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Abstract

We aim to sample from a target exp(−
∑n

i=1 fi(x|Di)) where each client fi only has access
to local data Di. We present a fully distributed Markov Chain Monte Carlo (MCMC)
sampler that operates through client-to-client communication, eliminating the need for
additional centralized servers. Unlike MCMC algorithms that rely on server-client structures,
our proposed sampler is entirely distributed, enhancing security and robustness through
decentralized communication. In contrast to limited decentralized algorithms arising from
Langevin dynamics, our sampler utilizes blocked Gibbs sampling on an augmented distribution.
Furthermore, we establish a non-asymptotic analysis of our sampler, employing innovative
techniques. This study contributes to one of the initial analyses of the non-asymptotic
behavior of a fully distributed sampler arising from Gibbs sampling.

1 Introduction

In recent years, inspired by the rapid development in optimization, a lot of sampling algorithms have
been proposed and then analyzed to obtain their non-asymptotic behaviors (Dalalyan, 2017b; Dalalyan &
Riou-Durand, 2020; Zhang et al., 2023; Fan et al., 2023; Altschuler & Chewi, 2023). In this work, we are
interested in sampling from a target distribution of x ∈ Rd defined as

π(x) ∝ exp
(
−

n∑
i=1

fi(x|Di)
)

in a distributed manner. With this formulation, we implicitly have that each potential (negative log density) fi

only possesses access to its local data Di. Fully distributed systems, e.g., distributed sensor networks (Qi et al.,
2001) and edge computation (Mach & Becvar, 2017), provide advantages over centralized ones by enabling
computing agents to share limited information, reducing communication costs, and improving security and
robustness. These factors make them potentially superior in terms of computational performance and data
protection. These raise the need to develop and analyze a distributed sampling algorithm without centralized
servers. Our target distribution is the straightforward generalization of the objective function

∑n
i=1 fi(x|Di) in

distributed optimization, and this problem naturally arises in various applications of distributed optimization,
e.g., power systems, sensor networks, and smart manufacturing (Yang et al., 2019).

In the machine learning community, our sampling problem is heavily related to Bayesian learning (Cao et al.,
2023), an area carrying on Bayesian inference and uncertain quantification on learned models. Consider a
learning setting where the goal is to train models with minimizing

∑n
i=1 fi(x|Di). As mentioned in Sun et al.

(2022), one can view each fi as a loss function on data collection Di. Compared with only searching for
the minimizer of

∑
i fi, Bayesian inference on the distribution π can give more detailed information on the

loss landscape. Moreover, Bayesian inference is preferred when only limited data is available; applying prior
distributions on model parameters can significantly enhance the performance of models trained on limited
data (Sun et al., 2019). In what follows, we omit the dependency on Di for brevity.

Many existing distributed Markov Chain Monte Carlo (MCMC) algorithms are deployed with server-client
architectures: at each step, the server aggregates information from clients as shown in Figure 1. Distributed
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sampling via moment-sharing is proposed in Xu et al. (2014). More parallel MCMC algorithms are presented
in Wang & Dunson (2013); Neiswanger et al. (2013); Wang et al. (2015); Chowdhury & Jermaine (2018);
De Souza et al. (2022). Recently, several distributed MCMC algorithms (Vono et al., 2022b; Plassier et al.,
2021; Kotelevskii et al., 2022) are proposed to address practical issues like safety, communication cost, and
heterogeneity. These parallel and distributed MCMC algorithms either rely on client-server architectures
or lack non-asymptotic convergence rates. To the best of our knowledge, only a handful of sampling
literature (Kungurtsev, 2020; Parayil et al., 2020; Gürbüzbalaban et al., 2021; Kolesov & Kungurtsev, 2021;
Kungurtsev et al., 2023) proposes fully distributed samplers and establishes the non-asymptotic results. These
samplers arise from Langevin Monte Carlo or Hamiltonian Monte Carlo, leveraging the concept of gradient
tracking in distributed optimization (Pu & Nedić, 2021). However, unsuitable hyperparameters of these
methods may result in failure to sample from the target. As demonstrated in our experiments, samplers based
on Langevin Monte Carlo diverge with unreasonably large step sizes, while our proposed sampler ensures
convergence with the same step sizes.

Another well-known sampler is the Gibbs sampler, commonly used in asynchronous settings where multiple
nodes can update their samples without waiting for each other (Terenin et al., 2020). However, the exploration
of the non-asymptotic behaviors of a fully distributed sampler based on Gibbs sampling remains uncharted
territory. Even though the parallel Gibbs sampler was already proposed in the distributed setting in Gonzalez
et al. (2011), we give non-asymptotic results for the first time. Given the intricate nature of Gibbs sampling,
which differs from Langevin dynamics, our main challenge is to develop innovative proof ideas to analyze
non-asymptotic behaviors.

Figure 1: Comparison of server-client architectures with centralized servers (Left) and Trees that enable
distributed sampling (Right). In the server-client structure, each client (small node) must communicate with
a centralized server (big node).

We fill in the gap with a novel and fully distributed sampling framework. Our work represents one of the first
endeavors to address the non-asymptotic convergence results of a fully distributed sampling algorithm on a
Gibbs sampler. Our experiments further show that, compared with Langevin Monte Carlo baselines, our
Gibbs sampler is noticeably more robust to the choice of step size. To utilize a specific Gibbs sampler, we
assume all the clients are distributed on a bipartite graph. Note that every connected graph has a spanning
tree. For a comparison of the server-client structures and trees, see Figure 1.

To sample from the target π(x) ∝ exp(−
∑n

i=1 fi(x)) where x ∈ Rd, we instead consider sampling from an
augmented distribution of {xi}n

i=1 ∈ Rnd, π̂(x1, x2, . . . , xn) ∝ exp(−
∑n

i=1 fi(xi)−
∑

a∈A

∑
b∈B

σab/2η∥xa −
xb∥2) where A and B stand for two disjoint node groups of a bipartite graph. Here, each xi ∈ Rd stands for
one node. We assume σab ∈ (0, 1] if there is an edge between xa and xb, otherwise, σab = 0. Furthermore,∑

a σab ≤ 1,
∑

b σab ≤ 1 for any a, b. The nature of Gibbs sampling, iteratively sampling from conditional
distributions, makes it a candidate for distributed sampling. With the specific design of π̂, it can be observed
that if η is small enough, the marginals of π̂ and the distribution of the averaged samples can be arbitrarily
close to π.

A closely related line of research is data-augmentation methods (Vono et al., 2020; 2022a; Plassier et al., 2021),
which proposes the joint density exp

(
−
∑n

i=1(fi(xi) + 1/2η ∥xi − y∥2)
)

with a new auxiliary variable y, and
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sample from it with a Gibbs scheme. Note that in our augmented distribution, there are no additional nodes
involved in the original network, while other data-augmentation algorithms are inherently centralized. In
contrast, our method is fully distributed, offering improved security and robustness compared to centralized
samplers.

In terms of the theoretical contributions, Theorems 4.3 and 5.4 deliver new non-asymptotic bias bounds.
Our analysis generalizes Corollary 3 in Vono et al. (2020): that corollary is a special case of Theorem 4.3 by
setting either f or g to a constant. We extend the result to the two-node setting (Theorem 4.3) and further
to bipartite graphs (Theorem 5.4), with new proof ideas.

Our main theoretical contribution is the non-asymptotic bounds of the distance between the average of
samples and the target in Theorem 5.4. Combining with improved convergence results of sampling from
π̂ in Yuan et al. (2023), we eventually give the overall iteration complexity in Proposition 5.5. Yuan et al.
(2023) only considers the convergence of the Gibbs sampler without quantifying the non-asymptotic error
between the original distribution and the marginals. We emphasize that the target distribution in (Yuan
et al., 2023) is not the composite target distribution considered in our work. Hence, the nonasympttoic
guantee toward to exp(−

∑n
i=1 fi(xi)) does not exist without our contributions in Theorem 4.3 and 5.4.

Moreover, we revise the proof of Theorem 10 in (Yuan et al., 2023) and improved the convergence rate as
detailed after Theorem 5.3. We also demonstrate our sampler’s superior performance under various settings.

In summary, our contributions are listed below.

• We propose a new distributed sampling algorithm (Algorithm 2) that does not require a server node
and can be deployed on any bipartite graphs. Our sampler is applicable to any target distributions,
provided that mild regularity conditions are met (Remark 5.6). Unlike previous works relying on
Langevin Monte Carlo or Hamiltonian Monte Carlo, our sampler builds upon Gibbs sampling.

• We analyze its non-asymptotic results (Proposition 5.5) with the bound improved from(Yuan et al.,
2023) and the non-trivial upper bound between marginals of π̂ and π (Theorem 5.4) established in
this work with novel techniques.

• We conduct both qualitative and quantitative experiments in Section 6 and Appendix A.5, demon-
strating the efficiency of our sampler for large-scale distributed systems and the superior performance
over the baselines. Specifically, we show that our sampler is markedly more robust than existing
Langevin Monte Carlo.

2 Related works

Fully distributed (Decentralized) MCMC with theoretical guarantees In the following related
literature, our fully distributed architecture is typically described as “decentralized”. Throughout this paper, we
use the term “fully distributed” for our sampler to underscore its distinction from server-dependent distributed
samplers. In Kungurtsev (2020), convergence and consensus guarantee are provided for decentralized Langevin
dynamics, with the necessity of a diminishing stepsize for ensuring asymptotic consensus. Gürbüzbalaban et al.
(2021) independently investigates decentralized stochastic gradient Langevin dynamics and decentralized
stochastic gradient Hamiltonian dynamics under the strong convexity assumption. Parayil et al. (2020)
consider unadjusted Langevin algorithm with non-log-concave potentials, replacing convexity assumption with
bounded conditions of disagreement on the gradient among the distributed agents. Kolesov & Kungurtsev
(2021) considers directed graphs in their analysis. Kungurtsev et al. (2023) shows theoretical guarantees for
decentralized Metropolis-adjusted Hamiltonian Monte Carlo, enabling a constant step size. It is worth pointing
out that except for Parayil et al. (2020), the convergence rates are quantified with Wasserstein distance, while
ours is Total Variation distance, which is due to innovative proof techniques used in this work. Bhar et al.
(2023a;b) analyzed decentralized Langevin algorithms under asynchronous and event-triggered conditions,
but requires a diminishing step size, while we focus on synchronous settings and utilize a constant step size.
Tzikas et al. (2024) is, to the best of our knowledge, the most recent work on decentralized MCMC. Its
theoretical guarantees, however, are weaker than ours. Assumption 5 is uncommon, and Theorem 2 predicts
a counter-intuitive outcome: the sampler converges more slowly as the network becomes denser. In contrast,
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our analysis relies on standard assumptions, and Proposition 5.5 shows that convergence speeds up with
increased connectivity. Our experiments further show the superior performance of our sampler.

See Appendix A.1 for more related works.

3 Preliminaries

3.1 Problem setting

Throughout this paper, we aim to perform Bayesian inference on distributed models by sampling from a
target distribution

π(x) ∝ exp
(
−

n∑
i=1

fi(x)
)

(1)

where x ∈ Rd. In these models, data is stored locally at each client. To uphold privacy, only estimated
parameters are permitted to traverse across the clients.

Without loss of generality, we assume that all the clients are located on an undirected tree structure. This
assumption can be satisfied as long as all the clients are on an undirected connected graph. To obtain the
non-asymptotic convergence bounds, we utilize the standard assumptions on each potential: we assume each
fi is αi-strongly-convex and βi-smooth. This condition implies that for any x and y,

∇fi(y)T (x− y) + αi/2∥x− y∥2 ≤ fi(x)− fi(y),
∇fi(y)T (x− y) + βi/2∥x− y∥2 ≥ fi(x)− fi(y).

3.2 Notation

For a joint distribution πXY defined on (X, Y ), the X-marginal distribution is represented by πX , and the
X-conditional distribution given y is πX|Y =y. The iteration complexity is the required number of iterations
of Gibbs samplers to achieve a given accuracy.

3.3 Sampling background

Here we list several useful tools and lemmas we utilize. The Total Variation (TV) distance and the Kullback-
Leibler (KL) divergence are widely used to quantify the distance between two distributions. For two measures
µ and ν with density function representations, we have TV(µ, ν) = 1

2∥µ − ν∥1. The KL divergence of µ

and ν is defined as KL(µ||ν) =
∫

log µ
ν µ. Pinsker’s inequality states that TV(µ, ν) ≤

√
1
2 KL(µ||ν). We also

quantify the convergence with W2 distance in experiments. It is defined as W2(µ, ν) = infπ(Eπ∥x− y∥2)1/2

where π is the coupling of µ and ν.

Recall that a probability measure ν satisfies Logarithmic Sobolev Inequality (LSI) with a constant α > 0
(in short, LSI(α)), if for any distribution µ such than µ ≪ ν, the KL divergence KL(µ||ν) and Fisher
information I(µ||ν) =

∫
∥∇ log µ

ν ∥
2µ satisfy KL(µ||ν) ≤ 1

2α I(µ||ν). It is well-known that a strongly log-
concave distribution ν with a constant α, equivalently its potential is α-strongly-convex, satisfies LSI with
the same constant. Moreover, we utilize the following lemma in our proof.
Lemma 3.1 (Theorem 1 in Durmus & Moulines (2019)). For a strongly log-concave distribution π with α
defined on Rd, one has Ex∼π∥x−m∥2 ≤ d

α where m is the minimizer of the potential.

4 Analysis of Composite Sampling

In this section, we aim to provide the analysis for composite sampling, i.e., sampling from a special case of
equation 1,

π(x) ∝ exp(−f(x)− g(x)). (2)
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We emphasize that in this distributed setting, each client symmetrically generates samples from conditional
distributions, without the need for an additional server to aggregate parameters from the two clients. This
two-node composite sampling is a special case of equation 1, and our main analysis of distributed sampling is
essentially a generalization of ideas in this section. To proceed, we have the following assumption.
Assumption 4.1. Let f(x) be αf -strongly-convex and βf -smooth. Similarly, let g(x) be an αg-strongly-
convex and βg-smooth function. It is also necessary to assume f and g share the same minimizer m.

Inspired by the success of proximal samplers, this sampling task can be performed by sampling from an
augmented distribution

πXY (x, y) ∝ exp
(
−f(x)− g(y)− 1

2η
∥x− y∥2

)
and then control the TV distance between π and πX with a sufficiently small η. The procedure is summarized
in Algorithm 1.

The strong convexity and smoothness assumptions are standard and have been used in a series of sampling
works (Dalalyan, 2017a; Dalalyan & Karagulyan, 2019; Fan et al., 2023; Altschuler & Chewi, 2023). Note
that the other assumption that f and g have the same minimizer is required to establish the non-asymptotic
bounds of TV(π, πX). The same assumption has been discussed in Lee et al. (2021) and Yuan et al. (2023).
In Lee et al. (2021), this assumption is necessary to analyze the non-asymptotic results of samplers for the
same target equation 2. As mentioned in Lee et al. (2021), for two functions f̂ and ĝ that have different
minimizers, one can easily find m such that ∇f̂(m) +∇ĝ(m) = 0 since both f and g are strongly convex.
Then define f(x) := f̂(x) − ⟨∇f(m), x⟩ and g(x) := ĝ(x) − ⟨∇g(m), x⟩. It is easy to verify that sampling
from exp(−f(x) − g(x)) is equivalent to the original target, and f and g share the same minimizer m.
Furthermore, the necessity of this assumption has been illustrated in Example 3 in Yuan et al. (2023). It is
worth emphasizing that Example 3 shows that, without the same minimizer assumption, the non-asymptotic
bound also depends on other parameters: when f and g are quadratic, it also relies on the distance between
the centers of the two functions.

Algorithm 1 A Sampler for Composite Potentials
Input: π : exp(−f(x)− g(x)): target distribution
Output: xK : Samplers within ϵ TV distance of π
Step 1: Construct a distribution πXY : exp(−f(x)− g(y)− 1

2η∥x− y∥2)
# The following is the Gibbs sampler for πXY

Step 2: Generate an initial sample x0 from νX
0

for k ← 0, · · · , K − 1 do
Step 3: Sample yk ∼ πY |X=xk (y) ∝ exp(−g(y)− 1

2η∥x
k − y∥2)

Step 4: Sample xk+1 ∼ πX|Y =yk (x) ∝ exp(−f(x)− 1
2η∥x− yk∥2)

end for

The convergence result of the Gibbs sampler in Algorithm 1 has been established in Theorem 5 in Yuan et al.
(2023). For the sake of completeness, we restate it here.
Theorem 4.2 (Theorem 5 in Yuan et al. (2023)). Assume Step 3 and Step 4 are exact without any bias, i.e.,
yk and xk+1 follow the conditional distributions exactly. Denote the distribution of the k-th samples (xk, yk)
by νXY

k . For the target distribution πXY , under Assumption 4.1, we have

KL(νX
k+1||πX) ≤ KL(νX

k ||πX) 1
(1 + ηαf )2(1 + ηαg)2 ,

where νX
k is the X-marginal of νXY

k .

To obtain the overall iteration complexity of Algorithm 1, it remains to select a suitable η based on TV(π, πX),
which can be seen from Theorem 4.3. Even though similar intuition has been discussed in Yuan et al. (2023),
our work rigorously proves the non-asymptotic bound of TV(π, πX) for the first time.
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Theorem 4.3. Under Assumption 4.1, we have

TV(π, πX) ≤
√

β2
gd

2(αf + αg

ηαg+1 )

(
η2β2

g

αf + αg
+ η

ηαg + 1

)
(3)

Proof. As both f and g are strongly convex, by Theorem 3.8. in Saumard & Wellner (2014), the X-marginal
distribution πX is strongly-log-concave with a parameter αf + αg

ηαg+1 . Hence, πX satisfies LSI(αf + αg

ηαg+1 ).
This implies that

KL(π||πX) ≤ 1
2(αf + αg

ηαg+1 )I(π||πX) (4)

By definition, the relative Fisher information I(π||πX) satisfies

I(π||πX) = E
x∼π

∥∥∥∥∇ log π(x)
πX(x)

∥∥∥∥2

= E
x∼π
∥∇g(x) +∇ log Gη(x)∥2

,

(5)

where Gη(x) =
∫

exp(−g(y)− 1
2η∥x− y∥2)dy. To proceed, notice that

∇x log Gη(x) = Ey∼exp(−g(y)− 1
2η ∥x−y∥2)(−∇g(y)) (6)

where we use the identity
∫ (
∇y exp

(
−g(y)− 1

2η∥x− y∥2
))

dy = 0. Combining equation 5 and equation 6
yields that

I(π||πX)

= Ex∼π

∥∥∥Ey∼exp(−g(y)− 1
2η ∥x−y∥2)(∇g(x)−∇g(y))

∥∥∥2

≤ Ex∼πEy∼exp(−g(y)− 1
2η ∥x−y∥2)∥∇g(x)−∇g(y)∥2

≤ β2
gEx∼πEy∼exp(−g(y)− 1

2η ∥x−y∥2)∥x− y∥2

(7)

where we adopt Jensen’s inequality and the smoothness of g. Then we estimate the upper bounds of two
expectations separately. Denote the minimizer of g(y) + 1

2η∥x− y∥2 as y∗. For the inner expectation over y
in equation 7, we have

Ey∼exp(−g(y)− 1
2η ∥x−y∥2)∥x− y∥2

≤ 2∥x− y∗∥2 + 2Ey∼exp(−g(y)− 1
2η ∥x−y∥2)∥y∗ − y∥2

≤ 2∥x− y∗∥2 + 2d

αg + 1/η
.

(8)

Here, the last line is due to Lemma 3.1. Since ∇g(y∗) + 1
η (y∗ − x) = 0, for the outer expectation over x in

equation 7,
Ex∼π∥x− y∗∥2 = η2Ex∼π∥∇g(y∗)∥2 (9)
≤ η2β2

gEx∼π∥y∗ −m∥2

≤ η2β2
gEx∼π∥x−m∥2 ≤ η2β2

g

d

αf + αg
(10)

The second inequality is due to the smoothness of g and the assumption that ∇g(m) = 0, and the third
inequality is from the contraction property of the proximal method in optimization. For the last line, we
use Lemma 3.1 and the assumption that f and g have the same minimizer. With equation 4, equation 7,
equation 8 and equation 9, one has

KL(π||πX) ≤
β2

gd

αf + αg

ηαg+1

(
η2β2

g

αf + αg
+ η

ηαg + 1

)
(11)

By Pinsker’s inequality, we obtain equation 3.
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Combining Theorem 4.2 and Theorem 4.3, we are ready to show the overall iteration complexity in Proposi-
tion 4.4.
Proposition 4.4. For simplicity, we assume η is small enough that the second order term η2β2

g/(αf +αg) in
Theorem 4.3 is upped bounded by the first order term η

ηαg+1 , and ηαg < 1. Under Assumption 4.1, to achieve

ϵ TV distance to π, with Algorithm 1 where η = O
(

(αf +αg)ϵ2

(βf +βg)2d

)
, one needs iterations

K = O

(
(βf + βg)2d

(αf + αg)2ϵ2 log
(

KL(νX
0 ||πX)
ϵ2

))
. (12)

Proof. Notice that the overall biased term ϵ comes from two components: the Gibbs sampler for πXY and
the distance between π and πX .

By Theorem 4.2, the number of iterations to achieve TV(νX
K , πX) ≤ ϵ/2 is

K = O

(
log
(

KL(νX
0 ||πX)
ϵ2

)
1

η(αf + αg)

)
. (13)

To ensure TV(π, πX) ≤ ϵ/2, combining the assumption that η2β2
g

αf +αg
is is bounded by the first order term and

Theorem 4.3, one needs

η = O

(
(αf + αg)ϵ2

β2
gd

)
. (14)

Therefore, to have TV(ν̃X
T , π) ≤ ϵ, with equation 13 and equation 14, η and K can be η = O

(
(αf +αg)ϵ2

(βf +βg)2d

)
,

and K = O
(

(βf +βg)2d
(αf +αg)2ϵ2 log

(KL(νX
0 ||πX )
ϵ2

))
.

Remark 4.5 (Weaker Assumptions). The result of Proposition 4.4 can be generalized to the case that g is still
strongly convex and smooth, but f is convex and smooth. Then, with the same procedure, one can show the
iteration complexity is K = O

(
(βf +βg)2d

α2
gϵ2 log

(KL(νX
0 ||πX )
ϵ2

))
.

5 Analysis of Distributed Sampling over bipartite graphs

In this section, we present our main result: a distributed sampler and its non-asymptotic analysis. Recall
that we are interested in sampling from

π(x) ∝ exp
(
−

n∑
i=1

fi(x)
)

(15)

with the following Assumption 5.1.
Assumption 5.1. Without loss of generality, assume that each fi(x) is α-strongly convex and β-smooth.
We also assume that each fi shares the same minimizer m. As explained in Section 4, this assumption is
necessary to have non-asymptotic results, and our sampler still converges asymptotically even without this
assumption, as discussed in Remark 5.6.

Note the assumption on the same minimizers is computationally feasible to satisfy under the strong convex
and smoothness assumption. As discussed above Algorithm 1, potentials with different minimizers can be
transformed to satisfy the same minimizer assumption without altering the target. This transformation
mainly involves computing minimizer of

∑
i fi . The computation cost of this step is negligible comparing

with the sampling iterations when the potentials are strongly convex and smooth. For example, efficient
methods such as fast incremental gradient methods and randomized algorithms (Shalev-Shwartz & Zhang,
2014; Nitanda, 2014; Lin et al., 2015; Lan & Zhou, 2018) have been developed to solve strongly convex and
smooth finite-sum problems in a distributed manner. These methods exhibit complexity that depends on the
square root of the condition number, independent of the dimension.
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It is worth noting that the bipartite graph assumption can be fulfilled on any connected graph. For example,
every connected graph has a spanning tree (Serre, 2002), and a tree is always a bipartite graph (Bondy et al.,
1976). In this setting, the sampler and its iteration complexity are established with steps similar to Section 4.
To begin with, denote

π̂AB(x1, x2, . . . , xn) ∝ exp
(
−

n∑
i=1

fi(xi)−
∑
a∈A

∑
b∈B

σab/2η∥xa − xb∥2

)
. (16)

With a slight abuse of notation, we will interchangeably use π̂AB and π̂. We have the following assumption
for the weights σab.
Assumption 5.2. Let σab > 0 stand for there is an edge between nodes a and b. Otherwise, σab = 0.
Moreover, we assume

∑
a σab ≤ 1 and

∑
b σab ≤ 1. Furthermore, we assume the graph is a fully connected

bipartite graph. Define the n by n doubly stochastic matrix Σ whose element at the s-th row and t-th
column is σst. This matrix satisfies σts = σst = σab ≥ 0 if s = a and t = b, and σss = 1−

∑
a σsa ≥ 0. Let

(λ1, . . . , λn) ∈ Rn be the eigenvalues of Σ organizing in the descending order, i.e., λi ≥ λi+1,

A bipartite graph divides all nodes into two independent sets: A and B. One can view fi as a local distribution
on each node, and the quadratic terms ∥xa − xb∥2 correspond to Gaussian distributions on edges. With the
same idea in Section 4, one can sample from π̂ with Gibbs sampling and then reduce the distance between the
target and the distribution of

∑n
i=1 xi/n with a small η. To sample from π̂, it is natural to use a block Gibbs

sampler where, at each iteration, each set of parameters is updated simultaneously as shown in Algorithm 2.
Namely, in Step 3-4, one can generate the k-th samples, {xk

b}b∈B and {xk
a}a∈A, in parallel. We emphasize

that, thanks to the bipartite graph structure, our sampler is fully distributed without the need for server
nodes. In practice, each node only receives information from its neighbors.

Algorithm 2 Distributed Sampling over a bipartite graph
Input: π as in equation 1: the target distribution
Output: {xK

a }a∈A and {xK
b }b∈B

Step 1: Construct a distribution π̂AB as in equation 16
# The following is the block Gibbs sampler for π̂AB

Step 2: Generate the initial samples {xA
a }a∈A from νA

0 .
for k ← 0, · · · , K − 1 do

Step 3: Sample {xk
b}b∈B ∼ π̂{xb}|{xk

a}a∈A

which is proportional to exp(−
∑

b∈B fb(xb)−
∑

a∈A

∑
b∈B

σab

2η ∥x
k
a − xb∥2))

Step 4: Sample {xk+1
a }a∈A ∼ π̂{xa}|{xk

b }b∈B

which is proportional to exp(−
∑

a∈A fa(xa)−
∑

a∈A

∑
b∈B

σab

2η ∥xa − xk
b∥2))

end for

To obtain the overall iteration complexity of the sampler in Algorithm 2, we start with the non-asymptotic
bounds associated with the block Gibbs sampler. Theorem 10 in Yuan et al. (2023) establishes the convergence
rate of the block Gibbs sampler over bipartite graphs. We improve the original convergence rates after
reviewing its proof. The improvement comes from both the definition of π̂AB and a tighter upper bound of ct

in Equation (12) in Yuan et al. (2023). Notice that in Yuan et al. (2023), σab ∈ [0, 1] without the additional
constrain that

∑
a σab ≤ 1,

∑
b σab ≤ 1 we add in this work. Hence, the lower bound of ηj used in the proof

of Theorem 10 in Yuan et al. (2023), which is defined as η/
∑

a
σab with our notation, can be improved to η.

This leads to Lemma A.1. Directly applying our improved results yields the following convergence rate. The
proof of Theorem 5.3 is in Appendix A.2.
Theorem 5.3 (Improved from Theorem 10 in Yuan et al. (2023)). Assume Steps 3 and 4 in Algorithm 2 are
exact without biased terms. Denote the distribution of the samples generated in the k-th iteration by νAB

k .
For the target distribution π̂AB equation 16, under Assumption 5.1, we have

KL(νAB
k ||π̂AB) ≤ exp(−kC)KL(νA

0 ||π̂A) (17)
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where C is

C = η

∫ 1

0

([
ηt(1− t)

minb

∑
a σab

+ (1− t)2|B|
α

+ t2

α

]−1

+
[

ηt(1− t)
mina

∑
b σab

+ (1− t)2|A|
α

+ t2

α

]−1)
dt. (18)

Here |A| and |B| are the number of nodes in the two disjoint groups, respectively.

As a comparison, in Yuan et al. (2023), the constant C is∫ 1

0

(
η

|A|

[
ηt(1− t)

minb

∑
a σab

+ (1− t)2|A||B|
α

+ t2

α

]−1

+ η

|B|

[
ηt(1− t)

mina

∑
b σab

+ (1− t)2|A||B|
α

+ t2

α

]−1)
dt.

This implies that, for the Gibbs sampler analyzed in Theorem 5.3, our new bound can enjoy an O(n2)
improvement, where n is the number of nodes.

Now we show the proof on bounding TV(π̄, π) where π̄ is the distribution of
∑

i xi/n with joint distribution
being π̂. The following Theorem 5.4 holds for any graph, so for the sake of presentation, we rewrite

π̂(x1, x2, . . . , xn) ∝ exp
(
−

n∑
i=1

fi(xi)−
n∑

s=1

n∑
t=1

σst/2η∥xs − xt∥2

)
. (19)

Theorem 5.4. Under Assumption 5.1 on the potentials and Assumption 5.2 on the weights, we have

TV(π̄, π) = O


√√√√nβ2d

α

(
(n− 1)

α + n
η (1− λ2) + η2β2

(1− λ2)2α

). (20)

where π̄ is the distribution of
∑

i xi/n given the joint distribution π̂ in equation 19, and λ2 is the second
largest eigenvalue of the doubly stochastic matrix Σ defined in Assumption 5.2

Proof. First, notice that
∑n

s=1
∑n

t=1
σst/2η∥xs − xt∥2 = 1

2η XT (Ind − Σ⊗ Id)X where XT = (xT
1 , . . . , xT

n ).

It is well-known that the eigenvalues of Σ, denoted as (λ1, . . . , λn) in Assumption 5.2, are from −1 to 1, and
(1, . . . , 1) is one eigenvector corresponding to eigenvalue 1. Define the eigendecomposition of Ind − Σ⊗ Id as
UΛUT . Note that the eigenvalues of Ind − Σ⊗ Id are 1− λi for each λi in the set of eigenvalues of Σ. Since
we assume the graph is fully connected, there is only one solution to 1/2ηXT (Ind − Σ⊗ Id)X = 0, which is
x1 = x2 . . . = xn. This implies that 1− λ1 = 0 and 1− λi > 0 for i = 2, . . . , n.

With the eigendecomposition, the potential of π̂ is F (
√

nUX̂) + n
2η X̂T ΛX̂. Here, F (X) :=

∑n
i=1 fi(xi) and

X̂ := 1√
n

UT X. As the first d columns of
√

nU are (1, . . . , 1)T ⊗ Id , we have x̂1 = 1
n

∑n
i=1 xi. Then, the

distribution over the average 1
n

∑n
i=1 xi is

π̂X̂1(x̂1) ∝
∫

exp(−F (
√

nUX̂)− n/2ηX̂T ΛX̂)
n∏

i=2
dx̂i. (21)

Intuitively, when η is small enough, X̂T ΛX̂ should be approximately zero. Since 1− λi = 0 if and only if
i = 1, π̂X̂1 should converge to exp(−F (

√
nUX̂))|X̂T =(x̂T

1 ,0,...,0) as η goes to 0. With this intuition, we have
the following rigorous proof.

9
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When X̂T = (x̂T
1 , 0, . . . , 0), one has

F (
√

nUX̂) =
n∑

i=1
fi(x̂1), (22)

which is exactly the potential of the target π. Hence, it is sufficient to bound the TV distance between
distributions in equation 21 and equation 22. This is achieved following similar proof ideas used in the proof
of Theorem 4.3.

Under Assumption 5.1, by Theorem 3.8. in Saumard & Wellner (2014), the X̂1-marginal distribution of π̂(X̂)
is strongly-log-concave with a parameter nα. Hence, πX̂1 satisfies LSI(nα). This implies that

KL(π||π̂X̂1) ≤ 1
2nα

I(π||π̂X̂1). (23)

By definition and Jensen’s inequality,

I(π||πX̂1) = Eπ

∥∥∥∥∇x̂1 log π

π̂X̂1

∥∥∥∥2
= Eπ

∥∥∥∥∥∇x̂1 log π̂X̂1

π

∥∥∥∥∥
2

= Eπ∥∇x̂1F (
√

nUX̂)|X̂=(x̂1,0,...,0)

−Eπ̂X̂1=x̂1∇x̂1F (
√

nUX̂)|X̂=(x̂1,x̂2,...,x̂n)∥
2

≤ EπEπ̂X̂1=x̂1 ∥∇x̂1F (
√

nUX̂)|X̂=(x̂1,0,...,0)

−∇x̂1F (
√

nUX̂)|X̂=(x̂1,x̂2,...,x̂n)∥
2.

Here π̂X̂1=x̂1 is the conditional distribution of π̂ given x̂1, i.e.,

exp
(
−F (
√

nUX̂)|X̂=(x̂1,x̂2,...,x̂n) −
n

2η

n∑
i=2

(1− λi)∥x̂i∥2

)
Then with the definition of F (X), the assumption that fi(x) is β-smooth and Cauchy inequality, we have

I(π||πX̂1) ≤ n2β2EπEπ̂X̂1=x̂1 ∥(x̂T
2 , . . . , x̂T

n )UT
2 ∥2.

Here U2 ∈ Rnd×(n−1)d consisting of the last (n− 1)d columns of U . It follows that

I(π||πX̂1)
≤ 2n2β2EπEπ̂X̂1=x̂1∥(x̂T

2 − x̃T
2 , . . . , x̂T

n − x̃T
n )UT

2 ∥2

+ 2n2β2EπEπ̂X̂1=x̂1 ∥(x̃T
2 , . . . , x̃T

n )UT
2 ∥2

≤ 2n2β2

(
(n− 1)d

α + n
η (1− λ2) + Eπ∥(x̃T

2 , . . . , x̃T
n )UT

2 ∥2

) (24)

where {x̃i} is the minimizer of the potential of π̂X̂1=x̂1 that satisfies

∇x̂i
F (
√

nUX̂)|X̂=(x̂1,x̃2,...,x̃n) + n

η
(1− λi)x̃i = 0, (25)

and the last line follows from Lemma 3.1 and the fact that the strong convexity constant of π̂X̂1=x̂1 is
α + n

η (1− λ2). Then, by equation 25, the smoothness of fi, and each fi has the minimizer m,

Eπ∥(x̃T
2 , . . . , x̃T

n )UT
2 ∥2

≤ η2

n(1− λ2)2 Eπ∥U2UT
2 ∇F |X̂=(x̂1,x̃2,...,x̃n)∥

2

≤ η2β2n

(1− λ2)2 Eπ∥x̂1 −m∥2 ≤ η2β2d

(1− λ2)2α

(26)
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where ∇T F = (∇fT
1 (x1), . . . ,∇fT

n (xn)) and (xT
1 , . . . , xT

n )T =
√

nUX̂|X̂=(x̂1,x̃2,...,x̃n). The first line is given
by equation 25. The last line is obtained by the assumption that each fi has the minimizer m and the
contraction property of the proximal method. With equation 23, equation 24, equation 26 and Pinsker’s
inequality, we complete the proof.

Finally, we present the overall iteration complexity, assuming η is sufficiently small. In Proposition 5.5, the
iteration complexity is affected by the structure of the bipartite graph from two aspects: the number of nodes
n and the sparsity measured by the spectral gap 1−λ2. In Appendix A.5.2, we demonstrate that our sampler
presents faster convergence than quadratic dependence on n for perfect binary trees and circular graphs.
In Appendix A.4, we show that the same non-asymptotic complexity can be obtained under Wasserstein
distance.
Proposition 5.5. For simplicity, we assume η is small enough so that the quadratic term η2β2

(1−λ2)2α in
Theorem 5.4 is upped bounded by the first order term n−1

α+ n
η (1−λ2) . Under Assumption 5.1 and 5.2, to achieve

ϵ TV distance to π, with an exact sampler for Algorithm 2 and η = O
(

αϵ2(1−λ2)
β2dn

)
, one needs iterations

K = Õ
(

n2β2d
α2ϵ2(1−λ2)

)
. Here λ2 is the second largest eigenvalue of the doubly stochastic matrix defined in

Assumption 5.2.

Proof. Please see the proof in Appendix A.3, which follows the same idea in the proof of Proposition 4.4.

Remark 5.6 (Asymptotically convergence). We emphasize that our sampler still converges asymptotically
after replacing Assumption 5.1 with mild regularity conditions. As shown in Proposition 5.5, to establish the
convergence of the overall sampler, we only need to ensure the convergence of the Gibbs sampler and the
convergence of π̄ towards π with a sufficiently small η. Roberts & Smith (1994) gave the simple conditions
under which Gibbs samplers converge asymptotically. The second convergence can be proved by Scheffè’s
lemma (Scheffé, 1947), as shown in proposition 5.1 in Yuan et al. (2023) and equation 6 in Vono et al.
(2022a). Both asymptotic convergences require only mild regularity conditions. Moreover, we demonstrate
the convergence in Figure 2b and 2c.

6 Experiments

We compare our sampler with two baselines developed from Langevin dynamics. D-SGLD (Gürbüzbalaban
et al., 2021) is the decentralized version of stochastic gradient Langevin dynamics, which proceeds as
xk+1

i =
∑

j σijxk
j + η∇f̃i(xk

i ) +
√

2ηwk+1
i , wk+1

i ∼ N (0, Id) where xk
i is the k-th sample on node i. Note that

here η is fixed, while another baseline, D-SGLD with diminishing step sizes (Parayil et al., 2020), utilizes
diminishing step sizes and has been proved to operate under weaker assumptions.

We compare our sampler against D-SGLD using Gaussian targets on perfect binary trees of depth 3. In this case,
σij = 1/3 if there is one edge connecting i and j, σii = 1−

∑
j σij , and we replace the unbiased estimation of

gradients∇f̃i(xk
i ) by the exact value. The dimension d is 5, and the initial distribution on each node isN (0, I5).

The performance is measured by the estimated 2-Wasserstein distance. We also conduct experiments on a
more challenging target defined by exp(−

∑4
i=1 fi(x)) ∝ exp(−∥x∥1.5−∥x−0.5∥1.5−∥x−1∥1.5−∥x−1.5∥1.5)

where each minimizer is an all-one vector multiplied by a scale. It is important to note that this target
distribution does not satisfy any condition outlined in Assumptions 4.1 and 5.1. Each potential function has
distinct minimizers and does not have properties such as strong convexity or smoothness. Due to potential
bias when estimating the W2 distance for this non-Gaussian target, we measure performance using the L2
distance between the estimated mean and the ground truth. We repeat each experiment three times and
report the mean and 2-sigma error of measurements. Our sampler demonstrates robust performance even for
distributions that do not satisfy the assumptions, and it shows greater stability in terms of initial step size
compared to the two Langevin-based samplers.

We highlight the detailed observations. First, the performance of our Gibbs sampler aligns with our qualitative
results in Section A.5.1: larger step size yields faster convergence but also leads to more bias. Furthermore,
one advantage of our Gibbs sampler is that it converges with any step size, while D-SGLD is highly sensitive to

11
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the initial step size: a large step size can result in non-convergence (Figure 2c) or even divergence (Figure 2a).
Also, D-SGLD with diminishing step sizes exhibits slow convergence when the initial step size is small or
when a large number of iterations is required (Figure 2b).
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Figure 2: Comparison against D-SGLD with fixed step sizes and diminishing step sizes

7 Conclusions

In conclusion, our study introduces a fully distributed sampler using blocked Gibbs sampling, adaptable
to various bipartite graph structures without centralized servers. The non-asymptotic analysis provides a
theoretical understanding of its behavior, contributing to the theoretical exploration of fully distributed
samplers. Exploring the design and analysis of a more efficient augmented distribution represents a promising
direction for future research. It is also interesting to explore how to modify our sampler to mitigate practical
issues, e.g., communication cost and statistical heterogeneity.
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A Appendix

A.1 Other related works

Proximal Samplers: Recently, the proximal sampler (Lee et al., 2021; Chen et al., 2022) achieved the
state-of-the-art probable dimension dependency under different assumptions. Its idea is as follows. To sample
from exp(−f(x)), one can sample from exp(−f(x)− 1

2η∥x− y∥2) alternatively between x and y with a Gibbs
sampler. Our proposed algorithm can be seen as a generalization of proximal samplers into a distributed
setting. Vono et al. (2022a) presents a MCMC algorithm using ADMM-type splitting. It considers sampling
from exp(−

∑n
i=1 fi(xi))− 1

2η∥xi−θ∥2) with a Gibbs sampler and then control the distance between marginals
and the target with a small η. Despite having similar concepts to ours, this sampler requires a centralized
server for the parameter θ. Combining with the proximal sampler framework, Lee et al. (2021) has proposed
a high-accuracy approximate sampling algorithm for the same target exp(−

∑n
i=1 fi(x)). This approximate

Metropolis-Hasting algorithm again requires a server node to gather information from every client.

Distributed MCMC with server-client structures: Embarrassingly parallel MCMC (Neiswanger
et al., 2013) employs a two-step process where MCMC runs in parallel on data partitions, followed by a
server combining the local results, but suffers from misrepresentation of low-density regions. To mitigate
embarrassing failures, De Souza et al. (2022) proposes a new combination strategy, leveraging Gaussian
Process surrogate modeling and active learning. To reach high-density regions faster, Chowdhury & Jermaine
(2018) utilizes an auxiliary shepherding distribution (SD) to control parallel MCMC chains. Recently several
works have focused on Bayesian federated learning. Vono et al. (2022b) extends SGLD to the federated
learning setting, handling the communication bottleneck using gradient compression. Plassier et al. (2021)
introduces “DG-LMC”, a novel, scalable, synchronous distributed MCMC algorithm that integrates Langevin
Monte Carlo and Gibbs sampling for efficient Bayesian inference in large-scale data analysis. Kotelevskii
et al. (2022) addresses uncertainty quantification of personalized federated learning with federated stochastic
optimization algorithms.

Distributed Optimization: The typical problem in distributed optimization is to minimize the target
function,

∑n
i=1 fi(x) under certain assumptions on each fi and the underlying communication graphs. A

class of classical gradient descent based algorithms (Yuan et al., 2016) on undirected connected graphs
can be represented as xi

k+1 =
∑n

j=1 aijxj
k − ηk∇fi(xi

k) where xi
k is the local estimated variable on client i,

A = (aij) is the connection matrix, and ηk is the step size at the k-th iteration. There exists a great number
of distributed optimization algorithms that address unconstrained problems, e.g., the alternating direction
method of multipliers (Boyd et al., 2011), the fast gradient method (Jakovetić et al., 2014), the push-sum
algorithm (Nedic et al., 2017; Xi et al., 2018), and others. We recommend several surveys (Yang et al.,
2019; Halsted et al., 2021; Zheng & Liu, 2022) for readers interested in more comprehensive discussions. We
emphasize that a majority of distributed optimization algorithms do not rely on centralized servers.

Stochastic Gradient Langevin Dynamics: The centralized Stochastic Gradient Langevin Dynamics
(SGLD) can be used to sample from exp(−

∑n
i=1 fi(x)) on the server-client architecture. It requires evaluating
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unbiased estimators of gradients by mini-batches. This method has sparked a huge number of associated works
in sampling and other machine learning areas (Patterson & Teh, 2013; Li et al., 2016a; Dubey et al., 2016; Li
et al., 2016b; Bardenet et al., 2017; Li & Erdogdu, 2020). Non-asymptotic bounds in terms of Wasserstein
distance for strongly convex and smooth potentials have been established in Dalalyan (2017a); Dalalyan &
Karagulyan (2019). It is then suggested to combine SGLD with variance reduction to reduce the variance of
stochastic gradients (Zou et al., 2019; 2021). Recently, Kinoshita & Suzuki (2022); Balasubramanian et al.
(2022) have established non-asymptotic bounds under weaker assumptions on potentials.

A.2 Proof of improved convergence rates in Theorem 5.3

To begin with, we rewrite the key results from Yuan et al. (2023). The following corresponds to the proof of
Theorem 10 and Proposition 16 in it. As discussed, the following lemma directly comes from utilizing the
additional condition

∑
a σab ≤ 1,

∑
b σab ≤ 1 we add in this work.

Lemma A.1. Assume Steps 3 and 4 in Algorithm 2 are exact without biased terms. Denote the distribution
of the k-th samples by νAB

k . For the target distribution π̂AB equation 16, under Assumption 5.1, we have

KL(νA
k+1||π̂A) ≤ exp

(
−η

∫ 1

0
ctdt

)
KL(νB

k ∥π̂B) (27)

where

ct =
[

ηt(1− t)
minb

∑
a σab

+ (1− t)2 h

α
+ t2

α

]−1

.

Here h is the upper bound of eigenvalues of HT H where the entry of H at the a-th row and b-th column is
σab/
∑

a
σab. In the proof of Proposition 16 in Yuan et al. (2023), this H matrix is denoted as A. We rewrite

it to avoid conflicts between notations.

Based on Lemma A.1, we have the proof of Theorem 5.3.

Proof. We consider the estimation of h in Lemma A.1. As a comparison, Yuan et al. (2023) bounds h by the
squared operator norm of H, which follows that

∥H∥2
op ≤ |A||B|∥H∥

2
max ≤ |A||B|.

In contrast, we notice

∥H∥2
op ≤ ∥H∥2

F =
∑

a

∑
b

σ2
ab

(
∑

a σab)2 ≤
∑

a

∑
b

σab

(
∑

a σab) ≤ |B|.

|A| and |B| are the number of nodes in the group A and B, respectively.

This modification leads to the new lower bound for ct and hence the improved convergence rate shown in
Theorem 5.3. The contraction from KL(νA

k+1||π̂A) to KL(νB
k+1||π̂B) can be analyzed in the same way.

A.3 Proof of Proposition 5.5

Proof. The proof is generalized from the proof of Proposition 4.4. With Theorem 5.3, the required iteration
to ensure the convergence of Algorithm 2 is K = Õ

(
n

ηα

)
. Apply our assumption that the quadratic term is

bounded by the first order term to Theorem 5.4, then we have TV(π̄, π) = O
(√

nβ2dη
α(1−λ2)

)
. This implies that

to have TV(π̄, π) ≤ ϵ/2, η = O
(

αϵ2(1−λ2)
β2dn

)
. Combining all the requirements, we conclude the proof.

A.4 Iteration complexity of Algorithm 2 under Wasserstein distance

In proposition 5.5, we established the interaction complexity when the distance is measured by TV distance.
The same complexity can be obtained under Wasserstein distance. Our complexity measured by TV distance
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is based on Theorem 5.3 and Theorem 5.4. Both theorems can be reformulated with KL divergence: on
Theorem 5.4, this can be done by omitting Pinsker’s inequality used in the last step. Since we assume each
potential is strongly convex, we can apply Talagrand inequality (Otto & Villani, 2000) on π and π̂. This
inequality claims that the Wasserstein distance is upper bounded by the KL divergence. Hence, the same
iteration complexity is followed by the triangle inequality of Wasserstein distance.

A.5 Experiments

A.5.1 Qualitative analysis on a general Tree

To illustrate how our algorithm works for general trees, we conduct experiments on a tree with five nodes
shown in Figure 3. Each fi represents a 5-dimensional Gaussian distribution with a randomly generated mean
and covariance matrix. We denote each one as N(µi, Σi), and our target is exp(−

∑5
i=1 fi(x)) ∝ N(µ̃, Σ̃)

where µ̃ = Σ̃−1(
∑5

i=1 Σ−1
i µi) and Σ̃−1 =

∑5
i=1 Σ−1

i . All the Gaussian distributions have condition numbers
(the ratio of smoothness and strong convexity) ranging from 2 to 5. The initial samples of X1, X4, and
X5 are drawn from a standard Gaussian N(0, I) independently. As explained in Algorithm 2, at each step,
our sampler enables fully distributed sampling. For instance, clients 2 and 3 can sample from conditionals
independently once x1, x4, and x5 are given. Each sampler runs for 400,000 steps, with the first 100,000
steps being the burn-in stage. In Figure 4, we compare the histogram of generated samples and the true
density along the first coordinate. In this experiment, we can demonstrate the following points.

• Our sampler can operate on general trees, accommodating scenarios where each node may possess
unique strong convexity and smoothness parameters. We point out that a reasonable choice in this
case is η = 0.001 and K = 400, 000 (See the second column in Figure 4).

• All marginals converge to the same distribution. This observation holds even when all marginals
converge to a biased distribution as shown in the first column of Figure 4.

• In practice, we recommend users identify the source of errors and then tune the step size η or
iterations K accordingly: reducing η may require more iterations. More specifically, if the value of K
is small, alternative diagnostic tools, such as trace plots, can be employed to assess the convergence
of the blocked Gibbs sampler. This corresponds to the third column of Figure 4. If η is relatively big,
it becomes apparent that all marginals converge to a common distribution, albeit one that is biased
toward our target.

Figure 3: Each local distribution exp(−fi(x)) is a 5-dimensional Gaussian

A.5.2 Quantitative analysis

In this section, we assume each exp(−fi(x)) isN (1, Id), and the initial distribution for each node is exp(−fi(x))
is N (0, Id). Also, following the Metropolis weights, we set σab = 1/(max(ha,hb)+1) if there is an edge between
node a and b. Here, ha is the degree (the number of neighbors) of node a. For these two network structures
considered below, perfect binary trees (with layers more than 2) and circular graphs (each node connects to
its two neighbors), the non-zeros value of σab is 1/3. In this section, we repeat each of our experiments under
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Figure 4: Each column in the figure represents the histogram of values on all five nodes with unique η values.
The columns are arranged from left to right, where the η values are 0.01, 0.001, and 0.0001, respectively. In
the first column, η is too large that all marginals converge to a biased distribution, while in the third column,
η is too small that users need more iterations.

five different random seeds and show the 2-sigma error bar in all figures and tables. It supports that our
findings are statistically significant.

Dependency on the number of nodes n
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(a) Convergence on perfect binary trees
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(b) Convergence on circular graphs

Figure 5: The mean and 2-sigma error bar of estimated W2
distances under various nodes on trees (Left) and circular graphs (Right)

In Proposition 5.5, we have proved the dependency of the mixing time K on the number of nodes n. Note that
it is unclear if this upper bound is tight. To better understand the complexity of n, we conduct experiments
on two graph structures, perfect binary trees and circular graphs. We run 100 independent chains for 40
iterations and then estimate the empirical mean and covariance matrix at each iteration. Since the target
distribution is Gaussian, we compute the W2 distance with the explicit formula of W2 between two Gaussian
distributions.

In Figure 5, we run our sampler with layers ranging from 3 to 6 corresponding to n = 7, 15, 31, and 63,
respectively. Then, we repeat our experiments on circular graphs with the same n. These figures show our
sampler converges even when the graph is sparse and the number of nodes is relatively large. We further
analyze the curves from two perspectives: the slope after the logarithm transformation and the minimal
distance along a chain. By Theorem 5.3, the estimated slope after applying logarithm transformation is the
convergence rate of the Gibbs sampler. In Table 1, we observe that the convergence rate is small for large
n. Moreover, it may indicate a faster convergence rate than linear rates on n. We also estimate the biased
term discussed in Theorem 5.4 by the minimal W2 over each chain in Table 2. Again, we observe that the
biased term is large for graphs with more nodes as indicated in Theorem 5.4. Furthermore, the coefficient
of determination (R2) for fitting the distances and

√
n is approximately 0.940; this may indicate that the

dependency in this setting aligns with our theoretical analysis in Theorem 5.4.

Table 1: Estimated slopes represented by the mean and 2-sigma error

Graphs n = 7 n = 15 n = 31 n = 63
Perfect binary trees −0.054± 0.003 −0.047± 0.002 −0.039± 0.002 −0.034± 0.001

Circular graphs −0.056± 0.003 −0.038± 0.002 −0.028± 0.002 −0.024± 0.001

Table 2: Minimal distances represented by the mean and 2-sigma error

Graphs n = 7 n = 15 n = 31 n = 63
Perfect binary trees 0.170± 0.043 0.270± 0.020 0.376± 0.024 0.457± 0.035

Circular graphs 0.187± 0.013 0.367± 0.016 0.526± 0.015 0.637± 0.025
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