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Abstract

Thompson sampling (TS) is a powerful and widely used strategy for sequential
decision-making, with applications ranging from Bayesian optimization to rein-
forcement learning (RL). Despite its success, the theoretical foundations of TS
remain limited, particularly in settings with complex temporal structure such as
RL. We address this gap by establishing no-regret guarantees for TS using models
with Gaussian marginal distributions. Specifically, we consider TS in episodic RL
with joint Gaussian process (GP) priors over rewards and transitions. We prove a
regret bound of Õ(

√
KHΓ(KH)) over K episodes of horizon H , where Γ(·) cap-

tures the complexity of the GP model. Our analysis addresses several challenges,
including the non-Gaussian nature of value functions and the recursive structure of
Bellman updates, and extends classical tools such as the elliptical potential lemma
to multi-output settings. This work advances the understanding of TS in RL and
highlights how structural assumptions and model uncertainty shape its performance
in finite-horizon Markov Decision Processes.

1 Introduction

Sequential decision-making under uncertainty lies at the core of many machine learning systems,
from robotics (Kober et al., 2013) and chip design (Mirhoseini et al., 2021) to large language
models (Ouyang et al., 2022). In these settings, an agent must make a series of decisions, balancing
exploration to learn about the environment with exploitation to act effectively. A central question is:
how should an agent leverage uncertainty to act optimally over time?

Thompson sampling (TS) is a widely used and principled approach for sequential decision-making
that naturally balances exploration and exploitation through posterior sampling (Thompson, 1933).
The idea is to sample a model from the posterior and select actions that are optimal under that
model. The inherent randomness in TS aligns exploration with the agent’s uncertainty and can lead
to more efficient learning compared to methods based on confidence bounds (Russo et al., 2018). TS
underpins a range of applications including bandits (Chapelle and Li, 2011; Kaufmann et al., 2012b;
Russo et al., 2018), Bayesian optimization (Srinivas et al., 2010; Chowdhury and Gopalan, 2017;
Vakili et al., 2021b), and reinforcement learning (RL) (Sasso et al., 2023; Osband and Van Roy, 2017;
Bayrooti et al., 2025). Empirically, TS has demonstrated strong performance across domains and is
widely adopted in practice. Theoretical guarantees for TS have been well-developed in multi-armed
bandit settings (Agrawal and Goyal, 2012; Kaufmann et al., 2012a) and have also been extended to
RL settings (Osband et al., 2013; Osband and Van Roy, 2017; Chowdhury and Gopalan, 2019; Dann
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et al., 2021). However, existing analyses in RL typically rely on discrete state-action spaces, assume
linear or kernelized dynamics, or yield regret bounds that scale poorly with state dimensionality.
Establishing tight regret bounds for TS in continuous-state Markov Decision Processes (MDPs)
without strong structural assumptions remains an important open problem.

In this work, we take a step toward closing this gap by studying TS for sequential decision-making
under general, continuous models of the environment. We focus on RL in finite-horizon MDPs, where
both rewards and transitions are jointly modeled using a multi-output GP, as proposed by Bayrooti
et al. (2025). This approach enables the agent to model correlations across different components
of the environment in a flexible and data-efficient manner. We consider an episodic MDP with K
episodes of horizon H , where at the start of each episode, the agent samples a realization from the
GP posterior and computes an optimal policy with respect to this sample. Regret is defined as the
cumulative loss in value relative to the optimal policy. We provide a stylized analytical upper bound
on the regret, showing its dependence on the number of episodes, the horizon, and the complexity of
the GP kernel. Our analysis highlights the key theoretical challenges of applying TS in sequential
settings, particularly due to the recursive and compositional nature of value functions in RL.

1.1 Contributions

We establish a sublinear regret bound for TS in model-based RL under GP models, an approach
we refer to as Reinforcement Learning with GP Sampling (RL-GPS). We prove a regret bound of
Õ(
√
KHΓ(KH)) over K episodes of horizon H , where Γ(·) captures the complexity of the GP

model. Sublinear regret in K implies that RL-GPS asymptotically matches the performance of the
optimal policy, referred to as no-regret learning (Srinivas et al., 2010; Agrawal and Goyal, 2013b).

Our theoretical analysis introduces several novel intermediate contributions that are essential to
deriving the final regret bound. Extending TS regret guarantees to RL presents two main challenges:
(i) the optimal value function is a recursive composition of GPs which is not a GP itself (Damianou
and Lawrence, 2013); and (ii) TS operates on proxy models induced by Bellman updates, rather
than sampling directly from the posterior over the optimal value function. To address (i), we derive
high-probability confidence bounds for compositional functions of GPs, formalized in Theorem 1,
which allow us to control the error that accumulates through Bellman recursion. Building on these
bounds, we obtain high-probability confidence intervals for recursive value functions in episodic
MDPs (Corollary 1) that links the sampled proxy to the true value. To address (ii), we bound the
regret in terms of cumulative posterior uncertainty via a new multi-output elliptical potential lemma
(Lemma 1) that jointly tracks correlated uncertainty across multiple outputs. This lemma provides
tighter regret guarantees than naively applying the standard versions (Srinivas et al., 2010; Abbasi-
Yadkori et al., 2011; Carpentier et al., 2020) independently to each output dimension by leveraging
the correlation structure. We further introduce a delayed-update lemma (Lemma 2) that accounts for
model updates at the end of episodes, yielding an improved dependence on the horizon H .

Finally, we conduct controlled experiments designed to mirror the theoretical assumptions and validate
our regret bounds. Our results confirm sublinear cumulative regret across a range of environments,
including GP-sampled MDPs and sparse navigation tasks. Furthermore, we empirically illustrate how
the choice of GP kernel affects learning efficiency, with smoother kernels such as RBF leading to
faster regret decay in smooth environments, and rougher Matérn kernels outperforming in sparse
settings. These findings are consistent with the theoretical dependence on model complexity and
highlight the importance of model selection in practical applications.

1.2 Related work

RL with TS. The theoretical performance of Thompson sampling (TS) has been extensively
studied in the bandit setting, where it achieves near-optimal regret bounds and strong empirical
performance (Agrawal and Goyal, 2012, 2013a; Kaufmann et al., 2012b; Korda et al., 2013; Russo
and Van Roy, 2014; Russo et al., 2018; Kveton et al., 2020). In the GP bandit setting, Chowdhury
and Gopalan (2017) provided regret bounds for TS under kernel-based assumptions on the target
functions, introducing techniques that our analysis builds on (see Step 2 in Section 4 for details).
Extending TS to RL introduces new challenges due to the recursive structure of value functions
and the dependence on both states and actions. Several works have established foundational regret
guarantees for TS in finite MDPs (Osband et al., 2013; Osband and Van Roy, 2014; Osband et al.,
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2016; Russo, 2019). In particular, Posterior Sampling for Reinforcement Learning (PSRL) (Osband
et al., 2013; Osband and Van Roy, 2017) achieves Õ(H

√
SAT ) Bayesian regret, where H is the

horizon, S the number of states, A the number of actions, and T the total number of steps. Building
on their analyses, Fan et al. (2018) studied TS in continuous MDPs and established Bayesian regret
bounds. Dann et al. (2021) also considered continuous MDPs, but under linearity assumptions, and
derived tighter regret guarantees although their bounds scale poorly with state dimensionality. In the
kernelized RL setting, Chowdhury and Gopalan (2019) analyzed TS where the transition probability
distribution is assumed to be a fixed function in a reproducing kernel Hilbert space (RKHS) and
derived regret bounds that depend on the maximum information gain of the kernel.

Our work differs fundamentally from these approaches in both modeling and analysis. We model the
reward and transition functions jointly as a multi-output GP and our analysis provides high-probability
bounds that hold uniformly across all problem instances, unlike Bayesian regret bounds that are
averaged over the distribution of all problems. Consequently, our approach requires different proof
techniques and much of the analysis we present is novel, including Theorem 1 on confidence bounds
for composed GPs, Corollary 1 on high-probability value function bounds, and Lemmas 1 and 2 on
multi-output elliptical potential bounds. Our assumptions are also more mild than in prior analyses.
For example, PSRL (Osband et al., 2013; Osband and Van Roy, 2017) assumes finite state and action
spaces, linear MDP methods (Dann et al., 2021; Jin et al., 2020) assume linearity in both rewards and
transitions, and RKHS-based approaches (Chowdhury and Gopalan, 2019) assume that the transition
dynamics are modeled as fixed functions within a known RKHS, effectively treating each component
independently. In contrast, our multi-output GP framework flexibly captures correlations between
reward and transition without requiring assumptions on discretization, linearity, or independence.

Episodic MDP. The episodic MDP framework is a central setting for RL. Sublinear regret bounds
have been established for Upper Confidence Bound (UCB) based methods in tabular finite-horizon
MDPs (Azar et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019). Subsequent works have
developed regret analyses for UCB-style methods with additional structural assumptions, including
linear (Jin et al., 2020) and kernelized MDPs (Chowdhury and Gopalan, 2019; Yang and Wang, 2020;
Vakili and Olkhovskaya, 2023). Additionally, Curi et al. (2020) introduced an optimistic algorithm for
continuous state-action MDPs and established regret guarantees under standard assumptions for GP
models. These approaches all rely on optimism via constructed confidence sets to guide exploration.
In contrast, TS offers an exploration approach that avoids explicit construction of confidence sets and
has been less theoretically studied in complex RL settings.

Broader RL settings. Beyond episodic MDPs, it is also common to study performance in infinite-
horizon discounted (Puterman, 2014) and average-reward settings (Auer et al., 2008; Vakili and
Olkhovskaya, 2024). In the discounted setting, the contraction properties of the Bellman operator
enable efficient learning. For example, Ouyang et al. (2017) leverages these properties to dynamically
adapt episode lengths and demonstrate sublinear regret for TS. In the infinite-horizon average-reward
setting, regret bounds have been established for tabular communicating MDPs with finite diameter
using UCB-based strategies (Auer et al., 2008; Jaksch et al., 2010; Agrawal and Jia, 2017; Wei et al.,
2021). More recent works have analyzed regret in structured infinite-horizon settings, each addressing
different challenges. Wu et al. (2022) provided nearly minimax-optimal guarantees for model-based
linear mixture MDPs with known feature mappings. Ghosh and Zhou (2023) established sublinear
regret bounds using model-free methods with linear function approximation in weakly communicating
MDPs. Sukhija et al. (2024) studied continuous, nonlinear dynamical systems in nonepisodic settings
and established sublinear regret bounds in terms of maximum information gain under continuity
and bounded energy assumptions. In general, infinite-horizon and average-reward settings require
structural assumptions such as finite diameter, weakly communicating structure, or continuity and
boundedness to obtain theoretical guarantees and the resulting regret bounds often depend explicitly
on these properties. By focusing on the episodic setting, we sidestep these complications and exploit
the finite-horizon structure to develop a regret analysis using GP-based recursive bounds.

2 Problem formulation

An episodic MDP is defined by the tuple (S,A, fR, fS, H), where S ⊂ RdS is the state space,
A ⊂ RdA is the action space, and H is the episode length. The reward function is fR : S ×A 7→ R,
and the state transition function is fS : S ×A 7→ S.
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The policy π = {πh : S 7→ A}Hh=1 specifies the action πh(s) the agent takes in state s at step h. At
the start of each episode k = 1, 2, . . . ,K, the environment selects an initial state s1,k and the agent
determines a policy πk = {πh,k}Hh=1. At each step h of the episode, the agent observes the state sh,k
and selects action ah,k = πh,k(sh,k). The agent then receives reward fR(sh,k, ah,k) and transitions
to the new state sh+1,k = fS(sh,k, ah,k).

In an episodic MDP, the agent aims to maximize the cumulative reward collected over an episode.
To formalize this, we define the value function of a policy π as the expected total reward obtained
when starting at state s at step h and following π thereafter, where the expectation is taken over the
trajectory {(sh′ , ah′)}Hh′=h induced by the policy π:

V π
h (s) = E

[
H∑

h′=h

fR(sh′ , ah′) | sh = s

]
, ∀s ∈ S, h ∈ [H]. (1)

The associated state-action value function is defined as:

Qπ
h(s, a) = E

[
H∑

h′=h

fR(sh′ , ah′) | sh = s, ah = a

]
. (2)

We assume the existence of an optimal policy π⋆ that maximizes the expected total reward from any
state and time step. The optimal value and optimal state-action value functions are defined as:

V ⋆
h (s) = max

π
V π
h (s), Q⋆

h(s, a) = max
π

Qπ
h(s, a). (3)

The optimal value function satisfies the Bellman optimality equation:

Q⋆
h(s, a) = fR(s, a) + V ⋆

h+1(fS(s, a)), V ⋆
h (s) = max

a∈A
Q⋆

h(s, a), (4)

with V ⋆
H+1(s) = 0 for all s ∈ S . An RL algorithm aims to find a near-optimal policy while interacting

with the environment. The regret over T timesteps is defined as:

Regret(T ) =
K∑

k=1

(V ⋆
1 (s1,k)− V πk

1 (s1,k)), (5)

where πk is the policy executed by the agent in episode k, and s1,k is the initial state of that episode,
and we use T = KH for the total number of steps.

Gaussian process modeling. GPs specify distributions over the space of functions, offering cal-
ibrated uncertainty estimates that can be leveraged for exploration and decision making. In the
single-output case, we model an unknown function f : Z → R as a Gaussian process:

f ∼ GP(0, k), (6)

with a scalar-valued kernel k : Z × Z → R. Given n noisy observations {(zi, yi)}ni=1 with
yi = f(zi) + εi and εi ∼ N (0, λ2), the posterior mean and variance at any test point z ∈ Z are
given by:

µn(z) = k⊤
n (Kn + λ2In)

−1yn,

σ2
n(z) = k(z, z)− k⊤

n (Kn + λ2In)
−1kn, (7)

where Kn ∈ Rn×n is the kernel matrix with [Kn]ij = k(zi, zj), kn(z) ∈ Rn has entries k(zi, z),
and yn ∈ Rn is the vector of observed outputs.

Multi-output Gaussian processes. In many applications, we wish to model a vector-valued
function f : Z → Rd jointly across multiple correlated outputs. In this setting, f is modeled as a
multi-output GP (6) where k : Z ×Z → Rd×d is a matrix-valued positive semidefinite kernel that
encodes both input similarity and output correlations.

Given n input points z1, . . . , zn, let the observed outputs be collected into a vector yn ∈ Rnd by
stacking all d outputs at each input. The full joint prior over yn is a multivariate Gaussian with zero
mean and block kernel matrix Kn ∈ Rnd×nd defined by:

Kn[(i− 1)d+ r, (j − 1)d+ s] = [k(zi, zj)]rs for i, j ∈ [n], r, s ∈ [d].
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The posterior at test point z is again Gaussian:

µn(z) = kn(z)
⊤(Kn + λ2Ind)

−1yn ∈ Rd,

Σn(z) = k(z, z)− kn(z)
⊤(Kn + λ2Ind)

−1kn(z) ∈ Rd×d, (8)

where kn(z) ∈ Rnd×d is the cross-covariance between f(z) and the training outputs, defined
via [kn(z)](i−1)d+r,s = [k(zi, z)]rs. We define σ2

n(z) := diag(Σn(z)) ∈ Rd as the marginal
predictive variances. With slight abuse of notation, we use σn(z) to denote the vector of marginal
standard deviations, where σn,i(z) = (σ2

n,i(z))
1/2 for i = 1, . . . , d. The posterior mean µn(z) and

uncertainty Σn(z) allow multi-output GPs to provide joint, uncertainty-aware predictions across
outputs, making them well-suited for RL settings where transition and reward models must be
estimated simultaneously.

3 Reinforcement learning with GP sampling

In this section, we present RL-GPS for learning episodic MDPs with joint GP modeling of the reward
and transition functions, following the multi-output model in Bayrooti et al. (2025).

Assumption 1. Let f = [fR, fS] denote the joint reward and transition function. We assume f is
distributed as a multi-output Gaussian process: f ∼ GP(0, k), for a known matrix-valued kernel
k : Z × Z 7→ Rd×d.

Remark 1. GPs offer flexible representational capacity since their smoothness and expressiveness
depend on the kernel choice. For instance, the Matérn family introduces a smoothness parameter ν
controlling function regularity, where smaller ν values yield rougher functions that better capture
non-smooth behavior. As shown by Srinivas et al. (2010), Matérn kernels can approximate any
continuous function on compact subsets of Rd, making GP priors highly expressive. Consequently,
our setting can capture a broad class of reward and transition functions, including those with limited
smoothness, and is applicable to many continuous-control environments (Bayrooti et al., 2025).

The RL-GPS algorithm follows a value-iteration-based form of TS, where at the start of each episode,
the agent samples a realization of the reward and transition functions from the GP posterior and
computes proxy value functions Qh,k : Z 7→ R via backward induction. The agent then executes the
greedy policy induced by this value function for the duration of the episode. This sampling-based
approach encourages exploration by introducing structured randomness into value estimates, naturally
balancing exploitation of high-reward regions with exploration of uncertain areas of the state-action
space. Pseudocode is provided in Algorithm 1.

Algorithm 1 RL with GP Sampling (RL-GPS)

1: Require: number of episodes K, episode length H , GP kernel k
2: Initialize: reward-dynamics model p(f), reward and transition buffer D
3: for episode k = 1, . . . ,K do
4: // Create the proxy value functions Qh,k

5: Sample functions [f̂R,k, f̂S,k] from GP posterior p(f | D)
6: Initialize VH+1,k(·) = 0
7: for h = H, . . . , 1 do
8: Qh,k(s, a) = f̂R,k(s, a) + Vh+1(f̂S,k(s, a))
9: Vh,k(s) = maxa∈A Qh,k(s, a)

10: // Follow the greedy policy with respect to Qh,k

11: Observe initial state s1,k
12: for h = 1, . . . , H do
13: Select action ah,k = argmaxa∈A Qh,k(sh,k, a)
14: Observe next state sh+1,k = fS(sh,k, ah,k) and reward rh,k = fR(sh,k, ah,k)
15: Store reward and transition in buffer (sh,k, ah,k, rh,k, sh+1,k) → D
16: Update GP posterior p(f | D) using new transitions
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4 Analysis

In this section, we derive a regret bound for RL-GPS (Algorithm 1) in episodic MDPs with a multi-
output GP model. We introduce intermediate results and provide the regret bound in Theorem 2.

4.1 Confidence intervals

To analyze the regret, we require high-probability bounds on the accuracy of GP predictions. For a
single-output GP f with posterior mean µn and standard deviation σn, the tail decay of the Gaussian
distribution implies that, with probability at least 1− δ, the following holds uniformly over z:

|f(z)− µn(z)| ≤ βn(δ)σn(z) (9)

where βn(δ) = O(
√
log(nδ )) (e.g., see Srinivas et al., 2010).

In the RL setting, we must also construct confidence intervals for v(fS(·)) as part of the policy’s
recursive design where v : S 7→ R is a generic value function. The following theorem addresses this.
Theorem 1 (Confidence bounds for composed GPs). Assume f : Z 7→ S ⊂ RdS is a multi-output
GP with posterior mean µn and standard deviation σn. Let v : S 7→ R be a twice differentiable
value function where for all s ∈ S, ∥∇v(s)∥ ≤ uG and ∥∇2v(s)∥op ≤ uH . Define the composition
g(z) = v(f(z)). Then, with probability 1− δ, for all z ∈ Z ,

|g(z)− v(µn(z))| ≤ uGβn(δ/dS)∥σn(z)∥+
1

2
uHβn(δ/dS)

2∥σn(z)∥2. (10)

The proof uses a Taylor expansion of v to bound |g(z)− v(µn(z))| in terms of the first- and second-
order behavior of v, together with the standard GP confidence intervals given in (9). A detailed proof
is provided in Appendix A.

4.2 Performance analysis of RL-GPS

To analyze the regret of RL-GPS, we first introduce our assumption regarding the smoothness of the
value functions.
Assumption 2 (Smoothness of the value functions). We assume that for all h, Vh is twice differentiable
where for all s, ∥∇Vh(s)∥ ≤ uG and ∥∇2Vh(s)∥op ≤ uH .
Remark 2. The assumptions on the gradient and Hessian norms are mild compared to those typically
imposed on value functions in the literature. For example, in Jin et al. (2020) and Yang et al. (2020),
it is assumed that all proxy value functions belong to a function class defined using linear or kernel-
based models, respectively. In contrast, we impose a weaker assumption only on the first and second
derivatives of the value functions.

Now we present the main theorem bounding the regret of RL-GPS.
Theorem 2. Consider the episodic MDP setting described in Section 2 and the RL-GPS algorithm
given in Algorithm 1. Under Assumptions 1 and 2, with probability 1− δ,

Regret(T ) = O
(
log(Td/δ)

√
TΓ(T )

)
,

where Γ(T ) = supzh,k,h∈[H],k∈[K] IT , IT := 1
2 log det(ITd +

1
λ2KT ).

The determinant in Γ(·) represents the complexity of the function space described by the GP (Ras-
mussen and Williams, 2006) and serves as an upper bound on the information gain, which is discussed
in detail in the next section.

The regret bound holds with high probability, where the randomness accounts for both the joint GP
distribution of the environment and the randomness in the Thompson samples.
Remark 3. The Matérn family is both theoretically significant and practically prevalent among
kernel choices. By substituting the bounds on Γ(·) from Vakili et al. (2021a), we obtain the following
regret rates. For a base Matérn kernel with smoothness parameter ν > 1, our regret bound becomes:

Regret(T ) = Õ
(
T

ν+d
2ν+d

)
,

while for the radial basis function (RBF) kernel, the regret bound simplifies to Õ
(√

T
)

.
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Remark 4. When H = 1, learning in episodic MDPs reduces to the degenerate special case of
Bayesian optimization, also known as GP bandits. In this setting, we have T = K and our regret
bound becomes:

Regret(T ) = O
(
log(T/δ)

√
TΓ(T )

)
,

which recovers the standard regret bounds in Bayesian optimization (e.g., see Srinivas et al., 2010).

4.3 Proof of Theorem 2

Our analysis bounds the total regret by comparing the per-episode value of RL-GPS to the optimal
value function. We decompose this difference into immediate and recursive components, bound
each using confidence intervals derived from the GP model, and then accumulate the bounds via
the information gain of the kernel. The key novelty lies in extending both the confidence analysis
and the elliptical potential lemma to multi-output GPs. A detailed proof is provided in Appendix B,
structured around the following four main steps:

Step 1: Regret decomposition. We decompose the per-step regret into two components: an
immediate regret term related to TS, and a recursive term capturing uncertainty in value propagation
through the transition model (proven in (13) in Appendix B).

V ⋆
h (sh,k)− V πk

h (sh,k) = Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)︸ ︷︷ ︸
(Immediate regret)

+
(
V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k))
)︸ ︷︷ ︸

(Recursive part of regret)

.

(11)

Step 2: Bounding the immediate regret. To bound the immediate regret, we build on techniques
from the analysis of TS in GP bandits (Chowdhury and Gopalan, 2017), but face two key challenges
unique to the RL setting: (i) the target function Q⋆

h(s, a) = fR(s, a) + V ⋆
h+1(fS(s, a)) is recursive

and compositional and thus cannot be directly modeled as a GP; (ii) the TS algorithm samples from
the posterior of a proxy Qh,k, not the true posterior over Q⋆

h.

To address both issues, we construct high-probability upper and lower confidence bounds on the
proxy and target value functions, which to our knowledge have not appeared in prior analyses. These
confidence intervals allow us to relate the sampled proxy values to the true value of the selected
action and quantify the regret incurred.
Definition 1 (Upper and lower confidence bounds for value functions). We define the upper confidence
bounds recursively as:

Qu
h,k(s, a) = µR,k(s, a) + V u

h+1,k(µS,k(s, a)) + ξk(s, a), V u
h,k(s) = max

a∈A
Qu

h,k(s, a),

with V u
H+1,k(s) = 0. Similarly, the lower confidence bounds are defined as:

Ql
h,k(s, a) = µR,k(s, a) + V l

h+1,k(µS,k(s, a))− ξk(s, a), V l
h,k(s) = max

a∈A
Ql

h,k(s, a),

with V l
H+1,k(s) = 0. The confidence width ξk(s, a) is given by:

ξk(s, a) = βk(δ/Td)σR,k(s, a) + uGβk(δ/Td)∥σS,k(s, a)∥+
1

2
uHβk(δ/Td)

2∥σS,k(s, a)∥2,

based on Theorem 1. Here, µR,k, σR,k and µS,k, σS,k are the posterior mean and standard deviation
of fR and fS, respectively.
Corollary 1. With probability at least 1 − δ, the optimal and proxy value functions lie within the
confidence bounds:

Ql
h,k(s, a) ≤ Qh,k(s, a), Q

⋆
h(s, a) ≤ Qu

h,k(s, a), ∀(h, k, s, a).

Step 3: Accumulating regret across an episode. We unroll the recursive regret decomposition and
accumulate the bounds over all steps h = 1, . . . , H within an episode, leading to a per-episode regret
bound expressed in terms of confidence widths:

Regret(T ) ≤ c

K∑
k=1

H∑
h=1

ξk(sh,k, ah,k).

7



where c is an absolute constant.

Step 4: Bounding cumulative regret. Finally, we sum the per-episode regret bounds over K
episodes, obtaining a cumulative regret expression that involves sums of posterior standard deviations
in GPs. We bound these terms using a new elliptical potential lemma (Lemma 1) for multi-output
GPs, which is introduced in the next section. Also, an additional challenge arises due to the structure
of the problem: it involves a double sum over episodes k and steps h, but within each episode, the
observations across h are not sequentially incorporated into the GP posterior. This batched structure
leads to an additional dependence on the episode length H , which we address using tools developed
for GP analysis under batch observations and delayed feedback (Calandriello et al., 2020, 2022).

4.4 Elliptical potential lemma for multi-output GPs

In analyzing cumulative regret, a central quantity is the sum of sequentially conditioned posterior
variances from a GP. A classical result by Srinivas et al. (2010) shows that for scalar-output GPs, the
sum of variances along a sequence of inputs z1, . . . , zT is bounded by a log-determinant term:

T∑
t=1

σ2
t−1(zt) ≤ C log det

(
ITd +

1

λ2
KT

)
,

where λ is the GP noise parameter, KT is the kernel matrix over the inputs, and C is a constant. This
result is often referred to as the elliptical potential lemma, particularly in the special case of linear
kernels (Carpentier et al., 2020).

In our setting, the transition function is modeled as a multi-output GP, which requires a generalization
of the classical result to vector-valued functions. Applying scalar GP bounds independently across
output dimensions would result in regret bounds that scale linearly with the state dimension dS. To
address this, we derive the following elliptical potential lemma for multi-output GPs that exploits
inter-dimensional correlations captured by the kernel.
Lemma 1 (Elliptical potential lemma for multi-output GPs). Let f : Z → Rd be a d-dimensional
function modeled by a multi-output GP with matrix-valued kernel k. Let z1, . . . , zT ∈ Z be a
sequence of input points, and denote by σt−1(zt) ∈ Rd the vector of posterior standard deviations at
zt conditioned on data up to round t− 1. Then,

T∑
t=1

∥σt−1(zt)∥2 ≤ CIT ,

where C = 2
log(1+λ−2) is a constant and IT denotes the mutual information between the observations

y1:T = {f(zt) + εt}Tt=1 and the latent function f , given by

IT =
1

2
log det

(
ITd + λ−2KT

)
.

A detailed proof is provided in Appendix C.2. It extends the result of Srinivas et al. (2010) to the
multi-output setting relevant to our analysis.

5 Experiments

To empirically validate the regret scaling in Theorem 2, we present synthetic experiments based on the
episodic MDP setup from Section 2 to assess the performance of RL-GPS in controlled environments
that reflect the assumptions in our theoretical analysis.

Kernel complexity. This experiment studies how kernel complexity impacts regret in synthetic
MDPs generated from GP-sampled environments. The state and action spaces are continuous,
S = [0, 1]2 and A = [0, 1], but each dimension is discretized into 25 equally sized bins to enable
tractable value function approximation. We compare three common kernel functions: the Radial
Basis Function (RBF) kernel and Matérn kernels with smoothness parameters ν = 2.5 and ν = 1.5.
For the specific multi-output GP model, we use the popular linear model of coregionalization
(LMC) (Grzebyk and Wackernagel, 1994; Wackernagel, 2003), which predicts the final vector-
valued output as a linear combination of independent latent GPs (see Appendix D for more details).
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Figure 1: Cumulative regret over different kernels
on GP-sampled environments over 200 trials. The
shaded region around each curve represents ±1
standard error of the mean across trials. Dotted
lines represent median regrets.

For each kernel, a sparse LMC multi-output GP
with zero mean and fixed linear correlations is
used to sample the ground-truth reward and tran-
sition functions, fR and fS, respectively (with re-
wards normalized to r ∈ [0, 1] per step), thereby
defining the MDP. The optimal value function
V ⋆ is computed using finite-horizon value it-
eration with H = 20. Algorithm 1 is run for
K = 1000 episodes and cumulative regret rel-
ative to the optimal value function is quanti-
fied. The results are averaged over 200 randomly
sampled environments and shown in Figure 1.
Across all kernels, cumulative regret grows sub-
linearly, which is consistent with our theoretical
analysis. Performance varies with the complex-
ity of the kernel: the RBF kernel yields the low-
est regret, followed by Matérn ν = 2.5 and then
Matérn ν = 1.5, as predicted by Remark 3. This
reflects that rougher kernels correspond to more
complex function classes and require more data
to accurately estimate value functions. These results empirically confirm the theoretical link between
kernel smoothness and learning efficiency that our analysis formally elucidates through the regret
bound’s dependence on information gain Γ(·).

Figure 2: The reward function (left column), optimal value function (middle column), and cumulative
regret of TS with a multi-output GP with confidence regions representing the standard error over 200
random trials (right column) are given. The first row corresponds to the sparse navigation task and
the second row corresponds to the sparse maze problem.

Multi-output kernel structure. These experiments study how the multi-output kernel structure
affects regret in sparse navigation tasks. The state space S = [0, 1]2 is discretized into 25 equally
spaced bins per dimension and the action space A consists of 9 discrete actions that move the agent
in the cardinal or diagonal directions or allow it to remain stationary. The agent receives a reward
of +1 when within 0.1 of the destination and a penalty of −0.01 otherwise. We study two settings:
free movement within the grid and constrained navigation through a maze. As before, the optimal
value function V ⋆ is computed using finite-horizon value iteration. Algorithm 1 runs for K = 1000
episodes with a sparse LMC multi-output GP posterior. The results over 200 trials are shown in
Figure 2 and demonstrate sublinear regret growth, consistent with our theory. Notably, in these sparse,
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less smooth environments, the RBF kernel accumulates regret more rapidly than the Matérn kernels.
This is due to the RBF kernel’s strong smoothness assumptions, which lead to model misspecification
and slower adaptation when the ground truth is rougher (Rasmussen and Williams, 2006). The results
also highlight the value of modeling output correlations using the LMC. Specifically, the Matérn
1.5 kernel without LMC incurs substantially higher regret in the maze environment compared to its
LMC-enabled counterpart. This indicates that explicitly capturing output dependencies can improve
sample efficiency and reduce regret, especially in structured or high-dimensional tasks. Additional
information about our experiments and results are given in Appendix E and our open-sourced
implementation at: https://github.com/jbayrooti/TS_regret_study.

6 Conclusion

We presented a regret analysis of Thompson sampling for reinforcement learning in finite-horizon
Markov Decision Processes with multi-output Gaussian Processes jointly modeling rewards and
transitions. Our analysis established a sublinear regret bound of Õ(

√
KHΓ(KH)), demonstrating

how the complexity of the GP kernel governs learning efficiency. To derive this result, we introduced
new tools for bounding uncertainty in recursive value functions, including confidence intervals
for compositional functions of GPs and a multi-output elliptical potential lemma that captures
correlations across components. These results extend classical GP analysis to vector-valued and
recursive settings and may be of independent interest. Our experiments validated our theoretical
predictions, showing sublinear regret across various tasks and kernels. Overall, this work illustrated
how structural assumptions and posterior uncertainty influence the dynamics of exploration in
reinforcement learning.

Limitations. Our analysis relies on assumptions that may not hold in general. Specifically, we
assume that the environment dynamics and rewards at each decision step are jointly Gaussian
(Assumption 1) and that value functions are twice differentiable with bounded gradients and Hessians
(Assumption 2). These conditions enable tractable analysis but exclude settings with discontinuous
or non-smooth dynamics. Nonetheless, our smoothness assumptions are milder than those commonly
imposed in prior work on regret analyses. Finally, this work focuses on finite-horizon episodic MDPs;
extending the analysis to infinite-horizon settings remains a promising direction for future research.
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A Proof of Theorem 1

In this section, we provide a detailed proof of Theorem 1. Recall from (9) that for a single-output GP
f with posterior mean and standard deviation µn and σn, we have, with probability 1− δ, uniformly
in z,

|f(z)− µn(z)| ≤ βn(δ)σn(z) (12)

where βn(δ) = O(
√
log(nδ )).

To extend this to a composition v(f(z)), where f(z) ∈ Rd is drawn from a multi-output GP and
v : Rd → R is a smooth function, we apply Taylor’s theorem. For any z ∈ Z , there exists a point ζ
on the line segment connecting f(z) and µn(z) such that:

v(f(z)) = v(µn(z)) +∇v(µn(z))
⊤(f(z)− µn(z)) +

1

2
(f(z)− µn(z))

⊤∇2v(ζ) (f(z)− µn(z)).

Taking absolute values and using the bounds on gradient and Hessian

|v(f(z))− v(µn(z))| ≤ ∥∇⊤v(µn(z))∥∥f(z)− µn(z)∥+
1

2
∥∇2v(ζ)∥op∥f(z)− µn(z)∥2

≤ uG∥f(z)− µn(z)∥+
1

2
u2
H∥f(z)− µn(z)∥2

By the standard single GP confidence bound (9), with probability 1 − δ/dS , we have |fj(z) −
µn,j(z)| ≤ βn(δ/dS)σn,j(z) for all j, and hence, applying a probability union bound, with probabil-
ity 1− δ,

∥f(z)− µn(z)∥ ≤ βn(δ/ds)∥σn(z)∥.
Substituting into the bound above, we obtain

|v(f(z))− v(µn(z))| ≤ uGβn(δ/ds)∥σn(z)∥+
1

2
u2
Hβn(δ/ds)

2∥σn(z)∥2,

that completes the proof of Theorem 1.

B Proof of Theorem 2

In this section, we provide a detailed proof of Theorem 2 on the regret performance of RL-GPS. We
bound the total regret by analyzing the per-episode difference between the optimal value function and
the value function of the GP-TS-RL algorithm. We structure the proof in four main steps.

First, we decompose the per-step regret into two components: an immediate regret term arising from
TS, and a recursive term capturing uncertainty in value propagation through the transition model.

Second, we bound the immediate regret using techniques inspired by those used in the analysis of TS
in GP bandits. There are however certain challenges which are discussed below.

Third, we unroll the recursion and accumulate these bounds over all steps within an episode.

Fourth, we bound the cumulative regret by bounding the sum of posterior standard deviations in GPs,
which appear in the third step, to complete the regret bound.

First step: Decomposing the per-step regret.

We begin by analyzing the regret incurred at step h of episode k. Let ah,k = πk(sh,k) denote the
action taken by the algorithm, and let a⋆h,k = argmaxa∈A Q⋆

h(sh,k, a) denote the optimal action at
that state. The per-step regret is defined as the difference between the optimal and executed value
functions:

V ⋆
h (sh,k)− V πk

h (sh,k).
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By the Bellman equation, this can be written as:

V ⋆
h (sh,k)− V πk

h (sh,k)

= (fR(sh,k, a
⋆
h,k) + V ⋆

h+1(fS(sh,k, a
⋆
h,k))−

(
fR(sh,k, ah,k) + V πk

h+1(fS(sh,k, ah,k))
)

= (fR(sh,k, a
⋆
h,k) + V ⋆

h+1(fS(sh,k, a
⋆
h,k))−

(
fR(sh,k, ah,k) + V ⋆

h+1(fS(sh,k, ah,k))
)

+
(
V ⋆
h+1(fS(sh,k, ah,k))− V πk

h+1(fS(sh,k, ah,k))
)

= Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k) +
(
V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k)
)
, (13)

where the first equality follows from the definition of the value function, the second adds and subtracts
the term V ⋆

h+1(fS(sh,k, ah,k)), and the third rewrites the expression using the definition of Q⋆
h and

noting sh+1,k = fS(sh,k, ah,k).

We split this expression into two terms:

V ⋆
h (sh,k)− V πk

h (sh,k) = Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)︸ ︷︷ ︸
(immediate regret)

+
(
V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k))
)︸ ︷︷ ︸

(recursive part of regret)

.

(14)

The first term captures the immediate regret incurred by TS. The second term reflects the recursive
component of regret, which arises due to uncertainty in the transition model and its impact on value
propagation. We next proceed to bound the immediate regret term.

Second step: Bounding the immediate regret (TS).

This term captures the suboptimality of the action ah,k chosen by TS, relative to the optimal action
a⋆h,k, under the target function Q⋆

h(·, ·). The analysis presents two key challenges compared to the
standard Thompson sampling analysis in kernel bandits (Chowdhury and Gopalan, 2017):

1. The target function Q⋆
h(·, ·) = fR(·, ·)+V ⋆

h+1(fS(·, ·)) is more complex, as it has a recursive
and compositional structure involving both the reward and value functions and cannot be
directly modeled as a GP.

2. The TS algorithm does not sample directly from the posterior of this target function, but
instead from the posterior of a proxy Qh defined in the algorithm.

To address both challenges, we create upper and lower confidence bounds Qu and Ql for both Qh

and Q⋆
h.

Recall the following upper and lower confidence bounds from Definition 1. We define the upper
confidence bounds recursively as:

Qu
h,k(s, a) = µR,k(s, a) + V u

h+1,k(µS,k(s, a)) + ξk(s, a), V u
h,k(s) = max

a∈A
Qu

h,k(s, a),

initialized with V u
H+1,k(s) = 0. Similarly, the lower confidence bounds are defined as:

Ql
h,k(s, a) = µR,k(s, a) + V l

h+1,k(µS,k(s, a))− ξk(s, a), V l
h,k(s) = max

a∈A
Ql

h,k(s, a).

initialized with V l
H+1,k(s) = 0. The confidence width ξk(s, a) is given by:

ξk(s, a) = βk(δ/Td)σR,k(s, a) +Gβk(δ/Td)∥σS,k(s, a)∥+
1

2
Hβk(δ/Td)

2∥σS,k(s, a)∥2, (15)

which is based on the confidence bound from Theorem 1.

Also recall Corollary 1. With probability at least 1− δ, the optimal and proxy value functions are
bounded by the high-probability confidence intervals:

Ql
h,k(s, a) ≤ Qh,k(s, a), Q⋆

h(s, a) ≤ Qu
h,k(s, a),

for all (h, k, s, a). Let us denote this event as E .
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Following the analysis technique used in the kernel bandit setting (Chowdhury and Gopalan, 2017),
we aim to show:

Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k) ≤ c ξk−1(sh,k, ah,k), (16)
for some universal constant c > 0.

To this end, we define the saturated set of actions at step (h, k) as:

Sh,k :=
{
a ∈ A : Q⋆

h(sh,k, a
⋆
h,k)−Q⋆

h(sh,k, a) > 2 ξk−1(sh,k, a)
}
. (17)

Intuitively, Sh,k includes actions that are significantly suboptimal under the true value function Q⋆
h,

with a suboptimality gap that exceeds twice their confidence width.

We now prove a loose lower bound on the probability of selecting an action from an unsaturated set.
Specifically:

Pr [ah,k /∈ Sh,k] ≥ Pr
[
Qh,k(sh,k, a

⋆
h,k) > Qh,k(sh,k, a) ∀a ∈ Sh,k]

≥ Pr
[
Qh,k(sh,k, a

⋆
h,k) > Q⋆

h(sh,k, a
⋆
h,k) ∧

Q⋆
h(sh,k, a

⋆
h,k) > Qh,k(sh,k, a), ∀a ∈ Sh,k

]
≥ Pr

[
Qh,k(sh,k, a

⋆
h,k) > Q⋆

h(sh,k, a
⋆
h,k)

]
− Pr

[
Ē
]

≥ 1

2
− δ.

The first inequality holds because a⋆h,k is, by definition, the optimal action under Q⋆
h and therefore

saturated. The second step follows by decomposing the event into two sufficient conditions. To see
the third line, observe that under the event E , for any saturated action a ∈ Sh,k, we have:

Qh,k(sh,k, a) ≤ Q⋆
h(sh,k, a) + 2ξk−1(sh,k, a) ≤ Q⋆

h(sh,k, a
⋆
h,k).

The fourth inequality follows from the symmetry and probability bound for E from Corollary 1.

Let bh,k = argmina∈A\Sh,k
ξk−1(sh,k, a) denote the unsaturated action with the smallest confidence

width. Then, using the law of total expectation:

E [ξk−1(sh,k, ah,k)] ≥ E [ξk−1(sh,k, ah,k) | ah,k /∈ Sh,k] Pr [ah,k /∈ Sh,k]

≥ ξk−1(sh,k, bh,k)(
1

2
− δ). (18)

We now upper bound the immediate regret using bh,k as a reference:

Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)

=
(
Q⋆

h(sh,k, a
⋆
h,k)−Q⋆

h(sh,k, bh,k)
)
+ (Q⋆

h(sh,k, bh,k)−Q⋆
h(sh,k, ah,k))

≤ 2 ξk−1(sh,k, bh,k) + (Qh,k(sh,k, bh,k) + ξk−1(sh,k, bh,k))

− (Qh,k(sh,k, ah,k)− ξk−1(sh,k, ah,k))

≤ 3 ξk−1(sh,k, bh,k) + ξk−1(sh,k, ah,k)

≤
(

3
1
2 − δ

+ 1

)
ξk−1(sh,k, ah,k),

where the first inequality adds and subtract the value at bh,k, the first inequality uses definitions of
the set S, bh,k and event E and the final step uses the earlier bound on ξk−1(sh,k, bh,k).

This completes the bound on immediate regret in terms of the confidence width at the selected action.

Third step: Bounding the episode regret.

From the per-step regret decomposition (14) and the bound on the immediate regret (16) and using
a telescoping sum over steps h = 1 to H , we obtain the following bound on the regret incurred in
episode k:

V ⋆
1 (s1,k)− V πk

1 (s1,k) ≤ c

H∑
h=1

ξk−1(sh,k, ah,k).
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Fourth step: Bounding the total regret.

Summing the episode regret over k = 1 to K episodes, we have:

Regret(T ) ≤ c

K∑
k=1

H∑
h=1

ξk−1(sh,k, ah,k).

Replacing ξk, we get:

Regret(T ) ≤ βK(δ/Td)

K∑
k=1

H∑
h=1

(σR,k−1(sh,k, ah,k) + uG ∥σS,k−1(sh,k, ah,k)∥)

+
uHβ2

K(δ/Td)

2

K∑
k=1

H∑
h=1

∥σS,k−1(sh,k, ah,k)∥2 (19)

The sum of sequentially conditioned standard deviations of a sequence of observations from a GP
often appears in the analysis of regret bounds in Bayesian optimization. A classical result by Srinivas
et al. (2010) shows that in the case of a single output GP, for a sequence of inputs z1, z2, . . . , zT , we
have:

n∑
i=1

σ2
i−1(zi) ≤ C log det

(
In +

1

λ2
Kn

)
,

where λ is the GP noise parameter, Kn is the kernel matrix over the observed inputs and C =
2/log(1 + 1/λ2) is a constant. This result is sometimes referred to as the elliptical potential lemma,
especially in the special case of linear kernels (Carpentier et al., 2020).

A direct application of this result to our setting faces two key challenges: i) We model transitions
using a multi-output GP. Naively applying the bound to each output dimension separately results
in a regret bound that scales suboptimally with dS , the dimension of the state space. ii) Our regret
decomposition involves a double sum over episodes k and steps h, but within each episode, the
observations across h are not sequential updates. This structure leads to an additional scaling with
the episode length H .

We address both challenges. First, we derive a new elliptical potential lemma tailored for multi-output
GPs, which improves the dependence on dS in the regret bound. That is given in Lemma 1. Second,
to improve the H dependence, we leverage tools and techniques from the analysis of GPs under batch
observations and delayed feedback (Calandriello et al., 2020) to tighten the bound with respect to H
(that roughly speaking can be understood as delay in updating the GP model).
Lemma 2 (Elliptical potential for multi-output GPs with delayed updates). Let f : Z → Rd

be a d-dimensional function modeled as a multi-output GP with a matrix-valued kernel k. Let
z1, . . . , zT ∈ Z be a sequence of input points and suppose the GP posterior is only updated every H
steps, so that the standard deviation at time t is σH⌊(t−1)/H⌋(zt) ∈ Rd. Then,

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤

√
4Γ(T )

log(1 + λ−2)

(
T +

4H2Γ(T/H)

log(1 + λ−2)

)
.

Applying Lemma 2 to the regret bound in terms of uncertainties (19), we obtain

Regret(T ) = O
(
log(Td/δ)

√
TΓ(T )

)
. (20)

C Auxiliary proofs

C.1 Proof of Corollary 1

We prove the lower bound by induction; the upper bound can be shown similarly.

As the base case, observe that VH+1 = V ⋆
H+1 = V l

H+1 = 0.
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Now consider the inductive step. We compare the value of Ql
h,k(s, a) to Q⋆

h(s, a):

Ql
h,k(s, a)−Q⋆

h(s, a) = µR,k(s, a) + V l
h+1,k(µS,k(s, a))− ξk(s, a)−

(
fR(s, a) + V ⋆

h+1(fS(s, a))
)

= µR,k(s, a)− fR(s, a) + V ⋆
h+1(µS,k(s, a))− V ⋆

h+1(fS(s, a))− ξk(s, a)︸ ︷︷ ︸
Term 1

+ V l
h+1,k(µS,k(s, a))− V ⋆

h+1(µS,k(s, a))︸ ︷︷ ︸
Term 2

≤ 0.

The first line follows from the definitions of Ql
h,k and Q⋆

h. The second line is obtained by adding and
subtracting V ⋆

h+1(µS,k(s, a)), followed by regrouping terms. The inequality holds since Term 1 is
non-positive due to the confidence bounds in Theorem 1, and Term 2 is non-positive by the induction
hypothesis.

Next, we extend the argument to the value function:

V l
h(s)− V ⋆

h (s) = max
a∈A

Ql
h(s, a)−max

a∈A
Q⋆

h(s, a)

≤ max
a∈A

[
Ql

h(s, a)−Q⋆
h(s, a)

]
≤ 0,

which completes the inductive proof that Ql
h,k(s, a) ≤ Q⋆

h(s, a) and V l
h(s) ≤ V ⋆

h (s) for all s, a, h.

We know that Ql
h,k(s, a) ≤ Qh,k(s, a) for all (s, a, h, k). For the inductive step, consider,

Ql
h,k(s, a)−Qh,k(s, a)

= µR,k(s, a) + V l
h+1,k(µS,k(s, a))− ξk(s, a)− (fR,k(s, a) + Vh+1,k(fS,k(s, a)))

= µR,k(s, a)− fR,k(s, a) + Vh+1,k(µS,k(s, a))− Vh+1,k(fS,k(s, a))− ξk(s, a)︸ ︷︷ ︸
Term 1

+ V l
h+1,k(µS,k(s, a))− Vh+1,k(µS,k(s, a))︸ ︷︷ ︸

Term 2

≤ 0.

The decomposition follows by adding and subtracting Vh+1,k(µS,k(s, a)) and regrouping terms. Term
1 is non-positive due to the high-probability confidence bound (Theorem 1). Term 2 is non-positive
by the induction hypothesis.

Hence, we conclude Ql
h,k(s, a) ≤ Qh,k(s, a) for all (s, a).

Extending to the value function:

V l
h,k(s)− Vh,k(s) = max

a∈A
Ql

h,k(s, a)−max
a∈A

Qh,k(s, a)

≤ max
a∈A

(
Ql

h,k(s, a)−Qh,k(s, a)
)

≤ 0.

This completes the inductive proof that Ql
h,k(s, a) ≤ Qh,k(s, a) and V l

h,k(s) ≤ Vh,k(s) for all s, a, h.
The upper bounds, i.e., Q⋆

h(s, a), Qh,k(s, a) ≤ Qu
h,k(s, a) for all s, a, h, are proven analogously

using similar argument.

C.2 Proof of Lemma 1

We consider a d-dimensional GP f : Z → Rd and a sequence of inputs z1, . . . , zT . Define the full
observation vector as:

y1:T =

 f(z1) + ε1
...

f(zT ) + εT

 ∈ RTd, εt ∼ N (0, λ2Id).
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The mutual information between y1:T and the latent function values is:

IT = I(y1:T ; f(z1), . . . , f(zT )) =
1

2
log det

(
ITd + λ−2KT

)
,

where KT ∈ RTd×Td is the prior kernel matrix over all outputs.

Let σt−1(zt) ∈ Rd be the vector of posterior standard deviations at zt given observations up to time
t− 1. Define the total uncertainty:

ST :=

T∑
t=1

∥σt−1(zt)∥2 =

T∑
t=1

d∑
j=1

σ2
t−1,j(zt).

We apply the scalar inequality (used in Srinivas et al. (2010)):

σ2 ≤ 1

log(1 + λ−2)
log

(
1 +

σ2

λ2

)
, for all σ2 ∈ [0, 1].

Applying this to each term σ2
t−1,j(zt) and summing, we obtain:

ST ≤ 1

log(1 + λ−2)

T∑
t=1

d∑
j=1

log

(
1 +

σ2
t−1,j(zt)

λ2

)
.

Since y1:T is jointly Gaussian, the total sum of these log-terms is bounded by 2IT , giving:

ST ≤ 2

log(1 + λ−2)
IT .

Thus, we conclude:
T∑

t=1

∥σt−1(zt)∥2 ≤ CIT , with C =
2

log(1 + λ−2)
.

C.3 Proof of Lemma 2

We begin by naively applying the elliptical potential lemma to the same step index across episodes
T∑

t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤
H∑

h=1

K∑
j=1

∥σH(j−1)+h(zHj+h)∥2

≤ CHΓ(K) (21)

To improve on this, we use the following inequality proven in Lemma 3, for any z and t′ < t,

∥σt′(z)∥2 ≤ ∥σt(z)∥2
1 +

t∑
j=t′+1

∥σt′(zj)∥2
 .

Applying this to the case where the model is updated every H steps, for each t ∈ [T ], we let
t′ = H⌊(t− 1)/H⌋. Then,

∥σt′(zt)∥ ≤ ∥σt(zt)∥

√√√√1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Now, summing over all t = 1, . . . , T , we apply the Cauchy–Schwarz inequality:

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤
T∑

t=1

∥σt(zt)∥

√√√√1 +

t∑
j=H⌊(t−1)/H⌋+1

∥σH⌊(t−1)/H⌋(zj)∥2

≤

(
T∑

t=1

∥σt(zt)∥2
)1/2(

T +H

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥2
)1/2

.
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We now substitute the same term with the looser bound given earlier in (21),
T∑

t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤

√
2Γ(T )

log(1 + λ−2)

(
T +

2H2Γ(K)

log(1 + λ−2)

)
.

This completes the proof.
Lemma 3 (Variance ratio inequality for multi-output GPs). Let f : Z → Rd be a d-dimensional
function modeled as a multi-output GP with a matrix-valued kernel k. Let σt(z) ∈ Rd denote the
vector of posterior marginal standard deviations at point z given t observations. Then, for any z ∈ Z
and t′ < t,

1 ≤ ∥σt′(z)∥2

∥σt(z)∥2
≤ 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Proof. For each output dimension j ∈ [d], the scalar variance update satisfies (see, e.g., Lemma 4
of Calandriello et al. (2020) and Proposition A.1 of Calandriello et al. (2022))

σ2
t′,j(z)

σ2
t,j(z)

≤ 1 +

t∑
i=t′+1

σ2
t′,j(zi).

Now summing over j = 1, . . . , d we get:

∥σt′(z)∥2

∥σt(z)∥2
=

∑d
j=1 σ

2
t′,j(z)∑d

j=1 σ
2
t,j(z)

≤ 1 +

d∑
i=1

t∑
j=t′+1

σ2
t′,i(zj) = 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Therefore,
∥σt′(z)∥2

∥σt(z)∥2
≤ 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

The lower bound 1 ≤ ∥σt′(z)∥2/∥σt(z)∥2 holds since variance decreases monotonically as more
data is observed. This completes the proof.

D Discussion on the linear model of coregionalization

A widely used and computationally convenient special case of multi-output GPs is the linear model
of coregionalization (LMC) (Grzebyk and Wackernagel, 1994; Wackernagel, 2003). In this model,
the vector-valued function f : Z → Rd is expressed as a linear combination of L independent latent
Gaussian processes:

fj(z) =

L∑
ℓ=1

αjℓgℓ(z), gℓ ∼ GP(0, k(g)), (22)

where k(g) : Z × Z → R is a shared scalar kernel, and α ∈ Rd×L is a matrix of output mixing
weights. This induces a matrix-valued kernel:

k(z, z′) = A k(g)(z, z′), where A = αα⊤ ∈ Rd×d. (23)

Under this kernel structure, the block kernel matrix over the training data admits a Kronecker product
decomposition:

Kn = A⊗K(g)
n , (24)

where K
(g)
n ∈ Rn×n is the input kernel matrix with [K

(g)
n ]ij = k(g)(zi, zj). The cross-covariance

matrix between test point z and training data becomes:

kn(z) = A⊗ k(g)
n (z) ∈ Rnd×d, (25)

with [k
(g)
n (z)]i = k(g)(zi, z).

This formulation is particularly useful when jointly modeling structured outputs such as reward and
transition functions in reinforcement learning, as it captures both intra- and inter-output correlations
while enabling scalable inference. We provide a brief discussion on the regret bounds with such a
structured kernel.
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D.1 Information gain and regret bounds for LMC

We analyze how the structure of the LMC affects the information gain term Γ(T ) appearing in the
regret bound. Recall that Γ(T ) upper bounds the quantity 1

2 log det(ITd + 1
λ2KT ), where KT is

the kernel matrix of the multi-output GP. Under the LMC structure, KT = A ⊗ K
(g)
T , where A

captures output correlations and K
(g)
T is the kernel matrix corresponding to a shared latent GP. Using

properties of Kronecker products and letting λi denote the eigenvalues of A, we obtain:

log det

(
ITd +

1

λ2
KT

)
= log det

(
ITd +

1

λ2
A⊗K

(g)
T

)
=

d∑
i=1

log det

(
IT +

λi

λ2
K

(g)
T

)
.

For the Matérn family of kernels, the information gain of the latent scalar GP is known to satisfy (Vak-
ili et al., 2021a; Whitehouse et al., 2023):

Γ(g)(T ) = Õ
((

T

λ2

)α)
,

where α = d
2ν+d < 1 depends on the input dimension d and the kernel smoothness parameter ν.

Substituting into the sum, we obtain:

Γ(T ) =

d∑
i=1

Õ
((

Tλi

λ2

)α)

= Õ

((
d∑

i=1

λα
i

)(
T

λ2

)α
)
. (26)

In the general case without structure, a standard upper bound is given by:

Γ(T ) = Õ
((

Td

λ2

)α)
.

Comparing the two, we observe that when A has low-rank behavior, specifically, when
∑d

i=1 λ
α
i ≤

dα, the LMC-based bound in (26) can be tighter. In particular, the regret bound becomes:

Regret = Õ

((
d∑

i=1

λ
d

2ν+d

i

)
T

d
2ν+d

)
. (27)

This shows the effect of shared latent structure and output correlations on the regret bounds.

E Additional experiments

In this section, we provide further information about our experiments and additional results. Note
that the code we used to run these experiments is available at https://github.com/jbayrooti/
TS_regret_study.

Model training. We model the reward and transition functions using a multi-output sparse varia-
tional Gaussian process, trained by maximizing the evidence lower bound (ELBO) with the Adam
optimizer (Diederik and Ba, 2015). A shared base kernel (either RBF or Matérn) is used across
outputs, and the outputs are linearly mixed according to a matrix following a linear model of coregion-
alization (LMC). The model uses 100 inducing points per output dimension, a zero mean function,
and is optimized for 20 steps per iteration using GPyTorch (Gardner et al., 2018). Full code is
included in the supplementary material for reproducibility.
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Figure 3: The first row shows the histogram of cumulative regrets over all trials on the last episode of
RL-GPS training with each kernel. The second row shows the regret growth curves from all trials for
each kernel.

Kernel complexity. We study the effect of kernel complexity on regret using synthetic MDPs
generated from 200 different GP-sampled environments. For all GPs, we fix a random linear mixing
matrix (see Appendix D),

A =

(
0.9926 0.2082 0.4968
−0.3196 0.8869 0.1603
0.1557 −1.4231 −1.3905

)
.

In each trial, we sample new ground-truth reward and transition functions from the multi-output
GP to define an MDP. The optimal value function is then computed for this MDP via finite-horizon
value iteration with horizon H = 20. We train RL-GPS (Algorithm 1) for K = 1000 episodes in
each environment and record the cumulative regret. Since the mixing matrix is fixed, randomness
within a trial arises only from the starting state distribution during rollouts. Across trials, randomness
stems from variation in the sampled environments, which can differ significantly in difficulty. As a
result, we observe a substantial right-skew in cumulative regret, with a few environments producing
particularly challenging instances. To demonstrate this variability, we show the cumulative regret at
the final episode across all trials for each kernel as well as the individual regret curves for each trial
in Figure 3. All trials for each experiment run within 24 hours on one NVIDIA GeForce RTX 2080
Ti GPU.

Multi-output kernel structure. For this set of experiments, we train the multi-output GP using a
Matérn kernel with ν = 1.5, comparing two modeling approaches: independent GPs and the linear
model of coregionalization (LMC). When using LMC, the mixing weights are learned during training,
so the randomness across trials arises only from the random initialization of the mixing weights and
the starting states for rollouts. In contrast to the earlier experiments, the environment itself is fixed
across all trials. For the unconstrained navigation experiments, the horizon used is H = 20 and the
GP is updated for 20 optimization steps at each iteration. For the maze experiments, the horizon used
is also H = 20 and, due to the increased modeling difficulty, the GP is updated for 50 optimization
steps at each iteration. All trials for each unconstrained navigation experiment run within 24 hours
on one NVIDIA GeForce RTX 2080 Ti GPU. Due to the greater number of GP updates in the maze
setting, trials take longer to run and all 200 trials complete within 80 hours on the same hardware.
Note that all experiments are easily parallelizable.
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paper’s contributions and scope?
Answer: [Yes]
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and introduction reflect the content and scope of the paper and are supported by both
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made in the paper.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.
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conclusion.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
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dataset, or provide access to the model. In general. releasing code and data is often
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of a large language model), releasing of a model checkpoint, or other means that are
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We give details on the compute resources required to reproduce the experiments
in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: This work provides theoretical no-regret guarantees for Thompson Sampling
in reinforcement learning and is not tied to any specific application or deployment. As
such, it does not directly introduce new societal risks beyond those already associated
with reinforcement learning more broadly, ranging from benefits for healthcare to risks in
safety-critical systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not use or release data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all creators whose code we use in our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide our code as supplementary materials along with documentation
explaining how to install and run the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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