
Published as a conference paper at COLM 2024

Agent-DocEdit: Language-Instructed LLM Agent for Content-
Rich Document Editing

Te-Lin Wu1∗, Rajiv Jain2, Yufan Zhou2, Puneet Mathur2, Vlad I Morariu2

1Character.AI, Menlo Park, CA, USA
telinwu@character.ai
2Adobe Research, San Jose, CA, USA
{rajijain,yufzhou,puneetm,morariu}@adobe.com

Abstract

Editing content-rich and multimodal documents, such as posters, flyers,
and slides, can be tedious if the edits are complex, repetitive, or require
subtle skills and deep knowledge of the editing software. Motivated by
recent advancements in both Large Language Model (LLM) agents and
multimodal modeling, we propose a framework that automates document
editing which takes as input a language edit request from the user and
then performs sequential editing actions to the document the satisfy the
request. Our proposed method, Agent-DocEdit, first grounds the edit re-
quest directly in the underlying document structure to identify the elements
that need to be manipulated. Then, we rely on the agent capabilities of
LLMs to generate an edit program which calls a set of pre-defined APIs
to modify the underlying structure of the document. To improve the gen-
erated edit program, we leverage a feedback mechanism incorporating
a deterministic code executor and a multimodal LLM. We demonstrate
the effectiveness of our proposed modularized LLM editing agent on the
DocEdit dataset, where Agent-DocEdit outperforms existing state-of-the-
art methods by 70+% in document element grounding and 16+% on final
rendition generation.

1 Introduction

Editing rich multi-modal content as found in flyers, graphic designs, posters, etc., requires
knowledge of specialized tools and patience to apply multiple edits to image and text
layers. Recent AI trends have increased interest in automating the process of editing such
documents to reduce the skills and time required–powerful multimodal models are not only
able to understand a user’s language description of their edit intent but also generate new
text (Achiam et al., 2023), visual content (Geng et al., 2023), or even code for carrying out
the edits (Mathur et al., 2023).

There are two major approaches for applying recent techniques to document editing. The
first is to model editing commands as structured and composable set of document elements,
actions, and states and then analyze the document and user’s description of their editing
intent to produce an editing command. DocEdit (Mathur et al., 2023) is a recent example
of this approach, and it uses a multimodal language model to understand the author edit
request, identify the bounding box of the document element that is the target of the desired
edit, and generate a short structured command. However, DocEdit does not model the
underlying structure of the document (i.e., the individual text, image, and shape elements
along with the required information for composing them into a document) operating instead
on the raster image of the document as input, nor does it carry out the edits to produce the
edited document (i.e., the command and bounding box are the final outputs). The second
type of approach, such as InstructDiffusion (Geng et al., 2023), focuses on directly producing
the resulting raster image of the edited document, resulting in an architecture that can be

∗ Work done during an internship at Adobe Research, Document Intelligence Lab (DIL).

1

Published as a conference paper at COLM 2024

FANCY DOG FANCY DOGHIKING HIKING

Curve the text “National Moon Day” with the date and drag it to
the top beside the moon image.

Before After

Replace the color of the image on top of the text from red
to gold.

Before After

Change the background image to a fatter
Chihuahua with sunglasses.

Before After

s

Join us in commemorating a great achievement!

sNational Moon Day
July 20, 2024

Join us in commemorating a great achievement!

Figure 1: Instruction based document editing: Given a language user edit request as input (in the
grey box), our framework automatically edits the before document to produce the after document.
The illustrative examples above are similar to the training and evaluation data found in the DocEdit
dataset (Mathur et al., 2023).

optimized end-to-end but which can generate artifacts or distortions due to the constraint
that it can only manipulate the final pixels and must infer all the semantic groupings,
constraints, and interactions among document elements as it performs modifications.

Building on recent LLMs based approaches such as Toolformer (Schick et al., 2024), we
propose a method, Agent-DocEdit, that (1) takes as input a document with its full structure
rather than just a raster image, (2) identifies within the document structure the elements
involved in the edits (through a process called grounding), (3) produces an edit program to
carry out the edits, and (4) executes it to produce a modified document structure that can be
rendered by the document viewer if a raster of the document is desired, thus addressing the
main weaknesses of the aforementioned approaches. One advantage of such an approach is
that the edit program can leverage already existing and well-tested pre-defined APIs for
editing documents rather than having to learn these transformations from scratch.

We formulate our problem as follows. Given a user editing request (in the form of natural
language) and a document with multimodal content (a layout of text, shape, and image
elements), the goal of our system is to automate the requested edits and produce the desired
edited document by identifying in the underlying document structure the document elements
involved in edits, producing an edit program to modify these document elements, and then
executing the modifications through an API to produce a modified document structure
that can be rendered to produce an image of the edited document. Figure 1 provides
a few example editing commands as well as examples of before and after documents
that our system is designed to work with. The first (leftmost) example will be used to
illustrate different components of our proposed framework in the remaining sections. The
proposed Agent-DocEdit framework is extensively evaluated on the design subset of the
DocEdit dataset. Our main contributions are:

• We propose an LLM-based framework for document editing that, unlike previous work,
operates directly on the structured representation of a document and produces structured
content as output. This is done by grounding edit requests in the documents structure,
generating an edit program, and executing the program through an external API to
effectuate the desired edits. Compared to instruction-tuned diffusion baselines, we
improve the image similarity-based metric by >16%.

• We propose two new techniques for document element grounding given a language
instruction, both of which are consistent with our approach of using tools (where the
visual phrase grounder is the tool). Both approaches significantly improve the ability of
the system to localize the document elements involved in edits by >70% against the prior
DocEdit baseline. This is particularly impactful, since an error in grounding results in the
wrong document element to be modified.

• We propose a feedback mechanism that can improve the generated code by providing
language feedback to guide the LLM to iteratively improve the generated plan, improving
results by >2% in image similarity-based metric; and >35% in human judgements, against
that without the feedback.

2

Published as a conference paper at COLM 2024

s

Join us in commemorating a great achievement!

sNational Moon Day
July 20, 2024

Join us in commemorating a great achievement!

Multimodal GrounderEntity/Attributes
Knowledge

Execute!

Tool Executor

Curve the text “National Moon Day” with the date
and drag it to the top beside the moon image.

User Request

Programmed Plan

Multimodal

Feedback

Feedback & Re-Plan

Figure 2: Agent-DocEdit is composed of: (1) an Edit Program Generator that transforms the user edit
request to an edit program using an LLM, (2) a Multimodal Grounder that localizes the document
elements referenced in the edit request, (3) an Executor that executes the edit program using pre-
defined APIs which edits the content structure, and (4) a Feedback Provider that helps refine the
edited outcome for improved results.

2 Method (The Agent-DocEdit)

Figure 2 provides an overview of the proposed Agent-DocEdit framework, which is com-
posed of four main components: (1) the Edit Program Generator takes input human user
editing request (in natural language) as input and generates the edit program (i.e., a series of
pre-defined API function calls as a high-level planning of the editing actions) by instructing
an LLM to perform the code-generation task. (2) the Multimodal Grounder identifies the
document elements referred to by the editing request, using an architecture derived from
phrase grounding models for computer vision tasks. The ultimate output of the grounder
will be the ID of the document element(s) within the document’s content structure. (3)
the Executor performs a deterministic conversion transforming the edit program to actual
executable programs that modify with the content structure according to the editing request.
(4) the Feedback Provider is a separately learned module that compares the edited outcome
against the original edit request and produces language feedback that is then utilized to
(iteratively) instruct the LLM to refine the generated edit program. We will now discuss
each component in details below.

2.1 Generating an Edit Program via LLM-Code-Gen.

We instruct the LLM to produce a Python edit program which carries out the user edit
request by calling a set of pre-defined APIs, acting as an agent that manipulates a set of
provided tools. The API is provided to the LLM through the docstring of each function
following similar designs in Surı́s et al. (2023) and Gupta & Kembhavi (2023). The docstring
includes a description of the goal of the API function, input and output arguments, and
exemplar usage. In our early studies, we empirically found that usage examples play a
crucial role as in-context examples in instructing the LLM to produce higher quality (more
accurate) programs. The detailed implementation of each API is not provided to the LLM,
as the LLM can generate programs simply by following the API guidelines without needing
to refer to how each function is implemented, i.e., for the LLM to generate the edit program,
it only needs to refer to the API function header as well as its docstring context.

2.1.1 Pre-Defined APIs

In this work, we generally follow the actions defined by DocEdit (Mathur et al., 2023) (i.e.,
MOVE, DELETE, ADD, COPY, MODIFY, REPLACE), with additional localization actions. We categorize
these pre-defined API functions into three major categories:

3

Published as a conference paper at COLM 2024

(a) Sample API

Crafted Prompts:
• Rules
• Canvas
• Prohibitions
• Extracted Entities
• Request

(b) Code-Gen.

Figure 3: Edit Program Generation: (a) A sample defined API function that performs the MOVE
functionality. (b) An LLM is instructed to generate the edit program with the pre-defined APIs.

• Localization Operations: The FIND function performs entity extraction on the language
request to identify which portions of the request refer to target document elements, and
then it performs visual phrase grounding to localize the elements in the document. The
underlying grounding model predicts bounding boxes, which are used to search over
the document structure. The canonical ID of the document element with the highest
intersection over union (IoU) will be returned.1 In addition to the FIND function, we also
implement an INFER function that predicts the destination location of a document element
after editing for actions such as MOVE.

• Spatial Operations: Functions such as MOVE, DELETE, ADD, and COPY generally deal with
spatial arrangements of the target components. Each function has its specific set of
arguments, for instance, MOVE can take specified position delta or the actual target position
to re-position a component. ADD takes object type (or description) to insert contents (either
retrieved from an asset library or generated by a visual generative model) to a specified
position, while DELETE simply takes the canonical object ID for deletion action.

• Modification Operations: Functions REPLACE and MODIFY perform content modifications
(or swapping). The MODIFY function takes as arguments the type of modification (e.g., text
color or font-size) and the actual modification context (e.g.red for changing color) that
will be acted on the target document element. REPLACE function will change a specified
content (e.g., a piece of text, an imagery) to a targeted type of content following the
specification.2

By including these pre-defined APIs in the system prompt of an LLM, we instruct the LLM
to perform natural language to code generation to derive a Python-based edit program where
each action to be performed comes from one of the pre-defined APIs.

2.1.2 Edit Program Generation through Instructed Code-Gen.

We leverage the instructed code-generation capability of a strong LLM to generate a Python-
based edit program. Given the user request in natural language, we instruct the LLM to
follow a specifically crafted guideline for it to strictly refer to the pre-defined APIs described
in Section 2.1.1 when devising the edit program. As illustrated, the left hand side of Figure
3 shows a sample API function (MOVE), where its right hand side exemplifies a sample
generated edit program.

Using Layout Canvas. In this work, we find that defining the boundaries of the document
contents (i.e., the canvas where components are within) and supplementing the coarse level
of content spatial locations, is helpful for the LLM to devise more accurate edit program.
We thus include the canvas dimension of the document, locations (as bounding boxes) of
major contents in the document (via PaddleOCR (Du et al., 2020)) in the LLM-instruction.

1The grounding model will propose several possible bounding boxes ranked with their logit scores,
we simply take the top-1 scoring bounding box as the prediction.

2The REPLACE function can be viewed as a combination of DELETE and ADD, except that the added
position is the same as the document element being modified.

4

Published as a conference paper at COLM 2024

sNational Moon Day
July 20, 2024

Join us in commemorating a great achievement!

Entity Extractor Class

Component Grounder
(Adapted-GLIP)

Inherited from the editing APIs but only returns
the component-level information

Figure 4: Programmatic grounding: Leveraging our pre-defined APIs, we construct a document
element grounding pipeline to identify the components (document elements) of interest in the editing
request, in order to facilitate the grounding in the actual documents.

2.2 Component Grounder

As described in Section 2.1.1, the FIND (and the INFER) function can be implemented via a
visual phrase grounding model. In this work, we utilize GLIP (Li et al., 2022), an open vo-
cabulary object detection model, to serve as the basis fulfilling such grounding requirement.
However, most phrase grounding models require the ”phrase to ground” to be specified
beforehand, usually as a set of starting and ending spans of the phrases within the input
sentence. We explore the two following methods for extracting the phrase to ground from the
given user editing request:

NLP Parsing. The entity extraction task can be generally approached as a parsing task
followed by simple heuristics. We use the semantic role labeling (SRL) (Shi & Lin, 2019)
technique to parse the user request into a few arguments (ARGs) and then take the ARG1 as the
main document element that needs to be edited. For instance, in the following SRL-parsed
request: "[V: Change] [ARG1: the date in second line] [ARG2: to 02.22.2024] .", we
regard the ARG1 span (the date in second line) as the ”phrase to ground”.

Leveraging Pre-Defined APIs. While parsing techniques such as SRL are specifically
designed for textual entity extraction, we find that our code-generation framework also
naturally supports such extraction capability. As illustrated by Figure 4, we devise a set of
APIs that, when they are executed, the LLM is instructed to fill the function arguments with
the extracted corresponding entities.

With the two aforementioned automatic entity extraction pipelines, we construct a fine-
tuning dataset from DocEdit to adapt the GLIP model to our document editing domain, and
utilize its predicted bounding boxes for the target component localization. Note that the
entity extraction pipeline will be absorbed into part of the FIND and INFER functions.

2.3 Execution

Once the edit program is generated, each major spatial and modification API operations
will call its corresponding executable implementations to perform the actual editing process.
These operations are deterministic and are editing software-dependent, while the major API
operations defined in Section 2.1.1 are generally applicable and hence software-agnostic.3

The execution of FIND and INFER are similar, the predicted bounding boxes of the target
component will be used to search over the document structure and return the canonical
component ID with the highest IoU score. Such IDs will be the major medium used for other
APIs to refer to a specific component. For ADD and REPLACE, there are some occasions that
new content needs to be generated (e.g., changing the background image to something else). We

3The main editing software used in this work implements a TypeScript-based low-level API
library that can fulfill all the functionalities our pre-defined APIs require, where these low-level APIs
will eventually be able to interact with the underlying document structure and perform the actual
component manipulations/editing.

5

Published as a conference paper at COLM 2024

User Request

All other textualized multimodal info.

Dummy Executor
(Mainly checking python generics and high-

level function call traces)

Code-GenPrompt

Dummy-Execute/
Multimodal Module

Po
st

-E
di

t/
Bu

g
Fe

ed
ba

ck

Prompt: “Error in line X.
{ERROR_MESSAGE}. Please
fix the codes.”

Prompt: “The curved text is
not moved to the top.”

Multimodal Edit Checker
(Visual Instruction Trained)

Figure 5: The feedback mechanism mainly concerns two types of errors: (1) syntax error, which can
be resolved by re-prompting the code-gen. LLM with extracted standard program execution error
(STDERR), (2) semantic error, which is resolved by leveraging a trained multimodal feedback provider,
for guiding the re-generation of the edit program.

execute such request by feeding the extracted component (i.e., the extracted entity should be
the content to be added or replaced with) to a text-to-image generative model as its prompt.

2.4 Feedback Mechanism

The LLM-code-generation pipeline in Section 2.1.2 often generates high-quality edit pro-
grams to fulfill user requests, but these programs can occasionally produce errors (bugs) that
either prevent the program form executing (syntax errors) or which produces unsatisfying
results (semantic errors).

• Syntax Error: Although as mentioned in Section 2.1.2, we instruct the LLM to perform
code-generation strictly following the defined APIs and their argument structures, we
find that the LLM can occasionally hallucinate how these functions are used. Concretely,
we find that the LLM can hallucinate unspecified usages of the functions (e.g., using
arguments that are not specified) or even unspecified API calls (e.g., the LLM can have a
tendency to invent nonexistent APIs).

• Semantic Error: This type of error occurs when the edit program is syntax bug-free, but
exhibit behaviours that are not perfectly satisfying the user editing request. For instance,
a request of moving a target component upwards but below another reference component,
might result in a generated program that accidentally moves the component too far to the
top. Another representative (and major) error is when the component grounder fails to
localize the target component perfectly. In such cases, even though the generated edit
program is semantically correct, the outcome can still be suboptimal because the program
is applied to the wrong document element.

We address these issues with a feedback mechanism, as illustrated in Figure 5. For a syntax
error, we devise a dummy executor that executes the generated edit program without
calling the executable API, i.e.it calls a dummy API for the purpose of checking the syntax
correctness of the generated edit program. Whenever an error occurs, we extract the error
message (STDERR) and feed it back to the LLM to obtain the corrected edit program via a
re-prompting (see Figure 5). We bound the number of re-prompting trials maximally at 5.

Since the second type of error, the semantic error, will only be recognizable after the editing
outcome is produced, and furthermore, there is no real deterministic “compiler” to identify
whether the outcome is satisfactory or not, we propose to learn a multimodal model for
providing semantic error feedback. Specifically, we train a multimodal LLM (Figure 6) to
predict the type of semantic error (i.e., whether the error comes from semantic mistake of
the edit program or errors from the grounder) by analyzing the edit request along with the
before- and after-edit document renditions.

6

Published as a conference paper at COLM 2024

Joi

Join us for Bob’s

Retirement party!

Saturday, October 10th at 6pm

Sandy Cove Inn
3821 Beach Drive, Ocean City, MD

RSVP to Ann at 555-555-5555

Joi

Join us for Bob’s

Retirement party!

Saturday, October 10th at 6pm

Sandy Cove Inn
3821 Beach Drive, Ocean City, MD

RSVP to Ann at 555-555-5555

Happy
birthday!

You’re 40!

Happy
birthday!

You’re 40!

Edited Image
(Finetuned on Constructed Dataset)

Multimodal Generative Model

Yes

Wrong edits. “Is the edit correct?”

Foundation Models

(GLIP, etc.)

Wrong components.

Re-prompt w. error message

Search the next ranked bbox

The edit action is: Change the "Happy Birthday"

color to red. Is the editing correct?

No. The edited component is not the

correct one to edit on.

Yes the editing is correct.

The edit action is: Move the "Retirement Party" to a bit left of

"3821 Beach Drive, Ocean City". Is the editing correct?

No. The "Retirement Party” is moved to right.Yes the editing is correct.

Figure 6: Multimodal feedback provider is trained with synthetically constructed datasets as shown
on the right hand side. We utilize our programmable pipeline to construct positive and negative pairs
of edited outcomes associated with the original request, in order to train a multimodal LLM to provide
the feedback (in language).

2.4.1 Learning The Multimodal Feedback Module

To learn the multimodal feedback module, we use a popular open-sourcel LLaVa model (Liu
et al., 2024) and extend it to take paired images (i.e., before- and after-edit document
content) to provide natural language feedback of the editing outcome. To equip the model
with capability of inferring whether an edited outcome is satisfactory, we train it with
correct (positive) and incorrect (negative) results of the editing actions. Since each API
defined in Section 2.1.1 has a corresponding executable implementation, we can construct a
deterministic mapping between a series of these API calls with the actual outcome after the
execution of such API series.

Dataset Construction. We craft a set of templated editing requests such as ”[MOVE]
{componenta} to [direction] of {componentb}”, or ”[REPLACE] {componenta}’s {color}
to [red]”. Given document content, items within the braces ({}) will be replaced randomly
with the document element to be manipulated and its corresponding attribute(s) to edit.
Items in the brackets ([]) are sampled from a pre-defined set of allowed vocabulary, e.g.,
REPLACE can have synonyms such as CHANGE, and colors can be sampled from red, blue,
green, and more. It is noticeable that a deterministic mapping can be constructed between
the editing APIs and these templated requests. As illustrated in the right hand side of Figure
6, we construct a dataset based on the templated editing requests, where a negative outcome
is generated by by deliberately causing the API to incorrectly apply the desired edit request
(e.g., sampling the wrong [direction], [color] or the incorrect {component}). Therefore,
the negative samples can be constructed by manipulating the contents with exactly opposite
or wrong actions (i.e., the right/wrong actions are known beforehand from the ground
truths) against a sampled request – guaranteeing the resulting samples contradict it.

The fine-tuned LLaVa model is trained on producing a simple yes/no-based feedback, which
can also be deterministically written based on constructed positive or negative pairs.

Feedback-based refinement. Once the natural language feedback is obtained following
the procedure in Section 2.4.1, we can provide such feedback to the LLM to refine the
generated edit program. We only care about negative feedback, which is of two main types:
(1) For semantically wrong editing we perform a “re-prompting” of the LLM to generate
the refined program with the instruction depicted in Figure 5. (2) For wrongly grounded
component, we sample the next highest ranked proposed bounding box from the grounder
(Section 2.2) without modifying the LLM generated program. The underlying assumption
is: at least one of the proposed boxes would correctly localize the target component, which
is not necessarily true in all the cases. We leave the general cases as future work.

7

Published as a conference paper at COLM 2024

3 Experiments

Our experiments seek to answer following research questions: (1) How does the proposed
modularized editing-agent framework compare to the baseline end-to-end model reported
in Mathur et al. (2023) on its various evaluation metrics? (2) How does the proposed
framework compare to other instruction-tuned generative editing models? (3) How effective
is the proposed feedback mechanism?

Implementation Details. For the document element grounder, the GLIP model (Li et al.,
2022) is adopted and extended from the original author’s repository and pretrained model
weights. For the code-generator, as well as the entity extractor, we use OpenAI’s GPT-4
model (Achiam et al., 2023). For the image generative model, we use the stable diffusion
version 1.5 (SD-v1.5) (Rombach et al., 2022) and cap the denoising steps at 50. We adopt
the LLaVa version 1.5 (Liu et al., 2024) with the language model part being LLaMa-2-
13b (Touvron et al., 2023) for the feedback mechanism in Section 2.4.1.

3.1 Experimental Setups

DocEdit Metrics. For various component-wise and user request intent understanding met-
rics, we use the ones reported in the original DocEdit work (Mathur et al., 2023). Specifically,
the two main evaluations are conducted on the accuracy of both action parameters (Action
Para.) and component parameters (Component Para.), where the parameters here refer
to the type(s) of actions/components the user editing request concerns. As mentioned
in Section 2.1.1, the design of our pre-defined APIs follow the major actions defined in the
DocEdit dataset, and hence we regard our generated edit program as correct on predicting
the action parameters if a line of the generated program contains the API names same as
the ground truth action. Similarly for the components, we evaluate the extracted component
types from the grounder (Section 2.2) against the ground truth.

Image Similarity Metrics. In addition to the original DocEdit defined metrics, we fur-
ther evaluate how similar the edited outcome from our framework is, compared to the
ground truth post-edit documents. Motivated by (Geng et al., 2023), we extend the CLIP-
Score (Hessel et al., 2021) to consider the relationship between the edit request and the
before/after-edit changes to the document (as an image). Specifically, we use the following
formula to quantify the similarity measures (ϕ indicates cosine similarity from either CLIP
visual embeddings or text-to-image CLIPScore):

ϕCLIP(eimggt
, eimgedit

)− ∥ϕCLIPScore(eimggt
, etext)− ϕCLIPScore(eimgedit

, etext)∥1

In addition to using the entire document image for comparisons, we also report the similarity
measures focused only on the contents within the ground truth bounding box(es) (Boxed-).

Instruction-Tuned Editing Baselines. Our two instruction-based editing baselines are:
InstructPix2Pix (Brooks et al., 2023), and InstructDiffusion (Geng et al., 2023). They are
similar in that they both accept a human language instruction on how the images are to
be edited, while a text-to-image diffusion model (Rombach et al., 2022) is trained to follow
such an instruction to generate an edited version of the input image. While InstructPix2Pix
mainly leverages the Prompt2Prompt technique (Hertz et al., 2022) for the editing data
curation, InstructDiffusion adopts a wider range of more sophisticated data construction
methods for editing tasks such as object removal/replacement, image enhancement, and style
transfer, making it an improved version of InstructPix2Pix.

3.2 Results

Quantitative Results. Table 1 summarizes the essential DocEdit performance metrics. It can
be observed that for the Action Para. metric, our framework (AD as Agent-DocEdit) performs
somewhat worse (66.7) than the original DocEdit model. However, an empirical inspection
suggests that the generated edit program can actually be correct even if the main APIs used
do not exactly match the ground truth action parameter (e.g., REPLACE can be a combination
of DELETE and ADD, and MODIFY and REPLACE can be equivalent for textual editing).

8

Published as a conference paper at COLM 2024

Models Action Para. Component Para. Code 1-Pass Code-5-Pass (w. Feedback) Sem. Err.
DocEdit 84.5 52.5 — — —

Agent-DocEdit 66.7 / 96.7 77.8 66.7 — 34.6
AD w. Feedback 87.4 66.7 95.3 12.3

Table 1: Components Performance: the main evaluation metrics in the Doc-Edit task against its
end-to-end trained baseline. *Slash under Action Para. indicates the re-definition of the ground truth
action parameters.

Models AP AP50 AP75 Top-1 Accuracy
DocEdit — — — 34.34

NLP (SRL) 27.16 54.82 22.60 58.37
Code-Gen. 32.57 59.19 30.60 59.85

Table 2: Component grounding performance.

Models Directional↑ Boxed-Directional↑
InstructPix2Pix 0.741 0.781
InstructDiffusion 0.806 0.792

Agent-DocEdit 0.921 0.886
AD w. Feedback 0.939 0.896

Table 3: Editing performance (similarity-based).

Models Avg. Rank↓
InstructPix2Pix 3.43
InstructDiffusion 3.18

Agent-DocEdit 1.89
AD w. Feedback 1.14

*Rank is among 1-4.

Table 4: Human preference
(mean ranked).

We thus establish a mapping (Append. Sec. A.1) between
equivalent DocEdit action parameters and the results in Table
1 (after the slash) indicates that our LLM pipeline is actually
significantly better than the baseline end-to-end trained model.
Our framework outperforms the baseline by a large margin
in the component parameter prediction, where the feedback
mechanism improves further.

The edit program generator averagely generates 10.75 lines of
code with 1.4 major API calls. The semantic error rate (number
of errors/edits) within a held-out human judged subset is 34.6% without feedback and
12.3% with feedback, where the feedback provider reaches 71% accuracy on a held-out test
set. In Table 1 we also report the passing rate (bug-free during execution) of the generated
edit program, the syntax error re-prompting within 5 trials can improve the passing rate to
almost perfect. These results suggest that our feedback mechanism significantly reduces
both syntax and semantic errors in the edit programs.

In addition to the results reported in Table 1, we also examine the individual semantic
error rates per each major API action. The error rates (without feedback mechanism) of the
top three frequent actions in a held-out subset are: REPLACE: 22%, MODIFY: 30%, and MOVE:
37%. It is noticeable that our system does particularly well at the action REPLACE, and we
hypothesize MOVE can benefit from improved target position predictors. We also observe
that our component grounder performs quite evenly well on all kinds of components – no
particular bias against or towards certain kinds of components is observed.

The comparisons between the two grounding methods in Section 2.2 is reported in Table 2,
where a significant improvement can be observed using the code-generation method with
our defined APIs. Both methods perform well above the end-to-end baseline.

Table 3 reports the performance for the similarity-based editing scores. For fair comparison,
if the generated edit program fails during the execution (with syntax errors), we do not
proceed with any editing to the document, i.e., a failed program makes the content unchanged.
It is notable that our framework, with or without the feedback mechanism, surpasses
the two instruction-tuned baselines. The results reveal our general observations, which
are: The two (instruction-tuned) generative baselines often exhibit severe degeneration
of the parts that are supposed to be intact, or fail to capture the intentions of the user
editing request. Our modularized agent framework more successfully interprets the user
requests and manipulates the components much more accurately. And moreover, the
feedback mechanism alleviates initial errors from both the edit program generation as well
as inaccurate grounding.

To verify these numerical results align with human judgements, we further conduct a human
study on a randomly sampled 100 subset, each ranked by three annotators of which model
outcome is the more preferred, and averaged as in Table 4. The human preference trends
verify the aforementioned results. Note that human judgement prefers the outcome with

9

Published as a conference paper at COLM 2024

our feedback mechanism significantly more than that without (the gap between them is also
larger than that of the similarity-based metric). This is reasonable since similarity-based
metric may not be very detail-oriented in judging our task.

4 Related Work
LLM Agent. Equipping an LLM with the ability to use external tools makes it a powerful
model that enjoys both strong generalization of language modeling capability as well as
the faithful information manipulation. Prior work such as ToolFormer (Schick et al., 2024),
TALM (Parisi et al., 2022), and program-aided language models (Madaan et al., 2022; Chen
et al., 2022; Gao et al., 2023; Wang et al., 2022c), successfully learn an LM that is able to
manipulate tools such as calculators, calendars, and programs, for achieving desired tasks.
Program-based LLMs are also applied to control tasks, such as ProgPrompt (Singh et al.,
2023), and Eureka (Ma et al., 2023). One type of tool-equipped LLM is able to perform visual
programming, i.e., generate programs that call APIs, such as object detectors, to deal with
visually-related queries, such as VQA (Gupta & Kembhavi, 2023). Our work is most closely
related to ViperGPT (Surı́s et al., 2023), where we extend the visual programming ability to
content editing with additionally created feedback mechanism.

Document/Content Understanding. Our work is also related to document content un-
derstanding, as well as layout comprehension. Prior works have investigated applying
modern transformer architecture for an end-to-end trainable document processing models,
such as DocFormer (Appalaraju et al., 2021), text-image-layout (Powalski et al., 2021), Lay-
outLMv2/3 (Xu et al., 2021; Huang et al., 2022), Dessurt (Davis et al., 2022), and UI/layout
parsing or understanding (Lee et al., 2023; Li & Li, 2023; Wang et al., 2022b) Along this line
of work as well as the grounding capability (Deng et al., 2021; 2023), the DocEdit dataset
also features an end-to-end learnable model (Mathur et al., 2023) (in this work we use
GLIP (Li et al., 2022)). We show that modularized framework leveraging LLM as an agent
to program the edit actions with the help of external tools (e.g., component grounders) is a
strong competitor for understanding and editing content-rich documents.

Content Editing. Our work is closely related to learnable content editing models. Several
prior works have also studied language-instructed (Chen et al., 2018; El-Nouby et al., 2018;
Li et al., 2020; Lin et al., 2020b; Jiang et al., 2021a) or conversational (Lin et al., 2020a; Jiang
et al., 2021b) image-editing, where a language processing module is learned to estimate the
requested intents to guide the image-editing tasks. Recent works have adopted modern
transformer architecture for better facilitate the instruction comprehension and planning (Shi
et al., 2021), as well as diffusion models for the edited outcome generation (Wang et al.,
2022a; Hertz et al., 2022). Notable works, including InstructPix2Pix (Brooks et al., 2023),
InstructDiffusion (Geng et al., 2023), and Emu-Edit (Sheynin et al., 2023) push further the
generative editing performance with large-scale and multi-tasking data. Inspired by the
prior literature, as well as the motivation of the tool (grounding and editing software) usage
and keeping unedited parts intact, our framework is able to more seamlessly (and faithfuly)
process wider-range of editing actions.

5 Conclusion

In this work, we propose a multimodal LLM-agent-based framework, Agent-DocEdit, to
tackle the task of automatic (multimodal) document content editing. The proposed frame-
work is composed of four main components: (1) The Edit Program Generator that translates
the user editing request to an edit program that calls a set of pre-defined APIs for basic
content manipulation actions; (2) The Multimodal Grounder extracts the key entities within
the request and localize their corresponding document elements within the document struc-
ture; (3) The Executor executes the edit program by calling a set of pre-defined APIs to
interact and manipulate the document structure to obtain the actual edited outcome; (4)
The Feedback Provider takes as inputs the request and before-/after-edit documents to
provide potential refinement feedback for generating more satisfying outcome; We evaluate
Agent-DocEdit on an editing dataset, DocEdit, and demonstrate its effectiveness over the
existing DocEdit baselines and strong instruction-tuned diffusion-based editing models.

10

Published as a conference paper at COLM 2024

Ethics and Broader Impacts

We acknowledge that all of the co-authors of this work are aware of the provided ACM Code
of Ethics and honor the code of conduct. This work is about constructing a modularized
multimodal framework (Agent-DocEdit) that can comprehend human user’s editing request
to a given document content, where the framework automates the editing process by using
LLM’s code-generation ability as well as external tools to fulfill the request. Below, we
consider ethical considerations and our potential impacts to the community.

Dataset. The dataset and the document content used in this work are obtained from a
published prior work, DocEdit, where human annotators helped creating an editing request
dataset paired with corresponding outcomes. We do not foresee any harmful effects that
can be potentially caused to the users as the dataset merely contains poster and flyer-like
documents for common activities such as advertising, celebrations, announcements, and
similar situations.

Techniques. The technique developed in this work is generally benign to the users, un-
less the user indicate any harmful request (e.g., generating disturbing contents and/or
re-arranging the textual contents to harm recipients). Our framework is learned and trained
mainly using the DocEdit dataset, which possess no intended harms from the content
creators.

Limitations. In this work, our edit program APIs are designed to be generally applicable
and software-agnostic. However, we also mentioned that the detailed contents of these APIs
can have software dependencies. That is, those APIs are not exactly the final interfaces for
manipulating the underneath document structure/contents, where some efforts would be
made to map them to the actual execution functions (e.g., mapping from our Python APIs to
corresponding design editing software code.)

Although our modularized framework can process multiple contents by compiling a proce-
dure invoking multiple API calls (with proper logic) to the contents, the user requests, for
this work, may need to be more specific. For example, for implicit command such as ”Change
the daytime scene to night time.”, the user may need to elaborate the meaning of “daytime”
scene (e.g., to something more explicit like ”Change the moon to the sun.”) as inferring implicit
editing is left as a future exciting work that we are intrigued to explore as well as hope to
inspire the community to work on.

We also would like to acknowledge a limitation where this work implicitly assumes the
structure of the so-called content-rich documents, with an emphasis on presumption of
existing editing software. We foresee a combination of pixel-generative models and our
framework as an exciting future direction for achieving even more general use cases.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Manmatha.
Docformer: End-to-end transformer for document understanding. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 993–1003, 2021.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18392–18402, 2023.

Jianbo Chen, Yelong Shen, Jianfeng Gao, Jingjing Liu, and Xiaodong Liu. Language-based
image editing with recurrent attentive models. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 8721–8729, 2018.

11

Published as a conference paper at COLM 2024

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
arXiv preprint arXiv:2211.12588, 2022.

Brian Davis, Bryan Morse, Brian Price, Chris Tensmeyer, Curtis Wigington, and Vlad
Morariu. End-to-end document recognition and understanding with dessurt. In European
Conference on Computer Vision, pp. 280–296. Springer, 2022.

Jiajun Deng, Zhengyuan Yang, Tianlang Chen, Wengang Zhou, and Houqiang Li. Transvg:
End-to-end visual grounding with transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1769–1779, 2021.

Jiajun Deng, Zhengyuan Yang, Daqing Liu, Tianlang Chen, Wengang Zhou, Yanyong
Zhang, Houqiang Li, and Wanli Ouyang. Transvg++: End-to-end visual grounding with
language conditioned vision transformer. In IEEE transactions on pattern analysis and
machine intelligence. IEEE, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), June 2019.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu,
Yehua Yang, Qingqing Dang, et al. Pp-ocr: A practical ultra lightweight ocr system. arXiv
preprint arXiv:2009.09941, 2020.

Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, Devon Hjelm, Layla El Asri, Samira
Ebrahimi Kahou, Yoshua Bengio, and Graham W Taylor. Keep drawing it: Iterative
language-based image generation and editing. arXiv preprint arXiv:1811.09845, 2, 2018.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pp. 10764–10799. PMLR, 2023.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu,
Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. Allennlp: A deep semantic
natural language processing platform. arXiv:1803.07640, 2017.

Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin
Bao, Zheng Zhang, Han Hu, Dong Chen, et al. Instructdiffusion: A generalist modeling
interface for vision tasks. arXiv preprint arXiv:2309.03895, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual
reasoning without training. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14953–14962, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-
Or. Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations (ICLR), 2022.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training
for document ai with unified text and image masking. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 4083–4091, 2022.

12

Published as a conference paper at COLM 2024

Wentao Jiang, Ning Xu, Jiayun Wang, Chen Gao, Jing Shi, Zhe Lin, and Si Liu. Language-
guided global image editing via cross-modal cyclic mechanism. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2115–2124, 2021a.

Yuming Jiang, Ziqi Huang, Xingang Pan, Chen Change Loy, and Ziwei Liu. Talk-to-edit:
Fine-grained facial editing via dialog. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 13799–13808, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin
Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova.
Pix2struct: Screenshot parsing as pretraining for visual language understanding. In
International Conference on Machine Learning, pp. 18893–18912. PMLR, 2023.

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. Manigan: Text-guided
image manipulation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 7880–7889, 2020.

Gang Li and Yang Li. Spotlight: Mobile ui understanding using vision-language models
with a focus. In International Conference on Learning Representations (ICLR), 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-
image pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10965–10975, 2022.

Tzu-Hsiang Lin, Trung Bui, Doo Soon Kim, and Jean Oh. A multimodal dialogue system for
conversational image editing. arXiv preprint arXiv:2002.06484, 2020a.

Tzu-Hsiang Lin, Alexander Rudnicky, Trung Bui, Doo Soon Kim, and Jean Oh. Adjusting im-
age attributes of localized regions with low-level dialogue. arXiv preprint arXiv:2002.04678,
2020b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Advances in neural information processing systems, volume 36, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022,
2021.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward
design via coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language
models of code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Puneet Mathur, Rajiv Jain, Jiuxiang Gu, Franck Dernoncourt, Dinesh Manocha, and Vlad I
Morariu. Docedit: language-guided document editing. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, pp. 1914–1922, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv
preprint arXiv:2205.12255, 2022.

Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz, Tomasz Dwojak, Michał Pietruszka,
and Gabriela Pałka. Going full-tilt boogie on document understanding with text-image-
layout transformer. In Document Analysis and Recognition–ICDAR 2021: 16th International
Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II 16, pp. 732–747.
Springer, 2021.

13

Published as a conference paper at COLM 2024

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695,
June 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
can teach themselves to use tools. Advances in Neural Information Processing Systems, 36,
2024.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual,
Devi Parikh, and Yaniv Taigman. Emu edit: Precise image editing via recognition and
generation tasks. arXiv preprint arXiv:2311.10089, 2023.

Jing Shi, Ning Xu, Yihang Xu, Trung Bui, Franck Dernoncourt, and Chenliang Xu. Learning
by planning: Language-guided global image editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13590–13599, 2021.

Peng Shi and Jimmy Lin. Simple bert models for relation extraction and semantic role
labeling. ArXiv, abs/1904.05255, 2019.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot
task plans using large language models. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 11523–11530. IEEE, 2023.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python
execution for reasoning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11888–11898, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jianan Wang, Guansong Lu, Hang Xu, Zhenguo Li, Chunjing Xu, and Yanwei Fu. Manitrans:
Entity-level text-guided image manipulation via token-wise semantic alignment and
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10707–10717, 2022a.

Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang Liu. Web-
former: The web-page transformer for structure information extraction. In Proceedings of
the ACM Web Conference 2022, pp. 3124–3133, 2022b.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot structured
prediction from natural language. arXiv preprint arXiv:2210.12810, 3, 2022c.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei
Florencio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. LayoutLMv2:
Multi-modal pre-training for visually-rich document understanding. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021.

14

Published as a conference paper at COLM 2024

A More Details on Utilizing DocEdit Dataset

A.1 Action Parameter Mapping

As mentioned in Section 3.2, under certain circumstances, some API functions can be
equivalent to one another of a combination of a few other APIs. Below we attach such
mapping for the ground truth action parameter re-definition, for more fairly evaluate our
LLM-agent framework.

action_mappings = {
"REPLACE": [

"DELETE ->ADD", "ADD ->DELETE"
]

}

component_based_action_mappings = {
"TEXT": {

"REPLACE": ["MODIFY"],
"MODIFY": ["REPLACE"],

}
}

The mappings above indicate that the replacement REPLACE can be a combination of deletion
(DELETE) and addition (ADD), where the order does not matter. We also include a type of
mapping that is component dependent, as for textual components (TEXT), the replacement
and modification are essentially equivalent.

A.2 Data Splits

For both the grounding and feedback mechanism training, we use only the training set from
the design subset of DocEdit, where the evaluations are done on its original testing set.

A.3 Human Studies

We recruited five college students with linguistic/CS backgrounds and presented them with
the edit request alongside outcomes from all four methods (scrambled). They ranked them
(1-4) on how aligned the samples were to the request. Each instance is ranked by all the
evaluators and averaged as in Table 4.

B More Details on the Proposed Agent-DocEdit Framework

B.1 Additional Implementation Details

We use the AllenNLP SRL package (Gardner et al., 2017) for NLP parsing entity extraction
methods mentioned in Section 2.2.

For the document element grounder, the GLIP model (Li et al., 2022) features the language
modeling part with a BERT-large (Devlin et al., 2019) model, and a vision encoder with
Swin-L vision transformer model (Liu et al., 2021)).

In our preliminary studies, we experiment finetuning the feedback mechanism LLaVa model
with the LoRA (Hu et al., 2022) variant and the whole finetuning variant, where we do not
find significant performance difference in our task. Consequently, to reduce training cost,
we only use the LoRA version thereafter.

B.2 Instructions for Edit Program Generation

We hereby provide all the APIs used in Section 2.1.1 below:

15

Published as a conference paper at COLM 2024

def MOVE(object_id: str , new_position: tuple = None , position_diff: tuple
= None):
""" Changes the position of an object by its given object ID.
Parameters

object_id: str

The ID of the object to be moved.
new_position: tuple

If specified , the new position in XY-coordinates (px space) to
move to.
position_diff: tuple

If specified , a tuple of (DIRECTION , px) indicating which
direction to

move the object to, by the spcified distance (in px space).
DIRECTION can choose from ["UP", "DOWN", "LEFT", "RIGHT "].

Examples

>>> # Move the object (id=object_id) to coordinate (30px, 20px).
>>> MOVE(object_id=object_id , new_position =(30px, 20px))

>>> # Move the object (id=object_id) down by 10px.
>>> MOVE(object_id=object_id , position_diff =(" DOWN", 10px))
"""

pass

def DELETE(object_id: str):
""" Deletes or removes an object by its given object ID.
Parameters

object_id: str

The ID of the object to be deleted.

Examples

>>> # Delete the object (id=object_id).
>>> DELETE(object_id=object_id)
"""

pass

def ADD(object_type: str , object_description: str , position: tuple = None
):
""" Adds an object by the specified type.
Parameters

object_type: str

The type of the object to be added.
object_description: str

The description of the object that is to be generated or
retrieved.
position: tuple

If specified , the position in XY-coordinates (px space) to add
the object.

If not specified , add the object to a random position.

Examples

>>> # Add a bullet point object.
>>> ADD(object_type =" BULLET ")
"""

16

Published as a conference paper at COLM 2024

pass

def COPY(object_id: str , position: tuple = None):
""" Duplicates an object by its given object ID.
Parameters

object_id: str

The ID of the object to be deleted.
position: tuple

If specified , the position in XY-coordinates (px space) to add
the newly duplicated object.
If not specified , duplicate the object to a random position.

Examples

>>> # Copy a text box object.
>>> COPY(object_id=object_id)
"""

pass

def REPLACE(
object_id_to_replace: str ,
type_of_object_replaced: str ,
new_object_type: str ,
new_object_content: str

):
""" Replaces an object by its object ID with a newly added object by
its type and content description.
Parameters

object_id_to_replace: str

The ID of the object to be replaced.
type_of_object_replaced: str

The type of the object to be replaced.
new_object_type: str

The type of the new object to be added to replace the original
object.
new_object_content: str

The content or description of the new object to be added to
replace the original object.

Examples

>>> # Replace a text box object with an image of a cat.
>>> REPLACE(object_id_to_replace=object_id , new_object_type ="image",
new_object_content ="a cat")
"""

pass

def MODIFY(object_id_to_modify: str , modification: str ,
type_of_modification: str):
""" Modifies the content or attributes of an object.
For text objects the modification is the textual content to modify or
replace the original one.
For non -textual objects the modification is the edited attribute to
the object being modified.
Parameters

object_id_to_modify: str

The ID of the object to be modified.

17

Published as a conference paper at COLM 2024

modification: str
The modification to be made.

type_of_modification: str
The type of modification to be made , for example , text , color ,

font -size , shape , and font -style.

Examples

>>> # Modify a text box object with the modification texts.
>>> MODIFY(object_id_to_modify=object_id , modification ="One year old
.", type_of_modification ="text")
>>> # Replace the background color from green to blue.
>>> MODIFY(object_id_to_modify=object_id , modification ="blue",
type_of_modification ="color")
"""

pass

def FIND_AND_GET(component_to_edit: str , document=None):
""" Finds the component objects with the given component names or
descriptions
and gets the component ids , positions , and bounding boxes.
Parameters

component_to_edit: str

The description of the component to be edited.
document:

The object for the slide document.

Examples

>>> # Get the component id of "the dashed lines under the image."
>>> # from the user request: "Remove the dashed lines under the image
."
>>> line_id , line_position , line_bbox = FIND_AND_GET(
>>> component_to_edit ="the dashed lines under the image",
>>> document=document ,
>>>)
"""

return id, position , bbox

def INFER(component_to_edit: str , document=None):
""" Predicts the position and the bounding box of the given component
name
or descriptions.
Parameters

component_to_edit: str

The description of the component to be edited or added.
document:

The object for the slide document.

Examples

>>> # Predict the final position of the moved "dashed lines"
>>> # from the user request: "Move the dashed lines under the image."
>>> postedit_line_position , postedit_line_bbox = INFER(
>>> component_to_edit =" dashed lines",
>>> document=document ,
>>>)
"""

18

Published as a conference paper at COLM 2024

return postedit_position , postedit_bbox

def GET_METADATA(component_id: str , attr: str , document=None):
""" Returns the metadata information of the given component.
Parameters

component_id: str

The canonical id of the component to get the metadata from.
attr: str

The type of the metadata attribute to return.
document:

The object for the slide document.

Examples

>>> # Returns the metadata information such as `fontsize `, or `bbox `.
>>> bbox = GET_METADATA(
>>> component_id ="some id",
>>> attr="bbox",
>>> document=document ,
>>>)
"""

return information

And additionally, the actual instructions to the OpenAI GPT-4 code-generation pipeline is
as follows:

```python
[INSERT APIs HERE]

document = Document ("{ path/to/the/document }")
```

Write a function using Python and the functions above that could be
executed to perform edits on the provided document template.

Consider the following guidelines:
- Use base Python (comparison , sorting) for basic logical operations ,

left/right/up/down , math , etc.
- Write only a single function with the name "main".
- No need to deal with output saving.
- Do NOT use APIs outside of provided ones and generic Python calls.
- Do NOT execute the function.
- object_position is anchored at top -left corner , object_position [0] is

x coordinate and object_position [1] is y coordinate.
- object bbox is anchored at its top -left corner , bbox = [x coordinate , y

coordinate , width , height].

Command: "[USER EDIT REQUEST]"

The document width x height is [HEIGHT] x [WIDTH]
[INSERT CANVAS INFO.]

B.3 Hyperparameters

Table 5 summarizes the main hyperparameters in all of our learning modules.

19

Published as a conference paper at COLM 2024

Models Batch Size Initial LR # Training Epochs Gradient Accu-
mulation Steps

Grounder (GLIP) 8 1 × 10−3 5 1
Feedback Provider (LLaVa-1.5) 16 2 × 10−4 3 1

Table 5: Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are
trained with Adam optimizers (Kingma & Ba, 2015). We include number of learnable parameters of
each model in the column of # params.

20

	Introduction
	Method (The Agent-DocEdit)
	Generating an Edit Program via LLM-Code-Gen.
	Pre-Defined APIs
	Edit Program Generation through Instructed Code-Gen.

	Component Grounder
	Execution
	Feedback Mechanism
	Learning The Multimodal Feedback Module

	Experiments
	Experimental Setups
	Results

	Related Work
	Conclusion
	More Details on Utilizing DocEdit Dataset
	Action Parameter Mapping
	Data Splits
	Human Studies

	More Details on the Proposed Agent-DocEdit Framework
	Additional Implementation Details
	Instructions for Edit Program Generation
	Hyperparameters

