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Abstract

Low dimensional models like PCA are often used to sim-
plify complex datasets by learning a single approximating
subspace. This paradigm has expanded to union of subspaces
models, like those learned by subspace clustering. In this pa-
per, we present Principal Component Trees (PCTs), a graph
structure that generalizes these ideas to identify mixtures of
components that together describe the subspace structure of
high-dimensional datasets. Each node in a PCT corresponds
to a principal component of the data, and the edges between
nodes indicate the components that must be mixed to pro-
duce a subspace that approximates a portion of the data. In
order to construct PCTs, we propose two angle-distribution
hypothesis tests to detect subspace clusters in the data. To
analyze, compare, and select the best PCT model, we define
two persistent homology measures that describe their shape.
We show our construction yields two key properties of PCTs,
namely ancestral orthogonality and non-decreasing singular
values. Our main theoretical results show that learning PCTs
reduces to PCA under multivariate normality, and that PCTs
are efficient parameterizations of intersecting union of sub-
spaces. Finally, we use PCTs to analyze neural network latent
space, word embeddings, and reference image datasets.

1 Introduction
Learning a low-dimensional structure that approximates a
high-dimensional dataset is a fundamental problem in sci-
ence and engineering —e.g., learning an approximating sub-
space using principal component analysis (PCA) (Pearson
1901; Hotelling 1933; Jolliffe 2002). This paper introduces
a new approximating structure, which we call principal com-
ponent trees (PCT), of which PCA and generalized PCA
(also known as subspace clustering (Elhamifar and Vidal
2013)) are special cases.

PCT builds on the union of subspaces model, which as-
sumes that each data sample lies near one of several low-
dimensional subspaces. Subspace clustering is then the task
of learning the structure of these subspaces and has shown
effectiveness in modeling many kinds of data (Vidal, Tron,
and Hartley 2008; Mahmood and Pimentel-Alarcón 2022;
Li, Zhao, and Zhu 2023). Baked into the majority of sub-
space clustering algorithms, such as the effective Sparse
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Figure 1: (Left) Two 2D subspace clusters with a 1D inter-
section and the corresponding Principal Component Tree.
(Right) A PCT trained on Fashion MNIST.

Subspace Clustering (SSC) method (Elhamifar and Vidal
2013), is the assumption that the subspaces containing the
data are disjoint. That is, all points near the span of one sub-
space are not near the span of any other subspace.

It is this disjoint assumption that motivates Principal
Component Trees, which can represent a single subspace,
multiple disjoint subspaces, and multiple intersecting sub-
spaces. In essence, a PCT is a graph summarizing the hier-
archical structure of the principal components in the data.
Each node of a PCT corresponds to a single principal com-
ponent, defined by a principal vector and a singular value.
Each edge of a PCT links principal vectors that, together,
define a set of subspaces that contain the data. Each of these
subspaces is spanned by a branch of the PCT, which is the
set of nodes that lie on the path between each leaf of the
PCT and its root. Branches that share nodes correspond to
intersecting subspaces (see Figure 1).

Our algorithm to learn a Principal Component Tree an-
alyzes the structure of the data dynamically, recursively
adding child nodes, depending on the structure of the data.
Each node will have more than one child only if we detect
disjoint subspace clusters. We make this determination with
a non parametric hypothesis test which compares the distri-
bution of pairwise angles of the data points to the known
distribution of uniform angles. If no disjoint structure is de-
tected at any node, the PCT will result in a degenerate tree.
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In this case, PCT reduces to PCA. Similarly, the union of
subspaces model used by classical subspace clustering is the
special case of PCT where a disjoint structure is detected at
the root and nowhere else. In general, data following a mul-
tivariate normal distribution will yield tall trees, and data
exhibiting subspace clustered structure will yield wide trees.

To quantitatively measure tree structure, we turn to tools
in persistent homology that measure properties of graphs as
they are filtered into sub-graphs. Specifically, we perform
a height filtration that measures how many nodes are be-
low a given height, and a width filtration, which measures
the width of the tree as we prune the least significant nodes.
These measures yield bounded, monotonic curves that sum-
marize the subspace structure of the PCT, and can be used to
perform hypothesis testing between PCTs. Our experimen-
tal results show the effectiveness of both summaries on syn-
thetic and real-world data, including multilingual word em-
beddings and the latent space of neural networks.

Our main theoretical contribution shows that any distri-
bution that can be parameterized using PCA or generalized
PCA can be equivalently represented with a PCT with as
many or fewer parameters. Our second theoretical contribu-
tion relates to our non parametric hypothesis test. We are
able to show that with high probability (w.h.p.) our test will
accurately detect clusters of correlated data, which we treat
as a proxy for subspace structure. As a corollary of this re-
sult, we show that w.h.p. our algorithm will result in a degen-
erate tree (i.e., will produce the same result as PCA) when-
ever data is best represented by a single subspace.

Similar to PCA, our PCT enjoys several favorable proper-
ties. Firstly, the principal vector of each node is orthogonal
to all of its ancestors and descendants, making projection of
data onto each node of the tree efficient and decomposable.
We also show that the singular value of a node is strictly
less than or equal to that of its parent and ancestors. In stan-
dard PCA, the components corresponding to the largest sin-
gular values are the subset of components enabling optimal
projection approximation of the datapoints. We prove that
the monotonically decreasing singular values gives PCT a
similar property, that the optimal approximating subtree of
a PCT is the subtree with nodes with largest singular values.
The decreasing singular values are also essential to enable
the aforementioned width filtration topological measure.

2 Related Work
Subspace Clustering As mentioned, the task of subspace
clustering is to partition a set of data such that each partition
lies on the span of a low dimensional subspace. While some
works are principally interested in the clustering / partition-
ing of points, such as in Motion Segmentation (Vidal, Tron,
and Hartley 2008) and Hyperspectral Imaging (Li, Zhao, and
Zhu 2023), others are more interested in using the learned
subspace structure for downstream tasks. For example, sub-
space clustering has shown to be effective in matrix comple-
tion problems (Fan and Udell 2019), or as a feature extrac-
tion method (Hu et al. 2023; Kizaric and Pimentel-Alarcón
2022). Methods for performing subspace clustering utilize
sparse self-expressiveness (Elhamifar and Vidal 2013), ex-
pectation maximization (Lipor et al. 2021), deep learning

(Zhu et al. 2019), and fusion over the grassmannian (Mah-
mood and Pimentel-Alarcón 2022).

An important distinction in subspace clustering tech-
niques is the difference between axis-parallel and lin-
ear methods. In axis-parallel methods such as CLIQUE
(Agrawal et al. 1998) and (Yuan et al. 2013) the subspaces
are assumed be be spanned by a discrete subset of the
variables / features of the dataset. In linear methods, the
subspaces are allowed to span any linear combination of
the variables, in a continuous space known formally as the
Grassmanian. As illustrated in figure 1, the nodes of Princi-
pal Component Trees represent an arbitrary direction in the
data, and as such is a generalization of linear subspace clus-
tering. Although it is comparatively well-studied, the dis-
creet sample space in axis-parallel regimes enables the use
of an entirely different class of algorithms, so we focus our
comparisons only on linear methods.

Of particular interest to this paper are hierarchical sub-
space clustering techniques. These approaches come in top-
down (Rafiezadeh Shahi et al. 2020; Wu et al. 2015) and
bottom-up (Menon, Muthukrishnan, and Kalyani 2020) fla-
vors. (Rafiezadeh Shahi et al. 2020) and (Wu et al. 2015)
are similar to Principal Component Trees in that they are
top-down methods which recursively partition the space into
lower dimensional subspaces, and the termination of node
splitting is based on a reconstruction error criteria.

While the construction of PCTs is fundamentally a hi-
erarchical subspace clustering algorithm, it is the only one
whose nodes represent a single basis, and that can general-
ize to PCA, disjoint subspaces, and intersecting subspaces.
Similarly named similarity search methods like (McCartin-
Lim, McGregor, and Wang 2012) and (Wichert 2009) exist,
but these methods don’t use subspace clustering.

Angle Distributions Established results on the distribu-
tion of pairwise angles in high dimensional space are impor-
tant to PCT’s adaptive splitting construction. These results
were first established in (Cai, Fan, and Jiang 2013) and used
to estimate intrinsic dimensionality in (Thordsen and Schu-
bert 2022). (Menon, Muthukrishnan, and Kalyani 2020) uses
pairwise angle distributions in subspace clustering, but for
merging subspaces from the bottom-up, unlike our top-down
approach. Hypothesis tests of angle uniformity are central to
directional statistics, and are explored in (Garcı́a-Portugués,
Navarro-Esteban, and Cuesta-Albertos 2023).

Dictionary Learning and Sparse Coding Primarily a
compression and denoising technique, Dictionary Learning
and Sparse Coding seek to find a dictionary V and sparse
codes U in order to minimize ||X−UV||F + α||U||1. Im-
plementations utilize autoencoders (Ng et al. 2011), alter-
nating optimization (Tovsić and Frossard 2011), and other
techniques. Structured Sparse Coding places additional con-
straints on U and V in order to form advantageous struc-
tures. For example, (Jenatton et al. 2010) force the non-zero
coefficients to form a pre-defined tree hierarchy, and its opti-
mization procedure promotes orthogonality in the branches
of dictionary atoms in the tree. The atoms in (Szlam, Gregor,
and LeCun 2012) are placed into overlapping groups which
are learned from data, but don’t form a tree.

Topological Data Analysis & Persistent Homology Be-
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cause of its ability to discover robust patterns in arbitrary
distributions like networks and point clouds, topological
data analysis (TDA) has emerged as a promising approach
in medical imaging and other areas (Chazal and Michel
2021). Persistent Homology is a sub-field of TDA that fo-
cuses on measuring properties of graphs as they are filtered
down (Pun, Lee, and Xia 2022). While persistent homology
is most commonly used to construct Birth-Death decompo-
sition charts, Rips Filtration (Bauer 2021) and Graph Fil-
tration (Lee et al. 2012) are robust approaches that enable
theoretically sound statistical inference. The key property of
Graph Filtration is that it tracks the first two Betti numbers
of the graph, which are monotonic over edge filtration.

Of particular relevance to our analysis of PCTs are per-
sistent homology based characterizations of tree structure.
(Chung et al. 2015) build minimum spanning trees from
structural covariance networks then apply graph filtration
to create curves used to compare network structure. Persis-
tent Homology has also been applied to tree-structured data.
Both (Li et al. 2017) and (Kanari et al. 2016) filter the binary
tree structure of neurons and brain arteries based on height
/ distance to the neuron’s cell body. Persistent structures are
then described by a birth-death composition chart. Our anal-
ysis of PCTs borrows this height filtration approach, but in-
stead creates monotonic curves as in (Chung et al. 2015).

3 Principal Component Tree
Consider a data matrix X whose columns {x} represent
samples in RD. A principal component tree T to model data
X is defined by a set of nodes Ni, i ∈ {1 . . . |T |}, and a set
of directed edges Eij indicating that node Ni is the parent
of node Nj . Given node Ni, we denote its (unique) parent
as Pi, its set of ancestors as Ai, with Ni ∈ Ai, its set of
children as Ci, and its set of descendants as Di. We use Si to
denote the set of siblings of Ni, defined as the set of nodes
with the same parent as Ni.

A node Ni represents two objects: (a) its associated prin-
cipal component, given by a unit-length vector vi ∈ RD,
and (b) its singular value σi ≥ 0. Much like PCA, each
node’s vi represents a direction of variation in the data, and
its σi is proportional to the amount of variation along this
direction. However, unlike PCA, these quantities describe
variation directions of specific subsets of the data, not just
the data as a whole. These subsets of data and their particu-
lar variation directions are determined by the nodes and their
lineage. To see this, define the ancestral basis associated to
node Ni as

Vi := {vi | Ni ∈ Ai}.
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Figure 2: Sample tree and data assignments for one point. x
“chooses” nodes greedily, starting from the root down.

This basis spans a subspace that approximates a subset of
the samples in X. Specifically, we assign each node of the
tree a subset of the data Xi, defined recursively as:

Xi :=

{
x ∈ XPi

∣∣∣ argmax
j∈Si

|⟨vj ,x⟩| = i

}
.

Intuitively, the subset of columns assigned to node Ni is the
subset of columns that were assigned to its parent, and that
are closer to the principal component of Ni than to that of
any of its siblings. See Figure 2 for a one sample example.

Notice that under these definitions, the bases and data as-
signments of ancestors and descendants are nested, i.e., for
any Nj ∈ Ai,

span(Vj) ⊆ span(Vi) and Xj ⊇ Xi

That is, the basis for an ancestor is a subspace of the basis
for all its descendants, and the data assigned to an ancestor
is a superset of the data assigned to its descendants.

Approximating Data
We will now show how Principal Component Trees can be
used to approximate data in a similar fashion to PCA. That
is, to create an approximation X̂ of X. Whereas PCA ap-
proximations can be computed by a single matrix operation,
PCT approximations are a union of approximations given in-
dividual nodes of their respective assigned data. For a single
node, its node approximation and node residual are:

X̂i = ViV
T
i Xi and Ri := Xi − X̂i

respectively. The node approximation is simply a node’s
assigned data projected onto its anscestral basis. Ordinary
least squares projection would require that we also compute
(ViV

T
i )

−1, but our tree construction actually gives an or-
thonormal basis for all Vi (Property 6.1). The node residu-
als are used extensively in our tree construction; the descen-
dants of Ni are learned to best approximate Ri. Intuitively,
the number of children of Ni is the number of disjoint sub-
space clusters detectable in Ri and the principal components
of those children are the first singular vectors of those dis-
joint subspaces.

To compute the approximation of the entire dataset, we
make use of the fact that for leaves of the tree (nodes with
no children), data assignments are disjoint. Furthermore, the
subspaces defined by leaf nodes are not nested. More ex-
actly, for two leaf nodes Nℓ and Ng:

span(Vℓ) ̸⊆ span(Vg) and Xℓ ∩Xg = ∅

Now that we have single node approximations and have
shown that data is disjointly partitioned between leaf nodes,
we can compute the full approximation of some data X as:

X̂ :=
⋃|NL|

ℓ=1
X̂ℓ

Where NL is the set of all leaves of the tree.
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4 Subspace Structure Test
Testing the Presence of Subspace Clusters
Key to our construction of the Principal Component Tree is
our adaptive splitting algorithm, which builds the tree top
to bottom, expanding node Ni with either (a) a single child
at a time, if its data residuals Ri show no sign of subspace
structure, or (b) with multiple children, if we detect suffi-
cient subspace structure in Ri.

To make this determination we use the Cramér-von Mises
test to compare the distribution of the angles of the residu-
als Ri with the known angle distribution under uniformity
on the hypersphere. We motivate the use of this test as fol-
lows. If data is subspace clustered, there will be directions
in the space that are crowded with points and directions that
are comparatively empty. This non-uniform use of the space
will cause the distribution of angles between points of sub-
space clustered data to differ from the known distribution for
uniform points. We treat the degree of angle non-uniformity
as a proxy for the degree of subspace clusteredness.

This measure of subspace clusteredness is summarized in
a single p-value p where a small p indicates subspace cluster-
ing. To compute this p-value, we require three things. 1) The
empirical cumulative distribution function (CDF) P̂D(C)
which describes the observed distribution of angles of our
D-dimensional residuals. 2) The CDF PD(C) which defines
the expected distribution of angles under the null hypothe-
sis of no subspace structure i.e. uniformity. 3) The Cramér-
von Mises test statistic Q which quantifies the difference be-
tween P̂D(C) and PD(C), and therefore the degree of sub-
space clustering.

For notational clarity, we henceforth discuss the test
as applied to a generic data matrix X whose columns
{x1 . . .xk . . .xj . . .xN} represent samples in RD.

To perform this test, we first measure the angle distribu-
tion of our data. More precisely, we measure the distribution
of absolute cosine similarities between pairs of points of X.
Taking all pairs, we compute the N(N−1)

2 angles of X,

∠X :=

{
|⟨xk,xj⟩|
||xk|| ||xj ||

∣∣∣ k < j

}
∠xi ∈ [0, 1].

We use absolute cosine similarity because subspaces pass
through the origin. All points on a line through the origin to
should be deemed similar, regardless of whether they are on
the same side of the origin. We then describe the distribution
of angles via the empirical distribution function,

P̂D(C) :=
1

N(N − 1)

∑N(N−1)

i=1
1{∠xi ≤ C}

In order to determine if our data X exhibits subspace clus-
teredness, we need to compare the observed distribution of
angles to an expected null distribution. In this test, our null
hypothesis is that our data has angular uniformity; that the
unit length normalized data is sampled uniformly from the
hypersphere embedded in RD. For example, the isotropic
gaussian distribution has angular uniformity.

Thankfully, the expected distribution of pairwise angles
on the hypershpere has already been derived by (Cai, Fan,

Figure 3: Three datasets, their angle distribution, and sub-
space clustering test results. XA ∈ R3: An isotropic normal
distribution. XB ∈ R3: A data lying on 2 2D subspaces,
with a 1d intersection, labeled v. XC ∈ R2: A union of 2
1D disjoint subspaces.

and Jiang 2013) for standard angles θ ∈ [0, 2π] and (Thord-
sen and Schubert 2022) for absolute cosine similarity C ∈
[0, 1]. The latter is a simple transformation of the univariate
beta distribution, whose CDF is:

PD(C) = 2 BetaCDF
(
1+C
2 ; α = D−1

2 , β = D−1
2

)
− 1.

With the observed and expected/null distributions in hand,
we can finally compare them via the Cramér-von Mises test.
This test quantifies the distance between two distributions
into the test statistic

Q = N(N − 1)

∫ 1

0

(
PD(C)− P̂(CD)

)2

dC.

The known domain of C allows us to bound the otherwise
improper integral of the CvM statistic. Computation of the
final p-value p is given in (CSöRgő and Faraway 1996),
equation 1.8.

Practical Considerations. For simplicity and inter-
pretability, we leave three important implementation details
about this and the following test to the technical appendix. 1)
In order to reasonably compare angle distributions to those
of hyperspheres, we first whiten X before taking the angle
distribution. 2) This explicit whitening makes the expected
angle distribution PD(C) dependent on N , so we used
monte-carlo simulation to estimate PD(C) for N < 100D.
3) Whenever comparing the subspace clusteredness of two
data matrices, we first project both to a common dimension.

Testing an Intersection of Subspace Clusters
In the previous subsection, we state that we will split a node
Ni in two if we detect subspace clusters in its residuals Ri.
This is a simplification; if we only do this, we may split
nodes prematurely and leave our PCT construction unable to
find intersections of subspaces. For example, take XB and
XC in Figure 2. Both XB and XC have a very small p-
value, small enough to correctly conclude there is subspace
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Algorithm 1: CLUSTER-TEST
Input: XD×K

Output: p: The p-value of the Cramér-von Mises test; the
probability that X has angular uniformity. Sufficiently low p
indicates subspace clustering.

0: Let r = RANK(X).
0: Let Xw = WHITEN(X).
0: Let Xunit =

xk

||x||k for xk ∈ Xw.
0: Let AK×K = |XunitX

T
unit|

0: Let ∠X = Aij where i > j. {∠xi ∈ [0, 1]}
0: Let p = CVM-TEST(P̂ = ∠X, P = P(Cr))
0: RETURN p =0

Algorithm 2: EXPAND-NODE
Input: A node Ni and residuals Ri.
Output: Either one or two child nodes of
Ni.

0: V1(X)→ v1, σ1 {X’s 1st singular vector and value}.
0: Let v1, σ1 = V1(Ri).
0: Let isClustered = CLUSTER-TEST(Ri) < αtest

0: Let hasIntersection = INTERSECT-TEST(Ri,v1)
0: if isClustered and not hasIntersection then
0: {Ri,A,Ri,B} ← SUBSPACE-CLUSTER(Ri)
0: vA, σA = V1(Ri,A); vB , σB = V1(Ri,B)
0: RETURN NODE(vA, σA,Ni), NODE(vB , σB ,Ni)
0: end if
0: RETURN NODE(v1, σ1,Ni) =0

clustering in the data. However, if we split XB right away,
we would miss the fact that the two subspaces have a promi-
nent 1D intersection (labeled v).

In order to build PCTs with the capacity to represent in-
tersecting subspaces, we now present a test that extends
on the previous subsection. This test evaluates whether or
not potential subspace clusters plausibly intersect along a
given axis / basis v. We propose that if some data X pro-
jected onto the null space of v appears more subspace clus-
tered than the original data, then v is a plausible intersec-
tion of subspace clusters present in X. More exactly, our
test INTERSECT-TEST(X,v) returns true if

CLUSTER-TEST(X− vvTX) < CLUSTER-TEST(X)

Back to the example of Figure 3, notice that XC is actually
the projection of XB onto the null space of v, and that XC

has an even smaller p-value than XB . In this case, we would
conclude that v is a plausible subspace intersection of XB .

5 Methodology

Building a Principal Component Tree
Now that we have defined the structure of a Principal Com-
ponent Tree in section 3 and two important building blocks
in section 4, we can present our algorithm to construct a
PCT. Put simply, we build a tree by selecting the leaf node

with the largest residuals

Nnext := argmax
i∈NL

||Ri||F

and expanding it by giving it one or two children. The pro-
cess is illustrated in Figure 4. We start with an “empty” root
that describes no variation in the data, and we expand nodes
until we have reached our target size.

The two tests of subspace structure presented in section
4 are used to determine how many children to grant Nnext.
In essence, if CLUSTER-TEST(Rnext) finds no subspace
clustered structure in Rnext, we give it one child. We also
give it one child if we deem that v, the first singular vector
of Rnext is common to subspace clusters in Rnext, as deter-
mined by INTERSECT-TEST(Rnext,v). This case is like
“digging deeper” through the space in the hope that there are
even more disjoint subspace clusters somewhere in the null
space of Vnext∪v. We will only split a node in two when we
believe that Rnext lies on disjoint subspace clusters: When
the data is sufficiently subspace clustered, and v is not an
intersection. See algorithm 2 for a formal specification.

By only evaluating the leading singular vector of Rnext as
a potential subspace intersection of Rnext, we ensure three
desireable properties: a) Only strong intersections will be
detected, and not intersections that may arise from noise.
b) The non-decreasing singular value property will be en-
forced. This property is needed to select the optimal subtree
of T , and for width-filtration. c) The PCT will reduce to
PCA in the case of gaussian data.

The PCT construction algorithm uses a few hyper-
parameters. Firstly, we greedily build the tree up to a max-
imum number of nodes |T |max. There is no inherent maxi-
mum size of the tree, but the maximum height of the tree is
the data dimension D. We also specify a significance level
αtest ≤ 0.05 which specifies how confident the test must
be that there is subspace clustered / angle non-uniformity
structure in order to split a node in two. This parameter di-
rectly influences the shape of the tree; a smaller αtest means
nodes are more likely to have only one child, resulting in
taller trees. This parameter is used in theorem 6.1 to lower
bound the probability that the PCT will reduce to PCA when
trained on gaussian / elipical data. If αtest = 0, no nodes
will be split, and the PCT will always reduce to PCA.

Finally, when we split a node, we use an arbitrary binary
subspace clustering algorithm to partition its residuals. We
denote this SC(Ri) → {Ri,A,Ri,B}. The basis vector and
singular value of the two new nodes emerging from this split
are the first singular values and vectors of Ri,A and Ri,B . As
a structure, the PCT supports arbitrary numbers of children,
but we focus only on the binary case in this paper.

Persistent Homology Analysis
Thus far, we have defined the structure and properties of
Principal Component Trees and outlined an algorithm to
construct them using two novel hypothesis tests. In this sec-
tion, we discuss how to analyze and compare the structure of
PCTs so that we may use them as a tool to inspect the struc-
ture of high-dimensional data. To this end, we introduce two
interpretable topological measures that describe the shape of
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Figure 4: A sample PCT as it is constructed.

PCTs. Inspired by (Chung et al. 2015), both of these mea-
sures take the form of bounded, monotonic curves measur-
ing the size or shape of a tree as nodes are pruned away.

As a guiding principal, the more subspace clustered X is,
the more nodes will be split into multiple children, and the
tree will be wider; it will have more leaves. Conversely, the
tree will be taller the less subspace clustered X is. In the
case where X follows a multivariate normal distribution, the
tree will be degenerate and maximally tall. Our two topolog-
ical measures quantify this intuition by defining curves that
describe the height and width of the tree. Assume that the
empty root node is left out of calculations.

Height Curves. The first topological measure of a PCT
is the tree’s height curve. Put simply, the height curve char-
acterizes the distribution of node heights, similar to a CDF.
For a tree T , it is defined as:

HT (n) =
∑|T |

i=1
1{hi ≤ n}.

Intuitively, the height curve will be higher for more subspace
clustered trees. More subspace clusters leads to more nodes
with multiple children which leads to more nodes at lower
heights. The height curve is lower bounded by HT (n) = n.
This occurs only for degenerate / “PCA” PCTs, where there
is exactly one node at each height. The height curve is upper
bounded by HT (n) = |T |. Only trees where all |T | nodes
are children of the root will have this curve. In this case, the
tree models a union of |T | one dimensional disjoint subspace
clusters.

Width Curves. We also propose width curves as a topo-
logical descriptor of PCT shape. For this curve, we measure
tree width (number of leaves) of the subtree of T consisting
of only the most significant nodes, according to their singu-
lar values. Formally, this subtree consisting of the n most
significant nodes is

T[n] = {Ni

∣∣σi ≥ σ(n)}, {Eij
∣∣σi, σj ≥ σ(n)} (1)

where σ(n) is the nth largest singular value of nodes in T .
In property 6.3 we prove that T[n] is the best approximating
subtree of T . With this subtree defined, a PCT’s width curve
is then

WT (n) =
∑|T |

i=1
1{i ∈ T[n] ∧ Ci ∩ T[n] = ∅}.

That is, the number of nodes who are both in T[n] and leaves
of T[n]. It may be easier to imagine recording the width of a
tree as the least significant nodes are removed.

Similar to height curves, the width curves will be higher
for more subspace clustered trees. Also like height curves,

A

B C

D
E

High

Low

A B C D E

36 32 32 27 21

21 15 14 9 6

Figure 5: Five example PCTs with 6 nodes each, and cor-
responding height/width curves. Shading indicates singular
value. A and E are maximally and minimally subspace clus-
tered. B and C differ only in singular values, which is re-
flected in width curve only.

width curves are lower bounded by WT (n) = 1 and upper
bounded WT (n) = n for degenerate trees and maximally
wide trees, respectively.

Area Under Curves We have just shown that HT (n) and
WT (n) are monotonic and maximized under a large degree
of subspace clusteredness. Therefore, the area under each
curve is an effective one number summary of the subspace-
clusteredness of the dataset used to construct a tree. The area
under height and width curves are

HT =
∑|T |

n=1
HT (n) and WT =

∑|T |

n=1
WT (n).

In section 7 we perform hypothesis testing to show differ-
ences in subspace clusteredness between various datasets.

6 Main Theoretical Results
In this section we present two theoretical results that demon-
strate the representational capacity of Principal Component
Trees and the ability of their construction to perform PCA
under correct conditions. Detailed proofs in the Appendix.

Theorem 6.1 Any union of subspaces, or distribution ly-
ing on a union of subspaces can be equivalently represented
by a PCT using the same or fewer parameters.

Proof Sketch. We prove this result for a union of two sub-
spaces. Any mixture of 2 d-dimensional subspaces will re-
quire 2d vector parameters. But if these subspaces have a
c-dimensional intersection, we can a) find that intersection
analytically, and b) create a PCT representing that same mix-
ture with only 2d− c parameters.
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Theorem 6.2 When presented data following a multivari-
ate normal distribution, PCT construction will reduce to
PCA, yielding a degenerate tree with probability at least
(1− αtest)

D.

Proof Sketch. If the data is truly multivariate normal, then
all projection residuals will also be multivariate normal.
Therefore, when we test for subspace clustering in Ri for
any node, we will erroneously split a node with probability
αtest. Repeating this test D times, we will never split a node
with probability (1− αtest)

D.

We also prove that our PCT learning algorithm leads to
two simple but useful properties of PCTs. Firstly, nodes are
orthogonal to their ancestors, making calculation of data ap-
proximations fast and decomposable. Secondly, node singu-
lar values decrease with height. Together these two proper-
ties are used in property 6.3, which provides a simple and
efficient way to select the best approximating subtree of an
existing tree by selecting its most significant nodes. This is
like selecting the best principal components of PCA.

Property 6.1 The singular vector of any node is orthogo-
nal to those of its ancestors. Formally,

vi ⊥ vj ∀j ∈ Ai

as a consequence, all ancestral bases are orthonormal.

Proof Sketch. This property arises from the tree construc-
tion. As a singular vector of Ri, Each vi is somewhere in
the null space of vPi

, its parent’s basis, so vi ⊥ vPi
. By

induction, it is orthogonal to all its ancestors.

Property 6.2 A node’s singular value is less than or equal
to its ancestors. Formally,

σi ≤ σj ∀j ∈ Ai.

Proof Sketch. We show this by contradiction. Consider a
node Ni and its parent Pi. Let RPi be the residual used to
create the parent Pi. Both σPi

and σi are derived from RPi
,

but σPi
is its singular value. If σi > σPi

, it would violate the
Eckart-Young theorem. Therefore, σi ≤ σPi

. By induction,
σi ≤ σj , j ∈ Ai.

Property 6.3 The best size n approximating subtree of T
is given by T[n] (equation 1), i.e. selecting the n nodes with
largest singular values. More exactly,

argmin
T ∗⊂T

||X− X̂T ∗ ||F := T[n]

Proof Sketch. We prove this in three parts. 1) We show that
property 6.1 means that the approximation error is inversely
proportional to the sum of singular values in the tree. 2) We
can therefore minimize the approximation error by select-
ing the nodes with largest singular values. 3) Property 6.2
implies that T[n] will share the root of T , and will have no
gaps, that is Ni ∈ T[n] =⇒ Nj ∈ T[n] ∀ Nj ∈ Ai.

MNIST
Fashion

MNIST
Digits

a) Sample Trees b)   Average Curves c)   Area Under Curves

Figure 6: MNIST Digits vs Fashion. a): Example PCTs
learned from each dataset. Singular values shaded. b) The
average height & width curve from bootstrap sampling. c)
Area under width & height curves among bootstrap samples.

7 Experiments
With our persistent homology measures of tree shape de-
fined, we now analyze the structure of some real world high-
dimensional datasets by comparing the structure of Principal
Component Trees learned from those datasets. Our goal is
not to discriminate between samples, but to conclude some-
thing about the clusteredness of the datasets themselves.

In order to do this, we: 1) take the datasets we wish
to compare, and pre-process them by normalizing, but not
completely whitening their singular values. This way, dif-
ferences in PCT structure are purely the result of sub-
space structuredness, not anisotropic covariance. 2) Boot-
strap sample each dataset into a number of equally sized
sub-datasets. Differently sized bootstrap samples between
datasets would impact the hypothesis test used to construct
the trees. 3) Construct a PCT and calculate HT and WT for
each bootstrap sample. 4) Compare HT and WT for each
dataset using a wilcoxon rank-sum test. We also plot these
metrics on scatter plots.

MNIST Digits vs Fashion. For our first experiment,
we compare the widely known MNIST Digits and Fashion
datasets (Deng 2012; Xiao, Rasul, and Vollgraf 2017). On
paper, they are very similar: 60,000 32x32 images with 10
balanced classes each.

When we compare the subspace clusteredness of the dig-
its and fashion datasets, the results are clear: MNIST Fash-
ion is much more subspace clustered. The results in Figure 4
tell the story. Both the average height and width curve in 4b
is higher for the fashion dataset, and this is reflected in ar-
eas under each curve. Anecdotally, the sample tree (4c) for
MNIST digits shows a single dominant “branch” of nodes
whereas the fashion tree has two dominant branches.

Neural Network Latent Space & Non-Linear Dimen-
sionality Reduction “What do neural networks learn?” is
a long running question in Machine Learning, and there is
no shortage of answers in the literature. In this experiment,
we answer this question by analyzing the latent space of dif-
ferent neural network architectures via Principal Component
Trees. Specifically, we compare the latent space of an Multi
Layer Perceptron classifier, simple auto encoder (AE), and
variational auto encoder (VAE) which have been trained on
the MNIST Digits dataset. We also include the digits after
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8383 8430 8363 8821 9216

1227 1216 1107 1677 1954

Original AE VAE Classifier UMAP

Figure 7: Subspace Clusterness of latent space induced by
neural network architectures. Top-Left: Pairwise p-values
for rank-sum hypothesis tests between latent spaces. Top-
Right: HT plotted against WT for bootstrap samples. Bot-
tom: Mean of HT and WT for the five latent spaces.

UMAP dimensionality reduction for comparison. All latent
spaces are 64 dimensional.

To accomplish this, for each bootstrap dataset we: 1) Train
a network on that bootstrap dataset. 2) Transform the boot-
strap dataset by passing it through the first 2-3 layers of the
network. 3) Construct a PCT from this transformed dataset.

The results of this experiment are summarized in Figure
7. We first notice that UMAP produces the most clustered
embeddings, which is expected given it’s objective function
and effectiveness in enhancing high-dimensional clusters.
Amongst the Neural Network latent spaces, the latent space
of the classification model is much more subspace clustered
than the original data or the other architectures. This is ulti-
mately unsurprising. The end goal of this model is to trans-
form the original data into one-hot vectors which are max-
imally clustered under perfect accuracy. We posit that this
objective leads to more subspace clustering in the interme-
diate layers of the model.

Looking at the standard and variational autoencoder (la-
beled AE & VAE), the results are consistent with the ob-
jective of these models. The subspace clusteredness of the
original data is preserved in the latent space of the simple
autoencoder, likely becasue it simply tried to accurately re-
produce the training data. For the variational autoencoder,
the latent space is less subspace clustered than the original.
This is expected as the loss function of VAEs encourages
the latent space to take the form of an isotropic gaussian
function. For this comparison, it appears that WT is a more
sensitive measure than HT .

Multilingual word embeddings. For our final exper-
iment, we compare the subspace clusteredness of multi-
lingual word embeddings in three languages. We use the
embeddings presented in (Ferreira, Martins, and Almeida
2016), where each language’s embedding were trained on
the TED 2020 dataset (Cettolo, Girardi, and Federico 2012),
where the same TED talks are translated into each language.
To ensure our word embeddings cover similar concepts, we

2976 3046 3090

219 271 315

Italian English Russian

~0.00 ~0.00

0.001 0.061

~0.00 0.023

Italian English Russian

Italian

English

Russian

Figure 8: PCT Analysis of word embeddings. Top-Left: Pair-
wise p-values for rank-sum hypothesis tests between lan-
guage embeddings. Top-Right: HT plotted against WT for
bootstrap samples. Bottom: Mean of HT and WT for the
three languages

examine the 1000 most common words from each language.
Under these circumstances, we would expect the embed-

dings to be structurally similar across languages, but that’s
not what we see in Figure 5. Each of the three kinds of em-
beddings have different degrees of subspace clusteredness,
with Italian embeddings being the least and Russian embed-
dings being the most clustered.

8 Conclusion
In conclusion, this paper introduced Principal Component
Trees (PCTs) as a framework for identifying mixtures of
components that collectively represent the subspace struc-
ture within high-dimensional datasets. The proposed PCTs
extend conventional low-dimensional models such as PCA
and union of subspaces by incorporating a graph structure.
Each node in the PCT corresponds to a principal compo-
nent, with edges representing the necessary combinations of
components required to form a subspace that approximates
specific portions of the data.

To construct PCTs, two angle-distribution hypothesis
tests are introduced to detect intersecting subspace clusters
within the data. Additionally, for the analysis, comparison,
and selection of optimal PCT models, we use two novel and
interpretable persistent homology measures to examine their
shape. The constructed PCTs exhibit two interesting prop-
erties: ancestral orthogonality and non-decreasing singular
values, which in turn facilitate the computation of persistent
homology measures.

Theoretical results demonstrate that learning PCTs re-
duces to PCA under multivariate normality, and that Prin-
cipal Component Trees serve as efficient parameterizations
for intersecting unions of subspaces. Finally, we showcase
the practical applicability of PCTs by analyzing neural net-
work latent spaces, word embeddings, and reference image
datasets. This research advances our understanding of sub-
space modeling and offers a powerful tool for dissecting
complex high-dimensional datasets in various domains.
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Principle Component Trees and their Persistent Homology: Technical Appendix

1 Appendix Outline.
In this appendix, we present material to supplement “Princi-
ple Component Trees and Their Persistent Homology”. We
present 3 sections of supplementary material.
• Practical Details / Considerations for the implementation

of our PCT construction algorithm.
• More detailed proofs of our theoretical results listed in

the paper.
• NEW FOR CPAL! Additional applications.

2 Practical considerations for PCT
construction

In the main paper, we stated:
For simplicity and interpretability, we leave three im-
portant implementation details about this and the fol-
lowing test to the technical appendix. 1) In order to
reasonably compare angle distributions to those of hy-
perspheres, we first whiten X before taking the angle
distribution. 2) This explicit whitening makes the ex-
pected angle distribution PD(C) dependent on N , so
we used monte-carlo simulation to estimate PD(C)
for N < 100D. 3) Whenever comparing the subspace
clusteredness of two data matrices, we first project
both to a common dimension.

We will now examine these details in order.

Data Pre-Whitening
In section 4, we compare an observed angle distribution
with an expected distribution under uniformity on the hyper-
sphere. This CDF for absolute cosine similarities was given
in (Thordsen and Schubert 2022) as:

PD(C) = 2 BetaCDF
(
1+C
2 ; α = D−1

2 , β = D−1
2

)
− 1.

Unfortunately, this expected distribution of angles will
only properly apply isotropic distributions. The expexted
distribution of angles will be different for anisotropic dis-
tributions. To isolate differences in the observed ∠X and
theoretical PD(C) that occur because of subspace clustering
behavior and not an isotropic covariance, we whiten X such
that it’s diagonal matrix of singular values will be exactly
ID.

Figure 1 demonstrates why this is necessary. All three dis-
tributions display roughly the same anisotropic covariance
before whitening, but only two could be reasonably called
subspace clustered (1b and 1c). Only after whitening the
data can we make an “apples-to-apples” comparison of an-
gle distribution.

Monte Carlo Estimation of PD(C)

Unfortunately, the explicit whitening we discuss in the pre-
vious section has a side effect. Because whitening makes
the covariance exactly isotropic, it makes points “over-
perpendicular” to what would occur randomly when points
are sampled uniformly from a hypersphere. In the extreme
case, when we whiten D points in RD, all the points be-
come exactly perpendicular to each other. See Figure 2 for
an example of this in R2.

Because of this over-whitening, the expected distribu-
tion of pairwise angles is no longer dependent only on the
data dimension D, but also the number of points N . We
denote this new, datasize-dependent expected distribution
PD,N (C). This means we can’t use the existing theoretical
CDF of angle distribution when dealing with pre-whitened
data; it is only the asymptotic distribution. Deriving the ex-
act, non-asymptotic angle distribution would be a great di-
rection for future work, but we were unable to find this ex-
pression exactly. Instead, we turned to Monte-Carlo simula-
tion.

More specifically, we estimate PD,N (C) for combina-
tions of D and N from D = 2 to D = 8, and for N = D
to N = 500D, taking only 100 values of N in this range.
For each combination, we ran enough simulations to collect
100, 000, 000 whitened angles, and cached empirical CDF
of those angles as PD,N (C) for later use. Thankfully, the
domain of PD,N (C) is only [0, 1], so we didn’t need to es-
timate small tails of the distribution. Figure 3 shows 4 such
Monte-Carlo CDFs and the asymptotic CDF.

Whenever we needed to perform a Cramer-Von-Mises
test to compare X to PD,N (C), we load the closest cached
PD,N (C) and compare our P̂D,N (C) to it.



Figure 1: Effect of whitening on observed pairwise angle distribution.

Original Points Whitened Points

Figure 2: Data whitening makes any 2 points in R2 exactly
perpendicular to each other.

Projection to a common dimension for comparison.
When discussing the test of subspace intersection, we state
that our test INTERSECT-TEST(X,v) returns true if

CLUSTER-TEST(X− vvTX) < CLUSTER-TEST(X).

Where v is the first singular vector of X. This leaves out
two details: We need to whiten X and X − vvTX, and we
need to project X and X− vvTX to a common dimension.
We perform this common projection for two reasons. 1) We
use monte-carlo simulation to estimate PD,N (C), and we
would need to cache our PD,N (C) for every possible D, po-
tentially 1000s of them. By projecting to a common, smaller
dimension before our test, we only need to cache PD,N (C)
for a handful of D. 2) By definition, X and X−vvTX are of

Figure 3: Expected angle CDF for different data sizes. Am-
bient space is R2

different rank. Therefore, they would use different expected
angle distributions, and we can no longer fairly compare the
cramer-von-mises test results to see if X − vvTX is less
clustered than X.

The full algorithm for INTERSECT-TEST is in algo-
rithm 1 W ≤ 8 is an additional hyperparameter of the com-
mon dimensionality in which to project the data before com-
parison. Anecdotally, a larger W leads to wider trees.

3 Proofs of Theoretical Results
Theorem 3.1. Any union of subspaces, or distribution lying
on a union of subspaces can be equivalently represented by
a PCT using the same or fewer parameters.

Proof. We prove this result for a union / mixture of two mul-
tivatiate normal distributions which lie in a union of sub-
spaces, but these results apply for any distribution embed-
ded in a union of subspaces, where the data lying on each
subspace can be described entirely by a covariance matrix.

Precise theorem: In an even-prior mixture of two d-
dimensional zero-mean Isotropic Gaussian’s in a D-
dimensional ambient space (d < D), where the intersec-



Algorithm 1: INTERSECT-TEST
Input: XD×K , W ≤ 8
Output: true if v, the first singular vector of X is a plau-
sible intersection of data in X.

1: Let r = RANK(X).
2: Let W ′ = MIN(r − 2,W )
3: Let U, s,VT = SVD(X). ▷ VT is implicitly whitened.
4: Let α1 = CLUSTER-TEST(VT [:, : W ′])
5: Let α2 = CLUSTER-TEST(VT [:, 1 : W ′ + 1]) ▷ In

null space of v
6: RETURN α2 < α1

tion of the two gaussians is a c-dimensional subspace, we
can efficiently and exactly represent the mixture with 2d− c
vector-valued parameters corresponding to a PCT struc-
ture. Formally, let p(x) ∼ 1

2N(0,ΣA) +
1
2N(0,ΣB) where

ΣA = AIAT ,ΣB = BIBT . This representation requires
2d vector-valued parameters: the columns of A and B. If the
intersection of A and B is a rank c subspace, then we can
decompose ΣA and ΣB into ΣC+ΣA⊥C and ΣC+ΣB⊥C ,
respectively.

Body of Proof. Let us take a singular value decomposi-
tion of ATB = WΛMT , where by definition of principal
angles Λ is a diagonal matrix whose first c diagonals are 1,
and the others are less than 1. Let ΛS be the matrix with
only a partial diagonal of c 1s, all other values 0.

Part 1: Decomposition of ΣA = AAT and ΣB = BBT .
Let P = WΛSW

T .

AAT = APAT +A(I−P)AT

= APAT + (A−AP)AT

= APAT +AAT −APAT

= AAT

(Similar for B)
Let UΣVT be the SVD of (AWΛS)(BWΛS)

T =
AWΛSW

TBT . Note the following: VΣUT =
(BWΛS)(AWΛS)

T = BWΛSW
TAT . ATA =

BTB = I, UTU = VTV = WTW = I.
ΛS = ΛT

S = Λ2
S . Σ also has a partial diagonal of c

1s, Σ = ΣT = Σ2.
Part 2: APAT = BPBT = UΣUT .

UΣVT = (AWΛS)(BWΛS)
T

UΣVTBWΛS = (AWΛS)(BWΛS)
TBWΛS

UΣVTBWΛS = AWΛS

UΣVTBWΛSW
TAT = AWΛSW

TAT

UΣVTVΣUT = APAT

UΣUT = APAT

(Similarly, for VΣVT = BPBT )

Part 3: APAT = BPBT = UΣUT = VΣVT .
APAT = BPBT

AWΛSW
TAT = BWΛSW

TBT

UΣVTBWΛSW
TAT = VΣUTAWΛWTBT

AWΛSW
TBTVΣUT = BWΛSW

TATUΣVT

UΣVTVΣUT = VΣUTUΣVT

APAT = UΣUT = VΣVT = BPBT

Going back to the original decomposition of the gaus-
sian covariance matrices ΣA and ΣB into ΣC + ΣA⊥C

and ΣC + ΣB⊥C , we have ΣC = UΣUT . Because Σ
only has c non-zero elements on it’s diagonal, ΣC can
be represented by c vector-valued parameters. Furthermore
ΣA⊥C = A(I−¶)AT , which needs only d− c parameters.
In total, the Gaussian mixture needs only 2d− c parameters,
which is the number of nodes needed by the equivalent PCT.

Theorem 3.2. When presented data following a multivari-
ate normal distribution, PCT construction will reduce to
PCA, yielding a degenerate tree with probability at least
(1 − αtest)

D. Formally, If X ∈ RD ∼ N(0,Σ), then the
constructed PCT tree will have D nodes and no splits with
at least probability 1−(αtest)

D. In this case, the vector vi of
node Ni at height hi will be equivalent to the hith singular
vector of X.

Proof. If the data is truly multivariate normal, then any lin-
ear transformation of the data will also be multivariate nor-
mal, such as the linear transformation used to obtain the
residual Ri = (I −ViV

T
i )X. Therefore, when we test for

subspace clustering in such data or any of it’s node residu-
als using CLUSTER-TEST(Ri), we will erroneously split
a node with probability αtest. We repeat this test D times.
Furthermore, if we never expand a node into two nodes, each
subsequent node vector is a singular vector of X.

We also prove that our PCT learning algorithm leads to
two simple but useful properties of PCTs. Firstly, nodes are
orthogonal to their ancestors, making calculation of data ap-
proximations fast and decomposable. Secondly, node singu-
lar values decrease with height. Together these two prop-
erties are used in theorem 3, which provides a simple and
efficient way to select the best approximating subtree of an
existing tree by selecting its most significant nodes. This is
like selecting the best principal components of PCA.
Property 3.1. The singular vector of any node is orthogonal
to those of its ancestors. Formally,

vi ⊥ vj ∀j ∈ Ai

as a consequence, all ancestral bases are orthonormal.

Proof. This property arises from the tree construction. Con-
sider a node Ni and it’s parent Pi. vi is either a singular
vector of RPi

or a singular vector of a subset of RPi
. Note

that RPi
= XPi

− VPi
VT

Pi
XPi

. Therefore, each vi is
somewhere in the null space of VPi

, its parent’s basis, so
vi ⊥ vPi

. By induction, it is orthogonal to all its ances-
tors.
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Figure 4: Illustration of optimal subtrees of a PCT.

Property 3.2. A node’s singular value is less than or equal
to its ancestors. Formally,

σi ≤ σj ∀j ∈ Ai.

Proof. We show this by contradiction. Consider a node Ni,
it’s parent Pi, and it’s grandparent P2

i . Let RP2
i

be the subset
of RP2

i
by which the parent NPi

is constructed. Both vPi

and vi are derived from RP2
i
, but vPi

and σPi
are exactly

it’s first singular vector and value. If σi > σPi
, it would

violate the Eckart-Young theorem. Therefore, σi ≤ σPi
. By

induction, σi ≤ σj∈Ai .

Property 3.3. We define the subtree of T consisting of the
n most significant nodes as:

T[n] = {Ni

∣∣σi ≥ σ(n)}, {Eij
∣∣σi, σj ≥ σ(n)} (1)

where σ(n) is the nth largest singular value of nodes in T .
This is the best size n approximating subtree of T . Formally,

argmin
T ∗⊂T

||X− X̂T ∗ ||F := T[n]

Note that we use a slightly non-traditional definition of sub-
tree. In the literature, subtrees of T are usually defined as
one of T ’s nodes and all it’s descendants. We instead define
a subtree of T as any subset of the nodes and edges of T
which are connected. See Figure 4 for subtree examples.

Proof. We prove this in three parts. 1) We show that prop-
erty 3.1 means that the approximation error is inversely pro-
portional to the sum of singular values in the tree. 2) We can
therefore minimize the approximation error by selecting the
nodes with largest singular values. 3) Property 3.2 implies
that T[n] will share the root of T , and will have no gaps, that
is Ni ∈ T[n] =⇒ Nj ∈ T[n] ∀ Nj ∈ Ai.

In order to prove this, we introduce branches, an addi-
tional organizing structure of Principal Component Trees. A
branch Bb, b ∈ {1...|B|} is the set of nodes that includes a
single leaf node Nb and all its ancestors Ab. Vb and Xb are
simply the ancestral basis and assigned data for some leaf
node Nb. A single node can belong to one or more branches,
and we denote the branches node Ni is a part of Bi. Nota-
tionally, superscript = branch, subscript = node.

It is convenient for us to re-define our node approxima-
tions in terms of branches as follows:

X̂ :=
⋃|B|

b=1
X̂b X̂b := VbVbTXb

Furthermore, because all nodes in a branch are orthogonal,
we can further decompose X̂b into the rank-1 approxima-
tions given by each node in the branch:

X̂b := VbVbTXb :=

|Bb|∑
i∈Bb

viv
T
i X

b

Body of Proof
Part 1: Show that the quality of the tree approximation

is given by the sum of the singular values of the nodes. We
seek to minimize ||X−X̂||F . Each element x̂k of X̂ is an or-
thonormal projection of the corresponding point xk. Via the
Cauchy-Schwarz Inequality, we know that ||x̂k|| < ||xk||.
As such, minimizing ||X − X̂||F is equivalent to maximiz-
ing || ˆ̂X||F . Furthermore, the sum of singular values

∑|T |
i=1 σi

is equal to the norm of the approximation ||X̂||F .

||X̂||F =

|T |∑
i=1

σi (1a)

||
⋃
b∈B

X̂b|| =
|T |∑
i=1

||viv
T
i Xi||F (1b)

||
⋃
b∈B

|Bb|∑
i=1

viv
T
i X

b|| =
|T |∑
i=1

|Bi|∑
b=1

||viv
T
i X

b||F (1c)

|B|∑
b=1

|Bb|∑
i=1

||viv
T
i X

b||F =

|T |∑
i=1

|Bi|∑
b=1

||viv
T
i X

b||F (1d)

=

|B|∑
b=1

|T |∑
i=1

1{Ni∈Bb}||viv
T
i X

b||F

(1e)

• 1b) Left: Decompose our full approximation in terms of
single branch approximations. Right: Rephrase singular
values as norm of approximations given by individual
nodes onto their data.

• 1c) Left: Decompose each branch approximation into
rank-1 approximations given by each node in the branch.
Right: Decompose a node’s data assignments as a union
of the data assignments for each branch the node is in.

• 1d) Left: Norm of union of branch approximations →
sum of norm of branch approximations. Recall that each
branch’s data approximations is disjoint.

• 1e) Reduce both sides to sum over all branches and all
nodes, where the node Ni is in Bb.

Part 2: To select the best size n approximating subtree of T ,
select the top n nodes from T in terms of singular values.
From part 1, we show that minimizing ||X− X̂||F is equiv-
alent to maximizing

∑|T |
i=1 σi. To do this maximization, we

just select the largest singular value nodes from T n.
Part 3: These selected nodes form a contiguous subtree of
T . Property 3.2 proves that the singular values of the ances-
tors of a node are larger than that node’s singular value. This
implies that if a node Ni is chosen for the optimal approxi-
mating subtree, then all of it’s ancestors Ai are also chosen



Token: “a” (4179 total)
a) b)

Token: {“north”, “south”, “east”, “west”} (4179 total)
a) b)

Figure 5: Compression curves for LLM token embeddings.
Each curve / line shows the cumulative variance captured by
each branch for the token in question. The higher the curve,
the more variance captured (measured by (2)) The variance
captured by Principal Component Analysis is also shown in
black.

for the subtree. It follows that the root of the original tree T
is also the root of the subtree T[n]. Additionally, there are no
“gaps” in the subtree; it remains connected, and the edges
of the subtree E[n] is a subset of the edges of original tree.
The fact that this optimal subtree / subset of the PCT is con-
nected and rooted at the most important node is analogous
to the fact that the optimal subset of principal components
in PCA is contiguous and includes the most important com-
ponents by singular value.

4 Additional Applications
.

Lossy Data Compression.
Principal Component Analysis / the Singular Value Decom-
position has been used as a lossy data compression technique
for some time ((Wang et al. 2024), (Swathi et al. 2017),
(de Souza, Assis, and Pal 2015)), especially for images. In
this section, we show how we can also use Principal Compo-
nent Trees for lossy data compression, and achieve superior
compression rates, with faster decoding.

To encode vector-valued data with a Principal Compo-
nent Tree, one must encode two things for each point. 1)
The branch assignment b for a point x: an integer denot-
ing which branch basis Vb best represents the point. (See
Property 3.3, proof for more on branches). 2) The |Bb| co-

efficients of that data projected onto it’s best branch: VbTx.
To decode, x̂b := VbVbTxb.

We evaluate the compression performance of PCT vs
PCA, we will use a custom dataset of 300k LLM token em-
beddings. These tokens were extracted from the intermedi-
ate MLP layer of LLAMA 3.2 1-Billion (Dubey et al. 2024),
on a random sample of the Simple-Wikipedia Dataset (Ara-
likatte 2023). Large Language Models serve as foundational
tools in many domains, yet require a vast amount of compute
to run, primarily because each token is mapped to vectors
in several thousand dimensions. This analysis is not model
compression per se, but we hope it inspires further work in
model compression, or in using PCTs accelerate LLM infer-
ence.

Figure 5 shows compression curves for each branch of a
30-Branch PCT with 1500 nodes for a two classes tokens
in the LLM token embeddings dataset: the particle “a” and
the cardinal directions “north”, “south”, “east” and “west”.
The compression curves show how much variance is cap-
tured when using the rank r approximation given by each
PCT branch. For a single point x and branch b, the curve is
given by:

fb(r) :=

∑r
i=1(V

bTx)2i
||x||22

(2)

These figures demonstrate two key advantages of using
PCT to compress data over PCA. 1) Each branch subspace
“specializes” in a subset of the data, capturing more vari-
ance in a lower rank than you could using PCA, which finds
the optimal approximating basis for all data, regardless of
whether a subset of data lies on a very low-dimensional sub-
space. 2) Some subsets of the data are more low-dimensional
than others. For example, “a” tokens seem to lie in a lower-
dimensional subspace, than the cardinal directions, and can
be represented economically.

Figure 6 Demonstrates the advantages of using Principal
Component Trees over PCA to encode data. Figure 6a shows
this in absolute terms, but it is even clearer in 6b. Using a
90-branch PCT to encode this data requires on average 101
coefficients per point, but can reproduce the token embed-
dings as well as rank 472 PCA model. Reducing the number
of branches for the PCT reduces this advantage. Of course,
the downside is that branched PCT models will use more

Tree Size Comparison
a) b)

Figure 6: Compression Performance of differently-sized
PCTs vs PCA.
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Figure 7: Examples of MNIST digits generated using models built on top of PCA & PCT. Both backbones use 100 nodes, the
PCT backbone has 10 branches.

Original
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75% Missing

Figure 8: Examples of MNIST (Deng 2012) digits which have been imputed with ISVT (for PCA), or an analogous technique
for PCT. ISVT uses a rank-100 decomposition, and PCT imputation uses a PCT with 100 nodes and 10 branches. 75% of values
were removed at random.

parameters than the single-branch PCA.

Data Generation.
In this subsection, we will qualitatively demonstrate the abil-
ity to use Principal Component Trees to generate new data
points. We present two data-generating processes for creat-
ing new data points, and show that both perform better, and
require fewer additional parameters when using a PCT back-
bone vs a PCA backbone (recall that PCA is a special case
of PCT).

For both processes, we first select a PCT branch b at ran-
dom, with probability proportional to the number of data
points best represented with that branch. For Node-centric
generation we then sample a value ci from a separate 1-
D probability distribution for each node in the branch (1a,
2a). We then combine these values into a single vector c
(Akin to VbTx), and obtain the final point via Vbc. This
approach is akin to using traditional PCA to decompose a
multivariate normal distribution. As a slight modification,
we can have a separate 1D distribution per node, per branch
passing through that node (2b).

For Branch-centric generation we use VbTXb to learn a
separate multivariate distribution for each branch, and sam-
ple c directly from this distribution. In figure 7, we use gaus-
sian mixture models with 7 components with either diagonal
(1b, 2c) or full (1c, 2d) covariance. This produces superior
results at the cost of more parameters.

Looking closer at figure 7, we see that generative models
with a PCT backbone create more plausible / legible digits
than those using the PCA backbone. We offer no theoretical
explanation for this, but we posit that the subspace clustering
used in PCT construction ’unfolds’ the data manifold into
regions which better meet the assumptions of multivariate
gaussians / GMM models.

Missing Data Imputation.

We can also use Principal Component Trees to perform
missing data imputation. In this task, a number of values are
missing from each data point, and we wish to estimate the
missing values from the existing ones. To this end, we follow
a similar approach to Iterative Singular Value Thresholding
(Cai, Candès, and Shen 2010), where after initializing our
estimate of the missing values with the mean value of the
column, we alternate between learning a PCT on the current
estimate, and updating our estimate to be the low-rank ap-
proximation yielded by the best PCT branch for each point.
With a single branch, this reduces to ISVT.

Using subspace clustering for this kind of “High-Rank
Matrix Completion” (Eriksson, Balzano, and Nowak 2012)
is not entirely new ((Johnson, Li, and Pimentel-Alarcón
2024) (Liu et al. 2021)), but we present qualitative results
in figure 8 which show superior results.
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● We Define principal component trees as a new approximating structure for high-dimensional 
data. We posit that PCA and Union of Subspaces models are special cases of PCTs.

● We Build principal component trees top-down, using subspace clustering and an angle-based 
hypothesis test.

● We Prove key properties of PCTs and their construction.

● We Analyze  PCT structure with new Persistent Homology Measures.

● We Apply PCTs by using them to investigate Neural Network latent space and multilingual 
embeddings.

Experimental Results

Persistent Homology Measures

Tree Construction Algorithm

A node of a PCT           :  

Is described by:

Has relations with other nodes:

Has a rank–            “Ancestral Basis”.

           is assigned a subset of the data

Original

Rank 1 

Definition and Properties of Principal Component Trees

A singular value, representing 
amount of variation.

A basis vector, representing a 
direction of data variation.

Ancestors & Descendants& 

A Parent & Children& 

Thus

Approximating Data with Principal Component Trees
For a PCT node             and data matrix

           ‘s low-rank approximation         & residual 

N

More Theoretical Results

High Low

To test for subspace clustered structure, we use a 
non-parametric hypothesis test based on angle 
distribution. We test our observed angle distribution
Asdas  against the expected distribution:

To test if                  is an intersection of subspaces, we 
compare the clusteredness of               vs the 
clusteredness of               projected onto the null space 
of               .

The more subspace clustered a distribution is, the more nodes will be split into 
multiple children, and the tree will be wider; it will have more leaves. Conversely, 
the tree will be taller the less subspace clustered a distribution is. 

Our two topological measures quantify this intuition by defining curves that 
describe the height and width of the tree. Property 2 & 3 ensures the curves are 
monotonically increasing, so we can use the AUC as a reasonable summary.

Goal: Compare the subspace structure of different distributions.
Method: Build trees from bootstrap samples of the distributions, perform two 
sample hypothesis tests on persistent homology measures.

MNIST Fashion vs Digits Neural Network Latent Space

(Not pictured: Multilingual Word Embeddings)

Property 1: The basis vector of any node 
is orthogonal to those of its ancestors. So, 
all ancestral bases are orthonormal.

Property 2: A node’s singular value is 
less than or equal to its ancestors.

Property 3: The best size n approximating subtree of         is given by  
i.e. selecting the n nodes with largest singular values. 

                  ≤       ≤       ≤       ≤       ≤
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