
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW DO CODING AGENTS SPEND YOUR MONEY?
ANALYZING AND PREDICTING TOKEN CONSUMP-
TIONS IN AGENTIC CODING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agents offer substantial opportunities to boost human productivity across many
settings. However, their use in complex workflows also drives rapid growth in
LLM token consumption1. When agents are deployed on tasks that can require
millions of tokens, two questions naturally arise: how do agents consume LLM
tokens, and can we predict token usage before task execution? In this paper, we
use Openhands agent as a case study and present the first empirical analysis of
agent token consumption patterns using agent trajectories on SWE-bench, and
further explore the possibility of predicting token costs at the beginning of task
execution. We find that (1) Agent token consumption has inherent randomness
even when executing the same tasks; some runs use up to 10× more tokens than
others. (2) Higher token usage does not lead to higher accuracy: tasks and runs
that cost more tokens are usually associated with lower accuracy. (3) Unlike chat
and reasoning tasks, input tokens dominate overall consumption and cost, even
with token caching; and (4) while predicting total token consumption before exe-
cution is very challenging (Pearson’s r < 0.15), predicting output-token amounts
and the range of total consumption achieves weak-to-moderate correlation, offer-
ing limited but nontrivial predictive signal. Understanding and predicting agentic
token consumption is a key step toward transparent and reliable agent pricing. Our
study provides important empirical evidence on the inherent challenges of token
consumption prediction and could inspire new studies in this direction.

1 INTRODUCTION

AI agents are being rapidly adopted across domains, from productivity and customer support to data
analysis and software development(Liu et al., 2023c). Among these, coding agents are among the
most widely used because they can read repositories, reason about issues, call tools, and propose
patches with minimal human supervision (OpenAI, 2025; Liu et al., 2023b;c; Yang et al., 2024;
Jimenez et al., 2024a). However, the prevailing pricing model for coding agents has been widely
criticized for two reasons: (1) lack of transparency—users do not know the final cost until a task
is finished; and (2) no guarantee of completion—users may still pay even if the task fails (Kinde,
2024). These concerns converge on a central question: Can we predict token consumption before
a task is executed? If we could estimate token usage up front, users would better understand
potential costs and choose models or strategies accordingly; providers could design clearer pricing
tiers, enforce budget caps, and trigger early alerts.

In this paper, we present (to our knowledge) the first study on agent token consumption modeling
and prediction. To understand the overall pattern of token usage in agentic coding workflows, we
use Openhands agent Wang et al. (2025) as a case study, and conduct an empirical analysis on
SWE-bench-verified (Jimenez et al., 2024b) using trajectories generated by Claude Sonnet 3.7 and
additional model backbones. We investigate three questions: (1) Do coding agents consume different
amounts of tokens across tasks and runs? (2) How does task difficulty relate to token consumption?
(3) Which token types (input vs. output) drive costs in sequential agent executions, and how are they
distributed over the trajectory?

1We use token consumption to refer both input and output tokens used by LLM agents

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our analysis reveals three key findings. First, more complex tasks tend to consume more tokens on
average, but usage varies substantially across runs; some runs use up to 10× more tokens than others
for the same task. Additionally, tasks and runs with more token usage are associated with lower
accuracy. Second, unlike typical chat and reasoning settings, input tokens dominate the overall bill
in agentic coding, even when token caching is enabled. A recent study, AgentTaxo (Wang et al.),
reports a similar pattern in multi-agent systems, where input tokens outweigh output tokens by a
factor of 2–3 times due to inter-agent communication, reinforcing that agentic workloads are broadly
input-heavy across settings. Third, token consumption is not concentrated in a single step: reading
long contexts (files, diffs, and retrieved artifacts) and repeated tool-mediated expansions together
contribute a large fraction of the input token budget. These findings highlight both the heavy-tailed
nature of token usage and the central role of context ingestion in agentic tasks.

Building on these observations, we study whether token consumption can be predicted before exe-
cution. We formalize a family of prediction tasks in which the goal is to estimate total, input, and
output token counts from information available at the start of a run. We compare a series of input
settings with the following types of information: problem statement only, anticipated tool-usage rea-
soning, task difficulty level; and repository information. We evaluate zero-shot and few-shot variants
and consider both point predictions and range predictions (e.g., log-scale and quantile targets).

We find that providing more upfront information generally improves predictions, with the largest
gains coming from tool-usage reasoning and repository information. Predicting on a log scale stabi-
lizes training and yields better calibration of ranges. Moreover, output-token counts are consistently
easier to predict than input-token counts, reflecting the high variance introduced by retrieval and
context construction. While accurate total pre-execution prediction remains challenging (Pearson’s
r < 0.15), predicting output-token amounts and plausible consumption ranges is practical and rea-
sonably accurate. These results suggest that providers could offer early budget alerts and cost ranges
before launching expensive runs, improving transparency without overpromising point accuracy.

Overall, this work contributes:

• the first empirical characterization of token consumption in agentic coding on SWE-bench,
showing large run-to-run variance and the dominance of input tokens in overall costs;

• preliminary experiments on pre-execution token-cost prediction with comprehensive model
settings

• evidence that predicting output-token amounts and consumption ranges (especially in log
space) is feasible but challenging, offering actionable signals for designing new pricing
strategies for agentic systems.

Taken together, our empirical analysis and prediction study illuminate where tokens go in agentic
coding and what can be anticipated before execution, providing concrete steps toward more pre-
dictable and user-aligned agent pricing.

2 DATASET

We collect agent trajectories on the SWE-bench Verified dataset (Jimenez et al., 2024b; Chowd-
hury et al., 2024) using the OpenHands framework (Wang et al., 2025), which we choose for its
state-of-the-art performance among open-weight agents and its transparent, fully auditable execu-
tion pipeline. SWE-bench Verified is selected because it is the only large-scale software engineering
benchmark rigorously validated by human annotators to exclude problematic or ambiguous cases.

Each problem is evaluated with four independent runs using Claude Sonnet 3.7 (Anthropic, 2024),
chosen for its strong coding performance and uniquely transparent caching and pricing policies.
To assess generality, we additionally experiment with Claude Sonnet 4 Anthropic (2025), Qwen3-
Coder-480B-A35B-Instruct Team (2025), and GPT-5 OpenAI (2025) with results reported in Ap-
pendix A. The collected data include full trajectories, inference logs, intermediate outputs, evalua-
tion results, and metadata, enabling comprehensive analysis of agent behavior and cost dynamics.

In this work, we focus specifically on token consumption throughout the end-to-end problem-solving
process: given an initial task description, the LLM agent autonomously interacts with the envi-
ronment to finish the task without any human intervention. For each problem instance, the agent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Metric Description

Tool usage per tool Average number of times each tool is used.
Total prompt tokens Average number of input tokens across all rounds and runs.
Total completion tokens Average number of output tokens across all rounds and runs.
Cache creation input tokens Average number of input tokens written into cache.
Cache read input tokens Average number of tokens retrieved from cache.
Cost per round / total Monetary cost values returned directly by the API.

Table 1: Extracted metrics from LLM completion logs.

proceeds in multiple rounds: in each round, the LLM generates a response based on the current
prompt, followed by a tool call and execution. In particular, the full conversation history, including
all previous prompts and completions, is carried forward unchanged into subsequent rounds.

To enable a more detailed analysis of LLM behavior and its corresponding token consumption during
problem-solving, we extract a set of fine-grained metrics from the LLM completion history. These
metrics are obtained by parsing the structured JSON outputs of the agent and leveraging the usage
information, which records all LLM interactions at each round. Together, the extracted metrics
capture both the functional behavior of the agent, such as tool usage and file access patterns, as well
as the underlying token-level dynamics. For all token-related metrics, we report values averaged
over the four independent runs per problem. Table 1 summarizes the extracted features and their
definitions.

3 AN EMPIRICAL INVESTIGATION OF AGENT TOKEN CONSUMPTION

3.1 VARIABILITY IN TOKEN CONSUMPTION AND TOOL USAGE

Variations across different problems and different runs We begin by analyzing the variation in
token consumption and tool usage across different problems (averaged over four independent runs)
and across different runs for the same problem. For both total prompt tokens and total completion
tokens, we observe substantial variation across problems, indicating a high degree of instability in
token usage depending on the specific problem instance.

Figure 1: Distribution of token and tool usage across SWE-bench instances. Each curve shows
the mean and standard deviation of total prompt tokens, completion tokens, and tool usage.

To further investigate this phenomenon, we sort all problems by their average total token cost (from
low to high) and visualize the variation in both token usage and tool usage across the four runs for
each problem (Figure 1). We observe that problems with higher overall token costs tend to exhibit
substantially larger cross-run variance, indicating that the agent’s behavior becomes increasingly
unstable on more complex or longer tasks that require more tokens to solve. A similar pattern holds

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

for tool usage: although the trend is less pronounced than for token consumption, notable variability
still exists both across different problems and across runs of the same problem.

Accuracy and the Inverse Test-time Scaling Paradox We analyze how accuracy varies with
token and tool usage across problems and cost levels. Figure 2(a) shows that accuracy tends to
decrease as the average token or tool consumption increases. Problems that demand more resources
often correspond to cases where the agent explores multiple unproductive trajectories, leading to
longer contexts and reduced precision in reasoning.

To further examine this trend, Figure 2(b) stratifies accuracy by within-problem cost levels. Each
problem’s four runs are ranked by total cost and grouped into MinCost, LowerCost, UpperCost, and
MaxCost. Interestingly, accuracy rises slightly from MinCost to LowerCost but then declines for
higher-cost bins, showing the clearest drop at MaxCost. This pattern represents an inverse test-time
scaling phenomenon Snell et al. (2024); Wu et al. (2025), where greater resource usage does not
yield better outcomes. Instead, excessive compute often reflects inefficient reasoning cycles and
context bloat that hinder rather than enhance performance.

(a) Group accuracy vs. mean token and
tool usage across 500 SWE-bench in-
stances. (b) Accuracy trends across cost levels.

Figure 2: Accuracy variation across usage and cost levels. (a) Accuracy as a function of average
resource usage per group. (b) Accuracy stratified by within-problem cost levels.

Motivated by these observations, we further examine the behavioral patterns underlying high-cost
failures by analyzing distinct and repeated file view and modify actions across cost levels. As shown
in Figure 3, both viewing and editing activity increase with cost, but the growth is driven primarily by
a sharp rise in repeated actions rather than distinct ones. This suggests that many expensive but failed
runs are characterized by redundant back-and-forth file access and re-editing, reflecting inefficient
search dynamics that inflate context length and token usage without proportional progress. While
not all high-cost runs are dominated by redundancy, this pattern provides a concrete behavioral
explanation for the inverse accuracy–cost relationship observed above.

Notably, in our GPT-5 experiments, the inverse test-time scaling effect is noticeably weaker (Fig-
ure 20 from MinCost to UpperCost), with a smaller increase in repeated file operations as cost rises.
This indicates that when expensive runs involve less back-and-forth repetition, the associated perfor-
mance degradation under higher compute is correspondingly milder.performance degradation under
higher compute.

Human vs. Model Perception of Difficulty We analyze how problem difficulty affects token
consumption and tool usage. The difficulty levels follow the SWE-bench Verified dataset Jimenez
et al. (2024b); Chowdhury et al. (2024), which categorizes problems based on the estimated time
required by professional developers to resolve them (e.g., ”<15 min”, ”15 min – 1 hour”, ”1–4
hours”, ”>4 hours”). Because there are only three instances in the >4 hours category, we merge it
with the 1–4 hours group and report them together as >1 hours.

Figure 4 shows the distribution of prompt tokens, completion tokens (scaled by 100 for visibility),
and tool usages across difficulty levels. While overall resource consumption tends to rise with
problem difficulty, the relationship is far from linear. Notably, 10.31% of tasks labeled as ”<15-
minute” required more total tokens than the average ”>1-hour” instance, and 24.44% of ”>1-hour”
tasks consumed fewer tokens than the ”<15-minute” group.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Distinct vs. repeated file operations across cost levels. Higher-cost runs show a dis-
proportionate increase in repeated accesses and edits, indicating redundant back-and-forth behavior
that drives inefficiency and excessive token usage.

These outliers highlight that human-estimated difficulty does not always align with the model’s in-
ternal notion of complexity. Tasks that seem easy to humans may still demand extensive reasoning,
exploration, or tool interaction from the model, whereas some “hard” problems may be efficiently
solvable given the model’s prior knowledge or search strategies. Consequently, human-labeled dif-
ficulty is an imperfect predictor of model resource expenditure.

Figure 4: Token and tool usage across difficulty levels. Harder tasks generally consume more
resources, though some easy ones still show high token usage, revealing large behavioral variance.

3.2 TOKEN–COST DYNAMICS ACROSS PHASES AND ROUNDS

To understand how different token types contribute to overall cost, we analyze the relationship be-
tween token usage and cost both at an aggregate phase level and within a representative round-level
case study.

Charging scheme The total cost for each round of interaction returned from Claude API is com-
posed by separately accounting for four categories of tokens: (i) non-cached prompt tokens, (ii)
completion tokens, (iii) cache creation tokens, and (iv) cache read tokens. Non-cached prompt to-
kens correspond to input text that is processed without leveraging the cache, whereas cache tokens
are either created (written once to enable future reuse) or read (retrieved in later rounds at a lower
marginal cost). Each category is billed at a distinct rate, with cache creation depending on the per-
sistence setting (here we use the 5-minute write rate). The total per-round cost is simply the sum of
these components.2

Phase-level Token Usage Dynamics We divide each problem-solving trajectory into five chrono-
logical phases—Early, Early-Mid, Mid, Later-Mid, and Later—based on the total number of inter-
action rounds for each problem. Within each phase, we aggregate data across 500 problem instances
and compute per-round statistics, including the correlation between token types and cost, as well as
the average proportion of each token type in both token count and cost.

2Pricing details are available at https://docs.claude.com/en/docs/about-claude/
pricing. The cost calculation is shown in Appendix B.

5

https://docs.claude.com/en/docs/about-claude/pricing
https://docs.claude.com/en/docs/about-claude/pricing

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Proportion of total tokens. (b) Proportion of total cost. (c) Correlation with total cost.

Figure 5: Token usage and cost composition across problem-solving phases. Each phase (Early
→ Later) represents an equal partition of the agent’s trajectory. (a) Token composition remains
stable across phases, with non-cached prompt and cache-read tokens dominating total token usage.
(b) Cost composition shows that cache creation tokens dominate in the early stages, while cache-
read costs become the primary contributor in later phases. (c) Correlation analysis shows that non-
cached prompt and cache creation tokens dominate early phases, while completion tokens are most
correlated with total cost later.

Building on this setup, we analyze how different token types contribute to cost and usage throughout
the agent’s problem-solving trajectory. The overall token composition remains stable across phases
(Figure 5a), with cache-read tokens accounting for most token usage. This stability suggests that
although the total number of tokens fluctuates, the fundamental interaction structure remains consis-
tent throughout the process. Notably, the token count proportions of non-cached prompt tokens and
cache creation tokens remain nearly identical across all five phases, reflecting that whenever new
(non-cached) prompt tokens appear, they are subsequently cached for reuse in subsequent rounds.

The proportion of cache-read tokens in total cost increases steadily across phases (Figure 5b), yet
their correlation with total cost remains consistently low (Figure 5c). This indicates that cache reads
are economical operations: as their cost share rises, it reflects efficient reuse of cached information
rather than increased expenditure. In other words, greater reliance on cache reads corresponds to
cheaper progress rather than inflated computation.

Finally, as shown in Figure 5, cache creation and non-cached prompt tokens dominate the early
stages, when the agent constructs its working context. Completion tokens become increasingly in-
fluential from the mid to later phases, showing the strongest correlation with total cost and reflecting
the token-intensive nature of reasoning and code generation.

Round-level cost breakdown. To complement the phase-level aggregate view, we now zoom into
a representative case study. Figure 6 presents the exact per-round cost decomposition across the
four token categories. We observe that the cost of non-cached prompt tokens closely mirrors that of
cache creation tokens, which is expected given their similar per-token rates. Moreover, whenever
a segment of non-cached prompt tokens appears, it is typically followed by corresponding cache
creation, reflecting the mechanism by which uncached input is soon persisted for reuse. The cache
read tokens accumulate steadily over rounds and constitute a large fraction of the total cost; however,
the total round cost does not monotonically increase, explaining the low correlation between cache
reads and per-round cost observed in Figure 5c. Consistent with the trends highlighted earlier, the
dominant cost drivers vary across phases: in the Early phase, cache creation dominates total cost,
while in the Later phases, completion tokens become the primary contributor as generation expands.

Trajectory behavior analysis We selected six representative rounds and inspected their detailed
trajectories to understand how the agent balances tool use, code generation, and verification. A
compact summary of the representative steps is shown in Table 2.

Rounds dominated by non-cached prompt tokens. In three rounds, token usage was dominated by
uncached input from tool calls. The agent relied heavily on repository exploration and targeted
searches (e.g., using grep or signature inspection) to locate relevant code regions and align them
with stack traces. These actions generated large uncached input dumps, while the completions were
relatively short, focusing on synthesizing evidence rather than producing long code edits.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 6: Round-level token cost breakdown. Exact per-round costs for Claude Sonnet 3.7, de-
composed into non-cached prompt tokens, cache creation (5m persistence), cache reads, and com-
pletion tokens. The dominant cost source shifts from cache creation in early phases to completion
tokens in later phases.

Rounds dominated by completion tokens. In the other three rounds, completion tokens dominated
due to long generated outputs. The agent created external reproducers, drafted minimal harnesses,
implemented guarded fixes (e.g., for None return annotations), and validated results with environ-
ment overrides. These trajectories involved extensive explanatory text and multi-line code edits,
with most tokens coming from generated content rather than tool outputs.

Round Tool Usage Action summary
1 execute bash (ls/grep) Locates decorator, call sites, and links trace.
2 execute bash (repo search) Explores files broadly, traces errors.
7 execute bash (signature search) Dumps large files while checking signatures.

11 str replace editor Writes reproducer, explains failure, suggests fix.
15 str replace editor Proposes patch for None return issue.
22 str replace editor Adds guard for None and verifies fix.

Table 2: Representative trajectory steps across analyzed rounds.

4 PREDICTING TOKEN CONSUMPTION

In this section, we investigate approaches for predicting the token consumption of the OpenHands
agent. Prediction quality is measured using the Pearson correlation coefficient.

4.1 SINGLE LLM PREDICTION

Given the inherent variability and stochasticity of agent trajectories, predicting token consumption
is challenging. At the same time, the analyses in the previous section suggest that token usage
patterns encode rich information that can be leveraged. Motivated by this, we directly prompt a
large language model to estimate token cost. Specifically, we employ Claude Sonnet, the same
model that powers the OpenHands agent, to perform this prediction task.

Prediction Settings We experimented with four basic prompting configurations, each differing
in the richness of the information provided, and additionally compare prediction in exact numbers
versus log scale, as well as in zero-shot and few-shot settings. The four settings are summarized in
Table 3. We run each setting five times and report the average correlation together with the variance
across the five runs.

Setting Description
P Problem statement only
PT Problem statement + tool usage reasoning
PTD Problem statement + tool usage reasoning + difficulty level
PTDR Problem statement + tool usage reasoning + difficulty level + repository information

Table 3: Prompt configurations for single LLM token prediction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The PTDR configuration requires special handling due to the length of GitHub repository structures
and the limited context window of Claude. We therefore adopt a two-step prompting strategy. In the
first step, we extract the repository file tree and file-level statistics using the GitHub API, and feed
both the problem statement and this raw repository metadata to the LLM. The model then produces
a concise summarization of repository information relevant to the problem statement. In the second
step, we integrate this summarization with the other inputs (problem statement, tool usage reasoning,
and difficulty level) and perform the final prediction.

Figure 7: Prediction performance across settings for single LLM prediction. Average correla-
tion (with variance) for input and output token prediction under different settings. Log-scale predic-
tion consistently outperforms exact-number prediction, and repository information proves especially
valuable.

Results and Observations As shown in Figure 26, the prediction of prompt tokens exhibits sub-
stantially higher variance than the prediction of output tokens, indicating that input token estimation
is considerably more difficult. This is intuitive given the implementation of the coding agent: all
past conversation history is concatenated into the prompt of the next round, leading to a cumulative
and approximately linear increase in prompt length. Such accumulation makes the prompt token
sequence less stable and more challenging to predict accurately.

By contrast, the prediction of output tokens is more stable, with smaller variance and consistently
higher correlation across settings. Overall, richer context improves prediction performance: models
with more information achieve higher correlation. Predictions based on log-scale transformation are
also generally more accurate than predictions of exact numbers, suggesting that relative magnitudes
are easier to capture than absolute counts. Interestingly, zero-shot predictions with repository infor-
mation (RI) outperform few-shot predictions without repository information, for both log-scale and
exact number settings, underscoring the strong value of structural repository knowledge.

Nevertheless, the overall task of token prediction remains challenging due to the interplay of multiple
factors, including cumulative context, stochastic agent behavior, and the bias induced by few-shot
example selection. We discuss these challenges in greater depth in Section 4.3.

4.2 SELF-PREDICTION BY THE SAME AGENT

Instead of relying solely on a single LLM call for prediction, we also experimented with using the
coding agent itself as the predictor. This approach is motivated by the natural intuition that the
coding agent, being the one that would actually execute the task, has the most detailed knowledge
of its own workflow. In this setting, we modify the instructions of the OpenHands coding agent so
that it predicts token consumption rather than solving the coding problem. The agent retains its full
tool-calling and interaction capabilities, but its task is modified so that instead of implementing a
solution, it is guided by an updated system prompt to estimate the token cost required for the given

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

task. This setup allows the agent to actively explore the problem’s codebase, generate intermediate
plans, and reason about the likely workload.

Prediction Settings We experimented with two settings. In the basic setting, the agent receives
the instruction and no further guidance (see Appendix E.1 for the full prompt). In the fine-grained
setting, the agent is explicitly instructed to make more fine-grained predictions and to decompose
the task (see Appendix E.2 for the full prompt). Due to budget limitations, we conducted three
independent runs for each setting. Each run used the same 500 samples with the previous setting.
Because prediction itself consumes tokens, the cost of running the predictor is a non-negligible
factor; we therefore report the token overhead of one run in Appendix F.

Results and Observations From Figure 8, we observe that using the coding agent itself as the
predictor achieves reasonable performance in both settings, with non-trivial correlation scores for
both input and output token estimation. When we add the fine-grained instruction, both input and
output token prediction improve noticeably compared to the basic setting. We also find that the
variance of output-token prediction is considerably larger than that of input-token prediction, likely
because the number of output tokens is typically much smaller and thus more variable. Introducing
the fine-grained instruction significantly reduces this variance, making the output-token estimates
more stable.

Self-Prediction Cost vs. Task Actual Cost and Prediction Error We further examine whether
the cost incurred by self-prediction itself is informative of the true task cost and whether it affects
prediction quality. As detailed in Appendix C, we find a weak linear correlation but a moderate rank-
based correlation between self-prediction cost and actual task cost, indicating that self-prediction
better captures relative cost ordering than precise magnitudes. Importantly, we observe no mean-
ingful correlation between self-prediction cost and prediction error across prompt, completion, or
total tokens. This suggests that higher self-prediction expense does not translate into improved or
degraded prediction accuracy. Together, these results indicate that self-prediction provides a low-
cost, coarse-grained signal of task difficulty and resource demand without introducing systematic
bias into the token estimates.

Figure 8: Prediction performance across settings for self-prediction by the same agent. Similar
to single LLM setting, We find that log-scale prediction performs better. Besides, output tokens
benefit more from fine-grained setting.

4.3 CHALLENGES

Single LLM Prediction Despite the encouraging results, two factors complicate reliable predic-
tion. First, our few-shot setup, selecting four examples per difficulty level, can introduce bias, since
each run exhibits high variance and small sampling choices may skew outcomes. Second, the con-
figuration we initially expected to perform best, which combines all sources of information, in fact

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

showed weaker results. This suggests that excessive detail may overwhelm the model, especially
when the prediction target is only a coarse log-scale number rather than a fine-grained output.

Self-Prediction by the Same Agent While it is natural to let a coding agent predict its own token
consumption—since it is arguably most familiar with its own decision-making—we find that this
approach, despite yielding higher correlation with actual usage, suffers from several challenges. In
both settings we have explored, self-prediction tends to consistently overestimate the true cost. We
also considered providing few-shot examples to give the agent a better sense of the token cost per
round. However, it is difficult to construct representative high-quality examples: available samples
are heterogeneous and often fail to capture general patterns, and directly including multi-round
few-shot traces would quickly exceed the context window of current LLMs. Therefore, few-shot
settings require further study. Moreover, compared to the cost of a single LLM call, users may be
unwilling to tolerate the latency and overhead introduced by multi-round estimation. As a result,
self-prediction, although appealing in principle, remains challenging in practice.

5 DISCUSSION

In this paper, we present the first empirical analysis of agent token consumption and explore different
methods to predict it. In this section, we highlight the main limitations of our study and discuss the
implications of our findings for the design and pricing of agent-based systems.

Limitations A key limitation of our study lies in the range of model backbones evaluated. Al-
though we analyze multiple models, including Claude Sonnet 3.7, Sonnet 4, and Qwen3 Coder, this
still covers only a narrow slice of the broader agentic model landscape. Collecting full trajectories
for additional models is extremely costly in both time and money, which constrains the breadth of our
evaluation. While the patterns we observe are consistent across the models tested, further validation
on more architectures would strengthen the generality of our findings. To support such extensions,
we release our experimental pipeline so future work can replicate and expand our analysis.

Agent Pricing One of the central challenges for providers of agentic systems is how to price
them. Traditional AI products such as ChatGPT often rely on subscription-based models, since
typical users consume only a limited number of tokens. By contrast, agentic tasks can require very
large amounts of tokens, even for seemingly simple problems. This makes prediction of token
consumption essential for designing sustainable pricing strategies. Our findings show that token
usage, especially input tokens, is highly variable and difficult to predict due to the randomness of
agent trajectories. As a result, consumption-based pricing may remain the most practical option
until we figure out better ways to predict token usage.

User Transparency Reliable token predictions are also important for user transparency. Ideally,
an agentic system would be able to inform users about the likely cost of a task before execution.
However, current language models struggle to provide accurate estimates, limiting the ability to
present exact costs in advance. That said, our results suggest that predictions on a log scale per-
form better, which could help systems flag tasks with potentially high costs. This approach may
allow providers to alert users about potentially large charges and ask for user permissions before
proceeding, even if precise predictions are not possible.

6 CONCLUSION

With the rapid growth of agent token consumption in various settings, predicting future token usage
before task execution becomes an important task for reasonable and transparent pricing of AI agents.
In this paper, we propose the first study aimed at understanding and predicting agent token consump-
tion on agentic coding tasks. Through a series of empirical analyses of agent trajectories, we reveal
important findings about the pattern of agent token usage in agentic coding tasks. Furthermore, we
explore a range of token usage prediction methods and highlight the challenges of predicting agent
token consumption before task execution.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Mohammad Ali Alomrani, Yingxue Zhang, Derek Li, Qianyi Sun, Soumyasundar Pal, Zhanguang
Zhang, Yaochen Hu, Rohan Deepak Ajwani, Antonios Valkanas, Raika Karimi, et al. Reasoning
on a budget: A survey of adaptive and controllable test-time compute in llms. arXiv preprint
arXiv:2507.02076, 2025.

Anthropic. Claude sonnet 3.7. https://www.anthropic.com, 2024. Large language model.

Anthropic. Claude sonnet 4. https://www.anthropic.com, 2025. Large language model.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench verified, 2024.
URL https://openai.com/index/introducing-swe-bench-verified/.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024a. URL
https://arxiv.org/abs/2310.06770.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=VTF8yNQM66.

Kinde. Ai token pricing optimization: Dynamic cost management for llm-powered
saas, 2024. URL https://kinde.com/learn/billing/billing-for-ai/
ai-token-pricing-optimization-dynamic-cost-management-for-llm-powered-saas.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023a. URL
https://arxiv.org/abs/2307.03172.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023b. URL https://arxiv.org/abs/2306.03091.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023c. URL https://arxiv.org/abs/
2308.03688.

OpenAI. Introducing codex, 2025. URL https://openai.com/blog/
introducing-codex.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025. [Large language model release].

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

11

https://www.anthropic.com
https://www.anthropic.com
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://kinde.com/learn/billing/billing-for-ai/ai-token-pricing-optimization-dynamic-cost-management-for-llm-powered-saas
https://kinde.com/learn/billing/billing-for-ai/ai-token-pricing-optimization-dynamic-cost-management-for-llm-powered-saas
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://openai.com/blog/introducing-codex
https://openai.com/blog/introducing-codex
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Junlin Wang, Siddhartha Jain, Dejiao Zhang, Baishakhi Ray, Varun Kumar, and Ben Athiwaratkun.
Reasoning in token economies: budget-aware evaluation of llm reasoning strategies. arXiv
preprint arXiv:2406.06461, 2024.

Qian Wang, Zhenheng Tang, Zichen Jiang, Nuo Chen, Tianyu Wang, and Bingsheng He. Agent-
taxo: Dissecting and benchmarking token distribution of llm multi-agent systems. In ICLR 2025
Workshop on Foundation Models in the Wild.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Patrick Wilhelm, Thorsten Wittkopp, and Odej Kao. Beyond test-time compute strategies: Advocat-
ing energy-per-token in llm inference. In Proceedings of the 5th Workshop on Machine Learning
and Systems, pp. 208–215, 2025.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models,
2025. URL https://arxiv.org/abs/2408.00724.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

12

https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2405.15793

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A GENERALIZATION ACROSS ALTERNATIVE MODEL BACKBONES

To assess the generalizability of our observations, we evaluate the coding agent’s behavior using
alternative model backbones3. Despite differences in pricing, caching mechanisms, and architecture,
the core phenomena: large run-to-run variability, heavy-tailed token consumption, and the
inverse test-time scaling paradox, consistently appear across models.

We also observe substantial variance in resource usage across human-defined difficulty levels, fur-
ther showing that human-perceived difficulty is a poor predictor of an agent’s computational effort:
many “easy” tasks incur high token costs, while some “hard” tasks consume fewer resources.

Across problem-solving phases all models exhibit a similar progression: tokens most strongly cor-
related with cost shift from input-related tokens during early repository exploration to completion
tokens during later patch-generation. At the same time, prompt-related and cache-read tokens re-
main the dominant contributors to both total token volume and cost. These consistent cross-model
patterns reinforce the robustness of our overall findings.

A.1 SONNET 4

Figure 9: Distribution of token and tool usage across SWE-bench instances.

3Qwen3-Coder-480B-A35B-Instruct is an open-source model. For consistency and ease of comparison, we
adopt the pricing scheme of Qwen3-Coder-Plus when conducting our cost analysis.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Group accuracy vs. mean token and tool usage
across 500 SWE-bench instances. (b) Accuracy trends across cost levels.

Figure 10: Accuracy variation across usage and cost levels for Sonnet 4. (a) Accuracy as a
function of average resource usage per group. (b) Accuracy stratified by within-problem cost levels.

Figure 11: Distinct vs. repeated file operations across cost levels for Sonnet 4.

Figure 12: Token and tool usage across difficulty levels for Sonnet 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Proportion of total tokens. (b) Proportion of total cost. (c) Correlation with total cost.

Figure 13: Token usage and cost composition across problem-solving phases for Sonnet 4.

A.2 QWEN3-CODER-480B-A35B-INSTRUCT

Figure 14: Distribution of token and tool usage across SWE-bench instances.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Group accuracy vs. mean token and tool usage
across 500 SWE-bench instances. (b) Accuracy trends across cost levels.

Figure 15: Accuracy variation across usage and cost levels for Qwen3-Coder-480B-A35B-
Instruct. (a) Accuracy as a function of average resource usage per group. (b) Accuracy stratified by
within-problem cost levels.

Figure 16: Distinct vs. repeated file operations across cost levels for Qwen3-Coder-480B-A35B-
Instruct.

Figure 17: Token and tool usage across difficulty levels for Qwen3-Coder-480B-A35B-Instruct.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Proportion of total tokens. (b) Proportion of total cost. (c) Correlation with total cost.

Figure 18: Token usage and cost composition across problem-solving phases for Qwen3-Coder-
480B-A35B-Instruct.

A.3 GPT-5

Figure 19: Distribution of token and tool usage across SWE-bench instances.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Group accuracy vs. mean token and tool usage
across 500 SWE-bench instances. (b) Accuracy trends across cost levels.

Figure 20: Accuracy variation across usage and cost levels for GPT-5. (a) Accuracy as a function
of average resource usage per group. (b) Accuracy stratified by within-problem cost levels.

Figure 21: Distinct vs. repeated file operations across cost levels for GPT-5.

Figure 22: Token and tool usage across difficulty levels for GPT-5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Proportion of total tokens. (b) Proportion of total cost. (c) Correlation with total cost.

Figure 23: Token usage and cost composition across problem-solving phases for GPT-5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B COST CALCULATION DETAILS

B.1 CLAUDE MODELS

Promptnon-cached = Prompttotal − CacheRead. (1)

Costround = (Promptnon-cached × rin)

+ (Completion × rout)

+ (CacheCreation × rcache create)

+ (CacheRead × rcache read). (2)

where rin is the base input rate, rout is the output rate, rcache create is the cache creation rate (5-minute
writes in our setting), and rcache read is the cache read rate.

B.2 QWEN MODELS (IMPLICIT CACHE ONLY)

For Qwen models (qwen3-coder-plus and qwen3-coder-flash series), we use only the implicit cache
mechanism. The API reports the number of prompt tokens served from the implicit cache, and we
ignore explicit cache creation since it is not used in our setting.

Qwen applies tiered pricing based on the total prompt tokens in each request.4 For qwen3-coder-
plus, the input and output costs (per million tokens) are:

Token Range Input Cost Output Cost
0 < tokens ≤ 32K $1 $5
32K < tokens ≤ 128K $1.8 $9
128K < tokens ≤ 256K $3 $15
256K < tokens ≤ 1M $6 $60

Let Prompttotal be the total prompt tokens, CacheReadimplicit the portion served from the implicit
cache, and Completion the number of output tokens. Let rin and rout denote the tier-specific input
and output rates. Implicit cache reads are billed at rimplicit

cache read = 0.2 rin.

The non-cached prompt is

Promptnon-cached = Prompttotal − CacheReadimplicit. (3)

The total cost is

Costround = (Promptnon-cached × rin)

+ (CacheReadimplicit × 0.2 rin)

+ (Completion × rout). (4)

B.3 GPT-5 MODELS (IMPLICIT CACHE)

For GPT-5 models, we use OpenAI’s implicit caching mechanism. The API reports cached prompt
tokens automatically, without explicit cache creation. At the time of our experiments, the official
pricing is: Input: $1.250 / 1M tokens, Cached input: $0.125 / 1M tokens, and Output: $10.000 / 1M
tokens.5

The cost calculation follows the same formulation as for the Qwen models (Section B.2).

4See the official Model Studio pricing documentation:https://www.alibabacloud.com/help/
en/model-studio/models#8e453767fbkka

5See the official pricing documentation: https://openai.com/index/introducing-gpt-5/

20

https://www.alibabacloud.com/help/en/model-studio/models##8e453767fbkka
https://www.alibabacloud.com/help/en/model-studio/models##8e453767fbkka
https://openai.com/index/introducing-gpt-5/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C ANALYSIS OF SELF-PREDICTION COST

To validate whether self-prediction can estimate token cost at significantly lower expense, we com-
pute the average over 4 independent OpenHands agent runs and 4 self-prediction runs, both using
Claude Sonnet 3.7. Each configuration is evaluated on 500 samples independently, followed by
statistical analysis. The results demonstrate that self-prediction achieves cost estimation with sub-
stantially lower mean total tokens (approximately ×4.5 reduction) and lower mean cost ($1.3814 vs
$6.1093). These findings confirm that self-prediction is a cost-efficient proxy for estimating token
consumption.

Table 4: Comparison of Token Cost Statistics Between Ground Truth and Self-Prediction

Statistic Prompt Tokens Completion Tokens Total Tokens Cost ($)

Ground Truth (Agent Call)
Mean 1,954,342 16,420 1,970,762 6.1093
Std Dev 2,064,830 12,931 2,077,229 6.3807
Minimum 221,670 3,472 225,141 0.7171
25th Percentile 776,648 8,888 785,450 2.4622
Median 1,234,188 12,328 1,245,664 3.8950
75th Percentile 2,374,227 19,377 2,390,590 7.3665
Maximum 16,304,326 116,109 16,420,436 50.6546

Prediction (Self-Prediction Call)
Mean 438,252 4,440 442,692 1.3814
Std Dev 125,800 1,076 126,270 0.3847
Minimum 149,042 1,761 153,291 0.4943
25th Percentile 358,758 3,692 362,543 1.1405
Median 433,963 4,257 439,306 1.3746
75th Percentile 510,467 4,974 515,511 1.6031
Maximum 1,066,478 9,951 1,075,758 3.3386

Meanwhile, we want to understand whether there is a correlation between the self-prediction costs
and the actual costs. Figure 24 illustrates the regression fitting results. The statistical tests show a
weak-to-moderate monotonic relationship, evidenced by:

• Pearson correlation: rp = 0.165137

• Spearman correlation: rs = 0.353866

Although the linear correlation remains weak (rp < 0.2), the higher rank-based coefficient (rs >
0.35) suggests that self-prediction is more effective at capturing relative ordering than precise mag-
nitude estimation. This indicates that low-cost self-prediction can serve as a reasonable proxy to
approximate coarse-grained trends in token cost, especially when exact token-level fidelity is not
strictly required.

Further, we investigate whether the self-prediction cost impacts prediction accuracy. Using the same
data conducted on Claude Sonnet 3.7, we compute the mean squared error (MSE) between predicted
and ground-truth token counts for prompt tokens, completion tokens, and total tokens, respectively.
We then quantify the association between self-prediction cost and prediction error using Pearson
correlation analysis. As shown in the figure 25, the statistical results indicate that the correlation
between self-prediction cost and prediction error is negligible (e.g., for total tokens, the Pearson
correlation coefficient r ≈ 0.02). This indicates that self-prediction cost and prediction accuracy
are effectively independent, suggesting that token-cost self-prediction does not introduce bias into
the accuracy of token consumption estimates and that the two factors can be regarded as mutually
orthogonal.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 24: Correlation analysis between self-prediction and ground truth cost.

Figure 25: Correlation anslysis between self-prediction cost and prediction accuracy.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D PROMPT FOR SINGLE LLM PREDICTION

D.1 REPO SUMMARY

Role: REPOSITORYANALYZER — expert at analyzing code repositories and their structure.

Task: Analyze the provided repository file tree and problem statement, then create a concise
summary capturing the key aspects relevant to solving the problem.

Focus on:

• Repository Structure: Key directories, file organization patterns
• Technology Stack: Programming languages, frameworks, build tools
• Complexity Indicators: Size, depth, and organization complexity
• Problem-Relevant Files: Files or directories most relevant to the task
• Architecture Patterns: Any clear architectural patterns or design principles

Deliverable: A structured, concise, and informative summary that helps someone understand the
repository context for this specific problem.

User Prompt Template (Summary Generation)
This is the concrete user-facing prompt assembled by your pipeline.

Please analyze the following repository and problem statement to create
a concise summary.

{<REPOSITORY_INFO_FORMATTED>}

Task: {<PROBLEM_STATEMENT>}
Difficulty Level: {<DIFFICULTY>}

Based on this information, provide a structured summary that captures
the key aspects of the repository relevant to solving this problem.
Focus on structure, technology stack, complexity, and problem-
relevant components.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 PREDICTION AT DIFFERENT INFORMATION LEVEL

Setting: ZERO PS TOOL DIFF REPO

Role: TOKENESTIMATOR (not a coding agent).

Always do exactly four things, in order:

1. Repository Context Analysis: Review the provided repository summary and understand the
codebase structure and complexity.

2. Task Planning: Based on the repository context and the specific task, outline a high-level
approach for solving the problem.

3. Token and Tool Estimation: Estimate how many tokens the assistant would emit and how
many tool calls it would invoke to solve the task, taking into account the difficulty level and
repository structure. For each step, provide detailed reasoning for your estimates. Additionally,
for tool use, break down how many times each specific tool would likely be invoked (e.g.,
execute bash: 10, str replace editor: 20, think: 5).

4. Output the following five lines in this exact format (and nothing else):

<INPUT_TOKEN_ESTIMATE>####</INPUT_TOKEN_ESTIMATE>
<OUTPUT_TOKEN_ESTIMATE>####</OUTPUT_TOKEN_ESTIMATE>
<TOOL_USE_EXECUTE_BASH_ESTIMATE>##</TOOL_USE_EXECUTE_BASH_ESTIMATE>
<TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>##</

TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>
<TOOL_USE_THINK_ESTIMATE>##</TOOL_USE_THINK_ESTIMATE>

System Context Provided:

• OpenHands capabilities and workflow:

{OPENHANDS_SYSTEM_PROMPT}

• Available tools:

{TOOL_USE_PROMPT}

Restrictions: Do not execute the task, do not call any tool, do not write code.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Setting: FEW PS TOOL DIFF REPO

Role: TOKENESTIMATOR (not a coding agent).

Always do exactly four things, in order:

1. Repository Context Analysis: Review the provided repository summary and understand the
codebase structure and complexity.

2. Task Planning: Based on the repository context and the specific task, outline a high-level
approach for solving the problem.

3. Token and Tool Estimation: Estimate how many tokens the assistant would emit and how
many tool calls it would invoke to solve the task, taking into account the difficulty level and
repository structure. Use the provided examples to inform your estimates and provide de-
tailed reasoning for each step. Additionally, for tool use, break down how many times each
specific tool would likely be invoked (e.g., execute bash: 10, str replace editor:
20, think: 5).

4. Output the following five lines in this exact format (and nothing else):

<INPUT_TOKEN_ESTIMATE>####</INPUT_TOKEN_ESTIMATE>
<OUTPUT_TOKEN_ESTIMATE>####</OUTPUT_TOKEN_ESTIMATE>
<TOOL_USE_EXECUTE_BASH_ESTIMATE>##</TOOL_USE_EXECUTE_BASH_ESTIMATE>
<TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>##</

TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>
<TOOL_USE_THINK_ESTIMATE>##</TOOL_USE_THINK_ESTIMATE>

Examples Section (when few-shot examples are available):
Below are examples that can help you understand the task and better

estimate the token usage:

Example i:

Repository Summary:
{ex["repo_summary"]}

Task: {ex["problem_statement"]}
Difficulty Level: {ex["difficulty"]}

<INPUT_TOKEN_ESTIMATE>####{ex["total_prompt_tokens_mean"]}</
INPUT_TOKEN_ESTIMATE>

<OUTPUT_TOKEN_ESTIMATE>####{ex["total_completion_tokens_mean"]}</
OUTPUT_TOKEN_ESTIMATE>

<TOOL_USE_EXECUTE_BASH_ESTIMATE>##{ex["avg_tool_usage_execute_bash"]}</
TOOL_USE_EXECUTE_BASH_ESTIMATE>

<TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>##{ex["
avg_tool_usage_str_replace_editor"]}</
TOOL_USE_STR_REPLACE_EDITOR_ESTIMATE>

<TOOL_USE_THINK_ESTIMATE>##{ex["avg_tool_usage_think"]}</
TOOL_USE_THINK_ESTIMATE>

System Context Provided:

• OpenHands capabilities and workflow:

{OPENHANDS_SYSTEM_PROMPT}

• Available tools:

{TOOL_USE_PROMPT}

Restrictions: Do not execute the task, do not call any tool, do not write code.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E PROMPT FOR SELF-PREDICTION BY THE SAME AGENT

E.1 ZERO-SHOT SETTING

IMPORTANT: You are a TOKEN ESTIMATION agent, NOT a problem-solving agent. Your
ONLY goal is to estimate token costs, NOT to fix bugs or implement features. You MUST call the
finish tool with a JSON estimate, NEVER with actual code changes.

Your task is to estimate how many LLM tokens would be consumed to solve this problem if a
coding agent were to complete it end-to-end.

Follow these phases to estimate token costs:

Phase 1. EXPLORATION: Explore the codebase to understand the problem

• 1.1 Read the problem description and understand what needs to be fixed
• 1.2 Explore relevant files and directories to understand the codebase structure
• 1.3 Search for key functions, classes, or variables related to the issue
• 1.4 Identify the root cause and complexity of the problem

Phase 2. ANALYSIS: Analyze the complexity and required changes

• 2.1 Assess the scope of changes needed (number of files, lines of code)
• 2.2 Consider the debugging iterations likely needed
• 2.3 Evaluate the testing complexity and iterations
• 2.4 Estimate the number of tool calls and reasoning steps

Phase 3. TOKEN ESTIMATION: Calculate token usage for the complete solution

• 3.1 Estimate input tokens for:
– Repository exploration and file reading
– Code analysis and debugging
– Implementation iterations
– Testing and verification

• 3.2 Estimate output tokens for:
– Reasoning and analysis responses
– Code generation and explanations
– Debugging responses
– Test results interpretation

• 3.3 Calculate total tokens and confidence level

Phase 4. FINISH: Provide final token estimate

• 4.1 Call the finish tool with a JSON object containing:
– predicted input tokens
– predicted output tokens
– predicted total tokens
– confidence (0--1)
– breakdown by phase

Remember: You are estimating COSTS, not implementing SOLUTIONS. Do NOT write actual
code fixes or modify any files. Your final deliverable is a JSON token estimate, not a working
solution.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.2 ZERO-SHOT + FINE-GRAINED BREAKDOWN SETTING

IMPORTANT: You are a TOKEN ESTIMATION agent, NOT a problem-solving agent. Your
ONLY goal is to estimate token costs, NOT to fix bugs or implement features. You MUST call the
finish tool with a JSON estimate, NEVER with actual code changes.

Fine-Grained Requirements:

• Round all estimates to the nearest 10 tokens (e.g., 30, 40, 70). Do NOT round to hundreds.
• Break down into atomic actions: reading issue description, listing files, inspecting one file,

analyzing one function/class, one debugging iteration, one test run.
• Do NOT output ranges (e.g., “200–300”). Always a single number.
• First give sub-action estimates, then sum into totals per phase, then overall totals.
• Final JSON must contain fine-grained estimates inside breakdown by phase.

(Other parts are the same as in the zero-shot setting and are omitted.)

F TOKEN CONSUMPTION FOR SELF-PREDICTION BY THE SAME AGENT

Figure 26: Token consumption for self-prediction within one run. This figure shows the prompt,
output, and total tokens consumed during a single 500-sample self-prediction run. The estimation
process alone consumes a significant number of tokens, which is an important overhead to consider.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Claude Sonnet 3.7 as the main model to predict token consumption in our experiments. In
addition, large language models (e.g., ChatGPT) were used only as general writing aids to polish
language, improve clarity, and format prompts. All experimental design, data analysis, and conclu-
sions were made and verified by the authors.

27

	Introduction
	Dataset
	An Empirical Investigation of Agent Token Consumption
	Variability in Token Consumption and Tool Usage
	Token–Cost Dynamics Across Phases and Rounds

	Predicting Token Consumption
	Single LLM Prediction
	Self-Prediction by the Same Agent
	Challenges

	Discussion
	Conclusion
	Generalization Across Alternative Model Backbones
	Sonnet 4
	Qwen3-Coder-480B-A35B-Instruct
	GPT-5

	Cost Calculation Details
	Claude Models
	Qwen Models (Implicit Cache Only)
	GPT-5 Models (Implicit Cache)

	Analysis of Self-Prediction Cost
	Prompt for Single LLM Prediction
	Repo Summary
	Prediction at Different Information Level

	Prompt for Self-Prediction by the Same Agent
	Zero-Shot Setting
	Zero-Shot + Fine-grained Breakdown Setting

	Token Consumption for Self-Prediction by the Same Agent
	The Use of Large Language Models (LLMs)

