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Abstract

The recent success of Transformer has benefited many real-world applications, with
its capability of building long dependency through pairwise dot-products. However,
the strong assumption that elements are directly attentive to each other limits the
performance of tasks with high-order dependencies such as natural language under-
standing and Image captioning. To solve such problems, we are the first to define
the Jump Self-attention (JAT) to build Transformers. Inspired by the pieces moving
of English Draughts, we introduce the spectral convolutional technique to calculate
JAT on the dot-product feature map. This technique allows JAT’s propagation in
each self-attention head and is interchangeable with the canonical self-attention.
We further develop the higher-order variants under the multi-hop assumption to
increase the generality. Moreover, the proposed architecture is compatible with
the pre-trained models. With extensive experiments, we empirically show that our
methods significantly increase the performance on ten different tasks.

1 Introduction
Transformers have made great success in many domains, such as NLP, Vision, Time-series, and
Speech. However, the giant model GPT-3 [2] and switch Transformer [7], with their massive
layers and over-parameterized architectures, have not further achieved significant performance
improvements since the BERT model [5] beat the Human Performance in GLUE [21] and SQuAD [12].
Recently two visualization works [19, 3] reveal that the self-attention mechanism mainly learns
superficial connections among inputs. The principle of direct accessing among inputs in the dot-
product self-attention lies as the core of above models, which solely relies on their mutual similarity in
the vector space. However, as “every coin has two sides”, while the dot-product is simple and effective
in capturing long-range dependencies, it has limited capability in learning high-order dependencies.

To solve this problem, we are inspired by the pieces moving of English Draughts, a checker game
spread to Great Britain in about 1100. It allows two moving rules: one is the simple move from the
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(a) Dot-product attention with direct connections.

AA

(b) High-order attention with “jump” connections.

Figure 1: (a) The dot-product self-attention: Left side: The direct connections (the blue lines with
arrows) are established between the input A (the red node) and other inputs via the dot-product self-
attention. Right side: The nodes with different shades of blue represent the corresponding attention
of the feature map. (b) The high-order self-attention: Left side: We build “jump” connections from
input A (the red node) to previous unattended nodes at the corner, which is conditioned on the direct
connections on “stepping stones” (the green circled nodes). Thus the dot-product feature map is
enhanced with high-order connections as shown on the right side.

current position to an adjacent position; and the other is the capture move jumping over the “stepping
stones” (opponent’s pieces) from front to back. Multiple jumps are possible and forced in this game.
As shown in Fig.(1), we can employ the high-order self-attention connections, like the capture moves
in English Draughts, to enhance the feature map of dot-product self-attention. It helps to align
high-order global dependencies in Transformer models. As a more concrete example in natural
language understanding, we are given two sentences “Book costs more than pencil.” and “Book
costs less than computer”. “Computer” never attends to “pencil” until they were both compared with
“Book”, thus “Book” is the “stepping stones” in creating high-order attention between “computer”
and “pencil” in Fig(1b). More specifically, they forms a soft triadic closure. We will discuss this
example in detail in Section 3.1 and clarify the definition of Jump Self-attention.

In this work, we find that the high-order self-attention exists in the dot-product computation but it is
too weak to contribute much to the attention layer’s output. Only a few heads in Transformers can
capture such high-order dependencies, which is shown in Fig.(2) with further discussions. Instead
of finding such “miracle” heads, we reformulate them to enhance the high-order dependencies
with the feature propagation technique in graph learning. Meanwhile, we build an efficient variant
in computing-sensitive situations based on the sparsity measurement [25], and build higher-order
variants in comprehensive situations using MixHop [1].

To the best of our knowledge, we are the first to define the Jump Self-attention (JAT) in Transformer
models, where we formulate the high-order statistics calculation into a graph propagation problem. It
can be used interchangeably with the canonical self-attention [18]. The JAT-enhanced Transformer
allows for fine-tuning on the popular pre-trained models and achieves superior performance on various
tasks, such as Natural Language Understanding and Question Answering. Our main contributions
can be summarized as:

• We discover the existence of JAT in the Transformers’ dot-product computation and derive its
formal definition to facilitate further analysis.

• We propose JAT through the jump aggregation and high-order dependencies’ propagation without
additional network parameters, and the efficient variant alleviates the extra computation cost.

• We propose the higher-order variants of JAT and masking strategy to allow its interchangeable
usage with the canonical self-attention on the pre-trained models.

• We conduct experiments on fifteen different tasks to examine the effectiveness of the proposed
methods. Results demonstrate the success of JAT in achieving state-of-the-art performance.

2 Preliminary
The self-attention was introduced by Transformer [18] model for the encoder-decoder architecture
in NLP to build long-range dependencies from a variable-length source sentence. The alignment
ability of self-attention to learn to acquire direct access between important items has made it an
efficient component in many applications [5, 11, 25, 23]. For an input X ∈ RL×d, we define the
single-headed self-attention in the following form:

Attention(Q,K,V) = softmax
(
QK⊤
√
d

)
V , (1)
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(b) Significant connections (15.2%).
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(c) Major connections (70.5%).

Figure 2: A case study of sentence “Book cost more than pencil. Book cost less than computer.” on
the pre-trained BERT model [5]. (a) Attention Visualization: We specifically select the third layer
and draw the attention score of two words “book” and one word “computer” at the fifth head in the
multi-head self-attention. It is an extraordinary example to show that the word “computer” in the
second sentence has established a moderate connection with the word “pencil” in the first sentence.
The visualization tool is available online3. (b) Statistic of self-attention for significant connections
across all heads: We first calculate the mean value and standard deviation over all the pairwise
self-attention scores. And we select the 15.2% of the self-attention connections among the three
words “book”, “pencil”, and “computer” that their scores are greater than the threshold (mean + 0.5
std). The previous example in (a) is the miracle attention connection at the third layer, and it works by
acquiring more connections than other layers. (c) Statistic of self-attention for major connections
across all heads: We lower the threshold to (mean - 0.5 std) and it covers 70.5% self-attention
connections. It shows that the dot-product self-attention attempts to build the “computer-pencil”
connections, but they are a few weak ones and contribute little to layer output.

where the layer output is the linear combination of values V weighted by the attention scores between
queries Q and keys K. Note that the queries, keys and values are projected by different linear
transformations {WQ,WK ,WV } respectively. In practice, multiple attention heads are used to
learn robust patterns [3, 19] among different transformations. It divides the inputs into H groups and
computes the single-head attention on each group separately. We concatenate the feature map of all
groups as the attention layer output.

3 Methods
In this section, we first introduce the necessity of acquiring the high-order connections in the
Transformer model. Then, we describe the proposed Jump Self-attention.

3.1 What is the High-order Statistics?
The BERT [5] model and its pre-trained successors utilize the self-attention, like GPT-3 [2] and switch
Transformer [7], and they achieve distinct performance improvements on various NLP tasks. However,
what the self-attention mechanism has learned remains to be a challenging problem for architecture
optimization in Transformer. Recent visualization techniques on self-attention mechanism have
shed light on the further explanation for this problem. In the BERT model, Vig [19] pointed out
that different heads of the same layer highlight coarse positional patterns, such as ‘CLS’ or ‘SEP’
tokens, more frequently than lexical patterns, even though they are trained with separate random
projections. Clark et al. [3] claimed that BERT’s attention heads often exhibit similar behaviors
within the same layer, such as attending to delimiter and positional tokens and broadly attending the
entire sentence, whereas a few deviating heads hold an eye on linguistic pairs. Due to the space limit,
a more comprehensive related work will be provided in the Appendix A. This paper investigates
whether it is worth enhancing lexical patterns in self-attention.

To motivate our approach, we perform an individual case study on investigating the lexical patterns
of self-attention heads. Based on the pre-trained model on BERT [5], we consider logical reasoning
questions on two continuous sentences “Book cost more than pencil” and “Book cost less than
computer”. It seeks to find the price between entities that have not been compared, like “pencil”

3The tool can be acquired at https://github.com/jessevig/bertviz.
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and “computer”. Note that the articles are omitted to avoid interference. In Fig.(2a), we present the
visualization of three words’ self-attention scores at the third layer and fifth head. The darker line
color denotes a higher self-attention score, namely stronger connections. The word “book” shows
strong attention connections (deeper blue lines) to the positional token ‘SEP’ in the first and second
sentences, meanwhile, they also attend to the entity words “pencil” and “computer” (lighter blue
lines). While the attention scores between the word “computer” and token ‘SEP’ are striking, we
note that the word “computer” builds a mild attention connection to the word “pencil” crossing two
sentences. From the entity extraction perspective, the mutual attention connections among three
words “book”, “pencil” and “computer” seem trivial.

However, the concrete finding in Fig.(2b) undermines this emotional thinking and it reveals the
potential value of attention connections between “computer” and “pencil”. We first calculate the
mean value and standard deviation over all the pairwise self-attention scores. And we select the
attention connections that their scores are greater than the threshold (mean + 0.5 std). We only
draw the local connections among the three words and it covers 15.2% of the total as the significant
local connections. The stronger “Computer-Pencil” attention connection, as it in Fig(2b), is the rare
self-attention computation that happens at the third layer, which distinguishes it from the trivial
“Book-pencil” and “Book-Computer” attention connections. As we discussed above, there are many
connections from three words to the delimiter ‘CLS’ and positional tokens ‘SEP’ but they did not
form the “Computer-Pencil” connection. Furthermore, in Fig.(2b), there are many “Book-Pencil”
connections and “Book-Computer” connections that exist in other layers but they all fail to capture the
“Computer-Pencil” connection. The fifth head in the third layer is the miracle head that can establish
the strong linguistic connection between “computer” and “Pencil” and it forms lexical self-attention
patterns across different sentences. We call this an exact example of the High-order Statistics, and it
is formulated on input pairs which satisfy the following definition:
Definition 3.1. (δ, p,WQ,WK)-similar For vector inputs xi, xj and xk, there exists a single
head self-attention with query transformations WQ and key transformations WK , and the self-
attention computation forms the feature map score as Sij = (xiWQ)(xjWK)⊤ such that, under the
δ-significant threshold p,

if Sik ≥ p and Sjk ≥ p, then Pr[Sij ≥ p] > δ

otherwise, then Pr[Sij ≥ p] ≤ 1− δ
.

Thus the inputs xi and xj are called (δ, p,WQ,WK)-similar w.r.t the input xk.

In Fig.(2c), we relax the restriction on significant connections and select the major connections
covering 70.5% local connections among the three words. As a natural result of decreasing the
significance δ and threshold p in Definition 3.1, it emerges more high-order self-attentions, i.e.,
connections between “Computer” and “Pencil”. This implies that weak high-order self-attentions
exist in the canonical self-attention but these connections are too delicate to contribute to self-
attention’s layer out.

3.2 Calculate the Jump Self-attention
The Jump Self-attention (JAT) is based on the vanilla Transformer architecture to be consistent with
the latest improvement on it. Inspired by the pieces moving in Fig.(1), we build a transaction graph
on the self-attention feature map. Then JAT utilizes the GCN operator to allow “jump” connections to
traverse through different queries and key pairs, and the weak connections under the similar condition
are enhanced to help enforces the desired triadic closure property.

Let the attention score of single-headed self-attention in Eq.(1) be S = QK⊤, we notice that the
softmax(·) function on S/

√
d is row-wise, which makes the self-attention layer output the correct re-

representation of value V. To understand the underlying meaning of high-order statistics in attention
computation, we can take a column view of S in Fig.(3a). Different from the row view where each row
reflects one query’s scores on all keys, in the column view, each key column represents a similarity
measurement of all queries against itself.

Consider an intuitive example from the previous case study, we draw the attention feature map with
five queries and keys in Fig.(3b). We firstly present the dot-product self-attention scores on the left
side. The self-attention scores S31 = Q3(K1)

⊤ and S41 = Q4(K1)
⊤ highlight in the column vector

of the first key, as we can see the crosshatch under the column view (the red shade), which indicates
that inputs x3 and x4 attend to the input x1 from the K1’s observation. The connection between x3

4



Queries

Keys

Queries

Keys

Queries

Keys

Queries

Keys

The row view The column view

(a) The different views.

Q1: Book

Q4: Computer

Q3: Pencil

K1: Book

K3: Pencil

K4: Computer

Q1: Book

Q4: Computer

Q3: Pencil

K1: Book

K3: Pencil

K4: Computer

Q1: Book

Q4: Computer

Q3: Pencil

K1: Book

K3: Pencil

K4: Computer

+

+

Q1: Book

Q4: Computer

Q3: Pencil

K1: Book

K3: Pencil

K4: Computer

+

+“Jump”

(b) The overview of the high-order self-attention.

Figure 3: (a) Two different views on self-attention scores: We present the row view of self-attention
scores at the top and the column view at the bottom. The solid blue line denotes the second query’s
self-attention distribution over all the keys, and the single apex indicates focused attention. The
solid green line represents the self-attention distribution between all queries and one key, and the
multi-peak reveals three stronger attention connections for that key. (b) An example of finding the
“jump” connection: We can utilize the “Pencil” and “Computer” attention to “Book” to enhance a
closer similarity between them, namely, from the crosshatch to the red marked squares.

and x4 are weak (the blank square). Based on the high-order statistics, we have a high probability
δ that the inputs x3 “Pencil” and x4 “Computer” becomes (δ, p,WQ,WK)-similar w.r.t the input
x1 “Book”. But the dot-product self-attention can not capture this kind of similarity for x3 and x4.
If we could modify the linear transformation WQ and WK such that the red marked square attains
larger attention scores while others maintains, and the attention score between x3 and x4 grows larger
enough than the significance threshold p. We call this attention adjustment a successful “jump”, and
it could happen for the individual key.

We assume that there exists a “miracle head”, whose self-attention feature map contains both dot-
product similarity and high-order statistics. Instead of modifying the linear transformation WQ

and WK , we can direct “correct” the self-attention feature map by running thorough all triplets
and adjusting the scores by specific keys. However, this direct operation will introduce an extra
computation of attention combination O(L3) w.r.t the input length L. And it is hard to acquire a
back-propagation friendly implementation.

To formulate the modification of feature map, we relax the objective of finding the miracle heads to
enhance the weak “jump” connection in canonical self-attention computation. Under the row view,
we build a graph G = (V,E) from the self-attention scores, where the queries compose the node set
V with the row vector of S as node features and each edge is defined by a adjacency matrix A. Then,
we introduce A’s computation. Subscribing the matrix with i⊤ returns the i-th column as a vector.
We select the j-th key as the current column, then the sub-adjacency matrix under the Kj is defined:

A(Kj) = [Uj − diag(U)j ]ρ , where Uj =
Sj⊤ ⊗ Sj⊤

d
. (2)

The operation ⊗ denotes the tensor product and we use the similar d-dimension normalization in the
canonical self-attention [18]. Uj is a symmetric matrix containing input pairs with (δ, p,WQ,WK )-
similarity, like x3 and x4 in the previous example. [·]ρ is an indicator function for each matrix
item that returns 1 if the item is greater than the ρ, otherwise return 0. Here, we break the “both”
requirements in Definition 3.1. Thus, the threshold ρ becomes a hyperparameter reflecting the
magnitude of δ and p. We go through all keys, the j-th sub-adjacency matrix reflects the similarity
between different queries w.r.t Kj .

Inspired by the layer aggregation [17, 10], the summation of weighted adjacency matrix yield
larger gap between isolated values and bulk eigenvalues, which has been widely used in helping
the community detection task [14, 4]. The sub-adjacency matrices are describing the connections
between all the queries, i.e, different layers in a multiplex network, we can also leverage the same
operation for a better edge probability recovery – similarity detection. Then, we can add up all the
sub-adjacency matrix into the weighted one:

A =
1

L

∑
j

A(Kj) . (3)

Our next question is to enhance the “jump” connection for individual inputs. The Graph Convolutional
Neural network (GCN) could perform local aggregate operators over the graph adjacency matrix,
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which is proposed by Scarselli et al. [15] and is further simplified by Duvenaud et al. [6] and
Sukhbaatar et al. [16]. We employ it as a specific architecture for encouraging the attended items to
become similar in both queries and keys. Then we have:

Q
′
= ÂQWQ, K

′
= ÂKWK (4)

where Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I and D̃ is a diagonal matrix from the column-sum of A,
where every node can only attend to its nearest neighborhood with the learnable graph filter W . The
GCN will make the selected queries/keys propagate its features, which causes a higher score when
encountering each other in self-attention computation. In other words, GCN encourages high-order
self-attention’s propagation through individual keys’ similarity measurement. Thanks to this property,
the self-attention score will be updated as:

S
′
= Q

′
K

′⊤ = ÂXWQWQW⊤
KW⊤

KX⊤Â⊤ = ÂX(WQWQ)(WKWK)⊤X⊤Â⊤ . (5)

If we aggregate the graph filter W into the random projection W as a new projection W
′
, the

score S
′

becomes Â(XW
′

Q)(XW
′

K)⊤Â⊤. This could be consider as a way to modify the original
learnable matrix WQ into the new projection W

′

Q. Note that the proposed method maintains the
same parameter scale. Immediately, we could derive the self-attention score after applying the GCN
operator on both queries and keys, namely the “jump” operation:

Φ(S) = ÂSÂ⊤ , (6)

which forms an approximated graph operator repeating propagation over the graph to enforce the
desired triadic closure, like SGC [22]. The original GCN activation operation is omitted to avoid
interfering with later self-attention calculations, which is merged into the following Feed-Forward
Net. In this way, we are able to propose the Jump Self-attention:

A(Q,K,V) = softmax
(
Φ(QK⊤)√

d

)
V . (7)

To better take advantage of the pre-trained model, we suggest to split H heads in canonical self-
attention into two groups of Hc heads and Hj heads. The Hc heads perform the canonical self-
attention operation and the Hj heads perform jump self-attention, then we concatenate their results
as the complete layer output. The use of high-order self-attention enables acquiring high-order
dependencies over the superficial ones. Overview of JAT’s whole process is given in Appendix. The
JAT and canonical self-attention can be used interchangeably in Transformer models.

3.2.1 Masking tricks
The mask of self-attention [18] plays an important role in avoiding the auto-regressive during the
inference phase. The GCN operations may cause leftward information to leak between queries. If
JAT is applied in the decoder, we have to prevent this in building the adjacency matrix, where we
reduce the edges from afterward queries to previous queries. We implement this inside of JAT by
forcing the upper triangular of adjacency matrix to 0 in Eq.(3). The canonical self-attention’s masking
operation on the feature map is preserved after applying GCN in Eq.(5) such that we can eschew the
information leakage in softmax(·) function.

3.2.2 Efficient variants
The computation complexity of JAT remains O(L3) w.r.t the input length L, because we have to
traverse all keys in the adjacency matrix aggregation of Eq.(3). We previously designed a sparsity
measurement [25] to find the most significant queries in self-attention, which motivates us to employ
it in selecting the primary keys:

M (Kj)(S) = max
i

(Sj⊤)−mean
i

(Sj⊤) . (8)

We follow the sampling strategy and choose Top-u Keys. Thus, the original self-attention S reduces
to S̄ ∈ RL×u and we acquire the efficient variant JAT† in the O(L2). Recalling that the JAT shares
the same parameter scale, and the JAT† holds the same computation complexity when compared with
the canonical self-attention.
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Table 1: The performance comparison on the GLUE benchmark (dev sets).

Model CoLA MRPC RTE STS-B QNLI QQP SST-2 WNLI MNLI Average
8.5k 3.5k 2.5k 5.7k 108k 363k 67k 0.64k 392k -

ELMo 44.1 76.6 53.4 70.4 71.1 86.2 91.5 56.3 68.6 68.7

BERTbase 56.3 88.6 69.3 89.0 91.9 89.6 92.7 53.5 86.7 79.7
BERT-A3 62.3 90.2 73.9 90.1 91.1 90.6 92.9 55.6 87.3 81.5
BERT-JAT (ours) 61.6 89.1 73.3 90.5 93.2 91.6 93.5 57.3 85.6 81.7
BERT-JAT† (ours) 61.7 89.6 72.8 90.4 92.9 91.3 93.3 56.8 85.5 81.6

RoBERTabase 63.6 90.2 78.7 91.2 92.8 91.9 94.8 - 87.6 86.4
RoBERTa-JAT (ours) 65.9 91.4 80.2 91.3 93.2 91.7 95.4 - 87.7 87.1
RoBERTa-JAT† (ours) 66.7 91.7 80.9 92.3 92.9 91.7 94.9 - 87.5 87.1
1 JAT† represents the efficient variant of JAT. And the ‘-’ indicates abandoned experiments.

3.2.3 Higher-order variants
Without loss of generality, we can extend the similar in Definition 3.1 to a higher order case, where
the similarity depends on more than one input. Instead of performing analogical derivations, we can
introduce the Mix-hop [1] GCN to capture the multi-hop propagation on the graph of queries. If we
refer the canonical self-attention [18] to the first order self-attention and our JAT to the second order
one, then we can define the j-th order self-attention as:

Φj(S) =

{
S , if j = 1

Âj−1S(Âj−1)⊤ , if j > 1
(9)

where Âj−1 represents the adjacency matrix Â multiplied by itself (j − 1) times. It’s trivial to
substitute the Φj(S) in Eq.(7) for higher-order self-attention variants A2,A3 and etc. We can split
the heads into more groups when concatenating multiple self-attentions with different orders.

4 Experiments
In this section, we empirically demonstrate JAT’s effectiveness on the pre-trained BERTbase model
with 12 layers, and perform BERT-JAT fine-tuning and evaluation on ten NLP tasks.

4.1 Setup
(a) GLUE. We conduct JAT’s experiments of the language understanding and generalization capa-
bilities on the General Language Understanding Evaluation (GLUE) benchmark [21], a collection
of diverse natural language understanding tasks. We also perform additional experiments on Su-
perGLUE benchmark [20]. Settings: We use a batch size of 32 and fine-tune for 5 epochs over
the data for nine GLUE tasks. The threshold ρ is selected from {4.0, 4.5, . . . , 10.0}. The other
settings follow the recommendation of the original paper. Since the proposed JAT can be used
interchangeably with canonical self-attention, we perform a grid search on the layer replacement.
There are two sets of layer deployment, where the first combination is chosen from {Layer1−4,
Layer5−8, Layer9−12} and the alternative is {Layer1−6, Layer7−12}. Another important selection is
the multi-heads grouping, we employ the “side-by-side” strategy as replacing the heads {2, 4, 6, 8,
10} with JAT. And we do not use any ensembling strategy or multi-tasking scheme in this fine-tuning.
The evaluation is performed on the Dev set. Metric: We use three different evaluation metrics on the
9 tasks. Matthews correlation coefficient (MCC = TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
) is used

for CoLA, Pearson (PCC = N
∑

yiŷi−
∑

yi
∑

ŷi√
N

∑
y2
i−(

∑
yi)

2
√

N
∑

ŷ2
i−(

∑
ŷi)

2
) is used for STS-B, and accuracy is

used for others. Platform: Intel Xeon 3.2GHz + The Nvidia V100 GPU (32 GB) X 4. The code is
available at https://github.com/zhouhaoyi/JAT2022.

(b) SQuAD. We also evaluate on the SQuAD v1.1/v2.0 [12, 13]. The settings is in Appendix D.

4.2 Main results
The result of the GLUE experiment is summarized in Table 1. We compare ELMo [8] the baseline
of GLUE, BERTbase [5], and RoBERTa [9], the pre-trained model where we build JAT varints.
Our model BERT/RoBERTa-JAT outperform base models on eight tasks without introducing more
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Table 2: The performance comparison on the SuperGLUE benchmark (dev sets).

Model CB BoolQ COPA MultiRC WiC WSC RTE AverageAcc/F1 Acc Acc F1/EM Acc Acc Acc

CBOW 71.4/49.6 62.4 63.0 20.3/0.3 55.3 61.5 54.2 55.4
M.F.C 50.0/22.2 62.2 55.0 59.9/0.8 50.0 63.5 52.7 56.2
BERTbase 94.6/93.7 77.7 69.0 70.5/24.7 74.9 68.3 75.8 75.8

RoBERTabase 92.8/93.7 81.5 74.0 70.7/28.4 69.1 64.4 78.7 75.9
RoBERTa-JAT × × 82.0 × 70.2 65.4 80.2 -
RoBERTa-JAT† 98.2/98.5 82.3 79.0 71.6/29.5 70.5 67.3 80.9 78.5

1 JAT† represents the efficient variant of JAT.
2 The ‘-’ indicates abandoned experiments, and ‘×’ happens when reaching out-of-memory.

Table 3: The performance on the SQuAD.

Model
SQuAD v1.1 SQuAD v2.0

EM F1 EM F1

BiDAF-ELMo - 85.6 63.4 66.2
XLNetbase 89.7 95.1 87.9 90.6

BERTbase 81.2 87.9 75.9 79.3
BERT-A3 81.8 89.3 75.9 79.3
BERT-JAT 82.1 89.3 76.4 82.0

RoBERTabase 88.9 94.6 86.5 89.4
RoBERTa-A3 89.2 94.8 86.6 89.7
RoBERTa-JAT 90.1 95.2 87.0 90.2

parameters, which shows that JAT can capture higher-order dependencies than canonical self-attention.
More specifically, BERT-JAT achieve 9.4% score rising on the CoLA dataset and 7.1% on the WNLI
dataset as a remarkable improvement, which shows that JAT shows the better alignment ability on
a smaller dataset. When it applies to RoBERTa, the average gain is larger and the most significant
rising 4.9% happens on the CoLA dataset, which demonstrates a stable performance gain on SOTA
models.

We have also show that JAT beats the competitor A3 [24] generally. The A3 introduces the triplet
attention measuring dissimilarity to diversify the self-attention, while our proposed JAT tried to
enhance similarity by building connections between unrelated pairs from a different perspective.
These two works are orthogonal and can be performed together to improve self-attention mechanism.
Meanwhile, the efficient variant JAT† also shows competitive performance than competitor A3.

Results of evaluating JAT on the more challenging SuperGLUE benchmark are presented in Table 2,
we have selected RoBERTa as a more efficient basic model. With more extended tokens on com-
plicated tasks, the JAT fails on three tasks for OOM, but it still acquires better results than vanilla
RoBERTa on others. The efficient variant RoBERTa-JAT† achieves the best average scores.

The result of the SQuAD experiment is summarized in Table 3. Our model BERT-JAT achieves better
performance than all baselines in both EM and F1 scores, which is aligned with the above results.

4.3 Ablation Study
4.3.1 Effect of JAT’s Layer Deployment
In this experiment, we explore the JAT layer’s effect on acquiring the high-order connections. We
set the layers at a different position in RoBERTabase model to use JAT heads, where the RoBERTa-
JATl[i,j] represents that the layers from i to j in RoBERTabase model have four JAT heads. We report
the scores on the selected GLUE tasks, including CoLA, MRPC, RTE, and STS-B in Table 4. We
can conclude that using JAT heads in lower or middle layers leads to better scores. This is consistent
with the findings in Fig.(2), middle layers possess more weak high-order connections to be easily
enhanced. Applying JAT at lower layers can effectively enhance the diversity of lower layers and
improve the high-order connections to force the desired triadic closure.

4.3.2 Effect of JAT’s Head Grouping
To evaluate the effect of JAT’s head grouping (different splits) on general language understanding
task accuracy, we trained many RoBERTa-JAT models with different JAT head numbers in layer 1-6.
Results on the selected GLUE tasks are shown in Table 5. With the number of JAT head increasing,
we can find that almost all the tasks’ scores first increase then decrease. The scores increase because
adding JAT heads enhance the high-order global dependencies in the vanilla RoBERTa model. They
decrease when the number of heads is greater than 6, which probably is caused by too strong high-
order inductive bias suppressing the canonical self-attention. But the CoLA dataset seems fitting the
JAT assumption very well, which may explain why it reaches the highest performance gain in Table 1.

4.3.3 Effect of Higher Order in JAT
We perform this experiment to evaluate the effects of higher-order variants. Following the similar
settings as the previous ablation study, where the RoBERTa-JAToi stands for the i-th order self-
attention defined in Eq.(9). We show the selected GLUE results in Table 6. And it reveals that for
most natural language understanding tasks, the second-order self-attention is sufficient to discover
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Table 4: The scores of different JAT’s layer deployment.
Model CoLA MRPC RTE STS-B

RoBERTabase 63.6 90.2 78.7 91.2
RoBERTa-JATl[1,4] 63.9 90.9 78.8 91.2
RoBERTa-JATl[5,8] 63.6 90.4 78.7 90.9
RoBERTa-JATl[9,12] 63.6 90.2 76.1 90.9
RoBERTa-JATl[1,6] 64.6 90.4 79.4 91.1
RoBERTa-JATl[7,12] 63.8 89.7 78.4 91.0

Table 5: The scores of different JAT’s heads grouping.
Model CoLA MRPC RTE STS-B

RoBERTabase 63.6 90.2 78.7 91.2
RoBERTa-JATh2 63.7 91.4 80.2 91.1
RoBERTa-JATh4 63.9 91.2 80.2 90.6
RoBERTa-JATh6 63.6 90.4 79.7 90.8
RoBERTa-JATh8 63.8 90.2 78.9 90.7
RoBERTa-JATh10 64.1 90.2 77.2 90.5
RoBERTa-JATh12 64.7 90.0 77.8 90.5

Table 6: The scores of JAT’s increasing order.
Model CoLA MRPC RTE STS-B

RoBERTabase 63.6 90.2 78.7 91.2
RoBERTa-JATo1 65.4 91.4 79.9 91.3
RoBERTa-JATo2 64.4 90.7 80.2 90.8
RoBERTa-JATo3 64.0 91.2 78.7 90.9
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Figure 4: The performance decreases when the
overall layers degrade from 12 to 2.

more higher-order connections and improve the expression ability of the model, which leads to better
results. For example, using the second order JAT on RTE dataset significantly improves the scores.

4.3.4 Effect of Layer Stacking Degradation in JAT
Similar to the evaluation in A3 [24], we conduct layer stacking degradation experiments on both
CoLA and RTE downstream tasks. Firstly, we reduce the simpler BERTbase model by one layer
at a time, which makes the overall layers degrade from 12 to 2. Fig.(4) shows that the BERT-JAT
consistently outperforms BERTbase. In the RTE task, the BERT-JAT even achieves the highest
accuracy with eight layers. Secondly, we have extended the BERTbase model from 12 layers to 15
layers, which matches the comparable extra computation brought by the JAT mechanism (refer to
Sec 4.6). It reveals that the deeper baseline lags behind the JAT-enhanced ones.

4.4 Visualization
We conduct a visualization in Fig.(5) to show the self-attention feature map changing in JAT. To avoid
repetition, we construct a new sentence. The line between words represents their attention scores: the
darker, the larger. The Fig.(5a) shows heads of layer 6 in BERTbase, and it indicates that the “Kate”
has stronger connections to the words in the second sentence. The Fig.(5b) shows heads of the same
layer in BERT-JAT, the “Kate” attends to the first sentence’s “hit” through a “jump” connection with
the blue head. This example shows that ‘Kate’ never gets a strong connection with the action ‘hit’
in vanilla self-attention, but JAT provides this conditional connection (may through ‘bite’), which
indicates the two actions may be sequentially related. This JAT-inspired attention change also applies
to the ‘SEP’ token, which implies that ‘Kate’ are the last few words. Although this result differs from
the previous examples on the noun exchanging, it reveals that the Jump Self-attention can enhance
connections with various lexical patterns.

4.5 Case Study
We conduct an experiment on Named-Entity Recognition (NER) task using the standard CoNLL-2003
dataset, which concentrates on four types of named entities: persons, locations, organizations and
names of miscellaneous entities that do not belong to the previous three groups. The settings are
included in Appendix E. We select the major connections in the attention feature map where their
scores are greater than (mean + std). We use ‘CROSS’ to represent connections of tokens with
different named-entities. The visualization is showed in Fig.(7). From Fig.(7a) we find there are not
many ‘CROSS’ connections in the attention of BERTbase, and most of the connections are between
tokens belong to person entity. From Fig.(7b), we observe JAT significantly increases the number of
connections between tokens with different named-entities at the layers {1,2,3,8,9,10} having JAT
heads, which enhances the model’s ability to discover high-order information and makes the model’s
expression more diverse.
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(a) BERTbase. (b) BERT-JAT.

Figure 5: The sentence is “A friend of John hit
the dog, then the dog bite Kate.”, our BERT-JAT
finds the “jump” connection between word “hit”
and word “Kate” in 6-th Layer.
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Figure 6: The run-time of the proposed Jump Self-
attention (JAT, JAT†) on the RoBERTa model. We
divided eight tasks into a faster (< 100 min) and
a slower group for clarity. Each bar stands for the
training process on individual downstream tasks
(running 10 epochs).
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(b) BERT-JATl{1,2,3,8,9,10}.

Figure 7: The pair-wise attention connections of BERTbase and BERT-JAT on dataset CoNLL2003,
our model BERT-JAT improve the connection between tokens with different named-entities (the
‘CROSS’ connections in orange).

4.6 Run-time Comparison
With the same setting, we evaluate the iterative efficiency of JAT on eight downstream task, which has
no learnable parameters. The Fig.(6) shows that JAT mostly brings about 30% extra computation than
the vanilla Transformer, where RTE achieves 75% at most. This variance is caused by the different
input lengths L when calculating the adjacency matrix in Eq.(3). It could be further improved by
utilizing the Keys’ sparsity [25], then JAT† achieves no more than 15% extra computation time.

5 Conclusions
In this paper, we discovered the existence of Jump Self-attention (JAT) in the Transformers’ dot-
product computation. Drawing inspirations from the pieces moving of English Draughts, we define
JAT from the canonical self-attention and propose a tangible framework to formalize JAT into the
graph learning problem and leverage it to encourage JAT’s propagation in attention feature map.
We further develop the higher-order variants under multi-hop assumption to increase the generality.
The proposed architecture is compatible with the pre-trained models. Experiments on two tasks
demonstrate JAT’s superior performance on capturing high-order dependencies. We also want to use
JAT on MindSpore (https://www.mindspore.cn/), which is a new deep learning computing
framework.
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