
The Framework Tax: Disparities Between Inference Efficiency in Research and
Deployment

Jared Fernandez 1 Jacob Kahn 2 Clara Na 1 Yonatan Bisk 1 Emma Strubell 1

Abstract

Increased focus on the efficiency of machine
learning systems has led to rapid improvements
in hardware accelerator performance and model
efficiency. However, the resulting increases in
computational throughput and reductions in float-
ing point operations have not directly translated
to improvements in wall-clock inference latency.
We demonstrate that these discrepancies can be
largely attributed to bottlenecks introduced by
deep learning frameworks. We denote this phe-
nomena as the framework tax, and observe that the
disparity is growing as hardware speed increases
over time. In this work, we examine this phe-
nomena through a series of case studies analyz-
ing the effects of model design decisions, frame-
work paradigms, and hardware platforms on total
model latency. Based on our findings, we provide
actionable recommendations to researchers and
practitioners aimed at narrowing the gap between
efficient ML model research and practice.

1. Introduction
Machine learning efficiency is especially important in infer-
ence settings when models are used repeatedly and at scale.
For example, Meta reports that inference workloads make
up 70% of their AI power consumption, with the remaining
30% due to training and development (Wu et al., 2022),
while Google attributes 60% of their ML energy consump-
tion to inference (Patterson et al., 2022). Inference is also
estimated to make up 80 to 90% of ML cloud computing
demand (Barr, 2019; Leopold, 2019).

These concerns have spurred innovations in efficient model
architecture design with lesser computational requirements,
that reduce number of model parameters and multiply-
accumulate operations (MACs) (Tan & Le, 2019; Dai et al.,

1Carnegie Mellon University, Pittsburgh, PA, USA 2FAIR,
Menlo Park, CA, USA. Correspondence to: Jared Fernandez
<jaredfern@cmu.edu>.

MACS are not 
proportional to 

Latency

Figure 1. Latency as a function of a model’s multiply accumulate
operations (MACs) with PyTorch on an NVIDIA 2080ti GPU. Ex-
pected relationships do not hold; model complexity and hardware
capabilities fail to predict latency due to framework-boundedness.

2020; Sun et al., 2020). Likewise, improvements to GPU
hardware accelerators applications have seen similar perfor-
mance gains with the number of floating point operations
per second (FLOPS) growing by over 175% in the past 5
years. Despite this progress, the supposed gains offered
by faster hardware and more efficient models are often not
realized in deployment settings, where model speed has not
improved as seen in Figure 1.

This misalignment is primarily attributable to overhead in-
curred by the machine learning frameworks used to imple-
ment and execute neural network models. As a manifesta-
tion of Amdahl’s Law in machine learning systems, we see
that despite increases in hardware speeds, the overhead intro-
duced by commonly used deep learning frameworks during
kernel dispatch operations is non-negligible and imposes
bottlenecks on overall execution time. We refer to this phe-
nomena as the framework tax, and show that it exists across
deep learning framework paradigms (e.g. eager execution,
just-in-time, and ahead-of-time compilation). Due to fixed
framework overhead that dominates the execution at small
batch sizes, proxy measurements of model efficiency, such
as MACs and parameter count, are not predictive of infer-
ence latency. Moreover, as hardware performance increases
and reduces the time for computational graph execution, ma-
chine learning systems are increasingly framework-bound
at larger batch sizes.



Launch
Layer 1 Launch Layer 2

Compute
Kernel 1

Compute
Kernel 2

Launch Layer 1 Launch Layer 2 Launch Layer 4

Compute
Kernel 1

Compute
Kernel 2

CPU

GPU

Compute
Kernel 3

Compute
Kernel 4

Launch Layer 3

Compute
Kernel 3

Launch Layer 4

Compute
Kernel 4

Launch Layer 3CPU

GPU

Time

Figure 2. Profiles where execution is bound by CPU operations
(above) and by GPU kernel operations (below). Small compute
kernels are common at lower batch sizes and in inference. Boxes
with dashed lines represent framework overhead.

We identify common decisions that emerge in during the
design of efficient model architectures, inference environ-
ments, and hardware accelerators and isolate choices likely
to mislead a practitioner. We analyze the performance
of convolutional neural networks (CNNs) and transformer
models in eager execution PyTorch, just-in-time compiled
TorchScript, and an ahead-of-time compiled ONNX run-
time. We perform our study across seven different GPUs
from the Pascal, Turing, and Ampere Nvidia GPU microar-
chitectures. We provide a series of recommendations for ML
researchers and practitioners presented through a collection
of case studies.

2. Framework Overhead
Deep learning frameworks often dispatch computation for
asynchronous execution on highly parallelized hardware
accelerators, as shown in Figure 3. For sufficiently large
compute kernels, such as those seen during training, models
achieve near maximum GPU utilization as measured by the
difference between total execution time and active GPU
time (Zhu et al., 2018). However, during inference, smaller
input sizes frequently lead to suboptimal GPU utilization
as the rapid executing kernels do not saturate the fixed cost
framework overhead incurred from CPU operations (i.e.
kernel launch, computational graph construction, control
flow, and device synchronization; See Figure 2).

When the execution of GPU kernel computation is blocked
by CPU framework operations such as kernel dispatches, the
model’s execution becomes framework-bound. In this set-
ting, latency is constant regardless of batch size or number
of MACs computed. For settings where latency is depen-
dent on the execution of computational kernels and data
movement, we refer to models as being compute-bound.

3. Experimental Setting
We evaluate on batch sizes from 1 to 128 and measure aver-
age latency of 100 forward passes after 10 warmup passes.

0 10 20 30 40 50 60
Batch Size

0.005

0.010

0.015

0.020

0.025

0.030

La
te

nc
y

Total Model Latency
CUDA Kernel Execution Time
Framework Overhead

Figure 3. Framework overhead of ResNet-50 in PyTorch for vari-
ous batch sizes on an RTX-8000. Framework overhead is substan-
tial at low batch sizes but only a small constant at large batch sizes.

GPU core and memory utilization are measured with the
PyTorch profiler, Nvidia NSight, and NVIDIA Management
Library (NVML), respectively. We randomly generate im-
age data in the 224 x 224 RGB NCHW format, and language
data as random embedding sequences of length 128.

4. Framework Considerations
Frameworks adhering to an eager mode of graph construc-
tion, such as PyTorch or TensorFlow 2.0, incur overhead
from execution inside an interpreted environment given that
the time between kernel launches is related to the speed at
which kernels are enqueued, which is in turn affected by
host-side latency. To mitigate this, inference frameworks
such as TorchScript attempt to reduce interpreter overhead
and introduce computation graph-level optimizations. Static
runtimes can remove interpreter overhead entirely by com-
piling graphs ahead of time; the ONNX runtime provides
further optimizations through graph rewrites that can fuse
operators such as GEMMs and convolution layers with sub-
sequent activations or norms. Such fusion operations can
reduce memory footprint and result in more efficient kernels,
decreasing overall framework overhead.

Unsurprisingly, model latency decreases when performing
inference with frameworks and runtimes that support more
aggressive optimizations as seen in Figure 4. These in-
creases are especially pronounced at low batch sizes where
inference is framework-bound.

For batch size 1, TorchScript and ONNX provide an aver-
age FP16 speed up of 34.16% and 71.38% over PyTorch,
respectively. As batch sizes increase and models become
compute bound, there is substantially less difference in la-
tency across frameworks as the majority of execution time
is spent awaiting the completion of kernel execution.

Although these speedups suggest that inference should al-
ways be executed in specialized inference runtimes, static
construction of computational graphs may be slower when
considering real input data where examples may differ in
size, leading to input sparsity. We consider framework opti-



Figure 4. Latency vs. batch size for baseline models in FP16 and FP32 on RTX-8000. Framework boundedness exists for all models at
small batch sizes where framework overhead dominates runtime regardless of Framework overhead is most prominent in smaller models
executed in half precision (FP16) on slower frameworks.

100 101 102

Batch Size

10 2

10 1

La
te

nc
y 

(s
)

PyTorch
Nested Tensors
CUDA Graphs

Figure 5. Different framework optimizations lead to latency im-
provements in different regimes. CUDA Graph kernel serialization
reduces launch overhead in the framework bound regime, whereas
sparse computation reduces latency at larger batch sizes.

mizations that utilize kernel serialization and sparse nested
tensor operations in Figure 5. To construct sparse inputs,
we simulate samples for sentence processing by generating
variable length sequences and padding to the maximum se-
quence length of 128. Sentences are randomly generated
according to the sequence length distribution of the Penn
Treebank (Taylor et al., 2003), with an average length of
20.92 and a standard deviation of 10.18 tokens. We see that
CUDA Graphs remove framework overhead at low batch
sizes, but the efficiency gains from sparse tensor optimiza-
tions lead to latency reductions for larger batch sizes.

5. Model Design Decisions
We select ResNet-50 (He et al., 2016) and BERT-Base (De-
vlin et al., 2018) as representative architectures of the CNN
and transformer architecture paradigms.

Although, the number of FLOPs required for model infer-
ence scales with the input batch size we observe that for
small inputs latency is constant in Figure 4. Both ResNet-50
and BERT-Base exhibit framework boundedness for small
inputs, where latency is constant regardless of batch size.

While execution in both single (FP32) and half precision
(FP16) is framework bound, slower computation and in-
creased data movement for FP32 execution leads single pre-
cision execution to become compute bound at lower batch

size. At larger batch sizes, reduced FP16 precision yields
expected reductions in latency as compared to FP32.

5.1. Scaling Model Depth & Width

Scaling model hidden dimensions and number of layers are
common techniques for exploring tradeoffs between FLOPs
and performance. For ResNet-50, we examine ResNet-
18, 101, and 152 (He et al., 2016) and Wide ResNet-50
(Zagoruyko & Komodakis, 2016). Similarly, we compare
12-layer BERT-Base against 6-layer DistilBERT (Sanh et al.,
2019) and variants of BERT with varying depth and width.

Increasing number of layers, leads to increases model la-
tency in both the framework- and compute-bound regimes as
each added layer operation requires an additional CPU-GPU
dispatch, as seen in Figure 3.

Counterintuitively, increases in model width lead to no in-
crease in latency at low batch sizes. In this setting, com-
putation is framework bound and total runtime is constant
despite the wider operations requiring more floating point
operations. However, larger compute kernels causes these
wider models to become compute-bound at lower batch
sizes. Once compute-bound, latency scales more rapidly
with batch size for wide models.

5.2. Downsampling and Hierarchical Pooling

Self-attention layers are notoriously expensive as their com-
putational complexity scales quadratically with sequence
length. Efficient transformer architectures often attempt to
reduce these costs by downsampling the sequence to reduce
length and total MACS (Dai et al., 2020; Kitaev et al., 2020;
Wang et al., 2020a). We examine the performance of the
Funnel Transformer, which applies average pooling every 4
layers, which attains comparable downstream performance
to BERT with 42% fewer total MAC operations through
sequence length reduction.

In Figure 8, we see that Funnel Transformer’s reduction
in total FLOPs does not translate to increased inference
speed. Added pooling layers introduce additional steps to



Figure 6. Comparison of latency for BERT and ResNet variants that scale model width and depth. Increases in model depth add more
framework overhead, whereas increases in model width lead to faster transitions to compute boundedness. ResNet-50 and its Wide
ResNet-50 variant are equivalent in latency up to batch size 8 despite having over 3x fewer parameters.

Figure 7. Latency of CNN and Transformer models using efficient variations of convolution and self-attention operations. All of the
variants observe lower latency at large batch sizes, but have worse FLOP utilization. Efficient Transformer variants are slower than BERT
at small batch sizes due to the introduction of more layers.

Figure 8. Comparison of latency for BERT and Funnel Trans-
former. Despite using fewer total MAC operations, Funnel Trans-
former is slower than BERT for inference due to the introduction
of additional intermediate pooling layers.

the computation graph, and increase the model’s framework
overhead. Funnel Transformer is framework bound at a
much higher latency than BERT at low batch sizes, and
remains slower even at larger batch sizes.

5.3. Efficient Mobile Operations

Low-FLOP operations are commonly used as substitutes
for dense convolution and linear operations in edge settings.
In Figure 7, we examine models utilizing grouped convo-
lutions: SqueezeNet (Iandola et al., 2016) and Squeeze-
BERT (Iandola et al., 2020); inverted residual bottlenecks
MobileNet (Sandler et al., 2018), EfficientNet (Tan & Le,
2019), MNasNet (Tan et al., 2019), and MobileBERT (Sun
et al., 2020).

While these operations reduce the number of FLOPs re-
quired for execution, they exhibit worse per-FLOP latency
and poor memory utilization as compared to baseline mod-
els. In fact, for the case of the transformer architectures,
both grouped convolutions and inverted bottleneck opera-
tions in these efficient architectures lead to worse latency
than baselines. Similar to pooling operations, these opera-
tions introduces substantial framework overhead that slows
down execution for low batch sizes.

6. Hardware Considerations
In Figure 9, we observe that framework-bound inference
emerges across multiple generations of consumer, work-
station, and datacenter Nvidia GPUs. As the speed of the
accelerator increases, the relative execution speed of the
compute kernels decreases while the total framework over-
head due to CPU kernel dispatch operations remains con-
stant. These observations indicate that framework bounds
on model execution will continue to worsen as hardware
improves unless commensurate improvements are made to
deep learning frameworks.

7. Discussion
Computational graph optimizations and compilation im-
prove latency. Removal of host language dependencies
and graph optimizations provides substantial speedups over



100 101 102

Batch Size

10 2

10 1

La
te

nc
y 

(s
)

ResNet-50 fp32
1080Ti
2080Ti
3090
RTX-8000
A6000
V100
A100

100 101 102

Batch Size

10 2

10 1

ResNet-50 fp16

100 101 102

Batch Size

10 2

10 1

100
BERT-Base fp32

100 101 102

Batch Size

10 2

10 1

BERT-Base fp16

Figure 9. Framework overhead becomes increasingly prominently with newer generations of GPU. See Fig ?? in Appendix E for an
alternative view featuring throughput across generations of GPUs

eager frameworks for inference at low batch sizes. However,
feature completeness for operators and control flow varies
across graph optimizers and compilers. For example, the
FNet architecture (Lee-Thorp et al., 2021) relies on FFTs
as a swap-in for self-attention. Currently, FFT operations
are not currently supported by ONNX or TorchScript. As
expected, FNet executed in PyTorch outperforms BERT exe-
cuted in ONNX RT despite less framework overhead – with
a 10.31% speedup at batch size 1.

Dynamic computational graphs can be faster for input
sentences with variable lengths. Dynamic computational
graphs can leverage input sparsity to reduce latency when
processing variable length text. For example, PyTorch with
sparse tensor optimizations reduces the latency of BERT-
Base using static CUDA graphs by 80.56% at batch size
128 when processing sparse inputs.

At large input sizes, framework overhead from graph
operations is negligible. For batch sizes larger than 16,
we find there is minimal latency difference across models,
inference runtimes, and frameworks. In the compute-bound
regime, number of FLOPs is still a poor latency predic-
tor due to variable execution time for different operations.
For example, mobile architectures that depend on inverted-
residual layers are memory inefficient and are much slower
per-FLOP than standard convolution and GEMM layers.

For framework-bound models, model depth is a reason-
able proxy for latency. Number of floating point opera-
tions is a poor indicator of latency in a framework-bound
setting, as total runtime is generally constant and tied to
framework overheads and the size of the computational
graph. In framework-bound models, the size of the compu-
tational graph is related to model depth.

Estimations of latency for models deployed in produc-
tion settings must account for their target framework
and hardware platform. Model development frequently
occurs using eager execution research frameworks. How-
ever, deployment often occurs in inference runtimes and
on mobile devices or specialized hardware. This misalign-

SA Dim FC Dim Batch Seq Len Latency Throughput

768 3072 1 128 0.0136 0.0136
768 3072 4 128 0.0134 0.0034
768 3072 1 512 0.0134 0.0134

1536 6144 1 128 0.0134 0.0134

Table 1. Latency of BERT PyTorch models on RTX-8000. Scaling
along batch sizes and model width shows no increase in latency.

ment can mislead the development of “efficient” models and
result in claimed gains that do not translate to real-world
deployment settings. As such, researchers should be clear
in specifying the setting of their “efficiency” gains, such
as the target frameworks and hardware platform, when de-
veloping new methods. For example, techniques such as
hardware-aware neural architecture search which leverage
direct latency measures must also control for framework
choices to account for this mismatch.

Using higher-performing hardware does not necessarily
improve end-to-end performance. Framework overhead
limits the impact of improved hardware as it limits utiliza-
tion. This trend will continue as ML-specific hardware
advances without efforts to address software bottlenecks.
For example, single-example inference with both BERT is
slower using an A100 than using a V100 GPU despite a
2.75x increase in peak computational throughput.

8. Conclusions
In this work, we conduct an study of neural networks from
the CNN and transformer architecture paradigms across
a variety of software and hardware platforms. We show
that inference performed with these large neural networks,
which was previously assumed to be compute bounded,
is in fact limited by overhead incurred by deep learning
frameworks – a phenomena we refer to as the framework tax.
In particular in the inference setting when compute kernels
can be executed quickly, we show that existing methods of
designing efficient model architectures are in fact limited by
limitations in framework design.



References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C.,
Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov,
A., Belopolsky, A., et al. Theano: A python framework
for fast computation of mathematical expressions. arXiv
e-prints, pp. arXiv–1605, 2016.

Barr, J. Amazon ec2 update-infl instances with aws inferen-
tia chips for high performance cost-effective inferencing,
2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li,
J., Kanda, N., Yoshioka, T., Xiao, X., et al. Wavlm: Large-
scale self-supervised pre-training for full stack speech
processing. IEEE Journal of Selected Topics in Signal
Processing, 16(6):1505–1518, 2022.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

Dai, Z., Lai, G., Yang, Y., and Le, Q. Funnel-transformer:
Filtering out sequential redundancy for efficient language
processing. Advances in neural information processing
systems, 33:4271–4282, 2020.

Dehghani, M., Arnab, A., Beyer, L., Vaswani, A., and
Tay, Y. The efficiency misnomer. arXiv preprint
arXiv:2110.12894, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Gleeson, J., Gabel, M., Pekhimenko, G., de Lara, E., Kr-
ishnan, S., and Janapa Reddi, V. Rl-scope: Cross-stack
profiling for deep reinforcement learning workloads. Pro-
ceedings of Machine Learning and Systems, 3:783–799,
2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hooker, S. The hardware lottery. Communications of
the ACM, 64(12):58–65, nov 2021. ISSN 0001-0782.
doi: 10.1145/3467017. URL https://doi.org/10.
1145/3467017.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

Iandola, F. N., Shaw, A. E., Krishna, R., and Keutzer,
K. W. Squeezebert: What can computer vision teach
nlp about efficient neural networks? arXiv preprint
arXiv:2006.11316, 2020.

Janapa Reddi, V., Kanter, D., Mattson, P., Duke, J., Nguyen,
T., Chukka, R., Shiring, K., Tan, K.-S., Charlebois, M.,
Chou, W., et al. Mlperf mobile inference benchmark: An
industry-standard open-source machine learning bench-
mark for on-device ai. Proceedings of Machine Learning
and Systems, 4:352–369, 2022.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference
on Multimedia, pp. 675–678, 2014.

Kahn, J. D., Pratap, V., Likhomanenko, T., Xu, Q., Hannun,
A., Cai, J., Tomasello, P., Lee, A., Grave, E., Avidov, G.,
et al. Flashlight: Enabling innovation in tools for ma-
chine learning. In International Conference on Machine
Learning, pp. 10557–10574. PMLR, 2022.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

https://www.tensorflow.org/
http://github.com/google/jax
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017


Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. Fnet:
Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

Leopold, G. Aws to offer nvidia’s t4 gpus for
ai inferencing. URL: https://web. archive.
org/web/20220309000921/https://www. hpcwire.
com/2019/03/19/aws-upgrades-its-gpu-backed-ai-
inference-platform/(visited on 2022-04-19), 2019.

Lin, Z., Feng, L., Ardestani, E. K., Lee, J., Lundell, J.,
Kim, C., Kejariwal, A., and Owens, J. D. Building a
performance model for deep learning recommendation
model training on gpus. arXiv preprint arXiv:2201.07821,
2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C.,
Munguia, L.-M., Rothchild, D., So, D. R., Texier, M.,
and Dean, J. The carbon footprint of machine learning
training will plateau, then shrink. Computer, 55(7):18–28,
2022. doi: 10.1109/MC.2022.3148714.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., et al. Mlperf inference bench-
mark. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–
459. IEEE, 2020.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984, 2020.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2820–2828, 2019.

Taylor, A., Marcus, M., and Santorini, B. The penn tree-
bank: an overview. Treebanks: Building and using parsed
corpora, pp. 5–22, 2003.

Tokui, S., Oono, K., Hido, S., and Clayton, J. Chainer: a
next-generation open source framework for deep learning.
In Proceedings of workshop on machine learning systems
(LearningSys) in the twenty-ninth annual conference on
neural information processing systems (NIPS), volume 5,
pp. 1–6, 2015.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020a.

Wang, Y., Wei, G.-Y., and Brooks, D. A systematic method-
ology for analysis of deep learning hardware and software
platforms. Proceedings of Machine Learning and Sys-
tems, 2:30–43, 2020b.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai,
C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A.,
Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee,
H.-H., Akyildiz, B., Balandat, M., Spisak, J., Jain,
R., Rabbat, M., and Hazelwood, K. Sustainable ai:
Environmental implications, challenges and opportu-
nities. In Marculescu, D., Chi, Y., and Wu, C. (eds.),
Proceedings of Machine Learning and Systems, volume 4,
pp. 795–813, 2022. URL https://proceedings.
mlsys.org/paper/2022/file/
ed3d2c21991e3bef5e069713af9fa6ca-Paper.
pdf.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An
extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856,
2018.

Zhou, X., Chen, Z., Jin, X., and Wang, W. Y. Hulk:
An energy efficiency benchmark platform for respon-
sible natural language processing. arXiv preprint
arXiv:2002.05829, 2020.

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Phanishayee,
A., Schroeder, B., and Pekhimenko, G. Tbd: Benchmark-
ing and analyzing deep neural network training. arXiv
preprint arXiv:1803.06905, 2018.

Zhu, H., Phanishayee, A., and Pekhimenko, G. Daydream:
Accurately estimating the efficacy of optimizations for
{DNN} training. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pp. 337–352, 2020.

https://proceedings.mlsys.org/paper/2022/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf


A. Implementation Details

CPU GPU GPU Arch Core Count Tensor Cores Clock Rate
(GHz)

Memory
(GB)

Mem BW
(GB/s)

FP16
TFLOPS

Intel Xeon Silver 4110 1080Ti Pascal 3584 - 1.38 11 484.4 22.78
Intel Xeon Gold 6242 V100 Volta 5120 640 1.23 32 897 28.26
Intel Xeon E5-2630 2080Ti Turing 3584 544 1.35 11 616 26.90
Intel Xeon E5-2630 RTX-8000 Turing 4608 576 1.40 48 672 32.62
AMD EPYC 7282 3090 Ampere 10496 328 1.35 24 936 35.89
Intel Xeon Silver 4110 A6000 Ampere 10752 336 1.41 48 768 38.71
Intel Xeon 8339HC A100 Ampere 6912 432 1.215 40 1935 77.97

Table A1. Details on hardware platforms used in our experiments, ordered by Nvidia microarchitecture generation.

Framework Graph Compilation Kernel Serialization Latency SMs Active Warp Occupancy

PyTorch None None 10.54 ms 2.6% 0.9%
PyTorch with TorchScript Just-in-Time None 6.14 ms 18.5% 3.0%
PyTorch with CUDA Graphs None Yes 2.82 ms 57% 9.2%
ONNX RT Ahead-of-Time None 2.56 ms 22.3% 9.5%
ONNX RT with CUDA Graphs Ahead-of-Time Yes 2.11 ms 59% 20.3%

Table A2. Comparison of SM Activity Across Frameworks for BERT-Base at batch size 1.

Full hardware details are described in Table A1. We use PyTorch 1.12.1 with CUDA 11.6 and Python 3.8.13. We use ONNX
Runtime 1.7.0 with CUDA 11.1.1 and cuDNN v8.0.4.3. Baseline experiments are run on a compute node with an Nvidia
RTX-8000 GPU and an Intel Xeon E5-2630 CPU with 32 GB of DDRAM memory.

B. Results Using Precompiled CUDA Graphs
CUDA Graphs are an optimization that enable compilation and serialization of multiple CUDA kernels and remove the need
for repeated kernel dispatch calls. As such they can significantly reduce framework overhead, however they still observe low
hardware utilization.

Batch Size Latency (ms) SMs Active Warp Occupancy Memory Throughput (R — W )
1 2.81 57.0% 9.2% 5.3% — 2.3%
2 3.07 63.4% 17.6% 13% — 8%
4 3.95 64.4% 25.6% 9.5% — 9.2%
8 6.02 73.4% 32.4% 13.0% — 13.1%
16 10.84 78.1% 39.6% 16.5% — 15.3%
32 20.65 82.8% 42.4% 21.7% — 16.5%
64 35.77 93.5% 47.9% 24.9%— 19.1%

Table A3. GPU Utilization of BERT-Base executed in PyTorch with CUDA Graphs on an RTX-8000.

C. Related Work
C.1. Neural Network Frameworks and Runtimes

Specialized frameworks enable execution of deep learning workloads by implementing and providing APIs for tensor
operations, gradient calculation, and construction of computational graphs. Frameworks generally fall into the following
design paradigms (Kahn et al., 2022):

• Eager Execution: A computational graph is constructed from a series of operations that are executed as soon as they are
called from an interpreter. Examples include: PyTorch (Paszke et al., 2019), TensorFlow 2.0 Eager (Abadi et al., 2015),
Chainer (Tokui et al., 2015).

• Deferred Execution: A series of operations are defined and executed on sample data to generate a dataflow graph that
can then be just-in-time (JiT) compiled. Examples include: PyTorch TorchScript, Jax (Bradbury et al., 2018), Theano
(Al-Rfou et al., 2016), Caffe (Jia et al., 2014).



Framework Compilation Kernel Serialization Latency SMs Active Warp Occupancy
PyTorch Eager None 10.54 ms 2.6% 0.9%
PyTorch with TorchScript Just-in-Time None 6.14 ms 18.5% 3.0%
PyTorch with CUDA Graphs Eager Yes 2.82 ms 57% 9.2%
ONNX RT Ahead-of-Time None 2.56 ms 22.3% 9.5%
ONNX RT with CUDA Graphs Ahead-of-Time Yes 2.11 ms 59% 20.3%

Table A4. Comparison of SM Activity Across Frameworks for BERT-Base at batch size 1. CUDA Graphs enable higher GPU utilization
but still observe low levels of SM activity and warp occupancy.

• Static: A computational graph is pre-defined, compiled, and executed inside a specialized runtime; allowing for aggressive,
global ahead-of-time compiler (AoT) optimizations. Examples include: ONNX Runtime, TensorFlow 1.0, MXNet (Chen
et al., 2015), Nvidia TensorRT, and TVM (Chen et al., 2018).

While naively, the deferred and static settings appear to provide obvious benefits in production settings – the machine
learning research community continues to rely heavily on eager mode frameworks for their ease of use. This further
exacerbates the community divide, where models are designed under different assumptions than deployed.

Deferred and static execution frameworks leverage JiT or AoT compilation of their computational graphs allowing for
optimizations such as operator fusion. However, they are limited in model expressivity due to reduced support for structures
such as control flow and dynamic input sizes. In contrast, models under the eager execution paradigm allow for more
flexibility but incur larger amounts of framework overhead running inside an interpreted environment.

C.2. Efficiency Metrics & Efficient Model Design

To measure model efficiency, metrics intrinsic to the model architecture are often reported such as the number of trainable
parameters, number of floating point (FLOPs) or multiply-accumulate (MACs) operations. Number of trainable parameters
is a frequently reported metric as a proxy for memory usage. However, parameter count is often not predictive of model
speed (Zhou et al., 2020) and techniques such as weight tying can reduce in parameter counts without reducing the amount
of computation (Lan et al., 2019).

Optimizing for FLOP counts has motivated the development of model architectures that achieve comparable task performance
under a fixed FLOP budget (Dai et al., 2020) and scaling model width and depth to reduce overall size (Sanh et al., 2019).
Low-FLOP operations, such as grouped convolutions (Iandola et al., 2016; Zhang et al., 2018) and inverted residual
bottlenecks (Sandler et al., 2018; Sun et al., 2020), have been developed as substitutes for their standard, dense counterparts.
However, the tensor operation primitives and underlying hardware support varying levels of parallelism for different
arithmetic operations, leading to low correlation between FLOPs and latency.

Previous works examining the relationship between the mentioned efficiency measures have shown that these metrics often
do not correlate well with each other, nor with direct measurements of latency in large scale training (Dehghani et al., 2021;
Wang et al., 2020b). We extend this analysis to this inference setting and show that some of these metrics breakdown entirely
due to additional performance bottlenecks that emerge at different scales of computation.

C.3. Hardware and Platform Performance Analysis

Efforts to establish common benchmarks leverage reference models and hardware platforms with target latency or accuracy
(Reddi et al., 2020; Janapa Reddi et al., 2022; Zhou et al., 2020). Although these efforts have led to improvement in
end-to-end latency, they often abstract away the underlying frameworks, compilers, backends, and hardware platforms.
While general purpose improvements in hardware and software kernels may lead to improvements across all models, it has
been argued that solely focusing on performance optimization of a limited set of model architectures and runtimes may lead
to overspecialization (Hooker, 2021).

Previous analysis of the computational properties of hardware accelerators has largely focused on the training setting in
which larger kernels and batch sizes hide framework overhead that emerges in the inference setting (Wang et al., 2020b;
Zhu et al., 2020; 2018). Analyses of overhead in machine learning systems has primarily focused on domain-specific
applications, such as reinforcement learning and recommendation systems settings (Gleeson et al., 2021; Lin et al., 2022),
where simulation and memory access dominate execution time. These prior efforts are largely restricted to a small set of



reference model architectures and have not directly examined the relationship between model and platform in inference
across scale.

D. Additional Experiments: Speech
In Figure 10, we examine the behavior of the WavLM (Chen et al., 2022) model which consists of a CNN encoder followed
by transformer encoder layers. Audio inputs are simulated as 2 second sequences sampled at 16 kHz to create 32,000-
dimensional floating point inputs. As with transformers and CNNS, we observe that WavLM exhibits framework bound
behavior but quickly transitions to being compute-bound due to the large audio sequence lengths in Figure 10,

100 101 102

Batch Size

10 2

10 1
La

te
nc

y 
(s

)

WavLM (fp16)

100 101 102

Batch Size

10 2

10 1

WavLM (fp32)
PyTorch
TorchScript

Figure 10. Transformer-based speech models exhibit framework boundedness but transition to compute-bound at small batch sizes due to
long sequence lengths.

E. Additional Figures

Figure 11. Framework boundedness is apparent at low batch sizes, as latency is consistent across accelerators. For larger models,
framework boundedness dissipates for smaller bath sizes as inference becomes compute bound. Hardware used are the same as prior
benchmarks.


