorem 3.1, and Lk−1(π) takes form

Lk−1(π) = V πk−1,k−1
1 (xk

1) + Eπk−1

[ H∑
h=1

⟨Qk−1
h (xh, ·), πh(· | xh)− πk−1

h (· | xh)⟩
]
,

which is proportional to the local linear function of V π,k−1
1 (xk

1) at πk−1 and replaces the unknown
Q-function Qπk−1,k−1

h by the estimated one Qk−1
h for any h ∈ [H]. It is not difficult to show that

the updated policy πk obtained in (3.1) admits the following closed form:

πk
h(· | x) ∝ πk−1

h (· | x) · exp
(
α ·Qk−1

h (x, ·)
)
, ∀(x, h) ∈ S × [H]. (3.2)

Policy Evaluation. In the policy evaluation step of the k-th episode (k = ki for some i ∈
[K]), OPPO+ lets V k

H+1 be the zero function and iteratively calculates the estimated Q-function
{Qk

h}h∈[H] in the order of h = H,H − 1, . . . , 1. Now we present the policy evaluation at the h-th
step given estimated value V k

h+1. By the definitions of linear MDP in Definition 2.1 and the operator
Ph in (2.2), we know PhV

k
h+1 is linear in the feature map ϕ. Inspired by this, we estimate its linear

coefficient by solving the following ridge regression:

wk
h = argmin

w∈Rd

k−1∑
τ=1

(
ϕ(xτ

h, a
τ
h)

⊤w − V k
h+1(x

τ
h+1)

)2
+ λ · Id, (3.3)

where λ > 0 is the regularization parameter and Id is the identify matrix. By solving (3.3), we have

wk
h = (Λk

h)
−1

( k−1∑
τ=1

ϕ(xτ
h, a

τ
h) · V k

h+1(x
τ
h+1)

)
, where Λk

h =

k−1∑
τ=1

ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · Id.

Based on this linear coefficient, we construct the estimator P̂k
hV

k
h+1 as

(P̂k
hV

k
h+1)(·, ·) = min{ϕ(·, ·)⊤wk

h + Γk
h(·, ·), H − h}+,

where Γk
h = β · (ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·))1/2 is the bonus function and β > 0 is a parameter that will

be specified in Theorem 3.1. This form of bonus function also appears in the literature on linear
bandits [21] and linear MDPs [17]. Finally, we update Qk

h and V k
h by

Qk
h(·, ·) = r̄kh(·, ·) + (P̂k

hV
k
h+1)(·, ·), V k

h (·) = ⟨Qk
h(·, ·), πk

h(· | ·)⟩A. (3.4)

Here r̄kh is the average reward function in the last batch, that is

r̄kh(·, ·) =
∑ki−1

j=ki−1
rjh(·, ·)

B
, (3.5)

where k = ki = (i− 1) ·B + 1 and ki−1 = (i− 2) ·B + 1.

Here we would like to make some comparisons between our algorithm OPPO+ and other related
algorithms. Different from previous value-based algorithms that take simply take the greedy policy
with respect to the estimated Q-functions [17], OPPO+ involves a policy improvement step like
PPO [29]. This step is key to tackling adversarial rewards. The most related algorithm is OPPO
proposed by Cai et al. [6], which performs the policy optimization in linear mixture MDPs. The
main difference between OPPO+ and OPPO is that we introduce a multi-batched updating and an
average reward policy evaluation, which are important for solving linear MDPs (cf. §1.1). Finally,
we remark that the multi-batched updating scheme is adopted by previous work on bandits [12] and
RL [36]. But their algorithms are value-based and cannot tackle adversarial rewards.

Theorem 3.1 (Regret). Fix δ ∈ (0, 1] and K ≥ d3. Let B =
√
d3K and α =√

2B log |A|/(KH2), λ = 1, β = O(d1/4HK1/4ι1/2) with ι = log(dHK|A|/δ), then with
probability at least 1− δ, the regret of Algorithm 1 satisfies

Regret(K) ≤ O(d3/4H2K3/4 log |A| · ι) +O(d5/2H2K1/2 · ι).
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Proof. By See §4 for a detailed proof.

To illustrate our theory more, we make several remarks as follows.

Remark 3.2 (Sample Complexity). Since learning adversarial linear MDPs with full-information
feedback is more challenging than learning stochastic linear MDPs with bandit feedback, the result
in Theorem 3.1 also holds for stochastic linear MDPs. By the standard online-to-batch argument
[16], we have that Algorithm 1 can find an ϵ-optimal policy using at most

Õ
(d3H8

ϵ4
+

d5H4

ϵ2

)
samples. Compared with the sample complexity Õ(d3H13/ϵ3) in Zanette et al. [40], we have a better
dependency on H but a worse dependency on ϵ. Moreover, by the standard sample complexity to
regret argument [16], their sample complexity only gives a Õ(d3/4H13/4K3/4), which is worse than
our regret in Theorem 3.1. More importantly, the algorithm in Zanette et al. [40] lacks the ability to
handle adversarial rewards, whereas our proposed algorithm overcomes this limitation.

Remark 3.3 (Optimality of Results). For stochastic linear MDPs, Agarwal et al. [3], He et al.
[13] design value-based algorithms with Õ(d

√
H3K) regret, which matches the lower bound

Ω(d
√
H3K) [44] up to logarithmic factors. It remains unclear whether policy-based based algo-

rithms can achieve the nearly minimax optimal regret and we leave this as future work. For the more
challenging adversarial linear MDPs with full-information feedback, we achieve the state-of-the-art
regret bound. In this setup, a direct lower bound is Ω(d

√
H3K) [44, 14], and we conjecture this

lower bound is tight. It would be interesting to design algorithms with
√
K regret or even optimal

regret in this setting.

Remark 3.4 (Beyond the Linear Function Approximation). The work of Agarwal et al. [2] extends
their results to the kernel function approximation setting. We conjecture that our results can also be
extended to RL with kernel and neural function approximation by the techniques in Yang et al. [39].

4 Proof of Theorem 3.1

Proof. Recall that B ∈ N+ is the batch size, L = K/B is the number of batches, and ki =
(i−1) ·B+1 for any i ∈ [L]. For any k ∈ [K], we use tk to denote the ki satisfying ki ≤ k < ki+1.
Moreover, we define the Bellman error as

δkh = rkh + PhV
k
h+1 −Qk

h, ∀(k, h) ∈ [K]× [H]. (4.1)

Here V k
h+1 and Qk

h are the estimated value function and Q-function defined in (3.4), and Ph is the
operator defined in (2.2). Intuitively, (4.1) quantifies the violation of the Bellman equation in (2.1).
With these notations, we have the following regret decomposition lemma.

Lemma 4.1 (Regret Decomposition). It holds that

Regret(K) =

K∑
k=1

(
V π∗,k
1 (xk

1)− V πk,k
1 (xk

1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]

︸ ︷︷ ︸
policy optimization error

+

K∑
k=1

H∑
h=1

(
Eπ∗ [δkh(xh, ah)]− Eπk [δkh(xh, ah)]

)
︸ ︷︷ ︸

statistical error

.

Proof. This lemma is similar to the regret decomposition lemma in previous works [6, 30] on policy
optimization. See §B.1 for a detailed proof.
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Lemma 4.1 shows that the total regret consists of the policy optimization error and the statistical
error related to the Bellman error defined in (4.1). Notably, different from previous works [6, 30, 37,
14] that optimize policy in each episode, our algorithm performs policy optimization infrequently.
Despite this, we can bound the policy optimization error in Lemma 4.1 by the following lemma.

Lemma 4.2. It holds that
K∑

k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]
≤

√
2BH4K · log |A|.

Proof. See §B.2 for a detailed proof.

For the statistical error in Lemma 4.1, by the definitions of the policy evaluation step in (3.4) and
Bellman error in (4.1), we have

δkh = rkh − r̄kh︸ ︷︷ ︸
reward mismatch error

+ PhV
k
h+1 − P̂k

hV
k
h+1︸ ︷︷ ︸

transition estimation error

. (4.2)

The following lemma establishes the upper bound of the cumulative reward mismatch error

K∑
k=1

H∑
h=1

(
Eπ∗ [(rkh − r̄kh)(xh, ah)]− Eπk [(rkh − r̄kh)(xh, ah)]

)
, (4.3)

and thus relates the statistical error in Lemma 4.1 to the transition estimation error in (4.2).

Lemma 4.3. It holds with probability at least 1− δ/2 that

K∑
k=1

H∑
h=1

(
Eπ∗ [δkh(xh, ah)]− Eπk [δkh(xh, ah)]

)
≤

K∑
k=1

H∑
h=1

Eπ∗ [(PhV
tk
h+1 − P̂tk

h V tk
h+1)(xh, ah)] +

K∑
k=1

H∑
h=1

(P̂tk
h V tk

h+1 − PhV
tk
h+1)(x

k
h, a

k
h)

+BH + αH3K +
√
H3Kι.

Proof. By calculation, we can show that the cumulative reward mismatch error in (4.3) is bounded
by

L−1∑
i=1

ki+1−1∑
k=ki

(
V πki+1 ,k
1 (x1)− V πki ,k

1 (x1)
)
+ error terms,

which represents the smoothness of adjacent policies. Our smoothness analysis leverages the value
difference lemma (Lemma B.1 or §B.1 in Cai et al. [6]) and the closed form of the policy improve-
ment in (3.2). See §B.3 for a detailed proof.

Then we introduce the following lemma, which shows that the transition estimation error can be
controlled by the bonus function.

Lemma 4.4. It holds with probability at least 1− δ/2 that

−2min{H,Γtk
h (x, a)} ≤ (PhV

tk
h+1 − P̂tk

h V tk
h+1)(x, a) ≤ 0

for all (k, h, x, a) ∈ [K]× [H]× S ×A.

Proof. The proof involves the standard analysis of self-normalized process [1] and a uniform con-
centration of the function class of V k

h+1 [17]. As elaborated in §1.1, calculating the covering num-
ber of this function class is challenging and requires some new techniques. See §B.4 for a detailed
proof.
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Combining Lemmas 4.3 and 4.4, we have

K∑
k=1

H∑
h=1

(
Eπ∗ [δkh(xh, ah)]− Eπk [δkh(xh, ah)]

)
≤ 2

K∑
k=1

H∑
h=1

min{H,Γtk
h (xk

h, a
k
h)}+BH + αH3K +

√
H3Kι.

Hence, it remains to bound the term
∑K

k=1

∑H
h=1 min{H,Γtk

h (xk
h, a

k
h)}, which is the purpose of the

following lemma.

Lemma 4.5. It holds that

K∑
k=1

H∑
h=1

min{H,Γtk
h (xk

h, a
k
h)} ≤ O(d3/4H2K3/4 · ι) +O(d5/2H2K1/2 · ι).

Proof. For all k ∈ [K], let Γk
h = β · (ϕ⊤(Λk

h)
−1ϕ)1/2 with Λk

h =
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ +λ ·
Id. By a doubling trick, we can prove that

K∑
k=1

H∑
h=1

min{H,Γtk
h (xk

h, a
k
h)} ≲

K∑
k=1

H∑
h=1

min{H,Γk
h(x

k
h, a

k
h)}+ error terms,

which can be further bounded by elliptical potential lemma (Lemma D.5 or Lemma 11 in Abbasi-
Yadkori et al. [1]). See §B.5 for a detailed proof.

Finally, putting Lemmas 4.1-4.5 together, we conclude the proof of Theorem 3.1.

Note the choice of the number of batches L determines the batch size B = K/L. We make the
following remark to illustrate how the choice of L affects the final regret, which indicates that our
choices of parameters are optimal based on our current analysis.

Remark 4.6 (Choices of Parameters and Final Regret). If OPPO+ performs the policy optimiza-
tion for L times, then by Lemma C.3, we have the complexity (logarithmic covering number)
of policy class is roughly Õ(L) (ignoring the dependency of d and H). Furthermore, by the
new self-normalized analysis in §C, we have β = Õ(

√
L), which further implies that the model

estimation error is bounded by β ·
∑K

k=1

∑H
h=1

√
ϕ(xk

h, a
k
h)(Λ

k
h)

−1ϕ(xk
h, a

k
h) ≤ Õ(

√
LK) (cf.

Lemma 4.5). Meanwhile, by Lemma 4.2, we have the policy optimization error is bounded by
Õ(K/

√
L) = Õ(K3/4). By choosing L = Θ(

√
K), we obtain a regret of order Õ(K3/4).

5 Conclusion

In this paper, we advance the theoretical study of PPO in stochastic linear MDPs and even adversarial
linear MDPs with full-information feedback. We propose a novel algorithm, namely OPPO+, which
exhibits a state-of-the-art regret bound as compared to the prior policy optimization algorithms.
Our work paves the way for future research in multiple directions. For instance, a significant open
research question is to investigate whether policy-based algorithms can achieve the minimax regret
in stochastic linear MDPs like previous value-based algorithms [3, 14]. Additionally, an interesting
direction is to derive

√
K-regret bounds for adversarial linear MDPs with full-information or even

bandit feedback.
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A Further Elaboration of Challenge 1 in Section 1.1

Regarding the technical challenges involved in extending OPPO [6] to linear MDPs, we provided
more detailed explanations below.

Technically, for linear mixture MDPs (Equation (B.20) in OPPO paper [6]), they need to analyze∥∥∥∥ k−1∑
τ=1

ϕτ
h(x

τ
h, a

τ
h) ·

(
V τ
h+1(x

τ
h+1)− (PhV

τ
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥

(Λk
h)

−1

.

Since V τ
h+1 is adapted to Fk,h,1 = {(xτ

i , a
τ
i )}(τ,i)∈[k−1]×[H] ∪ {rτ}τ∈[k] ∪ {(xk

i , a
k
i )}i∈[h], they

can bound this term with classical self-normalized process analysis directly (see Lemma D.1 in Cai
et al. [6]).

In contrast, for linear MDPs (see e.g., (B.26) in our paper or Lemma B.3 in Jin et al. [17]), we need
to bound the term ∥∥∥∥ k−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

(
V k
h+1(x

τ
h+1)− (PhV

k
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥

(Λk
h)

−1

.

Since V τ
h+1 is NOT adapted toFk,h,1 = {(xτ

i , a
τ
i )}(τ,i)∈[k−1]×[H]∪{rτ}τ∈[k]∪{(xk

i , a
k
i )}i∈[h]. We

need to perform the uniform concentration on the function class of V k
h+1. The challenge of calculat-

ing the covering number of this function class has been elaborated in Challenge 1 of Section 1.1.

B Missing Proofs of Main Theorem

B.1 Proof of Lemma 4.1

Proof. Our proof relies on the following value difference lemma in Cai et al. [6].
Lemma B.1 (Value Difference Lemma). Let π = {πh}h∈[H] and π′ = {π′

h}h∈[H] be two policies
and Q̄ = {Q̄h : S ×A 7→ R}h∈[H] be any Q-functions. Moreover, for any h ∈ [H], we define value
function V̄h : S 7→ R by letting V̄h(x) = ⟨Q̄h(x, ·), πh(· | x)⟩. Then for any k ∈ [K] we have

V̄1(x1)− V π′,k
1 (x1) =

H∑
h=1

Eπ′ [⟨Q̄h(xh, ·), πh(· | xh)− π′
h(· | xh)⟩]

+

H∑
h=1

Eπ′ [Q̄h(xh, ah)− (rkh + PhV̄h+1)(xh, ah)].

Proof. See §B.1 in Cai et al. [6] for a detailed proof.

Back to our proof, for any k ∈ [K], we have

V π∗,k
1 (x1)− V πk,k

1 (x1) = V π∗,k
1 (x1)− V k

1 (x1)︸ ︷︷ ︸
(i)

+V k
1 (x1)− V πk,k

1 (x1)︸ ︷︷ ︸
(ii)

. (B.1)

Applying Lemma B.1 with π = πk, π′ = π∗, and Q̄ = {Qk
h}h∈[H], we have

(i) =

K∑
k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]
+

K∑
k=1

H∑
h=1

Eπ∗ [δkh(xh, ah)], (B.2)

where δkh = rkh+Qk
h−PhV

k
h+1 is the Bellman error defined in (4.1). Similarly, applying Lemma B.1

with π = π′ = πk and Q̄ = {Qk
h}h∈[H], we obtain

(ii) = −
K∑

k=1

H∑
h=1

Eπk [δkh(xh, ah)]. (B.3)
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Plugging (B.2) and (B.3) into (B.1) and then taking summation across k ∈ [K], we have

Regret(K) =

K∑
k=1

(
V π∗,k
1 (xk

1)− V πk,k
1 (xk

1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]

+

K∑
k=1

H∑
h=1

(
Eπ∗ [δkh(xh, ah)]− Eπk [δkh(xh, ah)]

)
,

which concludes the proof of Lemma 4.1.

B.2 Proof of Lemma 4.2

Proof. Recall that B ∈ N+ is the batch size, ki = (i− 1) ·B + 1 and L = K/B. Fix h ∈ [H]. By
the multi-batched updating rule, we have
K∑

k=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]
= B

L∑
i=1

Eπ∗
[
⟨Qki

h (xh, ·), π∗
h(· |xh)− πki

h (· |xh)⟩
]
.

(B.4)

To derive the upper bound of (B.4), we need the following lemma.
Lemma B.2. For any (i, h, xh) ∈ [L]× [H]× S , it holds that

⟨Qki

h (xh, ·), π∗
h(· |xh)− πki

h (· |xh)⟩

≤ αH2

2
+

KL
(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)

α
.

Proof. By the updating rule in (3.2), we have

π
ki+1

h (· | xh) =
πki

h (· | xh) · exp{αQki

h (xh, ·)}∑
a∈A πki

h (a | xh) · exp{αQki

h (xh, a)}
. (B.5)

For ease of presentation, we denote Υ =
∑

a∈A πki

h (a | xh) · exp{αQki

h (xh, a)}. Then we have

⟨αQki

h (xh, ·), π∗
h(· |xh)− π

ki+1

h (· |xh)⟩

= ⟨logΥ + log π
ki+1

h (· | xh)− log πki

h (· | xh), π
∗
h(· | xh)− π

ki+1

h (· | xh)⟩

= ⟨log πki+1

h (· | xh)− log πki

h (· | xh), π
∗
h(· | xh)− π

ki+1

h (· | xh)⟩ (B.6)

where the first equality uses (B.5), and the second equality follows from the fact that
∑

a∈A π∗
h(a |

xh)− π
ki+1

h (a | xh) = 0. Rearranging (B.6) gives that

(B.6) =
〈
log

( π∗
h(· | xh)

πki

h (· | xh)

)
, π∗

h(· | xh)
〉
−

〈
log

( π∗
h(· | xh)

π
ki+1

h (· | xh)

)
, π∗

h(· | xh)
〉

−
〈
log

(πki+1

h (· | xh)

πki

h (· | xh)

)
, π

ki+1

h (· | xh)
〉

= KL
(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)

−KL
(
π
ki+1

h (· | xh)
∥∥πki

h (· | xh)
)
. (B.7)

Furthermore, we have

⟨αQki

h (xh, ·), π∗
h(· |xh)− πki

h (· |xh)⟩

= ⟨αQki

h (xh, ·), π∗
h(· |xh)− π

ki+1

h (· |xh)⟩ − ⟨αQki

h (xh, ·), πki

h (· |xh)− π
ki+1

h (· |xh)⟩

≤ KL
(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)

−KL
(
π
ki+1

h (· | xh)
∥∥πki

h (· | xh)
)
+ αH · ∥πki

h (· |xh)− π
ki+1

h (· |xh)∥1, (B.8)
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where the last inequality uses (B.7), Cauchy-Schwarz inequality, and the fact that ∥Qki

h ∥∞ ≤ H . By
Pinsker’s inequality, we have KL(π

ki+1

h (· | xh) ∥πki

h (· | xh)) ≥ ∥πki+1

h (· | xh) − πki

h (· | xh)∥21/2.
Together with (B.8), we obtain that

⟨αQki

h (xh, ·), π∗
h(· |xh)− πki

h (· |xh)⟩

≤ KL
(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)

− ∥πki+1

h (· | xh)− πki

h (· | xh)∥21/2 + αH · ∥πki

h (· |xh)− π
ki+1

h (· |xh)∥1
≤ KL

(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)
+ α2H2/2, (B.9)

where the last inequality uses the fact that maxy∈R{−y2/2 + αH · y} = α2H2/2. Rearranging
(B.9) concludes the proof of Lemma B.2.

By Lemma B.2, we further have

(B.4) ≤ B

L∑
i=1

(αH2

2
+

Eπ∗
[
KL

(
π∗
h(· | xh)

∥∥πki

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πki+1

h (· | xh)
)]

α

)
= B ·

(αH2K

2B
+

Eπ∗
[
KL

(
π∗
h(· | xh)

∥∥πk1

h (· | xh)
)
−KL

(
π∗
h(· | xh)

∥∥πkL+1

h (· | xh)
)]

α

)
≤ αH2K

2
+

B · log |A|
α

, (B.10)

where the equality uses the fact that L = K/B, and the last inequality uses the non-negativity of
KL-divergence and the fact that πk1

h = π1
h is the uniform policy. Combining (B.4), (B.10), and

α =
√
2B log |A|/(KH2), we obtain for all h ∈ [H]:

K∑
k=1

Eπ∗
[
⟨Qk

h(xh, ·), π∗
h(· |xh)− πk

h(· |xh)⟩
]
≤

√
2BH2K · log |A|. (B.11)

Telescoping (B.11) across h ∈ [H] concludes the proof of Lemma 4.2.

B.3 Proof of Lemma 4.3

Proof. Recall that B ∈ N+ is the batch size, ki = (i− 1) ·B + 1 and L = K/B. Fix h ∈ [H]. We
have
K∑

k=1

Eπ∗ [δkh(xh, ah)] =

K∑
k=1

Eπ∗ [rkh(sh, ah) + PhV
k
h+1(xh, ah)−Qk

h(xh, ah)]

=

K∑
k=1

Eπ∗ [rkh(sh, ah) + PhV
tk
h+1(xh, ah)−Qtk

h (xh, ah)] (B.12)

=

K∑
k=1

Eπ∗ [rkh(sh, ah)− r̄tkh (xh, ah)] +

K∑
k=1

Eπ∗ [(PhV
tk
h+1 − P̂tk

h V tk
h+1)(xh, ah)],

where the first equality uses the definition of tk and the updating rule, and the second equality uses
the definition of Qk

h = r̄kh + P̂k
hV

k
h+1 in (3.4). Furthermore, we have

K∑
k=1

Eπ∗ [rkh(xh, ah)− r̄tkh (xh, ah)] =

K∑
k=1

Eπ∗ [rkh(xh, ah)]−B

L∑
i=1

Eπ∗ [r̄ki

h (xh, ah)]

=

K∑
k=1

Eπ∗ [rkh(xh, ah)]−
L∑

i=1

ki−1∑
k=ki−1

Eπ∗ [rkh(xh, ah)]

=

K∑
k=K−B+1

Eπ∗ [rkh(xh, ah)] ≤ B, (B.13)
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where the first equality uses the updating rule, the second equality follows from the definition of r̄kh
in (3.5), and the last inequality is obtained by the fact that ∥rkh∥∞ ≤ 1 for any (k, h) ∈ [K] × [H].
Combining (B.12) and (B.13) and then taking summation across h ∈ [H], we obtain that

K∑
k=1

H∑
h=1

Eπ∗ [δkh(xh, ah)] ≤
K∑

k=1

H∑
h=1

Eπ∗ [(PhV
tk
h+1 − P̂tk

h V tk
h+1)(xh, ah)] +BH. (B.14)

On the other hand, similar to the derivation of (B.12), we have

−
K∑

k=1

Eπk [δkh(xh, ah)]

=

K∑
k=1

Eπtk [r̄
tk
h (xh, ah)− rkh(sh, ah)] +

K∑
k=1

Eπk [(P̂tk
h V tk

h+1 − PhV
tk
h+1)(xh, ah)]. (B.15)

For the first term of (B.15), by the updating rule and calculation, we have
K∑

k=1

Eπtk [r̄
tk
h (xh, ah)− rkh(sh, ah)] = B

L∑
i=1

Eπki [r̄
ki

h (xh, ah)]−
L∑

i=1

ki+1−1∑
k=ki

Eπki [r
k
h(xh, ah)]

=

L∑
i=1

ki−1∑
k=ki−1

Eπki [r
k
h(xh, ah)]−

L∑
i=1

ki+1−1∑
k=ki

Eπki [r
k
h(xh, ah)]

≤
L−1∑
i=1

ki+1−1∑
k=ki

(
Eπki+1 [r

k
h(xh, ah)]− Eπki [r

k
h(xh, ah)]

)
,

(B.16)

where the last inequality uses the fact that −
∑kL+1−1

k=kL
EπkL [r

k
h(xh, ah)] ≤ 0. Summing over h ∈

[H] in (B.16) gives that
K∑

k=1

H∑
h=1

Eπtk [r̄
tk
h (xh, ah)− rkh(sh, ah)]

≤
L−1∑
i=1

ki+1−1∑
k=ki

(
V πki+1 ,k
1 (x1)− V πki ,k

1 (x1)
)

=

L−1∑
i=1

ki+1−1∑
k=ki

H∑
h=1

Eπki+1 [⟨Qπki ,k
h (· | xh), π

ki+1

h (· | xh)− πki

h (· | xh)⟩], (B.17)

where the last inequality uses the value difference lemma (Lemma B.1). By the policy updating rule
in (3.2), we have

π
ki+1

h (· | xh) =
πki

h (· | xh) · exp
(
αQki

h (xh, ·)
)∑

a∈A πki

h (a | xh) · exp
(
αQki

h (xh, a)
) .

for any xh ∈ S, which implies that

πki

h (· | xh)

π
ki+1

h (· | xh)
=

∑
a∈A πki

h (a | xh) · exp
(
αQki

h (xh, a)
)

exp
(
αQki

h (xh, ·)
)

≥
∑

a∈A πki

h (a | xh)

exp(αH)
= exp(−αH) ≥ 1− αH,

where the first inequality follows the fact that 0 ≤ Qki

h (·, ·) ≤ H , and the last inequality uses the
basic inequality exp(y) ≥ 1 + y for all y ∈ R. Together with

π
ki+1

h (· | xh)− πki

h (· | xh) = π
ki+1

h (· | xh) ·
(
1−

πki

h (· | xh)

π
ki+1

h (· | xh)

)
,
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we further obtain
π
ki+1

h (· | xh)− πki

h (· | xh) ≤ αH · πki+1

h (· | xh) (B.18)
for any xh ∈ S. Plugging (B.18) into (B.17) gives that

(B.17) ≤ αH

L−1∑
i=1

ki+1−1∑
k=ki

H∑
h=1

Eπki+1 [⟨Qπki ,k
h (xh, ·), πki+1

h (· | xh)⟩] ≤ αH3K, (B.19)

where the last inequality follows from the fact that Qπki ,k
h (·, ·) ≤ H . Plugging (B.17) and (B.19)

into (B.15), we have

−
K∑

k=1

H∑
h=1

Eπk [δkh(xh, ah)] ≤
K∑

k=1

H∑
h=1

Eπk [(P̂tk
h V tk

h+1 − PhV
tk
h+1)(xh, ah)] + αH3K

≤
K∑

k=1

H∑
h=1

(P̂tk
h V tk

h+1 − PhV
tk
h+1)(x

k
h, a

k
h) + αH3K +

√
H3Kι,

(B.20)
where the last inequality uses Azuma-Hoeffding inequality. Putting (B.14) and (B.20) together, we
conclude the proof of Lemma 4.3.

B.4 Proof of Lemma 4.4

Proof. Recall that

(P̂tk
h V tk

h+1)(·, ·) = min{ϕ(·, ·)⊤wtk
h + Γtk

h (·, ·), H − h}+, (B.21)

where wtk
h and Γtk

h take form

wtk
h = (Λtk

h )−1
( tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) · V

tk
h+1(x

τ
h+1)

)
, Γtk

h (·, ·) = β ·
√
ϕ(·, ·)⊤(Λtk

h )−1ϕ(·, ·).

(B.22)

Here Λtk
h is the covariance matrix:

Λtk
h =

tk−1∑
τ=1

ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · Id. (B.23)

Back to our proof, for any (x, a) ∈ S ×A, we have

(PhV
tk
h+1)(x, a) = ϕ(x, a)⊤⟨µh, V

tk
h+1⟩S

= ϕ(x, a)⊤(Λtk
h )−1Λtk

h ⟨µh, V
tk
h+1⟩S

= ϕ(x, a)⊤(Λtk
h )−1

( tk−1∑
τ=1

ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤⟨µh, V
tk
h+1⟩S + λ · ⟨µh, V

tk
h+1⟩S

)
= ϕ(x, a)⊤(Λtk

h )−1
( tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) · (PhV

tk
h+1)(x

τ
h, a

τ
h) + λ · ⟨µh, V

tk
h+1⟩S

)
,

(B.24)
where the first and the last equality follows from the definition of linear MDP (Definition 2.1), and
the third equality uses (B.23). Putting (B.22) and (B.24) together, we have

ϕ(x, a)⊤wtk
h − PhV

tk
h+1(x, a)

= ϕ(x, a)⊤(Λtk
h )−1

( tk−1∑
τ=1

ϕ(xτ
h, a

τ
h) ·

(
V tk
h+1(x

τ
h+1)− (PhV

tk
h+1)(x

τ
h, a

τ
h)
))

︸ ︷︷ ︸
(⋆)

− λ · ϕ(x, a)⊤(Λk
h)

−1⟨µh, V
tk
h+1⟩S︸ ︷︷ ︸

(⋆⋆)

.

(B.25)
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For Term (⋆) in (B.25), by Cauchy-Schwarz inequality, we have

(⋆) ≤
√
ϕ(x, a)⊤(Λtk

h )−1ϕ(x, a) ·
∥∥∥∥ tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

(
V tk
h+1(x

τ
h+1)− (PhV

tk
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥

(Λ
tk
h )−1

≤ O(d1/4HK1/4ι1/2) ·
√

ϕ(x, a)⊤(Λtk
h )−1ϕ(x, a), (B.26)

where the last inequality follows from the following lemma.
Lemma B.3. Fix δ ∈ (0, 1]. It holds for all (k, h) ∈ [K]× [H] that∥∥∥∥ tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

(
V tk
h+1(x

τ
h+1)− (PhV

tk
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥

(Λ
tk
h )−1

≤ O(d1/4HK1/4ι1/2).

Proof. See §C for a detailed proof.

For Term (⋆⋆) in (B.25), we have

(⋆⋆) ≤ λ ·
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a) ·

∥∥⟨µh, V
tk
h+1⟩S

∥∥
(Λ

tk
h )−1

≤
√
λ ·

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a) ·

∥∥⟨µh, V
tk
h+1⟩S

∥∥
2

≤
√
λdH2 ·

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a), (B.27)

where the second inequality uses the fact that λ · Id ⪯ Λtk
h , and last inequality follows from

∥⟨µh, V
tk
h+1⟩S∥2 ≤ H

√
d, which is implied by Definition 2.1. Plugging (B.26) and (B.27) into

(B.25), together with λ = 1, we obtain

|ϕ(x, a)⊤wtk
h − PhV

tk
h+1(x, a)| ≤ β

√
ϕ(x, a)⊤(Λtk

h )−1ϕ(x, a) = Γtk
h (x, a) (B.28)

for any (x, a) ∈ S × A with β = O(d1/4HK1/4ι1/2). Together with the definition of P̂tk
h V tk

h+1 in
(B.21), we have

(PhV
tk
h+1 − P̂tk

h V tk
h+1)(x, a)

≤ (PhV
tk
h+1)(x, a)−min{ϕ(x, a)⊤wtk

h + Γtk
h (x, a), H − h}

= max{(PhV
tk
h+1)(x, a)− ϕ(x, a)⊤wtk

h − Γtk
h (x, a), (PhV

tk
h+1)(x, a)− (H − h)},

≤ max{0, 0} = 0, (B.29)

where the last inequality uses (B.28) and the fact that ∥V tk
h+1∥∞ ≤ H − h. Moreover, by (B.28), we

have

(PhV
tk
h+1 − P̂tk

h V tk
h+1)(x, a) ≥ (PhV

tk
h+1)(x, a)− ϕ(x, a)⊤wtk

h − Γtk
h (x, a)

≥ −2Γtk
h (x, a). (B.30)

Combining (B.29), (B.30), and the fact that (PhV
tk
h+1 − P̂tk

h V tk
h+1)(·, ·) ≥ −2H , we obtain

−2min{H,Γtk
h (x, a)} ≤ (PhV

tk
h+1 − P̂tk

h V tk
h+1)(x, a) ≤ 0,

which concludes the proof of Lemma 4.4.

B.5 Proof of Lemma 4.5

Proof. For ease of presentation, we define

Γk
h(·, ·) = β

√
ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·), Λk

h =

k−1∑
τ=1

ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId, (B.31)

for all (k, h) ∈ [K]× [H]. Then we have the following lemma, which uses the elliptical potential to
bound

∑K
k=1

∑H
h=1 Γ

k
h(x

k
h, a

k
h).
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Lemma B.4. It holds that
K∑

k=1

H∑
h=1

Γk
h(x

k
h, a

k
h) ≤ O(d3/4H2K3/4 · ι).

Proof. By the definition of Γk
h in (B.31), we have

K∑
k=1

H∑
h=1

Γk
h(x

k
h, a

k
h) = β

K∑
k=1

H∑
h=1

√
ϕ(xk

h, a
k
h)

⊤(Λk
h)

−1ϕ(xk
h, a

k
h). (B.32)

Applying Cauchy-Schwarz inequality to (B.32), we have

K∑
k=1

H∑
h=1

Γk
h(x

k
h, a

k
h) ≤ β

H∑
h=1

(
K ·

K∑
k=1

ϕ(xk
h, a

k
h)

⊤(Λk
h)

−1ϕ(xk
h, a

k
h)
)1/2

≤ β

H∑
h=1

[
2K · log

(
det(ΛK+1

h )

det(Λ1
h)

)]1/2
, (B.33)

where the last inequality uses the elliptical potential lemma (Lemma D.5). For any h ∈ [H], we
have

Λ1
h = λ · Id, ΛK+1

h =

K∑
k=1

ϕ(xk
h, a

k
h)ϕ(x

k
h, a

k
h)

⊤ + λId ⪯ (K + λ) · Id, (B.34)

where the inequality uses the fact that ∥ϕ(·, ·)∥2 ≤ 1. Plugging (B.34) into (B.33), we have

K∑
k=1

H∑
h=1

Γk
h(x

k
h, a

k
h) ≤ Hβ ·

[
2dK · log

(
K + λ

λ

)]1/2
.

Together with the facts that λ = 1, ι = log(dHK|A|/δ) with δ ∈ (0, 1], and β =
O(d1/4HK1/4ι1/2), we conclude the proof of Lemma B.4.

We also need the following lemma to connect the quantity
∑K

k=1

∑H
h=1 Γ

k
h(x

k
h, a

k
h) in Lemma B.4

and our target
∑K

k=1

∑H
h=1 min{H,Γtk

h (xk
h, a

k
h)}.

Lemma B.5. For any h ∈ [H], we define the set Eh as

Eh = {k : Γtk
h (xk

h, a
k
h)/Γ

k
h(x

k
h, a

k
h) > 2}. (B.35)

Then we have

|Eh| ≤ O(d5/2K1/2 · ι).

Proof. For k ∈ Eh, there exists i ∈ [L] such that ki ≤ k < ki+1. Then we know tk = ki, which
further implies that

log

(
det(Λ

ki+1

h )

det(Λki

h )

)
≥ log

(
det(Λk

h)

det(Λki

h )

)
≥ log

(
ϕ(xk

h, a
k
h)

⊤(Λki

h )−1ϕ(xk
h, a

k
h)

ϕ(xk
h, a

k
h)

⊤(Λk
h)

−1ϕ(xk
h, a

k
h)

)
= 2 log

(
Γki

h (xk
h, a

k
h)

Γk
h(x

k
h, a

k
h)

)
,

where the first inequality follows from the fact that Λ
ki+1

h ⪰ Λk
h, the second inequality uses

Lemma D.6, and the last equality is obtained by the definitions of Γk
h and Γki

h in (B.31). Together
with the definition of Eh in (B.35), we further obtain that

log

(
det(Λ

ki+1

h )

det(Λki

h )

)
≥ 2 log 2. (B.36)
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Meanwhile, we have

L∑
i=1

log

(
det(Λ

ki+1

h )

det(Λki

h )

)
= log

(
det(ΛK+1

h )

det(Λ1
h)

)
≤ d · log

(K + λ

λ

)
, (B.37)

where the last inequality follows from the facts that

Λ1
h = λ · Id, ΛK+1

h =

K∑
k=1

ϕ(xk
h, a

k
h)ϕ(x

k
h, a

k
h)

⊤ + λId ⪯ (K + λ) · Id.

Here the last inequality uses ∥ϕ(·, ·)∥2 ≤ 1. Combining (B.36) and (B.37), we have∣∣∣∣{i ∈ [L] : log

(
det(Λ

ki+1

h )

det(Λki

h )

)}∣∣∣∣ ≤ d log
(
(K + λ)/λ

)
2 log 2

. (B.38)

Since each batch contains B episodes, we obtain that

|Eh| ≤ B ·
∣∣∣∣{i ∈ [L] : log

(
det(Λ

ki+1

h )

det(Λki

h )

)}∣∣∣∣ ≤ O(d5/2K1/2 · ι),

where the last inequality uses λ = 1, ι = log(dHK|A|/δ), B =
√
d3K and (B.38). Therefore, we

conclude the proof of Lemma B.5.

Back to our proof of Lemma 4.5, we have

K∑
k=1

H∑
h=1

min{H,Γtk
h (xk

h, a
k
h)} =

H∑
h=1

∑
k∈Eh

min{H,Γtk
h (xk

h, a
k
h)}+

H∑
h=1

∑
k/∈Eh

min{H,Γtk
h (xk

h, a
k
h)}.

(B.39)

For any h ∈ [H] and k /∈ Eh, by the definition of Eh, we have

min{H,Γtk
h (xk

h, a
k
h)} ≤ min{H, 2Γk

h(x
k
h, a

k
h)} ≤ 2Γk

h(x
k
h, a

k
h). (B.40)

Combining (B.39), (B.40), and the fact that min{H,Γtk
h (xk

h, a
k
h)} ≤ H , we have

K∑
k=1

H∑
h=1

min{H,Γtk
h (xk

h, a
k
h)} ≤ H

H∑
h=1

|Eh|+
K∑

k=1

H∑
h=1

Γk
h(x

k
h, a

k
h)

≤ O(d3/4H2K3/4 · ι) +O(d5/2H2K1/2 · ι),

where the last inequality uses Lemmas B.4 and B.5. Therefore, we conclude the proof of Lemma 4.5.

C Proof for Concentration of Self-Normalized Processes

Proof of Lemma B.3. By the previous concentration lemma of self-normalized process
(Lemma D.3), for any δ′ ∈ (0, 1], ε > 0, and (k, h) ∈ [K]× [H] we have∥∥∥∥tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

(
V tk
h+1(x

τ
h+1)− (PhV

tk
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥2

(Λ
tk
h )−1

≤ 4H2 ·
[
d

2
log

(k + λ

λ

)
+ log

(Nε(Vk
h+1)

δ′

)]
+

8k2ε2

λ
(C.1)

with probability 1 − δ′. Here Nε(Vk
h+1) is the ε-covering number of function class Vk

h+1, which is
defined by

Vk
h+1 =

{
V (·) = ⟨Q(·, ·), π(· | ·)⟩ : Q ∈ Qk

h+1, π ∈ Πk
h+1

}
, (C.2)
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where Qk
h+1 and Πk

h+1 are Q-function class and policy class, respectively. Specifically, Qk
h+1 is a

function class with the following parametric form

Qk
h+1 =

{
r̄tkh + {ϕ⊤w + β ·

(
ϕ⊤Λ−1ϕ

)1/2
, H − h}+ : ∥w∥2 ≤ H

√
dK/λ, λmin(Λ) ≥ λ

}
.

(C.3)

Here we uses ∥wk
h+1∥2 ≤ H

√
dK/λ (Lemma D.1) and λmin(Λ

k
h+1) ≥ λ to ensure that Qk

h+1 ∈
Qk

h+1. Meanwhile, the policy class Πk
h+1 is defined as

Πk
h+1 =

{
π(· | ·) ∝ exp

( l∑
i=1

αQi(·, ·)
)
: Qi ∈ Qki

h+1,∀i ∈ [l]
}
, where l = max{i : ki < tk}.

(C.4)

Notable, here l ≤ L since our algorithm only has L batches. Also, πtk
h+1 in (C.2) belongs to this

policy class since it takes the following form

πtk
h+1(a |x) =

exp(
∑l

i=1 αQ
ki

h+1(x, a))∑
a′∈A exp(

∑l
i=1 αQ

ki

h+1(x, a
′))

,

For policy class defined in (C.4), we define its covering number with respect to the following distance

dist(π, π′) = sup
x∈S
∥π(· | x)− π′(· | x)∥1.

The following lemma connects the covering number of value class in (C.2) to covering numbers of
the Q-function class in (C.3) and the policy class in (C.4).

Lemma C.1. It holds that

Nε(Vk
h+1) ≤ Nε/2(Qk

h+1) · Nε/(2H)(Π
k
h+1).

Proof. See §C.1 for a detailed proof.

Following the standard covering argument (Lemma D.4), we can derive an upper bound for
Nε/2(Qk

h+1). However, Nε/(2H)(Π
k
h+1) is relatively difficult to bound since the log-covering num-

ber of a |A|-dimensional probability distribution is Õ(|A|). Fortunately, we have the following
lemma that utilizes the structure of policy class (C.4) and converts the covering number of the pol-
icy class to the covering numbers of several Q-function classes.

Lemma C.2. It holds that

Nε/(2H)(Π
k
h+1) ≤

l∏
i=1

Nε2/(16αlH2)(Qki

h+1)

Proof. See §C.2 for a detailed proof.

Note that λ = 1, l ≤ L, L = K/B, B =
√
d3K, α =

√
2B log |A|/(KH2), ι = log(dHK|A|/δ),

and β = O(d1/4HK1/4ι1/2). Meanwhile, let ε = 1/K and δ′ = δ/2. Combining (C.1) with
Lemmas C.1, C.2, and D.4, we have∥∥∥∥tk−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

(
V tk
h+1(x

τ
h+1)− (PhV

tk
h+1)(x

τ
h, a

τ
h)
)∥∥∥∥

(Λ
tk
h )−1

≤ O(
√
d2H2L · ι)

= O(d1/4HK1/4ι1/2),

which concludes the proof of Lemma B.3.
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C.1 Proof of Lemma C.1

Proof. Suppose (i) Qk
ε/2,h+1 is an ε/2-net of Qk

h+1 with |Qk
ε/2,h+1| = Nε/2(Qk

h+1); and (ii)
Πk

ε/(2H),h+1 is an ε/(2H)-net of Πk
h+1 with |Πk

ε/(2H),h+1| = Nε/(2H)(Π
k
h+1). Then we show

Qk
ε/2,h+1 × Πk

ε/(2H),h+1 induces an ε-net of Vk
h+1, and thus obtaining the desired result. Specif-

ically, for any V = ⟨Q(·, ·), π(· | ·)⟩ with (Q, π) ∈ Qk
h+1 × Πk

h+1, we can find (Q′, π′) ∈
Qk

ε/2,h+1 ×Πk
ε/(2H),h+1 such that

sup
(x,a)∈S×A

|Q(x, a)−Q′(x, a)| ≤ ε/2, sup
x∈S
∥π(· | x)− π′(· | x)∥1 ≤ ε/(2H). (C.5)

Let V ′ = ⟨Q′(·, ·), π′(· | ·)⟩, we have

sup
x∈S
|V (x)− V ′(x)| = sup

x∈S

∣∣〈Q(x, ·), π(· | x)
〉
−
〈
Q′(x, ·), π′(· | x)

〉∣∣
≤ sup

x∈S

∣∣〈Q(x, ·)−Q′(x, ·), π(· | x)
〉∣∣+ sup

x∈S

∣∣〈Q′(x, ·), π(· | x)− π′(· | x)
〉∣∣

≤ sup
(x,a)∈S×A

|Q(x, a)−Q′(x, a)|+H · sup
x∈S
∥π(· | x)− π′(· | x)∥1

≤ ε/2 + ε/2 = ε,

where the first inequality follows from the triangle inequality, the second inequality uses Cauchy-
Schwarz inequality and the fact that ∥Q′∥∞ ≤ H , and the last inequality follows from (C.5). There-
fore, we conclude the proof of Lemma C.1.

C.2 Proof of Lemma C.2

Proof. Suppose Qki

ε2/(16αlH2),h+1 is the minimum ε2/(16αlH2)-net of Qki

h+1 for all i ∈ [l].

Then for any π ∝ exp(α
∑l

i=1 Qi) with Qi ∈ Qki

h+1 for all i ∈ [l], we can choose {Q′
i ∈

Qki

ε2/(16αlH2),h+1} such that

sup
(x,a)∈S×A

|Qi(x, a)−Q′
i(x, a)| ≤

ε2

16αlH2
, ∀i ∈ [l]. (C.6)

Hence, we have

sup
(x,a)∈S×A

∣∣∣α l∑
i=1

Qi(x, a)− α

l∑
i=1

Q′
i(x, a)

∣∣∣ ≤ α

l∑
i=1

sup
(x,a)∈S×A

|Qi(x, a)−Q′
i(x, a)| ≤

ε2

16H2
,

(C.7)

where the first inequality uses the triangle inequality and the last inequality follows from (C.6). Then
we use the following lemma to establish the upper bound for supx∈S ∥π(· | x)− π′(· | x)∥1.
Lemma C.3. For π, π′ ∈ ∆(X ) and Q,Q′ : X 7→ R+, if π(·) ∝ exp(Q(·)) and π′(·) ∝
exp(Q′(·)), we have

∥π − π′∥1 ≤ 2
√
∥Q−Q′∥∞.

Proof. See §C.3 for a detailed proof.

By Lemma C.3, we have

sup
x∈S
∥π(· | x)− π′(· | x)∥1 ≤ 2

√√√√ sup
(x,a)∈S×A

∣∣∣α l∑
i=1

Qi(x, a)− α

l∑
i=1

Q′
i(x, a)

∣∣∣ ≤ ε

2H
,

where the last inequality follows from (C.7). Therefore, we have

Nε/(2H)(Π
k
h+1) ≤

l∏
i=1

Nε2/(16αlH2)(Qki

h+1),

which concludes the proof of Lemma C.2.
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C.3 Proof of Lemma C.3

Proof. Since π(·) ∝ exp(Q(·)) and π′(·) ∝ exp(Q′(·)), we have for any x ∈ X :

π(x)

π′(x)
=

exp(Q(x))

exp(Q′(x))
·
∑

x′∈X exp(Q′(x′))∑
x′∈X exp(Q(x′))

.

Note that for any x ∈ X we have{
exp(Q(x))
exp(Q′(x)) = exp(Q(x)−Q′(x)) ≤ exp(∥Q−Q′∥∞)
exp(Q′(x))
exp(Q(x)) = exp(Q′(x)−Q(x)) ≤ exp(∥Q−Q′∥∞)

,

which implies that

π(x)

π′(x)
≤ exp(∥Q−Q′∥∞) ·

exp(∥Q−Q′∥∞) ·
∑

x′∈X exp(Q(x′))∑
x′∈X exp(Q(x′))

= exp(2∥Q−Q′∥∞).

Hence, we have

KL(π∥π′) =
∑
x∈X

π(x) log
π(x)

π′(x)
≤ 2∥Q−Q′∥∞ ·

∑
x∈X

π(x) = 2∥Q−Q′∥∞.

Finally, by Pinsker’s inequality, we have

∥π − π′∥1 ≤
√
2 ·KL(π∥π′) ≤ 2

√
∥Q−Q′∥∞,

which concludes the proof of Lemma C.3.

D Auxiliary Lemmas

Lemma D.1. For any (i, h) ∈ [L]×[H], the linear coefficient wki

h defined in Line 12 of Algrotihm 1
satisfies

∥wki

h ∥ ≤ H
√

dK/λ.

Proof. Fix (i, h) ∈ [L]× [H]. Our proof follows the proof of Lemma B.2 in Jin et al. [17]. For any
v ∈ Rd with ∥v∥2 = 1, by the definition of wki

h we have

|v⊤wki

h | =
∣∣∣v⊤(Λki

h )−1
ki−1∑
τ=1

ϕ(xτ
h, a

τ
h) · V

ki

h+1(x
τ
h+1)

∣∣∣.
Since ∥V ki

h+1∥∞ ≤ H , we further have

|v⊤wki

h | ≤ H

ki−1∑
τ=1

∣∣v⊤(Λki

h )−1ϕ(xτ
h, a

τ
h)
∣∣

≤ H ·
[ ki−1∑

τ=1

v⊤(Λki

h )−1v

]1/2
·
[ ki−1∑

τ=1

ϕ(xτ
h, a

τ
h)

⊤(Λki

h )−1ϕ(xτ
h, a

τ
h)

]1/2
≤ H

√
dK/λ,

where the second inequality is obtained by Cauchy-Schwarz inequality, and the last inequality uses
λId ⪯ Λki

h , ki ≤ K, ∥v∥2 = 1 and Lemma D.2. Hence, we have

∥wki

h ∥2 = sup
∥v∥2=1

|v⊤wki

h | ≤ H
√
dK/λ,

which concludes the proof of Lemma D.1.

Lemma D.2. Let Λt = λ · Id +
∑t

i=1 ϕiϕ
⊤
i with ϕi ∈ Rd and λ > 0. Then we have

t∑
i=1

ϕi(Λt)
−1ϕi ≤ d.
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Proof. See Lemma D.1 in Jin et al. [17] for a detailed proof.

Lemma D.3. Let {xτ ∈ S}∞τ=1 and {ϕτ ∈ Rd}∞τ=1 with ∥ϕτ∥2 ≤ 1 be stochastic processes adapted
to the filtration {Fτ}∞τ=1. Let Λk =

∑k−1
τ=1 ϕτϕ

⊤
τ + λ · Id. Then for any δ ∈ (0, 1], with probability

at least 1− δ, for all k ∈ N+, and function V ∈ V satisfying supx∈S |V (s)| ≤ H , we have∥∥∥∥ k−1∑
τ=1

ϕτ

(
V (xτ+1)− E[V (xτ+1) | Fτ ]

)∥∥∥∥2
Λ−1

k

≤ 4H2 ·
[
d

2
log

(k + λ

λ

)
+ log

(Nε

δ

)]
+

8k2ε2

λ
,

whereNε is the ε-covering number of the function class V with respect to the distance dist(V, V ′) =
supx∈S |V (x)− V ′(x)|.

Proof. See Lemma D.4 of Jin et al. [17] for a detailed proof.

Lemma D.4. For any h ∈ [H], let Qh be a function class mapping from S ×A to R with the form

Qh(·, ·) = r(·, ·) + min
{
ϕ(·, ·)⊤w + β

√
ϕ(·, ·)⊤Λ−1ϕ(·, ·), H − h

}+
,

where r : S ×A 7→ [0, 1], ∥w∥2 ≤ L, λmin(λ) ≥ λ. Assuming ∥ϕ(·, ·)∥2 ≤ 1 and β > 0, we have

logNε(Qh) ≤ d log(1 + 4L/ε) + d2 log
(
1 + 8d1/2β2/(λε)

)
,

where Nε(Qh) is the ε-covering number of the function class Qh with respect to the distance
dist(Q,Q′) = sup(x,a)∈S×A |Q(x, a)−Q′(x, a)|.

Proof. See Lemma D.6 of Jin et al. [17] for a detailed proof.

Lemma D.5 (Elliptical Potential Lemma). Let {ϕt ∈ Rd}∞t=1 satisfy ∥ϕt∥2 ≤ 1 for all t ∈ N+.
Moreover, let Λ0 ∈ Rd×d be a positive-definite matrix with λmin(Λ0) and Λt = Λ0 +

∑t−1
i=1 ϕiϕ

⊤
i

for any t ∈ N+. Then for any t ∈ N+, we have

log

(
det(Λt+1)

det(Λ1)

)
≤

t∑
i=1

ϕ⊤
i Λ

−1
i ϕi ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof. See Lemma 11 of Abbasi-Yadkori et al. [1] for a detailed proof.

Lemma D.6. Suppose Λ,Λ′ ∈ Rd×d are two positive definite matrices and satisfy Λ ⪯ Λ′, then for
any x ∈ Rd, we have

det(Λ′)

det(Λ)
≥ x⊤Λ′x

x⊤Λx
.

Proof. See Lemma 12 of Abbasi-Yadkori et al. [1] for a detailed proof.
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