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Abstract

Regression is a fundamental task in machine learn-
ing that has garnered extensive attention over the
past decades. The conventional approach for re-
gression involves employing loss functions that
primarily concentrate on aligning model predic-
tion with the ground truth for each individual
data sample. Recent research endeavors have
introduced novel perspectives by incorporating
label similarity into regression through the im-
position of additional pairwise regularization or
contrastive learning on the latent feature space,
demonstrating their effectiveness. However, there
are two drawbacks to these approaches: (i) their
pairwise operations in the latent feature space
are computationally more expensive than conven-
tional regression losses; (ii) they lack theoretical
insights behind these methods. In this work, we
propose GAR (Gradient Aligned Regression) as
a competitive alternative method in label space,
which is constituted by a conventional regression
loss and two pairwise label difference losses for
gradient alignment including magnitude and direc-
tion. GAR enjoys: i) the same level efficiency as
conventional regression loss because the quadratic
complexity for the proposed pairwise losses can
be reduced to linear complexity; ii) theoretical
insights from learning the pairwise label differ-
ence to learning the gradient of the ground truth
function. We limit our current scope as regression
on the clean data setting without noises, outliers
or distributional shifts, etc. We demonstrate the
effectiveness of the proposed method practically
on two synthetic datasets and on eight extensive
real-world tasks from six benchmark datasets with
other eight competitive baselines. Running time
experiments demonstrate the superior efficiency
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of the proposed GAR compared to existing meth-
ods with pairwise regularization or contrastive
learning in the latent feature space. Additionally,
ablation studies confirm the effectiveness of each
component of GAR. The code is open sourced at
https://github.com/DixianZhu/GAR.

1. Introduction
As one of the most fundamental tasks in Machine Learn-
ing (ML) field, regression stands out as a powerful tool for
understanding and modeling the relationships from com-
plex data features to continuous data labels. Regression
techniques have been widely utilized in many areas, such
as computer vision (Moschoglou et al., 2017; Niu et al.,
2016), drug discovery (Dara et al., 2022), economics and
finances (Benkraiem & Zopounidis, 2021), environmental
forecast (Zhu et al., 2018), material science (Stanev et al.,
2018). For centuries, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) have been adopted to measure the
distance from the ML model predictions to the ground truths.
Consequently, researchers have naturally proposed to opti-
mize the least squared error and least absolute error (Legen-
dre, 1806; Dodge, 2008). Since the last century, to improve
model stability and control model complexity, researchers
have proposed various model regularizations based on MSE
loss, resulting in multiple variants such as Ridge Regression,
LASSO, and Elastic Net (Tikhonov et al., 1943; Tibshirani,
1996; Zou & Hastie, 2005). Along this line, the Huber loss
was proposed to trade off between MAE and MSE, aiming
to mitigate the issue of MSE being sensitive to outliers (Hu-
ber, 1992). All these conventional loss functions and many
of their variants focus on minimizing the difference between
model prediction and ground truth for each individual data
sample pointwisely, but do not explicitly model and capture
the relationships for multiple data samples.

Recent research has proposed incorporating label pairwise
similarities into regression across different data samples,
addressing part of the gap left by conventional loss func-
tions that focus solely on individual prediction errors (Gong
et al., 2022; Keramati et al., 2023; Zha et al., 2023). Those
latent-space-based pairwise regression methods define an
‘anchor data point’, which either acts as a reference point
for calculating the relative ranks to the anchor for the other
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data (Gong et al., 2022), or the ranks are consequently uti-
lized to construct positive and negative pairs (Zha et al.,
2023; Keramati et al., 2023). One of the concerns for those
approaches is conceptually to see: the original pairwise label
similarities are converted to ranks or positive and negative
pairs. There is an approximation loss because the conver-
sion is single-directional (and the original label similarities
cannot be recovered from the coarser converted informa-
tion). Moreover, they also require higher computational
costs than conventional loss functions, as they need to com-
pute pairwise similarities in the latent space, which requires
quadratic time related to the training batch size.

Our contributions can be summarized in three main aspects:
1) We propose pairwise losses in label space to capture pair-
wise label difference for regression task that can enhance
rank preserving; moreover, we provide theoretical insights
between learning the gradient for the ground truth function
and optimizing the proposed pairwise losses. 2) We further
propose equivalent and more efficient formulations for the
proposed pairwise losses, which only require linear time rel-
ative to the training batch size and are as fast as conventional
losses, such as MAE and MSE. 3) We demonstrate the effec-
tiveness of the proposed method, GAR (Gradient Aligned
Regression), on two synthetic datasets and eight real-world
regression tasks. Extensive experiments and ablation stud-
ies are conducted for supporting that GAR is as efficient as
conventional regression loss and the effectiveness of each
component for GAR.

2. Related Work
Regression on Generic Setting: MSE, MAE and Huber
loss are the most exposed conventional regression loss func-
tions that work on generic regression settings (Legendre,
1806; Dodge, 2008; Huber, 1992), all of which focus on
fitting the prediction to the truth for each individual data
sample. Specifically, MAE and Huber loss are more robust
to outliers. There are other less exposed losses for generic
regression, such as Rooted Mean Squared Error (RMSE)
loss and Root Mean Squared Logarithmic Error (RMSLE)
loss (Ciampiconi et al., 2023), but they are also restricted to
minimizing individual error. Different regularization such as
ℓ1-norm, ℓ2-norm penalties on model parameters have been
studied as a promising way to prevent model over-fitting
and improving training stability (Tikhonov et al., 1943; Tib-
shirani, 1996; Zou & Hastie, 2005). Extensive research has
been conducted to improve the regularization for regression
by making the penalty weight adaptive or optimal under
certain conditions (Zou, 2006; Wu & Xu, 2020).

Regression on Extensive Settings: when the data label
is discrete, ordinal regression techniques can be applied to
convert the regression task to either multiple binary classifi-
cation tasks or one multi-class classification task (Niu et al.,

2016; Rothe et al., 2015; Zhang et al., 2023). When learning
on time-series data, researchers can apply advanced ML
models, such as Recurrent Neural Network (RNN), Long
short-term memory (LSTM) network or Attention model,
for capturing the time-series pattern (Rumelhart et al., 1986;
Hochreiter & Schmidhuber, 1997; Vaswani et al., 2017);
or, apply consecutive regularization that enhances the sim-
ilarities for the predictions from adjacent time slots (Zhu
et al., 2018). Studies propose to minimize penalties for
regression on multi-task learning when there are multiple
tasks or targets from the dataset (Solnon et al., 2012). Work
adapts regression to active learning when there is unlabeled
data available for querying and labeling (Holzmüller et al.,
2023). Papers improve robustness for regression for online
learning when the data is sequentially available (Pesme &
Flammarion, 2020). Work improves the robustness for re-
gression when the data is imbalanced (Yang et al., 2021;
Ren et al., 2022). Research strengthens the robustness for
regression when there are adversarial corruptions (Klivans
et al., 2018).

Regression with Pairwise Similarity: recently, there are
several methods are proposed to improve regression with
pairwise label similarities (Gong et al., 2022; Zha et al.,
2023; Keramati et al., 2023). The RankSim method is pro-
posed to convert the label pairwise similarities for other data
as ranks for each anchor data; then enforce the predictions
follow the same rank by adding a MSE loss on the prediction
rank versus the label rank (Gong et al., 2022). The RNC
(Rank-N-Contrast) method is inspired by contrastive learn-
ing, which follows the similar fashion as SimCLR (Chen
et al., 2020), but defines the positive and negative pairs by
choosing different anchor data points with pairwise label
similarities; RNC is proposed for pre-training that requires
fine tuning afterwards (Zha et al., 2023). ConR (Contrastive
Regularizer) is also proposed in contrastive learning fash-
ion, whose positive pairs are decided by the data pairs with
high label similarities and negative pairs are decided by the
data pairs with high label similarities but low prediction
similarities (Keramati et al., 2023). All of them impose the
label pairwise similarity in latent feature space. In contrast,
we propose GAR, which: 1) Directly captures the pairwise
label difference in label space, theoretically connecting it
to learning the gradients of the ground truth function. 2)
Reduces the quadratic pairwise computation to linear com-
plexity because the proposed pairwise losses are equivalent
to the variance of prediction errors and the negative Pear-
son correlation coefficient between predictions and ground
truths.

Pairwise Loss in Other Applications: pairwise loss
functions have also been utilized in other fields, such as
learning-to-rank, metric learning, and AUROC optimiza-
tion. RankNet, for example, employs a logistic loss on
sample pairs to learn the relative order of items in a ranking
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function, which incurs a quadratic time complexity with
respect to data size (Burges et al., 2005). In metric learning,
pairwise contrastive loss (Hadsell et al., 2006) encourages
embeddings of predefined similar samples to be close, while
pushing dissimilar samples apart. For AUROC optimiza-
tion, several pairwise loss functions have been proposed,
typically computed on pairs of positive and negative sam-
ples using binary label information (Gao & Zhou, 2015).
In contrast, our proposed pairwise losses are designed for
regression with continuous labels, achieve linear time com-
plexity, and do not depend on predefined similarity pairs or
binary class labels for pair construction.

In this work, we focus on regression on the clean data setting
without considering noises, outliers, distributional shifts,
etc.

3. Method
Denote the underlying ground truth function for target
y ∈ R1 on data x ∈ Rd as y = Y(x); the training dataset
as D = {(x1, y1), ..., (xn, yn)}, where yi = Y(xi), which
is sampled from underlying data distribution D. The re-
gression task is to learn a fitting function f(x) that can
approximate Y(x). It is straightforward to extend the single-
dimensional target case to multi-dimensional target case.
For the sake of simplicity, the presentation in this paper
focuses on the single target form.

The conventional regression task optimizes:

Lc =
1

N

N∑
i=1

ℓ(f(xi), yi), (1)

where ℓ(·, ·) denote the individual loss function for each data
sample. Denote the prediction error (difference between
prediction and ground truth) for x under the model f(·) by:
δfx = δ

(
f(x),Y(x)

)
= f(x) − Y(x). The conventional

MAE and MSE loss can be written as:

LMAE
c =

1

N

N∑
i=1

|δfxi
|, LMSE

c =
1

N

N∑
i=1

(δfxi
)2. (2)

3.1. Motivations

Our work is motivated by the following two aspects:

1) The conventional regression loss function only focuses
on minimizing the magnitude of δfx , which can be blind on
other evaluation perspectives. For example, there are two
models f1(·) and f2(·) on 4 training data samples with er-
rors as: {δf1x1

, ..., δf1x4
} = {1,−1, 1,−1}, {δf2x1

, ..., δf2x4
} =

{1, 1, 1, 1}. Conventional regression loss doesn’t impose
any preference over f1(·) or f2(·). However, f2(·) enjoys
smaller error variance (indicating more consistent predic-
tion and is better for rank preservation). Moreover, with

an additional bias correction, f2(·) could easily achieve 0
training error.

2) Prior studies have been proposed to enforce the model
to maintain the relative rank regarding to label similari-
ties (Gong et al., 2022; Zha et al., 2023; Keramati et al.,
2023). Take a simple example for age prediction, there are
3 people aged as y1 = 10, y2 = 20, y3 = 70; the prior
methods either impose a regularization or adopt contrastive
learning in the latent feature space with pairwise fashion to
push prediction f(x2) to be closer to f(x1) than f(x3).

Motivated by the second point, we explicitly enforce the
pairwise prediction difference f(xi)− f(xj) to be close to
the pairwise label difference yi − yj through two pairwise
losses in the label space: the first directly matches the origi-
nal label difference, while the second is a relaxed version
with a scaling factor. Next, we prove that: the first pair-
wise loss is equivalent to the variance of prediction errors
and the second is equivalent to negative Pearson correlation
coefficient between predictions and ground truths, which
addresses the concern in the first point. Moreover, the equiv-
alent forms reduce the quadratic time complexity for the
proposed pairwise losses to linear complexity. Last but not
least, we provide theoretical insight between learning the
pairwise label difference and learning the gradients of the
ground truth function.

3.2. Pairwise Losses

We propose the following pairwise loss of label difference
for a regression task:

Ldiff =
1

N2

N∑
i=1

N∑
j=1

ℓ(f(xi)−f(xj),Y(xi)−Y(xj)), (3)

where the individual loss ℓ(·, ·) is defined similarly as con-
ventional regression. Ldiff explicitly and directly enforces
the pairwise prediction difference to be close to the pairwise
label difference.

Theorem 1 When choose individual loss ℓ as 1
2 squared

error function, ℓ 1
2 MSE(a, b) =

1
2 (a− b)2:

LMSE
diff :=

N∑
i=1

N∑
j=1

ℓ 1
2 MSE(f(xi)− f(xj),Y(xi)− Y(xj))

N2

= Var(δfx), (4)

where Var(·) denote the empirical variance. The proof is
included in Appendix A.1.

The proof is based on simple algebras that add and subtract
the mean value of δfx , denoted as δ̄fx . The similar proof logic
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can be used to decouple MSE loss, LMSE
c = 1

N

∑N
i=1(δ

f
xi
)2:

LMSE
c =

1

N

N∑
i=1

(δfxi
− δ̄fx + δ̄fx)

2

=
1

N

N∑
i=1

[(δfxi
− δ̄fx)

2 + (δ̄fx)
2] = Var(δfx) + (δ̄fx)

2.

MSE lacks the flexibility to trade off the mean and variance
of errors. Simply summing them results in the mean of
squared individual errors, which loses the scope of group
patterns.

Corollary 2 When ℓ is 1
2 squared error, the loss of pairwise

label difference has the following simpler and more efficient
empirical form:

LMSE
diff =

1

N

N∑
i=1

(
(f(xi)− f̄)− (yi − ȳ)

)2
. (5)

The corollary directly comes from Theorem 1 by the defini-
tion of variance.

It is obvious that LMSE
diff enjoys a linear time complexity.

Next, we propose a relaxed version for Ldiff. We apply
a relaxing scaling factor when match the pairwise differ-
ences from predictions and ground truths, in order to allow
mismatch on magnitude:

f(xi)− f(xj) = C · [Y(xi)− Y(xj)].

Denote the pairwise difference as dfi,j = f(xi) −
f(xj) and dYi,j = Y(xi) − Y(xj) for the predic-
tion and the ground truth, the vector notations for
them as df = [df1,1, df1,2, ..., dfN,N−1, dfN,N ], dY =
[dY1,1, dY1,2, ..., dYN,N−1, dYN,N ]. We proposed the fol-
lowing p-norm loss function for the normalized pairwise
difference to capture ground truth function shape, where the
scaling factor is removed by normalization:

Ldiffnorm = ∥ df

∥df∥p
− dY

∥dY∥p
∥pp. (6)

Corollary 3 When choose p = 2 for Ldiffnorm, it equals to:
1− Pearson correlation coefficient:

Lp=2
diffnorm =

1

2N

N∑
i=1

(
(f(xi)− f̄)√

Var(f)
− (yi − ȳ)√

Var(y)

)2

= 1− Cov(f, y)√
Var(f)Var(y)

= 1− ρ(f, y). (7)

where Cov(·, ·) denotes covariance and ρ(·, ·) denotes Pear-
son correlation coefficient. We include the proof in the
Appendix A.2. The formulation also enjoys linear time com-
plexity.

Next, we provide the theoretical insight between learn-
ing pairwise label difference and learning the gradients of
ground truth function.

Theorem 4 For two K-order differentiable deterministic
functions with open domain f(·) : Rd → R1, Y(·) : Rd →
R1, the following holds: f(x1) − f(x2) = Y(x1) −
Y(x2), ∀

(
x1,Y(x1)

)
,
(
x2,Y(x2)

)
∈ D, iff ∇kf(x) =

∇kY(x), ∀(x,Y(x)) ∈ D, k = {1, 2, ...,K}.

We include proof in the Appendix A.3.

Remark 1: The proof mainly depends on Mean Value
Theorem, Limits and L’Hôpital’s rule. Besides of fitting
the prediction f(xi) to be close to the ground truth yi,
that is, f(x) ≈ Y(x), ∀(x,Y(x)) ∈ D, we additionally
make the model to explicitly capture the gradient (and the
higher-order gradients) of the ground truth function, i.e.
∇kf(x) ≈ ∇kY(x), k = {1, 2, ...}, with the proposed
pairwise losses.

Remark 2: Although we assume that the function is de-
terministic for simplicity, this theorem is also applicable to
common stochastic functions in a certain form. For example,
Y(x, z) = m(x) + z · s(x), where z ∼ N(0, 1) is stochas-
tically sampled from the standard normal distribution (also
works for any zero-mean distribution). Let m(x) and s(x)
represent the ground truth mean and standard deviation for
the general heteroskedastic case. We can still prove that
the model can capture the expected gradient in x, that is,
Ez

[
∇xY(x, z)

]
, if and only if the difference in the predic-

tion pairs matches the difference in the truth pairs under
expectation. We have the following extended corollary.

Corollary 5 For K-order differentiable deterministic func-
tion with open domain f(·) : Rd → R1, and K-order dif-
ferentiable stochastic function with open domain Y(·, ·) :
Rd+1 → R1 that can be written as Y(x, z) = m(x) +
z · s(x), where z is randomly sampled from a distri-
bution with zero-mean and m(·) : Rd → R1, s(·) :
Rd → R1. The following holds: f(x1) − f(x2) =
Ez1

[
Y(x1, z1)

]
− Ez2

[
Y(x2, z2)

]
, ∀z1, z2 ∼ N(0, 1);

∀(x1,Y(x1, z1)), (x2,Y(x2, z2)) ∈ D, iff ∇kf(x) =
Ez

[
∇k

xY(x, z)
]
, ∀(x,Y(x, z)) ∈ D; ∀z ∼ N(0, 1).

Proof sketch: Ez

[
Y(x, z)

]
= m(x), Ez

[
∇k

xY(x, z)
]
=

∇km(x). Our previous proof for Theorem 4 still goes
through by replacing Y(x) with m(x). Notice that the
stochastic term z · s(x) can be canceled by taking the ex-
pectation over z due to zero-mean.

Remark 3: It should be noted that the proposed pairwise
losses are designed to work with conventional pointwise re-
gression loss (e.g. MAE), which complementarily captures
pointwise function values.
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3.3. Efficient and Robust Aggregation for Different
Losses

Now that we have three losses that are important for
the proposed GAR (Gradient Aligned Regression): Lc,
Ldiff, and Ldiffnorm; more specifically, we will focus on
LMAE
c ,LMSE

diff ,Lp=2
diffnorm in the rest of the presentation. Next,

we propose a robust approach to aggregate them.

Given the huge diversity of the dataset and model, it is
time-consuming to tune the three terms with a convex com-
bination. Furthermore, the magnitudes for each term can
be different, which adds more difficulty to balance them.
For example, Lp=2

diffnorm ∈ [0, 2] but LMAE
c can be infinitely

large; therefore, Lp=2
diffnorm could be easily overwhelmed if

simply combining other components with larger magnitudes
by arithmetic mean, i.e. L = (LMAE

c +LMSE
diff +Lp=2

diffnorm)/3.

An intuitive way to amplify the significance of Lp=2
diffnorm is

the geometric mean, that is, L = (LMAE
c LMSE

diff Lp=2
diffnorm)

1/3,
where the effects of different loss magnitudes are unified.
However, it could raise another issue. Consider L(a, b, c) =
(abc)1/3, ∂L(a,b,c)

∂a = (bc)1/3

a2/3 . The smaller component can
get a larger gradient but may experience a numerical issue
when a ≪ bc. As a consequence, the overall objective could
focus solely on the smallest component.

Inspired by the previous two intuitive examples (the loss
with smaller magnitude either gains too less attention or too
much attention), we propose an efficient and robust aggrega-
tion approach for GAR based on a variant of Distributionally
Robust Optimization (DRO), which can not only trade off
the previous two cases, but also only requires one tuning
hyperparameter (Zhu et al., 2023). For each loss, we ap-
ply a logarithmic transformation to reduce the magnitude
effect. For the sake of generality, we denote the loss as Li

and the overall loss as LGAR(L1, ...,LM ), where the overall
loss is composed with M sub-losses. Denote D(p| 1

M ) as
divergence measure from probability vector p over simplex
∆M to the uniform distribution 1

M . The DRO formulation
for GAR takes the balance from the averaged value to the
maximal value:

LGAR(L1, ...,LM ;α) = max
p∈∆M

M∑
i=1

pi logLi − αD(p| 1
M

),

(8)

where α ≥ 0 is the robust hyper-parameter for GAR.

Theorem 6 When take D(·|·) as KL-divergence, GAR has
the following equivalent formulation:

LKL
GAR(L1, ...,LM ;α) = α log(

1

M

M∑
i=1

L1/α
i ). (9)

It is worth noting that:

exp
(
LKL

GAR(L1, ...,LM ;α)
)
= (

1

M

M∑
i=1

L1/α
i )α

=


(ΠM

i=1Li)
1
M , α → +∞.

1
M

∑M
i=1 Li , α = 1.

argmaxMi=1 Li , α → 0.

(10)

which trade off from geometric mean, arithmetic mean and
the maximal value for L1, ...,LM .

Remark: the proof is included in the Appendix A.4.

Next, we discuss how to take care of extreme case for
LGAR. Notice that L1/α

i can have numerical issue when
α → 0,Li → +∞ or α → +∞,Li → 0. The former
case can cause computation overflow on forward propaga-
tion and the later case can cause computation overflow on
backward propagation. Denote Lmax = argmaxMi=1 Li and
Lmin = argminMi=1 Li. We utilize the constant value (de-
tached from back propagation) of Lmax or Lmin to control
LKL

GAR. It is easy to show LKL
GAR has the following equivalent

empirical formulation:

LKL
GAR =

{
α log

(
1
M

∑M
i=1(

Li

Lmax
)1/α

)
+ logLmax , α < 1.

α log
(

1
M

∑M
i=1(

Li

Lmin
)1/α

)
+ logLmin , α ≥ 1.

(11)

by which we can avoid the numerical issue for both for-
ward and backward propagation. We present algorithm
pseudocode in Alg.1.

Algorithm 1 Gradient Aligned Regression (GAR)
Require: hyper-parameter α for balancing sub-losses,

training dataset D = {(xi, yi)
N
i=1}.

Initialize model f(·).
for t = 1 to T do

Sample mini-batch of data {(xi, yi)i∈Bt
}.

Compute MAE loss LMAE
c .

Compute the losses for derivative: LMSE
diff and Lp=2

diffnorm
by E.q. 5 and E.q. 7.
Compute GAR (KL) loss LKL

GAR by E.q. 11.
Utilize SGD or Adam optimizers to optimize model
with gradient ∇fLKL

GAR.
end for

Remark: the computational complexity for Alg.1 is
O(TB), where T is iteration number and B is batch size.

4. Experiments
We demonstrate the effectiveness of GAR with two synthetic
datasets, eight real-world tasks on five tabular benchmark
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datasets and one image benchmark dataset. Further analysis
for running time of GAR, ablation studies on different com-
ponents, sensitivity to hyper-parameter α and batch sizes
are presented afterwards.

4.1. Synthetic Experiments

We first demonstrate the effectiveness of GAR on two syn-
thetic datasets as toy examples.

Datasets: 1) Sine: we take xi from [-10π, 10π] with
the interval 0.1 and yi = sin(xi). The data ground truth
is presented as the grey solid line in Fig 1. 2) Squared
sine: we take x̃i from −1024 to 1024 with the interval
0.1, then calculate xi = sign(x̃i)

√
|x̃i|, which increases

the density of data from the region far from the origin. Fi-
nally, denote x2

i as the empirical mean value of x2
i , make

yi = x2
i sin(xi)/x2

i , which magnifies the target values that
are far from the origin. The data ground truth is presented
as the solid grey line in Fig 2.

Baselines: we compare the proposed GAR with 4 ap-
proaches: MAE, MSE, RNC and an extra heuristic fused
loss (named MAE-Pearson) that combines MAE with nega-
tive Pearson correlation coefficient linearly:

LMAE−ρ = βLMAE
c + (1− β)Lp=2

diffnorm,

where recall that Lp=2
diffnorm = 1 − ρ(f, y), and β is dynam-

ically assigned as the constant value of ρ(f, y) on each
iteration. Intuitively, when the Pearson correlation coeffi-
cient is high, the model focuses more on the MAE loss; and
vice versa. It is worth noting that GAR can also be adapted
to Symbolic Regression (SR) settings. For example, GAR
loss could be defined as a fitness function for evolutionary
algorithm based method or reward function for reinforce-
ment learning based method (Cranmer, 2023; Petersen et al.,
2019). However, given that this work focuses on Numeric
Regression (NR) setting, it is unfair to directly compare
the proposed GAR under the NR setting with SR methods
here. Because SR methods have placed the ground truth
functions in their ‘toolbox’ (as search candidates) for these
toy examples. To elaborate on this point, we extensively em-
ploy a well-established SR method, PySR1 on the synthetic
datasets. We find PySR performs perfectly when trigono-
metric functions are included in the search space. However,
it performs much worse when we exclude trigonometric
functions. Results are presented in the Appendix B.4.

Model: We utilize a 7-layer simple Feed Forward Neu-
ral Network (FFNN) with 5 hidden layers where neuron
number for each layer is set as 100 with ELU activation
function (Clevert et al., 2015).

Experimental Settings: For both of the synthetic datasets,

1https://astroautomata.com/PySR/

we uniformly randomly sample half of the data as the train-
ing dataset. The total training epochs are set as 300 and
batch size is set as 128. The initial learning rate is tuned in
{1e-1, 1e-2, 1e-3, 1e-4} for Adam optimizer (Kingma & Ba,
2014), which is stage-wised decreasing by 10 folds at the
end of the 100-th and 200-th epoch. The weight decay is
tuned in {1e-3,1e-4,1e-5,0}. RNC takes the first 100 epochs
are pre-training and the remaining as fine-tuning with MAE
loss; temperature for RNC is tuned in {1,2,4}. For each
baseline, we run 5 trials independently with the following
5 seeds: {1,2,3,4,5}. We set the α = 0.5 for GAR on all
synthetic experiments.

Results: the results on the sine dataset are summarized in
Fig. 1 and the results on the squared sine dataset are summa-
rized in Fig. 2. The figures for mean and standard deviation
of the predictions are shown on the right. Due to the lim-
ited space, we include MSE results in Appendix B.3 as it
is similar with MAE. On both of the datasets, we can see
there is a clear advantage for the proposed GAR over the
conventional MSE/MAE loss. For the sine dataset, GAR
captures approximately 1 or 2 more peaks than MSE/MAE
loss. For the squared sine dataset, GAR can almost recover
all the patterns (both shape and magnitude) of the ground
truth; however, MSE/MAE loss is hard to capture the pattern
of the ground truth except a part of peaks with the largest
magnitude. Compared with LMAE−ρ and RNC, GAR also
demonstrates clear advantages on the both synthetic datasets
for capturing more peaks on the sine dataset and capturing
magnitudes better on the squared sine dataset. We also con-
duct experiments on the sine dataset with different number
of layers for FFNN model in Appendix B.5, Fig 6, which
again demonstrates similar results.

4.2. Benchmark Experiments

We conduct experiments for comparing GAR with other
eight competitive baselines on eight real-world tasks.

Datasets and Tasks: 1) Concrete Compressive Strength
(Yeh, 1998): predicting the compressive strength of high-
performance concrete. 2) Wine Quality (Cortez et al., 2009):
predicting wine quality based on physicochemical test val-
ues (such as acidity, sugar, chlorides, etc). 3) Parkinson
(Total) (Tsanas et al., 2009): predicting clinician’s total
unified Parkinson’s disease rating scale (UPDRS) score by
biomedical voice measurements from 42 people with early-
stage Parkinson’s disease recruited to a six-month trial of
a telemonitoring device for remote symptom progression
monitoring. 4) Parkinson (Motor) (Tsanas et al., 2009):
predicting clinician’s motor UPDRS score with the same
previous data feature. 5) Super Conductivity (Hamidieh,
2018): predicting the critical temperature for super conduc-
tors with 81 extracted material features. 6) IC50 (Garnett
et al., 2012): predicting drugs’ half-maximal inhibitory con-
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Figure 1. sine: truth v.s. prediction.
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Figure 2. squared sine: truth v.s. prediction.

20 0 20
1.0

0.5

0.0

0.5

1.0 MAE

20 0 20
2

1

0

1
RNC

20 0 20
2

1

0

1

2
MAE-Pearson

20 0 202

1

0

1

GAR

centration (IC50) for 15 drugs filtered from 130 total drugs
with missing-value-control over 639 human tumour cell
lines. We include more details about data preprocessing
in the appendix. 7) AgeDB (Scratch) (Moschoglou et al.,
2017): predicting age from face images. All baselines are
trained from scratch. 8) AgeDB (RNC Linear Probe): pre-
dicting age with the latent features from a pre-trained RNC
model (Zha et al., 2023). The statistics of the datasets are
summarized in Table 3 in Appendix B.1.

Baselines: the baselines for comparison are: 1) MAE. 2)
MSE. 3) Huber loss (Huber, 1992). 4) Focal (MAE) (Yang
et al., 2021): an variant for Focal loss with MAE loss, which
put more learning weights on harder samples. 5) Focal
(MSE) (Yang et al., 2021): combine Focal loss with MSE
loss similarly as Focal (MAE). 6) RankSim (Gong et al.,
2022): a regression method that regularizes predictions to
maintain similar order with the their labels. 7) RNC (Zha
et al., 2023): a state-of-the-art (SOTA) contrastive learn-
ing based pre-training method for regression that enhances
the prior that the pairwise similarities from learned latent
features should be close to pairwise similarities from data la-
bels. 8) ConR (Keramati et al., 2023): a contrastive learning

based SOTA regression method that combines conventional
regression loss with a contrastive loss that pushes data latent
features to be closer if their labels are closer. 9) GAR: the
proposed Gradient Aligned regression method via pairwise
losses.

Models: for the tabular datasets with feature dimension less
equal to 16, we utilize a 6-layer-FFNN with hidden neurons
as (16, 32, 16, 8) as the backbone model. For the tabular
datasets with feature dimension larger to 16 and less equal
to 128, we utilize a 6-layer-FFNN with hidden neurons as
(128, 256, 128, 64) as the backbone model; for IC50, we
generate 15 linear heads for predicting the 15 targets as the
last prediction layer. All FFNN variants utilize ELU as the
activation in this work. For AgeDB (Scratch), we follow
the previous work and employ ResNet18 as the backbone
model (Zha et al., 2023). For AgeDB (RNC Linear Probe),
we simply train a linear model based on the latent feature
pre-trained with RNC.

Experimental Settings: we follow the standard procedure
for data splitting, cross validation and hyper-parameter tun-
ing. The full details are included in Appendix B.6.
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Table 1. Testing performance on eight different datasets/settings. Mean and standard deviation are reported. ‘Gains’ includes the
percentages that GAR outperform the MAE and the best competitor (in parenthesis). The ‘p-values’ are calculated based on Student’s
t-test for the ‘Gains’. p-value < 0.05 usually means significant difference. ↓ means the smaller the better; ↑ means the larger the better.

Dataset Method MAE MSE Huber Focal (MAE) Focal (MSE) RankSim RNC ConR GAR (ours) Gains (%) p-values

Concrete
Compressive

Strength

MAE ↓ 4.976(0.071) 4.953(0.139) 4.698(0.248) 4.971(0.069) 4.98(0.122) 11.753(0.604) 4.776(0.106) 5.016(0.131) 4.603(0.075) 7.48(2.02) 0.0(0.48)
RMSE ↓ 6.639(0.092) 6.549(0.221) 6.329(0.226) 6.622(0.071) 6.549(0.237) 14.503(0.716) 6.383(0.076) 6.693(0.155) 6.222(0.148) 6.28(1.69) 0.0(0.45)
Pearson ↑ 0.919(0.002) 0.918(0.008) 0.922(0.005) 0.919(0.002) 0.919(0.006) 0.673(0.06) 0.923(0.002) 0.917(0.004) 0.929(0.004) 1.14(0.61) 0.0(0.03)
Spearman ↑ 0.917(0.004) 0.923(0.003) 0.925(0.004) 0.918(0.004) 0.921(0.006) 0.703(0.039) 0.926(0.003) 0.918(0.004) 0.931(0.003) 1.46(0.48) 0.0(0.09)

Wine
Quality

MAE ↓ 0.5(0.005) 0.55(0.004) 0.536(0.004) 0.518(0.004) 0.552(0.003) 0.52(0.004) 0.545(0.004) 0.504(0.005) 0.494(0.004) 1.09(1.09) 0.1(0.1)
RMSE ↓ 0.715(0.006) 0.707(0.005) 0.693(0.005) 0.696(0.007) 0.705(0.003) 0.715(0.009) 0.71(0.004) 0.712(0.01) 0.69(0.004) 3.53(0.46) 0.0(0.32)
Pearson ↑ 0.573(0.01) 0.585(0.007) 0.606(0.008) 0.602(0.009) 0.589(0.005) 0.581(0.011) 0.584(0.006) 0.586(0.012) 0.613(0.011) 7.02(1.05) 0.0(0.36)
Spearman ↑ 0.602(0.01) 0.607(0.006) 0.622(0.011) 0.622(0.006) 0.606(0.005) 0.607(0.01) 0.607(0.005) 0.614(0.007) 0.635(0.007) 5.58(2.13) 0.0(0.07)

Parkinson
(Total)

MAE ↓ 2.875(0.862) 3.464(0.029) 2.442(0.379) 2.693(0.91) 3.481(0.042) 8.616(0.007) 2.948(0.079) 3.581(0.519) 2.64(0.071) 8.15(-8.14) 0.6(0.33)
RMSE ↓ 4.803(0.809) 5.175(0.149) 4.498(0.392) 4.744(0.82) 5.157(0.14) 10.787(0.022) 4.786(0.103) 5.431(0.359) 4.258(0.206) 11.36(5.33) 0.23(0.31)
Pearson ↑ 0.891(0.038) 0.876(0.008) 0.909(0.017) 0.894(0.038) 0.877(0.007) 0.125(0.042) 0.896(0.004) 0.862(0.019) 0.922(0.009) 3.44(1.44) 0.15(0.21)
Spearman ↑ 0.87(0.047) 0.856(0.008) 0.895(0.02) 0.874(0.047) 0.855(0.006) 0.141(0.051) 0.876(0.002) 0.842(0.025) 0.907(0.01) 4.24(1.36) 0.16(0.31)

Parkinson
(Motor)

MAE ↓ 1.846(0.494) 2.867(0.092) 1.903(0.282) 1.599(0.047) 2.86(0.081) 6.891(0.013) 2.299(0.068) 2.698(0.466) 1.652(0.069) 10.52(-3.3) 0.46(0.24)
RMSE ↓ 3.336(0.491) 4.06(0.067) 3.226(0.35) 2.992(0.105) 4.083(0.116) 8.082(0.019) 3.632(0.136) 4.193(0.331) 2.68(0.134) 19.68(10.45) 0.03(0.01)
Pearson ↑ 0.91(0.029) 0.865(0.005) 0.917(0.019) 0.93(0.005) 0.863(0.008) 0.125(0.043) 0.894(0.008) 0.854(0.023) 0.943(0.006) 3.71(1.48) 0.05(0.01)
Spearman ↑ 0.902(0.032) 0.854(0.004) 0.912(0.019) 0.924(0.006) 0.854(0.009) 0.144(0.036) 0.885(0.008) 0.843(0.024) 0.939(0.006) 4.16(1.63) 0.05(0.01)

Super
Conductivity

MAE ↓ 8.365(0.027) 7.717(0.014) 7.42(0.052) 8.351(0.025) 7.713(0.008) 11.99(0.403) 6.238(0.078) 8.368(0.022) 6.257(0.027) 25.2(-0.31) 0.0(0.65)
RMSE ↓ 13.677(0.061) 12.158(0.113) 12.639(0.067) 13.631(0.039) 12.13(0.107) 17.089(0.408) 11.106(0.18) 13.68(0.084) 10.745(0.183) 21.44(3.25) 0.0(0.02)
Pearson ↑ 0.918(0.0) 0.935(0.001) 0.93(0.001) 0.918(0.0) 0.935(0.001) 0.867(0.007) 0.947(0.001) 0.918(0.001) 0.949(0.002) 3.39(0.24) 0.0(0.06)
Spearman ↑ 0.915(0.001) 0.924(0.0) 0.93(0.001) 0.916(0.001) 0.925(0.0) 0.86(0.008) 0.943(0.001) 0.917(0.001) 0.944(0.002) 3.13(0.15) 0.0(0.18)

IC50

MAE ↓ 1.364(0.002) 1.382(0.004) 1.366(0.004) 1.365(0.001) 1.386(0.01) 1.384(0.009) 2.143(0.242) 1.34(0.025) 1.359(0.003) 0.37(-1.43) 0.02(0.16)
RMSE ↓ 1.706(0.013) 1.699(0.008) 1.702(0.002) 1.696(0.003) 1.707(0.014) 1.809(0.13) 2.454(0.235) 1.668(0.022) 1.7(0.005) 0.39(-1.89) 0.38(0.02)
Pearson ↑ 0.085(0.049) 0.021(0.013) 0.069(0.061) 0.104(0.029) 0.023(0.017) 0.012(0.026) 0.018(0.05) 0.202(0.033) 0.302(0.028) 252.97(49.13) 0.0(0.0)
Spearman ↑ 0.114(0.032) 0.065(0.039) 0.087(0.054) 0.109(0.033) 0.064(0.04) 0.033(0.028) 0.038(0.05) 0.184(0.04) 0.26(0.024) 127.64(40.86) 0.0(0.01)

AgeDB
(Scratch)

MAE ↓ 6.449(0.058) 6.517(0.097) 6.387(0.046) 6.404(0.037) 6.567(0.107) 6.502(0.085) — 6.43(0.028) 6.286(0.034) 2.52(1.58) 0.0(0.01)
RMSE ↓ 8.509(0.078) 8.608(0.046) 8.418(0.045) 8.476(0.067) 8.617(0.104) 8.596(0.188) — 8.49(0.049) 8.268(0.05) 2.83(1.79) 0.0(0.0)
Pearson ↑ 0.917(0.002) 0.914(0.001) 0.918(0.001) 0.918(0.002) 0.914(0.001) 0.916(0.005) — 0.916(0.002) 0.921(0.001) 0.48(0.35) 0.0(0.0)
Spearman ↑ 0.919(0.002) 0.917(0.001) 0.92(0.0) 0.92(0.002) 0.916(0.001) 0.918(0.004) — 0.919(0.003) 0.923(0.002) 0.41(0.28) 0.01(0.01)
R2 ↑ 0.836(0.003) 0.833(0.002) 0.84(0.002) 0.838(0.003) 0.832(0.004) 0.833(0.007) — 0.837(0.002) 0.846(0.002) 1.15(0.67) 0.0(0.0)

AgeDB
(RNC
Linear
Probe)

MAE ↓ 6.124(0.039) 6.13(0.058) 6.124(0.086) 6.102(0.039) 6.139(0.033) — — — 6.069(0.022) 0.89(0.55) 0.04(0.17)
RMSE ↓ 8.077(0.036) 8.099(0.04) 8.108(0.068) 8.073(0.029) 8.113(0.037) — — — 8.054(0.014) 0.28(0.23) 0.28(0.29)
Pearson ↑ 0.924(0.0) 0.924(0.0) 0.924(0.0) 0.924(0.0) 0.924(0.0) — — — 0.924(0.0) 0.0(0.0) 1.0(1.0)
Spearman ↑ 0.927(0.0) 0.927(0.0) 0.927(0.0) 0.927(0.0) 0.926(0.0) — — — 0.927(0.0) 0.0(0.0) 1.0(1.0)
R2 ↑ 0.853(0.001) 0.852(0.002) 0.852(0.003) 0.853(0.001) 0.851(0.001) — — — 0.854(0.0) 0.12(0.07) 0.2(0.35)

Results: all the testing results are summarized in Table 1.
GAR outperforms all the competitors from the perspective
of Pearson Correlation Coefficient and Spearman’s Correla-
tion Coefficient over all the tasks, which indicates the pro-
posed pairwise losses can capture the rank or order based in-
formation better. GAR also enjoys competitive performance
on MAE and RMSE evaluations. Finally, GAR achieves
new SOTA results on AgeDB for both training from scratch
and linear probe settings with ResNet18. For the scratch set-
ting, GAR achieves 6.286(0.034) for MAE and 0.846(0.002)
for R2 score, while the previous SOTA is 6.40 for MAE and
0.830 for R2 score; for the 2-stage linear probe on RNC
pre-trained feature setting, GAR achieves 6.069(0.022) for
MAE and 0.854(0.0) for R2 score, while the previous SOTA
is 6.14 for MAE and 0.850 for R2 score (Zha et al., 2023).

4.3. Further Analysis

We provide practical running time comparison, ablation
studies on different components, sensitivity analysis on α
and batch size for GAR and difference with data standard-
ization in this subsection.

Running Time Comparison: we run all compared methods
sequentially on an exclusive cluster node with AMD EPYC
7402 24-Core Processor 2.0 GHz. Each method runs 1500
epochs for the five tasks on the tabular datasets. The results
are summarized in Table 2. From the perspective of ‘All
Time’, we find that GAR is as efficient as the most efficient

conventional regression loss, such as MAE, MSE, etc. From
the perspective of ‘Loss Time’, we find that GAR consis-
tently takes slightly more time than conventional regression
losses (but still in the same order/level). It is consistent with
our theoretical result that GAR only takes linear time com-
plexity. On the other hand, the pairwise latent feature based
regression methods, such as RankSim, ConR and RNC, are
clearly slower than GAR.

Ablation Studies for GAR: GAR constitutes three losses:
LMAE
c ,LMSE

diff ,Lp=2
diffnorm. We conduct ablation studies on dif-

ferent combination of the losses with the six real-world tasks
on the tabular datasets. There are seven possible variants
including GAR itself by different combinations of the three
losses. Due to the limited space, we include the details in
Appendix B.8. From the Tab. 5, we find that the proposed
GAR outperforms the other six variants. Besides, the pro-
posed pairwise losses, LMSE

diff and Lp=2
diffnorm, can also improve

the conventional loss LMAE
c even applied separately.

Sensitivity on α: we conduct extensive hyper-parameter
search for α in {0.1, 0.2, 0.25, 0.4, 0.5, 0.8, 1, 1.25, 2, 2.5,
4, 5, 10}. The initial learning rate and weight decay are
still searched in the same previous sets that are described in
Appendix B.6. We include the full results in Appendix B.9.
From the box-plot, GAR is a little sensitive to α and it is
suggested to tune it in the [0.1, 10] range.

Sensitivity on Batch Sizes: we additionally conduct ex-
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Table 2. Running time (seconds/epoch) on five benchmark datasets. Repeated 1500 epochs, mean and standard deviation are reported.
‘CCS’: Concrete Compressive Strength. ’All Time’: all the time consumed per epoch. ’Loss Time’: the time for loss calculation and loss
backward operation.

Dataset Concrete Compressive Strength Wine Quality Parkinson (Total) Super Conductivity IC50
Metric All Time Loss Time All Time Loss Time All Time Loss Time All Time Loss Time All Time Loss Time
MAE 0.089(0.013) 0.002(0.0) 0.169(0.03) 0.011(0.0) 0.214(0.129) 0.045(0.113) 0.587(0.038) 0.162(0.001) 0.094(0.003) 0.005(0.0)
MSE 0.09(0.014) 0.002(0.005) 0.168(0.03) 0.01(0.0) 0.21(0.024) 0.041(0.0) 0.566(0.002) 0.16(0.001) 0.095(0.003) 0.005(0.0)
Huber 0.09(0.015) 0.002(0.008) 0.168(0.03) 0.01(0.0) 0.21(0.046) 0.041(0.0) 0.581(0.038) 0.159(0.001) 0.094(0.003) 0.005(0.0)
Focal (MAE) 0.09(0.013) 0.002(0.001) 0.177(0.03) 0.016(0.0) 0.214(0.024) 0.046(0.0) 0.603(0.037) 0.178(0.001) 0.096(0.041) 0.005(0.0)
Focal (MSE) 0.089(0.012) 0.002(0.0) 0.173(0.03) 0.015(0.0) 0.216(0.046) 0.046(0.001) 0.665(0.061) 0.179(0.002) 0.094(0.003) 0.005(0.0)
RankSim 0.364(0.046) 0.275(0.045) 0.224(0.021) 0.068(0.002) 1.982(0.033) 1.81(0.03) 6.876(1.024) 6.428(0.977) 0.362(0.009) 0.271(0.006)
RNC 0.371(0.012) 0.275(0.01) 2.178(0.016) 2.014(0.015) 2.195(0.03) 2.02(0.029) 7.989(0.231) 7.545(0.168) 0.275(0.004) 0.178(0.003)
ConR 0.103(0.011) 0.014(0.004) 0.269(0.026) 0.108(0.001) 0.307(0.023) 0.138(0.001) 0.943(0.057) 0.508(0.022) 0.108(0.002) 0.02(0.0)
GAR (ours) 0.086(0.012) 0.003(0.0) 0.177(0.026) 0.026(0.0) 0.22(0.024) 0.056(0.001) 0.64(0.039) 0.213(0.002) 0.09(0.003) 0.006(0.0)

periments on different batch sizes, {32, 64, 128, 256, 512},
for GAR on Concrete Compressive Strength, Parkinson (To-
tal) and Parkinson (Motor) datasets. Details and results are
included in Appendix B.10. GAR is also a little sensitive
to batch size and suggested to be tuned in {32, 64, 128} in
practice.

Difference with Data Standardization: to emphasize the
difference between Eq. 5, 7 and data centering or standard-
ization, we include extensive discussions and experiments
in the Appendix B.11 and Tab. 7. The proposed GAR en-
joys similar superior performance on the datasets after data
standardization as the main results in Tab. 1.

5. Limitations
The scope for this work is limited to improving learning
label pairwise difference for regression on clean data setting,
without considering noises, outliers, or distributional shifts.
Based on the Theorem 4, we relate GAR to capture the
gradient of the ground truth function. However, GAR might
be misled if the training data does not reflect the underlying
ground truth function. It would be an interesting future work
to research the robustness for GAR under extensive settings.

6. Conclusion
In this work, we propose GAR (Gradient Aligned Regres-
sion) via two novel pairwise losses for regression. Similar
to the prior research, the proposed losses can help model
preserve rank information from ground truths better. Dif-
ferent with the prior studies, the proposed pairwise losses
directly capture the pairwise label difference in the label
space without any approximation, which additionally al-
lows us to make transformations and reduce the quadratic
complexity to linear complexity. We proved that the two
proposed pairwise losses are equivalent to the variance of
prediction errors and the negative Pearson correlation coef-
ficient between the predictions and ground truths. Last but
not least, we provide theoretical insights for learning the
pairwise label difference to capturing the gradients of the

ground truth function. We demonstrate the effectiveness of
GAR on two synthetic datasets and eight real-world tasks
on five tabular datasets and one image dataset. Running
time experiments are conducted to support that GAR is as
efficient as the conventional regression loss. Experimental
ablation studies are conducted to demonstrate the effective-
ness separately for the two proposed pairwise losses.
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A. Proofs
A.1. Proof for Theorem 1

Proof

Recall that δ̄fx = 1
N

∑N
i=1 δ

f
xi

denotes the empirical mean.

LMSE
diff =

1

N2

N∑
i=1

N∑
j=1

1

2

[
f(xi)− Y(xi)−

(
f(xj)− Y(xj)

)]2
=

1

2N2

N∑
i=1

N∑
j=1

(δfxi
− δfxj

)2

=
1

2N2

N∑
i=1

N∑
j=1

(δfxi
− δ̄fx + δ̄fx − δfxj

)2

=
1

N

N∑
i=1

(δfxi
− δ̄fx)

2

= Var(δfx),

where the cross terms expanded out in the third equation can be canceled when iterate across all data samples.

A.2. Proof for Corollary 3

Proof

Recall that dfi,j = f(xi) − f(xj) and dYi,j = Y(xi) − Y(xj), and df = [df1,1, df1,2, ..., dfN,N−1, dfN,N ], dY =
[dY1,1, dY1,2, ..., dYN,N−1, dYN,N ].

Lp=2
diffnorm = ∥ df

∥df∥2
− dY

∥dY∥2
∥22

(by Theorem 1)

= ∥ df√
2N2Var(f)

− dY√
2N2Var(y)

∥22

=
1

2N2

N∑
i=1

N∑
j=1

(
f(xi)− f(xj)

Var(f)
− Y(xi)− Y(xj)

Var(y)

)2

=
1

2N2

N∑
i=1

N∑
j=1

(
f(xi)− f̄ + f̄ − f(xj)

Var(f)
− Y(xi)− ȳ + ȳ − Y(xj)

Var(y)

)2

(by algebras, there are 2N repeats)

=
2N

2N2

[ N∑
i=1

(f(xi)− f̄

Var(f)
)2 − 2

(f(xi)− f̄

Var(f)
)(Y(xi)− ȳ

Var(y)
)
+

(Y(xi)− ȳ

Var(y)
)2]

=
1

2N

N∑
i=1

(
(f(xi)− f̄)√

Var(f)
− (yi − ȳ)√

Var(y)

)2

= 1− Cov(f, y)√
Var(f)Var(y)

= 1− ρ(f, y).
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A.3. Proof for Theorem 4

Proof
f(x1) − f(x2) = Y(x1) − Y(x2), ∀

(
x1,Y(x1)

)
,
(
x2,Y(x2)

)
∈ D =⇒ ∇kf(x) = ∇kY(x), ∀(x,Y(x)) ∈ D, k =

{1, 2, ...}.

First, we prove that ∇f(x) = ∇Y(x), ∀(x,Y(x)) ∈ D.

Take two neighbors x1,x2 that are infinitely close to an arbitrary x. By mean value theorem for multiple variables (Rudin
et al., 1976): f(x1) − f(x2) = ∇f(ξ)⊤(x1 − x2), Y(x1) − Y(x2) = ∇Y(γ)⊤(x1 − x2), where ξ, γ are two points
that are infinitely close to x. Because f(x1) − f(x2) = Y(x1) − Y(x2), ∀

(
x1,Y(x1)

)
,
(
x2,Y(x2)

)
∈ D, we have

∇f(ξ)⊤(x1 − x2) = ∇Y(γ)⊤(x1 − x2).

As x1,x2 are infinitely close, ξ, γ collapse to the same point x. Once x1,x2 are selected, define x1 − x2 = ϵ · a,
where a is a unit length vector and we will decrease the scalar ϵ to scale down the vector x1 − x2. As a consequence,
limx1→x,x2→x ∇f(ξ)⊤(x1 −x2) = ∇f(x)⊤(limϵ→0 ϵ · a); limx1→x,x2→x ∇Y(γ)⊤(x1 −x2) = ∇Y(x)⊤(limϵ→0 ϵ · a).
Plug them back to the left and right side of the equation: ∇f(x)⊤(limϵ→0 ϵ · a) = ∇Y(x)⊤(limϵ→0 ϵ · a), by L’Hôpital’s
rule ∇f(x)⊤ · a = ∇Y(x)⊤ · a · limϵ→0 ϵ

limϵ→0 ϵ = ∇Y(x)⊤ · a. Hence, ∇f(x) = ∇Y(x) because a can be any direction
constructed by x1,x2. Therefore, ∇f(x) = ∇Y(x).

Next, we show ∇kf(x) = ∇kY(x), ∀(x,Y(x)) ∈ D, k = {2, ...} by induction. Assume we have ∇kf(x) =
∇kY(x), ∀(x,Y(x)) ∈ D, to show ∇k+1f(x) = ∇k+1Y(x), ∀(x,Y(x)) ∈ D.

Denote i-th element from ∇kf(x) as [∇kf(x)]i. Take two neighbors x1,x2 that are infinitely close to arbitrary x and
apply mean value theorem for multiple variables solely on the i-th element: [∇kf(x1)]i − [∇kf(x2)]i = ∇k+1

i f(ξi)(x1 −
x2), [∇kY(x1)]i − [∇kY(x2)]i = ∇k+1

i Y(γi)(x1 − x2), where ∇k+1
i f(ξi) represents the higher order gradient taken for

[∇kf(x)]i regarding to variables. It is worth noting that ξi can be different points for different i, which hamper the general
mean value theorem for vector-valued functions in the literature (Rudin et al., 1976) but doesn’t harm the specific proof here.
Similarly, because [∇kf(x1)]i − [∇kf(x2)]i = [∇kY(x1)]i − [∇kY(x2)]i, ∀x1,x2, we have ∇k+1

i f(ξi)(x1 − x2) =
∇k+1

i Y(γi)(x1 − x2).

As x1,x2 are infinitely close, ξi, γi collapse to the same point x, ∀i. Utilize the same logic with L’Hôpital’s rule in the
previous first order gradient case, we can cancel the effects of the magnitude for x1 − x2 closing to 0 but preserve the
direction information. Therefore, ∇k+1

i f(x) = ∇k+1
i Y(x), ∀i; thereby ∇k+1f(x) = ∇k+1Y(x).

Next, we prove the other direction.

∇kf(x) = ∇kY(x), ∀(x,Y(x)) ∈ D, k = {1, 2, ...} =⇒ f(x1) − f(x2) = Y(x1) −
Y(x2), ∀

(
x1,Y(x1)

)
,
(
x2,Y(x2)

)
∈ D.

∇kf(x) = ∇kY(x), ∀(x,Y(x)) ∈ D =⇒ ∇f(x) = ∇Y(x), ∀(x,Y(x)) ∈ D. We take infinitely small but
infinitely many steps ϵi, i = 1, ...,∞ that constitute a path from x1 to x2. By mean value theorem for multiple variables,
f(x1 +

∑k
i=1 ϵi)− f(x1 +

∑k−1
i=1 ϵi) = ∇f(x1 +

∑k
i=1 ϵi)

⊤(ϵk), Y(x1 +
∑k

i=1 ϵi)−Y(x1 +
∑k−1

i=1 ϵi) = ∇Y(x1 +∑k
i=1 ϵi)

⊤(ϵk).

Therefore,
∑∞

k=1 f(x1+
∑k

i=1 ϵi)−f(x1+
∑k−1

i=1 ϵi) =
∑∞

k=1 Y(x1+
∑k

i=1 ϵi)−Y(x1+
∑k−1

i=1 ϵi); and by telescoping
sum, f(x2)− f(x1) = Y(x2)− Y(x1).

A.4. Proof for Theorem 6

Proof

13



Gradient Aligned Regression via Pairwise Losses

LKL
GAR(L1, ...,LM ;α) = max

p∈∆M

M∑
i=1

pi logLi − αKL(p| 1
M

).

By Lagrangian multiplier:

LKL
GAR(L1, ...,LM ;α) = max

p
min
a≥0,b

M∑
i=1

pi logLi − αKL(p| 1
M

) +

M∑
i=1

aipi − b(

M∑
i=1

pi − 1). (12)

By stationary condition of p:

p∗i =
1

M
exp

( logLi + ai − b

α
− 1

)
.

Take the optimal p∗ back to E.q. 12:

LKL
GAR(L1, ...,LM ;α) = min

a≥0,b
b+ α

M∑
i=1

1

M
exp

( logLi + ai − b

α
− 1

)
. (13)

ai can be minimized as 0, ∀i, because α ≥ 0. Further take the stationary condition for b:

1 =

M∑
i=1

1

M
exp

( logLi − b∗

α
− 1

)
exp(b∗/α) =

M∑
i=1

1

M
exp

( logLi

α
− 1

)
.

Take the optimal solution b∗ back to E.q. 13:

LKL
GAR(L1, ...,LM ;α) = α log

[ M∑
i=1

1

M
exp

( logLi

α
− 1

)]
+ α (14)

= α log

M∑
i=1

1

M
exp

( logLi

α

)
= α log(

1

M

M∑
i=1

L1/α
i ).

Therefore,

exp
(
LKL

GAR(L1, ...,LM ;α)
)
= (

1

M

M∑
i=1

L1/α
i )α.

When α = 1, we recover the Arithmetic Mean. Next we discuss the cases that α → +∞ and α → 0. By L’Hôpital’s rule:

lim
α→+∞

LKL
GAR(L1, ...,LM ;α) = lim

α→+∞

log( 1
M

∑M
i=1 L

1/α
i )

1/α

= lim
α→+∞

∑M
i=1 L

1/α
i logLi

L1/α
i

=

∑M
i=1 logLi

M
.

Hence, limα→+∞ exp
(
LKL

GAR

)
= (ΠM

i=1Li)
1
M . By the same logic, limα→0 exp

(
LKL

GAR

)
= maxMi=1 Li.
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Figure 3. MSE predictions on synthetic datasets.

B. More Experiments
B.1. Dataset Statistics

The statistics for benchmark datasets are summarized as following. The AgeDB is a image dataset where the image size is
not identical but with fixed center crop size. The # of feature is measured after data pre-processing as model input.

Table 3. Dataset Statistics
Dataset # of instance # of feature # of targets
Concrete Compressive Strength 1030 8 1
Wine Quality 4898 11 1
Parkinson 5875 19 2
Super Conductivity 21263 81 1
IC50 429 966 15
AgeDB 16488 224×224 1

B.2. Data Pre-processing for IC50

For IC50 (Garnett et al., 2012), there are some missing values for all the 130 drugs across all tumour cell lines, which make
the model training and evaluation inconvenient. We filter out the drugs with more than 28% missing values, which gives us
targets for 15 drugs. Then, we select the data samples (cell lines) that don’t have any missing values for the 15 drugs, which
end up with 429 samples. We utilize dummy variables to encode data categorical features (tissue type, cancer type, genetic
information).

B.3. MSE on Synthetic Datasets

Due to the limited space and high similarity between MAE and MSE, we include the predictions for MSE in Fig. 3. As
mentioned in the main content and Fig. 1, 2, MSE is similar with MAE, which performs worse on capturing complex data
rank pattern.

B.4. Symbolic Regression on the Synthetic Datasets

We adopt PySR (Cranmer, 2023) on the synthetic experiments. We present the results for without trigonometric functions
and with trigonometric functions prior knowledge in Fig 4 and Fig. 5 for Sine and Squared Sine datasets. The predictions
(dashed line) is the mean prediction values based on 5 independent runs of PySR.
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Figure 4. PySR on Sine dataset.
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Figure 5. PySR on Squared Sine dataset.

B.5. Backbone Model Complexity Variation on Sine Dataset

To demonstrate the effectiveness for the proposed GAR. We varies the backbone model complexity from {2,4,6,8,10} hidden
layers for the previous FFNN backbone model, besides of the previous 5 hidden layers FFNN results in the main content. α
for GAR is tuned in {0.5,1,2}. All of other settings are kept the same as previously described in the main content. The
results are presented in the Fig 6. Based on the results, we have two observations: 1) increasing model complexity can
generally improve the learning performance but may saturate at certain level (e.g. for MAE, 8 hidden layers model is better
than 10 hidden layers model; for MSE, 6 hidden layers model is better 8 and 10 hidden layers model). 2) GAR consistently
demonstrates its superiority over other baseline methods for comparison.

B.6. Experimental Setting on Real World Datasets

For tabular datasets, we uniformly randomly split 20% data as testing; the remaining 80% as training and validation, where
we conduct 5-fold-cross-validation with random seed set as 123. The total training epochs is set as 100 and batch size
is set as 256. The weight decay for each method is tuned in {1e-3, 1e-4, 1e-5}; we utilize SGD with momentum (set as
0.9) optimizer and tune the initial learning rate for baseline method in {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, which is stage-wised
decreased by 10 folds at the end of 50-th and 75-th epoch. The switching hyper-parameter δ for Huber loss and the scaling
hyper-parameter β for Focal (MAE) or Focal (MSE) loss are tuned in {0.25, 1, 4}. The interpolation hyper-parameter λ
for RankSim is tuned in {0.5, 1, 2} and the balancing hyper-parameter γ is fixed as 100 as suggested by their sensitivity
study in their Appendix C.4 (Gong et al., 2022). The temperature hyper-parameter for RNC is tuned in {1,2,4}; the first
50 epochs are used for RNC pre-training and the remaining 50 epochs are used for fine-tuning with MAE loss. The linear
combination hyper-parameters α is fixed as 1, β is tuned in {0.2, 1, 4} for ConR, as suggested by the ablation studies
in their Appendix A.5 (Keramati et al., 2023). The robust reconciliation hyper-parameter α for GAR is tuned in {0.1, 1,
10}. The model performance is evaluated with the following 4 metrics: MAE, RMSE, Pearson correlation coefficient,
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Figure 6. Predictions from different numbers of hidden layers for FFNN on Sine dataset. ρ̄ stands for the averaged Pearson correlation
coefficient with the ground truth over the 5 trials; ρmax is the maximal Pearson correlation coefficient with the ground truth over the 5
trials.
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Spearman’s rank correlation coefficient. The best testing performance for each baseline method on each training fold
is decided by its best validation performance on the same training fold over (initial learning rate, weight decay,
method-special-hyper-parameter, the epoch for evaluation) combinations. For IC50 with 15 targets, we report the
averaged value across all targets. The selected α for different datasets on different data fold are summarized in Tab. 4. For
AgeDB dataset, we follow the same setting for RNC linear probe task and similar setting for training from scratch task. We
include the complete details in Appendix B.7. Because RNC is a pre-training method, it doesn’t have evaluation on training
from scratch task. Instead, all baselines in linear probe are based on RNC pre-trained latent features. Because RankSim and
ConR are proposed to manipulate latent feature, they don’t have evaluation on linear probe task where the trainable model is
linear. We also include the coefficient of determination (R2) as an evaluation metric for AgeDB in addition to the previous
four evaluation metrics, to compare with prior research.

Table 4. The selected α on the tabular data respecting to different evaluation metrics. Standard deviations are included in the parenthesis.

Dataset Data Fold #1 #2 #3 #4 #5 Average

Concrete
Compressive

Strength

MAE 10 10 10 10 10 10.0(0.0)
RMSE 10 1 10 10 10 8.2(3.6)
Pearson 10 1 10 10 10 8.2(3.6)
Spearman 10 1 10 10 10 8.2(3.6)

Wine
Quality

MAE 0.1 0.1 0.1 0.1 0.1 0.1(0.0)
RMSE 10 10 10 10 10 10.0(0.0)
Pearson 10 10 10 10 10 10.0(0.0)
Spearman 10 10 10 10 10 10.0(0.0)

Parkinson (Total)

MAE 10 1 10 1 10 6.4(4.409)
RMSE 0.1 0.1 0.1 10 0.1 2.08(3.96)
Pearson 0.1 0.1 0.1 10 0.1 2.08(3.96)
Spearman 0.1 0.1 0.1 10 0.1 2.08(3.96)

Parkinson (Motor)

MAE 0.1 0.1 0.1 0.1 0.1 0.1(0.0)
RMSE 0.1 0.1 0.1 0.1 0.1 0.1(0.0)
Pearson 0.1 0.1 0.1 0.1 0.1 0.1(0.0)
Spearman 0.1 0.1 0.1 0.1 0.1 0.1(0.0)

SuperConductivity

MAE 10 10 1 10 10 8.2(3.6)
RMSE 10 10 1 1 1 4.6(4.409)
Pearson 0.1 10 1 1 0.1 2.44(3.801)
Spearman 10 10 10 10 10 10.0(0.0)

IC50

MAE 1 1 1 1 1 1.0(0.0)
RMSE 1 1 1 0.1 0.1 0.64(0.441)
Pearson 1 1 10 10 10 6.4(4.409)
Spearman 1 1 10 10 10 6.4(4.409)

B.7. Experiment Settings for AgeDB

We follow the the same experiment settings from the previous work (Zha et al., 2023). The age range is between 0 and 101.
It is split into 12208/2140/2140 images for training/validation/testing sets. The SGD optimizer and cosine learning rate
annealing is utilized for training (Loshchilov & Hutter, 2016). The batch size is set to 256. For both training from scratch
and linear probe experiments, we select the best learning rates and weight decays for each dataset by grid search, with a grid
of learning rates from {0.01, 0.05, 0.1, 0.2, 0.5, 1.0} and weight decays from {1e-6, 1e-5, 1e-4, 1e-3}. For the predictor
training of two-stage methods, we adopt the same search setting as above except for adding additional 0 weight decay to the
search choices of weight decays. The RNC temperature parameter is search from {0.1, 0.2, 0.5, 1.0, 2.0, 5.0} and select the
best, which is 2.0. We train all one-stage methods and the encoder of two-stage methods for 400 epochs, and the linear
regressor of two-stage methods for 100 epochs. The hyper-parameters for all the compared methods are searched in the same
region as described in appendix B.6. For training from scratch experiments, because the ConR (Keramati et al., 2023) is
proposed to use two data augmentations, we utilize two data augmentations for each training data for all compared methods.
The α for GAR is selected as 0.1 for training from scratch setting and as 1.0 for linear probe setting. For each method, we
randomly repeat five times with different random seeds to report the mean and standard deviation for evaluations.
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B.8. Ablation Studies on GAR

Recall that GAR constitutes of 3 losses: LMAE
c , LMSE

diff and Lp=2
diffnorm. Therefore, we conduct the similar experiments as

described in Appendix B.6 for the extra six variants of GAR on the tabular datasets as the ablation studies. The results are
summarized in Tab. 5. From the results, we observe that the proposed GAR with all the three components performs the
best over all the variants. Besides, the proposed pairwise losses, LMSE

diff and Lp=2
diffnorm, can also improve the conventional loss

LMAE
c even applied separately.

Table 5. GAR constitutes of 3 different losses; thereby there are 6 variants for ablation studies on GAR by taking off the components. ↓
means the smaller the better; ↑ means the larger the better. Mean and standard deviation (in the parenthesis) values are reported. The
overall ranks for each variant are reported in the last row.

Dataset Method LMAE
c LMSE

diff Lp=2
diffnorm LMAE

c and LMSE
diff LMAE

c and Lp=2
diffnorm LMSE

diff and Lp=2
diffnorm GAR

Concrete
Compressive

Strength

MAE ↓ 5.242(0.212) 22.518(6.911) 27.182(4.86) 4.917(0.092) 4.621(0.137) 19.104(6.491) 4.603(0.075)
RMSE ↓ 7.188(0.369) 23.632(6.829) 29.125(4.202) 6.502(0.21) 6.244(0.138) 20.266(6.088) 6.222(0.148)
Pearson ↑ 0.903(0.01) 0.92(0.003) 0.928(0.005) 0.922(0.003) 0.928(0.003) 0.925(0.005) 0.929(0.004)
Spearman ↑ 0.903(0.006) 0.925(0.003) 0.935(0.005) 0.928(0.002) 0.928(0.005) 0.929(0.005) 0.931(0.003)

Wine
Quality

MAE ↓ 0.494(0.004) 5.334(0.241) 4.386(1.165) 0.498(0.006) 0.496(0.006) 4.278(1.875) 0.494(0.004)
RMSE ↓ 0.711(0.004) 5.381(0.238) 4.791(1.053) 0.694(0.005) 0.691(0.003) 4.347(1.83) 0.69(0.004)
Pearson ↑ 0.582(0.003) 0.622(0.008) 0.621(0.004) 0.607(0.009) 0.608(0.013) 0.615(0.003) 0.613(0.011)
Spearman ↑ 0.612(0.008) 0.637(0.006) 0.636(0.005) 0.636(0.006) 0.631(0.01) 0.638(0.005) 0.635(0.007)

Parkinson
(Total)

MAE ↓ 3.358(0.045) 27.563(0.902) 24.393(2.48) 2.746(0.068) 2.648(0.13) 26.861(0.707) 2.64(0.071)
RMSE ↓ 5.384(0.05) 28.306(1.115) 26.489(1.795) 4.214(0.14) 4.402(0.253) 27.363(1.036) 4.258(0.206)
Pearson ↑ 0.866(0.002) 0.934(0.012) 0.951(0.004) 0.924(0.005) 0.912(0.01) 0.939(0.011) 0.922(0.009)
Spearman ↑ 0.846(0.003) 0.922(0.012) 0.942(0.004) 0.911(0.006) 0.897(0.013) 0.931(0.011) 0.907(0.01)

Parkinson
(Motor)

MAE ↓ 2.277(0.075) 19.211(0.571) 16.788(0.811) 1.672(0.085) 1.853(0.174) 19.188(0.707) 1.652(0.069)
RMSE ↓ 3.927(0.036) 19.687(0.583) 19.373(0.752) 2.701(0.131) 3.116(0.361) 19.709(0.938) 2.68(0.134)
Pearson ↑ 0.875(0.002) 0.942(0.009) 0.944(0.003) 0.942(0.005) 0.919(0.022) 0.943(0.009) 0.943(0.006)
Spearman ↑ 0.868(0.002) 0.939(0.009) 0.94(0.004) 0.938(0.007) 0.913(0.024) 0.94(0.009) 0.939(0.006)

Super
Conductivity

MAE ↓ 6.577(0.051) 20.445(0.88) 14.27(0.631) 6.293(0.072) 6.238(0.051) 18.616(1.762) 6.257(0.027)
RMSE ↓ 11.815(0.114) 23.676(0.778) 17.094(0.607) 10.719(0.178) 10.935(0.042) 21.514(1.661) 10.745(0.183)
Pearson ↑ 0.94(0.001) 0.95(0.002) 0.947(0.001) 0.95(0.002) 0.948(0.0) 0.951(0.001) 0.949(0.002)
Spearman ↑ 0.942(0.001) 0.942(0.001) 0.939(0.002) 0.943(0.001) 0.945(0.001) 0.942(0.001) 0.944(0.002)

IC50

MAE ↓ 1.359(0.002) 3.815(0.009) 3.549(0.044) 1.369(0.006) 1.362(0.012) 3.736(0.021) 1.359(0.003)
RMSE ↓ 1.709(0.012) 4.134(0.011) 3.87(0.044) 1.706(0.003) 1.705(0.018) 4.053(0.02) 1.7(0.005)
Pearson ↑ 0.041(0.045) 0.146(0.022) 0.293(0.034) 0.07(0.062) 0.313(0.023) 0.313(0.021) 0.302(0.028)
Spearman ↑ 0.085(0.035) 0.152(0.034) 0.267(0.019) 0.115(0.031) 0.268(0.009) 0.263(0.029) 0.26(0.024)

Overall Rank 5.208 5.312 4.104 3.583 3.312 4.104 2.375

B.9. Sensitivity Analysis

We include the sensitivity results for GAR on Concrete Compressive Strength, Wine Quality, Parkinson (Total), Parkinson
(Motor), Super Conductivity as in Fig. 7,8,9,10,11, where we present the box-plot with mean and standard deviation from
5-fold-cross-validation. The evaluation procedure is identical as the main benchmark experiments stated in Appendix B.6
except that we fix different α for GAR. As we mentioned in the main content, the α is not very sensitive, but it is suggested
to be tuned in [0.1,10] region.

B.10. Different Batch Sizes

We conduct experiments on different batch sizes {32, 64, 128, 256, 512} for GAR. The experimental setting is kept as the
same as the main experiments in Appendix B.6. The results are included in Tab. 6. Because the proposed GAR learns both
the mean and variance of the label values by conventional loss and proposed pairwise losses (by Theorem 1), we additionally
provide the convergences curves for the estimated means and standard deviations in Fig. 12. From both the table and the
figures, we observe a strong correlation between more accurate estimation of mean and standard deviation to better testing
performance (Batch Size = 32 on Concrete Compressive Strength and 64 on Parkinson Motor).

B.11. Difference with Standardization

The formulation for LMSE
diff and Lp=2

diffnorm in Eq. 5 and Eq. 7 might remind reader of data centering or standardization. In this
subsection, we highlight the difference:

• LMSE
diff and Lp=2

diffnorm ‘centralize’ or ‘standardize’ not only for ground truth label, but also for prediction. Besides, the
predictions are dynamic during model training process.
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Figure 7. Different α (x-axis) for GAR on Concrete Compressive Strength.
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Figure 8. Different α (x-axis) for GAR on Wine Quality.

Table 6. Testing performance with different batch sizes.
Dataset Concrete Compressive Strength Parkinson(Total) Parkinson(Motor)
Batch Size MAE RMSE Pearson Spearman MAE RMSE Pearson Spearman MAE RMSE Pearson Spearman

32 3.866(0.132) 5.625(0.194) 0.942(0.005) 0.944(0.004) 1.875(0.306) 3.957(1.684) 0.925(0.063) 0.944(0.014) 1.518(0.074) 2.661(0.201) 0.944(0.008) 0.942(0.007)
64 3.966(0.183) 5.705(0.257) 0.939(0.005) 0.937(0.009) 1.431(0.109) 2.737(0.182) 0.967(0.004) 0.961(0.007) 1.184(0.033) 2.321(0.098) 0.958(0.004) 0.954(0.004)

128 4.167(0.113) 5.837(0.178) 0.937(0.004) 0.938(0.002) 1.61(0.075) 2.971(0.12) 0.961(0.003) 0.954(0.003) 1.315(0.06) 2.455(0.097) 0.953(0.004) 0.949(0.005)
256 4.603(0.075) 6.222(0.148) 0.929(0.004) 0.931(0.003) 2.64(0.071) 4.258(0.206) 0.922(0.009) 0.907(0.01) 1.652(0.069) 2.68(0.134) 0.943(0.006) 0.939(0.006)
512 4.989(0.139) 6.568(0.226) 0.917(0.006) 0.921(0.008) 4.032(0.056) 5.679(0.04) 0.855(0.007) 0.83(0.007) 2.709(0.062) 3.849(0.126) 0.891(0.016) 0.883(0.018)
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Figure 9. Different α (x-axis) for GAR on Parkinson (Total).
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Figure 10. Different α (x-axis) for GAR on Parkinson (Motor).
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Figure 11. Different α (x-axis) for GAR on Super Conductivity.

• The proposed GAR, Alg. 1, learns the mean and standard deviation dynamically for each mini-batch during training,
rather than for the whole dataset.

• We tested all the baselines on the five tabular datasets with standardization on both data features and labels, where the
results are summarized in Tab. 7. From the results, the proposed GAR enjoys similar superiority on the standardized
datasets as the previous main results in Tab. 1.

Table 7. Testing performance on the standardized tabular datasets/settings. Mean and standard deviation are reported. ‘Gains’ includes the
percentages that GAR outperform the MAE and the best competitor (in parenthesis). The ‘p-values’ are calculated based on Student’s
t-test for the ‘Gains’. p-value < 0.05 usually means significant difference. ↓ means the smaller the better; ↑ means the larger the better.

Standardized Dataset Method MAE MSE Huber Focal (MAE) Focal (MSE) RankSim RNC ConR GAR (ours) Gains (%) p-values

Concrete
Compressive

Strength

MAE ↓ 0.284(0.003) 0.288(0.002) 0.303(0.004) 0.289(0.005) 0.299(0.01) 0.802(0.012) 0.283(0.007) 0.286(0.007) 0.278(0.003) 2.22(1.77) 0.02(0.24)
RMSE ↓ 0.39(0.02) 0.387(0.009) 0.396(0.01) 0.386(0.008) 0.391(0.014) 0.994(0.005) 0.38(0.002) 0.378(0.006) 0.38(0.011) 2.56(-0.66) 0.41(0.7)
Pearson ↑ 0.924(0.003) 0.919(0.005) 0.918(0.002) 0.921(0.004) 0.921(0.004) 0.674(0.059) 0.925(0.003) 0.925(0.002) 0.925(0.004) 0.11(0.0) 0.68(0.93)
Spearman ↑ 0.927(0.003) 0.927(0.002) 0.919(0.004) 0.922(0.005) 0.924(0.003) 0.706(0.029) 0.929(0.002) 0.927(0.005) 0.929(0.002) 0.28(0.0) 0.16(0.97)

Wine
Quality

MAE ↓ 0.574(0.003) 0.611(0.006) 0.615(0.003) 0.59(0.001) 0.62(0.005) 0.595(0.005) 0.616(0.005) 0.579(0.005) 0.565(0.007) 1.56(1.56) 0.05(0.05)
RMSE ↓ 0.824(0.005) 0.787(0.009) 0.79(0.005) 0.794(0.005) 0.79(0.007) 0.817(0.009) 0.81(0.003) 0.811(0.006) 0.79(0.004) 4.17(0.0) 0.0(0.53)
Pearson ↑ 0.566(0.004) 0.614(0.011) 0.612(0.006) 0.605(0.005) 0.611(0.009) 0.571(0.011) 0.587(0.002) 0.586(0.007) 0.618(0.003) 9.22(0.67) 0.0(0.5)
Spearman ↑ 0.603(0.007) 0.63(0.009) 0.63(0.006) 0.624(0.003) 0.623(0.006) 0.603(0.006) 0.609(0.005) 0.616(0.005) 0.638(0.007) 5.85(1.18) 0.0(0.23)

Parkinson
(Total)

MAE ↓ 0.33(0.016) 0.321(0.01) 0.363(0.002) 0.323(0.013) 0.333(0.009) 0.807(0.001) 0.306(0.006) 0.354(0.004) 0.241(0.009) 26.81(21.12) 0.0(0.0)
RMSE ↓ 0.507(0.013) 0.473(0.012) 0.515(0.003) 0.505(0.011) 0.487(0.014) 10.828(19.644) 0.474(0.015) 0.524(0.006) 0.385(0.02) 24.14(18.73) 0.0(0.0)
Pearson ↑ 0.864(0.007) 0.883(0.006) 0.859(0.002) 0.866(0.008) 0.875(0.008) 0.203(0.052) 0.881(0.008) 0.853(0.003) 0.924(0.008) 6.91(4.63) 0.0(0.0)
Spearman ↑ 0.841(0.007) 0.86(0.006) 0.835(0.003) 0.845(0.006) 0.852(0.006) 0.188(0.043) 0.861(0.009) 0.826(0.009) 0.909(0.008) 8.05(5.57) 0.0(0.0)

Parkinson
(Motor)

MAE ↓ 0.309(0.017) 0.313(0.017) 0.362(0.004) 0.314(0.01) 0.339(0.02) 0.847(0.002) 0.313(0.01) 0.339(0.011) 0.225(0.014) 27.13(27.13) 0.0(0.0)
RMSE ↓ 0.487(0.028) 0.46(0.032) 0.514(0.004) 0.495(0.01) 0.486(0.026) 0.993(0.003) 0.477(0.014) 0.512(0.011) 0.37(0.02) 24.05(19.58) 0.0(0.0)
Pearson ↑ 0.871(0.015) 0.886(0.016) 0.856(0.002) 0.868(0.005) 0.872(0.014) 0.13(0.022) 0.878(0.007) 0.857(0.007) 0.928(0.008) 6.51(4.72) 0.0(0.0)
Spearman ↑ 0.864(0.016) 0.872(0.018) 0.847(0.001) 0.861(0.006) 0.865(0.015) 0.133(0.046) 0.866(0.007) 0.847(0.006) 0.923(0.009) 6.79(5.81) 0.0(0.0)

Super
Conductivity

MAE ↓ 0.244(0.001) 0.256(0.0) 0.263(0.001) 0.247(0.001) 0.264(0.002) 0.574(0.068) 0.241(0.001) 0.243(0.001) 0.223(0.002) 8.85(7.59) 0.0(0.0)
RMSE ↓ 0.396(0.002) 0.389(0.001) 0.399(0.001) 0.394(0.003) 0.392(0.002) 0.762(0.083) 0.385(0.001) 0.394(0.001) 0.358(0.003) 9.68(7.02) 0.0(0.0)
Pearson ↑ 0.919(0.0) 0.921(0.001) 0.917(0.0) 0.92(0.001) 0.92(0.001) 0.811(0.008) 0.923(0.001) 0.92(0.0) 0.934(0.001) 1.66(1.14) 0.0(0.0)
Spearman ↑ 0.916(0.001) 0.907(0.001) 0.901(0.001) 0.912(0.001) 0.9(0.002) 0.825(0.004) 0.916(0.001) 0.917(0.001) 0.928(0.001) 1.25(1.17) 0.0(0.0)

IC50

MAE ↓ 0.82(0.002) 0.829(0.003) 0.821(0.002) 0.821(0.002) 0.831(0.002) 0.82(0.002) 0.827(0.002) 0.814(0.001) 0.79(0.017) 3.7(2.97) 0.01(0.02)
RMSE ↓ 1.026(0.002) 1.016(0.001) 1.026(0.002) 1.025(0.002) 1.021(0.002) 1.031(0.005) 1.026(0.002) 1.024(0.003) 0.992(0.024) 3.33(2.35) 0.02(0.08)
Pearson ↑ 0.079(0.025) 0.166(0.027) 0.122(0.031) 0.089(0.019) 0.156(0.021) 0.015(0.025) -0.012(0.017) 0.224(0.031) 0.3(0.035) 278.81(33.82) 0.0(0.01)
Spearman ↑ 0.13(0.031) 0.165(0.032) 0.12(0.028) 0.11(0.02) 0.146(0.021) 0.026(0.041) 0.019(0.042) 0.198(0.024) 0.277(0.027) 112.94(39.9) 0.0(0.0)
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Figure 12. Batch Sizes on mean and standard deviation estimation for GAR
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