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ABSTRACT

We consider differentially private counting when each data point consists of d bits
satisfying a partial order. Our main technical contribution is a problem-specific
K-norm mechanism that runs in time O(d2). Experiments show that, depending
on the partial order in question, our solution dominates existing pure differentially
private mechanisms, and can reduce their error by an order of magnitude or more.

1 INTRODUCTION

A differentially private (DP) (Dwork et al., 2006) statistic incorporates randomness to obscure the
contribution of any single data point. To achieve this, differentially private algorithms typically
require — and, if necessary, enforce — restrictions on the data points. A common restriction is `p
sensitivity: if the statistic T is a vector in Rd, adding a user’s data point must not change the `p norm
of T by more than ∆p. This framework is generic enough to apply to a wide variety of problems, but
it can yield relatively poor performance for statistics whose sensitivity is not tightly characterized
by an `p norm. One such statistic is counting on partially ordered data.

As a straightforward running example, the National Health Interview Survey (Services & Medicaid,
2024) has been administered annually since 1957 by the Center for Disease Control. The Hyper-
tension section of the 2024 survey first asks if the respondent has been told they have hypertension
and then asks if they have been told multiple times. The survey structure requires a respondent to
answer “yes” to the first question in order to answer “yes” to the second; equivalently, if the answers
are given as binary vector x, the survey structure imposes partial order x2 ≤ x1. A count of this
partially ordered data then records the number of “yes” responses to each question. Other examples
of partially ordered data include software library dependencies, coursework prerequisites, and any
data encoded using directed acyclic graphs.

It is possible to apply `p sensitivity to partially ordered data. In the survey example, a respondent
can answer “yes” to every question, so the vector of counts has `1 sensitivity d. However, this
analysis also protects against inputs that cannot occur, as the binary and order constraints means that
no response can have the form (d, 0, . . . , 0) or (0, 1, . . .). In this sense, straightforward application
of Laplace (or other `p mechanism) noise may be “loose”.

1.1 CONTRIBUTIONS

Our main technical contribution is an efficient implementation of the K-norm mechanism (Hardt &
Talwar, 2010) for counting partially ordered data. Our solution can be applied to any partial order,
satisfies pure differential privacy, and runs in time O(d2) (Theorem 3.15). This provides a more
than cubic speedup over the fastest general polytope sampler and is provably exponentially faster
than any `p ball rejection sampler (Theorem 3.17). Experiments using both synthetic and real-world
partial orders demonstrate significant error reductions over existing DP mechanisms (Section 4).

1.2 RELATED WORK

Joseph & Yu (2024) previously constructed efficient implementations of the K-norm mechanism to
obtain better noise distributions for the problems of (contribution-bounded) sum, count, and vote.
For a longer discussion of the K-norm mechanism, its variants, and its relation to other query-
answering solutions like the projection (Nikolov et al., 2013; Nikolov, 2023), matrix (Li et al.,
2015; McKenna et al., 2018), and factorization (Edmonds et al., 2020; Nikolov & Tang, 2023)
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mechanisms, we refer the interested reader to their paper; here, we note that these mechanisms can
be viewed as general but possibly slow approximations of optimal constructions of problem-specific
private additive noise. In contrast, we provide a problem-specific but optimal and fast construction.

The simplest difference between our work and that of Joseph & Yu (2024) is that we consider differ-
ent problems that require different sampling techniques. In more detail, these different problems are
characterized by different combinatorial objects. In Joseph & Yu (2024), their sum and vote poly-
topes are based on a truncated hypercube and permutohedron, respectively. Here, the poset polytope
is most closely related to the double poset polytope. Similarly, though our samplers are also based
on identifying an efficiently sampleable triangulation of the polytope, the triangulations themselves
are different: the sum polytope triangulation is indexed by permutations with a fixed number of
ascents, while ours is indexed by pairs of non-interfering chains in the Birkhoff lattice.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

The material in this subsection is largely adapted from the preliminaries of Joseph & Yu (2024),
who derived efficient instances of the K-norm mechanism for different problems. We use pure
differential privacy, in the add-remove model.
Definition 2.1 (Dwork et al. (2006)). DatabasesX,X ′ from data domain X are neighborsX ∼ X ′
if they differ in the presence or absence of a single record. A randomized mechanismM : X → O
is ε-differentially private (DP) if for all X ∼ X ′ ∈ X and any S ⊆ O,

PM [M(X) ∈ S] ≤ eεPM [M(X ′) ∈ S] .

Our solution will apply the K-norm mechanism.
Lemma 2.2 (Hardt & Talwar (2010)). Given statistic T with ‖ · ‖-sensitivity ∆ and database X , the
K-norm mechanism has output density fX(y) ∝ exp

(
− ε

∆ · ‖y − T (X)‖
)

and satisfies ε-DP.

We apply an instance of the K-norm mechanism chosen using our statistic’s sensitivity space.
Definition 2.3 (Kattis & Nikolov (2017); Awan & Slavković (2021)). The sensitivity space of
statistic T is S(T ) = {T (X)− T (X ′) | X,X ′ are neighboring databases}.

Sensitivity spaces that induce norms are particularly interesting, as the corresponding K-norm
mechanisms enjoy certain notions of optimality.
Lemma 2.4. If set W is convex, bounded, absorbing (for every u ∈ Rd, there exists c > 0 such that
u ∈ cW ), and symmetric around 0 (u ∈ W ⇔ −u ∈ W ), then the function ‖ · ‖W : Rd → R≥0

given by ‖u‖W = inf{c ∈ R≥0 | u ∈ cW} is a norm, and we say W induces ‖ · ‖W .
Definition 2.5. If statistic T has a sensitivity space convex hull CH(S(T )) satisfying Lemma 2.4,
we say T induces a norm, and call CH(S(T )) the induced norm ball of T .

Awan & Slavković (2021) show that the instance of the K-norm mechanism using a statistic’s in-
duced norm is optimal with respect to entropy and conditional variance (see Sections 3.2 and 3.3 of
their paper for details). The only remaining challenge is running the resulting mechanism.
Lemma 2.6 (Hardt & Talwar (2010)). Running the K-norm mechanism reduces to sampling the
unit ball for the norm ‖ · ‖.

Our main technical contribution is therefore a fast sampler for the induced norm ball for counting
partially ordered data. This is a d-dimensional polytope with Ω(d) constraints. Applying the best
general sampler takes time Õ(d2+ω) where ω ≥ 2 is the matrix multiplication exponent (Theorem
1.5 of Laddha et al. (2020)), and achieving a close enough approximation for O(ε)-DP adds another
O(d) factor (Appendix A of Hardt & Talwar (2010)).

2.2 PARTIALLY ORDERED DATA

Throughout, we assume that our goal is to compute a sum T (X) =
∑
x∈X x of length-d binary

vectors with bits that satisfy a partial order.
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Definition 2.7. A partially ordered set or poset (P,�) is a finite set P together with a reflexive,
transitive, and anti-symmetric relation �. If p1, p2 ∈ P and p1 � p2, we say that p1 is a child
of p2 and p2 is a parent of p1. A linear extension of poset (P,�) is a total ordering (P,�∗) that
preserves �, i.e. an ordering of the elements of P given by p1 �∗ p2 �∗ . . . �∗ pd such that
pi � pj implies i < j. We assume that a poset is given in the form of a |P | × |P | binary matrix
M where Mij = 1 ⇔ pi � pj . We say a length-|P | binary vector x is partially ordered if pi � pj
implies xi ≤ xj .

We also assume that each poset has a single root.
Assumption 2.8. The poset (P,�) has a root r ∈ P such that p � r for all p ∈ P .

For surveys, this corresponds to a question asking if the respondent wants to take the survey at all,
and allows us to count nonrespondents. Our mechanism is optimal for these posets in the sense
described by Awan & Slavković (2021). Note also that if we are instead given a poset without a
root, we can simply add a root, apply our mechanism, and ignore the added dimension in the final
output, as done in our experiments. By post-processing, this does not alter the privacy guarantee.

3 AN EFFICIENT MECHANISM

We start with a high level summary of the sampler. Since our goal is to sample the norm ball in-
duced by our statistic, we first show that counting partially ordered data induces a norm, and that
the induced norm ball can be expressed as a combinatorial object called a double order polytope
(Section 3.1). This connection allows us to leverage a triangulation for double order polytopes de-
veloped by Chappell et al. (2017). The problem then reduces to sampling a single simplex from the
triangulation. However, the simplices in this triangulation are indexed by pairs of non-interfering
chains (Definition 3.10) – essentially disjoint sets of elements in the poset ground set with a special
structure given by the order relation – and it is not obvious how to sample such an object uniformly
at random. To do so, we prove a bijection between the pairs of non-interfering chains of the trian-
gulation and a family of new structures called extended bipartitions (Definition 3.12), for which we
construct a uniform sampler (Section 3.3). Putting these elements together yields an overall sampler
of a simplex of the triangulation, from which we can easily sample a single point (Section 3.4).

3.1 POSET BALL

As described in Section 2.1, an efficient application of the optimal K-norm mechanism for counting
partially ordered data reduces to sampling the norm ball induced by its sensitivity space. We start
with some basic results about the structure of this norm ball. Throughout, we denote our original
poset by P ∗. Recall from Assumption 2.8 that we assume the poset (P ∗,�) ordering our data points
has a root r such that p � r for all p ∈ P ∗; we omit this assumption for the rest of this section.
Lemma 3.1. Let T(P∗,�)(X) =

∑
x∈X x be a statistic summing data points x that satisfy a partial

order (P ∗,�) (Definition 2.7). Then T(P∗,�) induces a norm.

Proof. We verify the conditions in Lemma 2.4. We write T = T(P∗,�) for brevity.

CH(S(T )) is a convex hull and so immediately convex. Let V (CH(S(T ))) be the set of vertices
of CH(S(T )). By the definition of sensitivity space, the vertices of CH(S(T )) are the length-|P ∗|
partially ordered binary vectors and their negations. There are finitely many vertices, so CH(S(T ))
is bounded. Any point p ∈ CH(S(T )) is a convex combination of the vertices

∑
civi, and

vi ∈ V (CH(S(T ))) implies −vi ∈ V (CH(S(T ))), so −p =
∑
ci(−vi) ∈ CH(S(T )). Thus,

CH(S(T )) is symmetric around the origin.

It remains to show CH(S(T )) is absorbing. Consider any linear extension (P ∗,�′) of (P ∗,�
). Then (P ∗,�′) has all of the relations in (P ∗,�), so S(T(P∗,�′)) ⊂ S(T(P∗,�)), and
CH(S(T(P∗,�′))) ⊂ CH(S(T(P∗,�))). Define {v1, . . . , vd} to be the set of binary vectors where
vi is the vector whose first i entries are 1 while the rest are 0. Then V (CH(S(T(P∗,�′)))) is
{±v1, ...,±vd}. Since {v1, ..., vd} forms a basis of Rd, there is an invertible linear map A map-
ping {v1, ..., vd} to the standard basis. In particular, A(CH(S(T(P∗,�′)))) is the unit `1 ball
Bd1 . Let b be a small origin centered ball around 0 in Bd1 . Then A−1(b) is a small origin
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(1, 1)

(−1,−1)

Figure 1: The solid orange border outlines the d = 2 path graph (x2 ≤ x1) poset ball. The dashed
teal border is the minimum containing `1 ball, and the dotted purple border is the minimum contain-
ing `∞ ball.

centered ellipsoid in CH(S(T(P∗,�′))), i.e. 0 is an interior point of CH(S(T(P∗,�′))). Since
S(T(P∗,�′)) ⊂ S(T(P∗,�)), it follows that CH(S(T(P∗,�))) is absorbing.

We shorthand T ’s induced norm ball as the poset ball. As a simple example, the poset ball for the
path graph x2 ≤ x1 appears in Figure 1. The next result shows that the poset ball can be reinterpreted
as an object from combinatorics, the double order polytope. This interpretation allows us to apply
results about the double order polytope from Chappell et al. (2017).

Reasoning about the double order polytope requires some additional definitions related to posets.

Definition 3.2. A double poset is a triple (P,�+,�−) where P+ = (P,�+) and P− = (P,�−)
are posets on the same ground set. A double poset is compatible if P+ and P− have a shared linear
extension.

Definition 3.3 (Chappell et al. (2017)). Let P1,P2 ⊂ Rd be polytopes. The Cayley sum of P1 and
P2 is defined by P1 � P2 = CH({1} ⊕ P1 ∪ {−1} ⊕ P2). Define P1 � P2 = P1 � −P2. The
order polytope O(P ) of a poset (P,�) is the set of all order preserving functions f : P → [0, 1]
such that 0 ≤ f(a) ≤ f(b) ≤ 1 for all a, b ∈ P where a � b. The double order polytope O2(P ) of
a double poset (P,�+,�−) is O(P+) �O(P−).1

We can now state the connection between the poset ball and double order polytope.

Lemma 3.4. The poset ball for poset (P ∗,�) is O2(P ∗ − r), the double order polytope on the
double order poset (P ∗ − r,�,�).

Proof. Let S be the set of functions f : P ∗ → {0, 1} such that 0 ≤ f(a) ≤ f(b) ≤ 1 for all
a, b ∈ P ∗ where a � b. We can view functions in S as |P ∗|-dim binary vectors in the natural way.
Recall that the poset ball is CH(S ∪ −S). Equivalently, it is CH(O(P ∗) ∪ −O(P ∗)). We apply
the following general result about the convex hulls of reflected polytopes. A similar result is stated
without proof in Chappell et al. (2017); for completeness, a proof appears in Appendix A.

Claim 3.5. Let P be a (d − 1)-dim convex polytope in Rd lying in the hyperplane x1 = 1. Let
P ′ = P ∪ {0}. Then V (CH(P ′ ∪ −P ′)) = V (P) ∪ V (−P).

By Claim 3.5, the vertices of CH(O(P ∗) ∪ −O(P ∗)) are V (O(P ∗)) ∪ V (−O(P ∗)) − {0}. The
vertices in V (O(P ∗))−{0} are of the form 1⊕v where v is a vertex of V (O(P ∗−r)), and the first
dimension corresponds to the r-dimension. In other words, the vertices of this shape are exactly the
vertices of O2(P ∗ − r) , the double order polytope on the double poset (P ∗ − r,�,�).

By Lemma 3.4, our new goal is to construct a fast sampler for the double order polytopeO2(P ∗−r).

1This is a slight modification of the definition of the double order polytope given by Chappell et al. (2017),
but the change does not meaningfully affect the properties of this structure (see Remark A.1 for details).
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3.2 DOUBLE ORDER POLYTOPES AND DOUBLE CHAIN POLYTOPES

We sampleO2(P ∗−r) by constructing a triangulation that decomposes it into disjoint d-dimensional
simplices of equal volume. By this construction, it suffices to sample one of the simplices uniformly
at random and then return a uniform random sample from the chosen simplex. The following result
about uniformly sampling a simplex is folklore; we take the statement from Joseph & Yu (2024).
Lemma 3.6. A collection of points x0, . . . , xd ∈ Rn with n ≥ d are affinely independent if∑d
i=0 αixi = 0 and

∑d
i=0 αi = 0 implies α = 0. A d-simplex is the convex hull of d + 1 affinely

independent points and can be uniformly sampled in time O(d log(d)).

Since sampling a simplex is easy, it remains to find a triangulation of O2(P ∗ − r) into simplices.
For completeness, the following definition formalizes the notion of a triangulation.
Definition 3.7. Let P ⊂ Rd be a polytope. For 0 ≤ k ≤ d − 1, a proper k-dim face of P is an
intersection I of the form H ∩ ∂P of a (d− 1)-dim hyperplane H with the boundary of P , such that
the I ⊂ ∂P and dim(I) = k. A subdivision of P is a collection of d-dim polytopes P1, ..., Pm such
that P = ∪mi=1Pi and for each 1 ≤ i < j ≤ m the (possibly empty) set Pi ∩ Pj is a proper face of
each of Pi and Pj . A triangulation of P is a subdivision containing only simplices. A simplex with
vertices in a lattice Λ is unimodular if it has minimal volume. A triangulation is unimodular if all of
its simplices are unimodular.

We use a result from Chappell et al. (2017) that provides a mapping between the double order
polytope and a related geometric object, the double chain polytope.
Definition 3.8 (Chappell et al. (2017)). Given poset P , a chain is a sequence of (strictly) increasing
elements in P . The chain polytope C(P ) is the set of functions g : P → R≥0 such that g(a1) + ...+
g(ak) ≤ 1 for all chains a1 � ... � ak of P . The double chain polytope C2(P ) of a double poset
(P,�+,�−) is C(P+) � C(P−)

Lemma 3.9 (Theorem 4.3 Chappell et al. (2017)). For any compatible double poset (P,�+,�−),
there is an explicit homeomorphism between the double chain polytope C2(P ) and the double order
polytope O2(P ).

Conveniently, the mapping transfers a triangulation of the double chain polytope to a triangulation
of the double order polytope also due to Chappell et al. (2017). This triangulation will be indexed
by objects called non-interfering pairs of chains.
Definition 3.10 (Chappell et al. (2017)). Given poset (P,�), I ⊂ P is a filter if x ∈ I and x �
y implies y ∈ I , and the Birkhoff poset J (P ) is the poset given by the filters of P ordered by
inclusion. Given double poset (P,�+,�−), for chains of filters C+ ⊂ J (P+) and C− ⊂ J (P−),
we say the pair of chains C = (C+, C−) is non-interfering if min(J+) ∩ min(J−) = ∅ for all
J+ ∈ C+, J− ∈ C−, where min(·) denotes the set of minimal elements of the filter. Moreover, we
denote by ∆ni(P ) the collection of non-interfering pairs of chains.

We therefore obtain the following triangulation of the double order polytope indexed by non-
interfering pairs of chains. This follows from Corollary 4.1, Theorem 4.3, and Equation 13 of
Chappell et al. (2017).
Lemma 3.11 (Chappell et al. (2017)). Let (P,�+,�−) be a double poset. For L ⊂ J (P ), define
F (L) = CH({1J | J ∈ L}) ⊂ R|P |. For non-interfering pair of chains C = (C+, C−) of size
|C| = |C+| + |C−| = |P | + 1, define map F̄ (C) = F (C+) � F (C−). Then {F̄ (C) | C ∈
∆ni(P )} is a triangulation of O2(P ) into |P |-dimensional simplices. Moreover, given C, F̄ (C)
can be computed in time O(d2).

As a result of this triangulation, it now suffices to uniformly sample a non-interfering pair of chains
associated with P ∗ − r of size d + 1. This will be easier, because we can construct a bijection
between these pairs and extended bipartitions of P ∗− r , and extended bipartitions are conceptually
simpler than non-interfering pairs of chains.

3.3 EXTENDED BIPARTITIONS

Definition 3.12. Given poset (P,�), an extended bipartition is a quadruple
((A,�), (B,�),�A,�B) where (A,�), (B,�) are subposets of P such that A ∩ B =
∅, A ∪B = P , and �A,�B are linear extensions of (A,�), (B,�) respectively.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

At a high level, given a non-interfering pair of chains, it can be shown that the set difference between
the minimal elements of adjacent filters in each chain has size exactly 1, and that these successive
differences form a linear extension of the subposet induced by those elements. Moreover, the ground
sets of the two linear extensions form a bipartition of the original ground set. Conversely, given an
extended bipartition, we can define a non-interfering pair of chains of filters by treating each suffix of
each linear extension of the bipartition as the minimal elements of a filter. Due to space constraints,
the full proof of this result appears in Appendix A.

Lemma 3.13. There is a bijection between the set of non-interfering pairs of chains C = (C+, C−)
of the double poset (P ∗ − r,�,�) of size |C| = |C+| + |C−| = d + 1 and the set of extended
bipartitions of P ∗ − r. Moreover, given an extended bipartition, its corresponding non-interfering
pair of chains can be computed in time O(d2).

The problem is now reduced to uniformly sampling an extended bipartition. Constructing such a
sampler is the last technical step in our argument.

Lemma 3.14. Given poset (P,�) of size |P | = d, there is an algorithm to uniformly sample an
extended bipartition of P in time O(d2).

Proof. We start by reformulating the matrixM associated with P (Definition 2.7) as a more suitable
data structure GP : iterate through the matrix M and, for each element v, construct a list pv of its
parent elements and a list cv of its child elements. This takes a single O(d2) pass through M .
Note that GP enables us to compute a maximal element in time O(d) by starting at any node and
following parent pointers.

Our algorithm, A, receives a GP representation of a poset P and uses recursion as follows. At each
step, compute maximal element v ∈ P in O(d) and then construct GP−v from GP by deleting v
and the associated parent pointers from its children in timeO(d). Then computeA(GP−v) to obtain
extended bipartition ((A,�), (B,�),�A,�B) of P − v. We will use this extended bipartition of
P − v to construct one for P . Note that �A and �B can be represented by increasing ordered lists
of elements of A and B respectively.

Let aj be the �A-largest element that is �-smaller than v in a1 �A · · · �A ak. To find aj , iterate
from right to left (i.e., �A-largest to �A-smallest) over the �A list and check whether the current
node w has the property that Mw,v = 1, stopping when the first child of v is found. Define bj′
similarly. Then modifying �A by inserting v anywhere to the right of aj in a1 � · · · � ak produces
a linear extension �A′ and the extended bipartition ((A ∪ {v},�), (B,�),�A′ ,�B) of P . We call
the set of all such insertion points the valid placements for A, and define the valid placements for B
similarly. Let L be the union of the valid placements for A and B. By the above, computing L and
uniformly sampling a valid placement takes time O(d). Finally, inserting v into a linear extension
takes time O(d) assuming the linear extensions are implemented using linked lists. Overall, we do
O(d) work at each recursive step.

In the base case that |P | = 1, we flip a coin to either return ((P, ∅),�P ,�∅) or ((∅, P ),�∅,�P )
where �P and �∅ are trivial linear extensions. Since we do O(d) work at each recursive step and
there are |P | = d steps, the total run time is O(d2).

It remains to verify that the sampling is uniform. For any extended bipartition of (P,�) given by
((A,�), (B,�),�A,�B), removing maximal v yields a smaller extended bipartition of the sub-
poset (P − v,�) such that if aj and bj′ are defined with respect to the smaller extended bipartition,
then v is either to the right of aj in �A of A or to the right of bj′ in �B of B.

3.4 OVERALL ALGORITHM

Having sampled an extended bipartition, Lemma 3.13 already verified that we can convert it to a
non-interfering pair of chains efficiently, and Lemma 3.11 shows how to map that to a simplex in the
double order polytope in time O(d2). Sampling the simplex takes time O(d log(d)) (Lemma 3.6),
so putting these steps together yields the overall sampler. Pseudocode appears in Algorithm 1.

Theorem 3.15. The poset ball for (P ∗,�) can be sampled in time O(d2).
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Algorithm 1 Poset Ball Sampler
1: Input: Poset P ∗ satisfying Assumption 2.8
2: Uniformly sample an extended bipartition (N+, N−,�A,�B) (Lemma 3.14)
3: Convert (N+, N−,�A,�B) into its non-interfering chain C = (C+, C−) (Lemma 3.13)
4: Compute the vertices of the simplex F̄ (C) = F (C+) � F (C−) (Lemma 3.11)
5: Return a uniform sample from F̄ (C) (Lemma 3.6)

3.5 REJECTION SAMPLING THE POSET BALL IS INEFFICIENT

We complement our efficient sampler with a negative result for rejection sampling the poset ball
using any `p ball. First, the best possible candidate for rejection sampling is the `∞ ball.

Lemma 3.16. The unit `∞ ball Bd∞ is the minimum volume `p ball containing the poset ball.

Proof. Any `p ball that contains (1, .., 1) must also contain all points in {0, 1}d − {(1, ..., 1)} since
each of these other points has strictly smaller `p norm. In particular, any `p ball that contains
(1, ..., 1) must contain Bd∞. Since the poset ball contains (1, . . . , 1), the claim follows.

Our overall result thus needs only to analyze rejection sampling from Bd∞.

Theorem 3.17. Rejection sampling the poset ball using any `p ball is inefficient.

Proof. By Lemma 3.16, it suffices to consider Bd∞. Consider the poset (P,�) on {r, p1, . . . , pd−1}
with set of relations {pi � r}d−1

i=1 . Then for any other poset P ′, its poset ball has smaller volume as
R(P ) ⊂ R(P ′) means that P ′ can be formed from P by intersecting P with half-spaces defined by
the relations corresponding to the relations in R(P ′)−R(P ). Then P ’s poset ball is a cylinder with
bases [0, 1]d−1 and height 2 (in the direction of the root axis) so has volume 1d−1(2) = 2. However,
|Bd∞| = 2d. It follows that rejection sampling requires Ω(2d) samples from Bd∞ in expectation.

4 EXPERIMENTS

This section evaluates our K-norm mechanism on a variety of poset structures . First, we derive a
general result about the squared expected `2 norm of `p balls (Section 4.1). Based on this result,
the strongest comparison for our algorithm is the `∞ mechanism. We use this as the baseline for
experiments on path posets, random posets (Section 4.3) and the National Health Interview Sur-
vey (Services & Medicaid, 2024) (Section 4.4). An evaluation of runtime appears in Section 4.5.

Note that our mechanism augments a given d-element poset with a root to ensure Assumption 2.8 as
necessary. Since the baseline `∞ mechanism is applied to the d-dimensional problem, we ignore the
root dimension of the (d+1)-dimensional noise vector produced by our mechanism when comparing
squared `2 norms. As discussed in Section 2.2, by post-processing, this does not affect privacy.

4.1 CHOICE OF BASELINE

This section justifies our choice of the `∞ mechanism — i.e., the K-norm mechanism instantiated
with the `∞ norm — as the baseline in our experiments. This choice relies on the following result,
proved in Appendix B.

Lemma 4.1. Let E2
2(X) denote the expected squared `2 norm of a uniform sample from X , and let

Bdp denote the d-dimensional unit `p ball. Then E2
2(Bdp) = d

3

(
3d
d+2

)(
Γ( dp )Γ( 3

p )

Γ( 1
p )Γ( d+2

p )

)
, where Γ is the

gamma function, and E2
2(Bd∞) = d/3. Let rp,d = d1/p be the minimum radius for which rp,dBdp

contains Y(P ∗). By the above, E2
2(rp,dB

d
p) = r2

p,dE2
2(Bdp).

Remark 4.2 from Hardt & Talwar (2010) establishes that, fixing privacy parameters, the expected
squared `2 norm of a sample from the K-norm mechanism is proportional to the expected squared
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Figure 2: r2
p,dE2

2(Bdp) (see Lemma 4.1).

`2 norm of its norm ball. Thus, to identify the best `p-norm mechanism, it suffices to identify the p
minimizing E2

2(rp,dB
d
p) in Lemma 4.1.

Figure 8 plots the analytic expression derived in Lemma 4.1 for various p and d and leads us to take
the `∞-norm mechanism as the strongest baseline.

We note briefly that Laplace (`1) noise is approximately 2 (d = 2) to 5 (d = 50) times worse than
`∞ noise by squared `2 norm, so the following results are even stronger when evaluated against
the Laplace mechanism. Furthermore, for (1, 10−6)-DP, the analytical Gaussian mechanism (Balle
& Wang, 2018) is also dominated by the `∞ mechanism over the range d ≤ 50 featured in our
experiments (see plot in Appendix B.2), so we omit it here.

4.2 PATH POSET

We start with the path poset defined by the ground set P = {1, ..., d} and the corresponding linear
order 1 � 2 � ... � d (see Figure 1 for an illustration of its poset ball for d = 2). Figure 3
demonstrates that ourK-norm mechanism improves significantly over the baseline on the path poset,
up to over an order of magnitude near d = 50. As subsequent experiments will develop, this dramatic
error reduction is a consequence of the path graph’s extreme depth. Informally, it is the graph on d
elements with the smallest poset ball, since any other graph can be created from the path graph by
repeatedly moving the leaf element of the original path and grafting it somewhere higher up the tree,
and this operation strictly decreases the number of relations in the poset.

4.3 RANDOM POSETS

The second set of experiments features random posets. The posets are generated using the algorithm
given by Melançon et al. (2001) for uniformly sampling a directed acyclic graph on a fixed number
of uniquely labeled vertices. As their algorithm has runtimeO(d4), we restrict attention to relatively
small values for the number of poset elements d.

The first random poset experiment examines our algorithm’s improvement over the `∞ mechanism
as d grows. Figure 4 demonstrates that our algorithm’s advantage in terms of expected squared `2
norm widens with d, increasing to over 90% at d = 40.

The second and third random poset experiments break this data out along two dimensions (Figure 5).
Fixing d = 10 (ignoring the root), we plot improvement as a function of both the depth (longest chain
of relations) and number of relations in the poset. Both numbers are computed on the transitive
reduction of the directed acyclic graph corresponding to the poset, i.e., the directed acyclic graph
that minimizes the number of edges while preserving all paths of the poset. As observed for d, at

8
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Figure 3: Each point records the average mean squared `2 norm ratio between the poset and `∞
balls for the path graph over 100 trials for each of various d.
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Figure 4: Each point records the average mean squared `2 norm ratio between the poset and `∞ balls
over 100 trials of random posets. A lower value means our mechanism achieves lower error.

a high level we find that larger and richer poset structures lead to correspondingly more dramatic
improvements, up to a 4x reduction in error.
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Figure 5: Each point records the average mean squared `2 norm ratio between the poset and `∞ balls
over at least 100 trials. We omit extremes of both depth and number of edges, as they do not occur
enough times in our overall sample of 5000 random posets to cross the 100-sample threshold.
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4.4 NATIONAL HEALTH INTERVIEW SURVEY

The final set of experiments uses the National Health Interview Survey (NHIS) (Services & Medi-
caid, 2024). As described in the introduction, the survey includes or omits certain questions depend-
ing on previous answers. This induces a poset, and our experiments use either the first, first two,
or first three sections of the survey (Hypertension, Cholesterol, and Asthma). The resulting posets
have size from d = 4 to d = 15. As shown in Figure 6, our mechanism more roughly halves the
error of the baseline mechanism.

# survey sections poset ball squared `2 norm / l∞ ball squared `2 norm
1 0.573
2 0.503
3 0.460

Figure 6: NHIS average mean squared `2 norm ratios, from 10,000 trials each.

4.5 RUNTIME

Empirically comparing our algorithm’s speed to the general Õ(d3+ω) sampler from Laddha et al.
(2020) is hard, as their algorithm is complex and relies on asymptotic statements that make accurate
implementation difficult – to the best of our knowledge, no public implementation of the algorithm
exists. However, in addition to its O(d2) runtime, we provide experiments demonstrating the empir-
ical speed of our algorithm over random graphs of varying depth. In Figure 7 we plot the average
runtime of sampling the poset ball as the dimension d varies. On a 2 CPU machine with 32GB
RAM, our method takes less than half a second for any of the d used in our experiments.
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Figure 7: Poset ball sampler average runtime to generate one sample. For each depth we average
over 10 different uniformly random posets and over 10 samples of the mechanism.

5 DISCUSSION

The material above demonstrates that the K-norm mechanism offers strong utility improvements
over existing pure differentially private mechanisms for privately counting partially ordered data
without sacrificing efficiency. A natural direction for future work is to consider the same problem
under approximate differential privacy. There, elliptic Gaussian noise is the primary tool, and the ge-
ometric problem changes from sampling the induced norm ball to computing the “smallest” (in terms
of expected squared `2 norm) ellipse enclosing the induced norm ball. Unfortunately, while Joseph
& Yu (2024) solved this problem for count and vote, their solutions relied on the norm balls being
symmetric around the vector (1, . . . , 1), and this does not hold for the poset ball in general. This
suggests that new techniques may be required to obtain a similar result for partially ordered data.
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Remark A.1. The exposition from Chappell et al. (2017) defines the double order polytope of a
double poset (P,�+,�−) as O(2P+) � O(2P−), defines the double chain polytope as C(2P+) �
C(2P−) and for a pair of chains C = (C+, C−) it defines F̄ (C) = 2F (C+) � 2F (C−), and
F̄ ′(C) = 2F ′(C+) � 2F ′(C−). Removing these factors of 2 from the definitions does not change
the combinatorial structure of the double order polytope or double chain polytope since this removal
simply scales down the (d− 1) dimensions of Rd that excludes the dimension that is added from the
� operation. Consequently, the triangulation of lemma 3.11 still holds. The reason we remove the
factors of 2 is because the sensitivity space we are interested in is CH(O(P ∗)∪−O(P ∗)) which is
equivalent to our definition of the double order polytopeO2(P ∗−r) where r is the global maximum
of P .
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Claim A.2. Let P be a (d − 1)-dim convex polytope in Rd lying in the hyperplane x1 = 1. Let
P ′ = P ∪ {0}. Then V (CH(P ′ ∪ −P ′)) = V (P) ∪ V (−P).

Proof. We have V (CH(P ′∪−P ′)) = V (CH(V (P ′)∪V (−P ′))) ⊆ V (P ′)∪V (−P ′) = V (P)∪
V (−P)∪{0} where the ⊆ comes from the fact that the vertices of the convex hull of a finite set is a
subset of that set. Since CH(P ′ ∪−P ′) has antipodal symmetry, then x ∈ CH(P ′ ∪−P ′) implies
−x ∈ CH(P ′ ∪−P ′) which means that the line segment between x and−x contains a small 1-dim
neighborhood B around the origin such that B ⊂ CH(P ′ ∪ −P ′), so the origin is not a vertex of
CH(P ′ ∪ −P ′), so we have that V (CH(P ′ ∪ −P ′)) ⊂ V (P) ∪ V (−P).

Now, suppose that v ∈ V (P) is not a vertex of CH(P ′ ∪ −P ′). We call a convex combination
of vertices non-singleton if its support contains at least 2 vertices. The supposition implies there
is a non-singleton convex combination of vertices in V (P ′) ∪ V (−P ′) that equals v. None of
vertices in the support of this combination can lie in V (−P ′) because then the x1 coordinate of
the combination would be less than 1 whereas the first coordinate of v is 1. So v must be a non-
singleton convex combination of points in V (P), contradicting the fact that v is a vertex of V (P).
So V (P) ⊂ V (CH(P ′ ∪ −P ′)) and similarly V (−P) ⊂ V (CH(P ′ ∪ −P ′)). But by the previous
paragraph, V (CH(P ′ ∪−P ′)) ⊂ V (P)∪V (−P), so V (CH(P ′ ∪−P ′)) = V (P)∪V (−P).

Lemma 3.13. There is a bijection between the set of non-interfering pairs of chains C = (C+, C−)
of the double poset (P ∗ − r,�,�) of size |C| = |C+| + |C−| = d + 1 and the set of extended
bipartitions of P ∗ − r. Moreover, given an extended bipartition, its corresponding non-interfering
pair of chains can be computed in time O(d2).

Proof. Suppose we have a non-interfering pair of chains C = (C+, C−) where |C| = d+ 1. Write
each chain of filters as Cσ = Jσ1 ( ... ( Jσ|Cσ| for σ ∈ {+,−}. Then |min(Jσi+1)−min(Jσi )| ≥ 1

for 1 ≤ i ≤ |Cσ| − 1. Any element p ∈ (min(Jσi+1) − min(Jσi )) lies in Jσi+1. If it also lies in
Jσi , then p 6∈ min(Jσi ) means there exists p′ ∈ Jσi with p′ � p, but Jσi ( Jσi+1 then implies that
p 6∈ min(Jσi+1), a contradiction. Thus (min(Jσi+1) − min(Jσi )) ⊆ (Jσi+1 − Jσi ), and similarly for
any j > i, we have

(min(Jσj+1)−min(Jσj )) ⊆ (Jσj+1 − Jσj ).

Then Jσi+1 ⊆ Jσj implies (min(Jσi+1 −min(Jσi )) ∩ (min(Jσj+1 −min(Jσj )) = ∅.

Let Nσ = ∪|Cσ|−1
i=1 (min(Jσi+1)−min(Jσi )). The above implies |Nσ| ≥ |Cσ| − 1. Moreover, N+ ∩

N− = ∅ since Nσ ⊂
(
∪|Cσ|−1
i=1 min(Jσi+1)

)
, and

(
∪|C+|−1
i=1 min(J+

i+1)
)
∩
(
∪|C−|−1
i=1 min(J−i+1)

)
=

∅ since C is non-interfering. Thus

|N+ ∪N−| = |N+|+ |N−| ≥ |C+|+ |C−| − 2 = |C| − 2 = d− 1 = |P ∗ − r|.

But N+ ∪N− ⊆ P ∗ − r, so |N+ ∪N−| = |P ∗ − r|. This means that (N+, N−) partition P ∗ − r
and |min(Jσi+1) − min(Jσi )| = 1 for 1 ≤ i ≤ |Cσ| − 1. It follows that min(Jσ1 ) = Jσ1 = ∅.
This leads us to the following extended bipartition. Let ai = min(J+

|C+|−i+1) −min(J+
|C+|−i) for

1 ≤ i ≤ |C+| − 1 and bi = min(J−|C−|−i+1) −min(J−|C−|−i) for 1 ≤ i ≤ |C−| − 1. Since filters
are upwards closed, either ai � aj for some aj ∈ {ai+1, ..., a|C+|−1} or ai is incomparable to each
element of {ai+1, ..., a|C+|−1}. In either case, a1 �A ... �A a|C+|−1 is a linear extension of N+,
and similarly b1 �B ... �B b|C−|−1 is a linear extension of N−, so ((N+,�), (N−,�),�A,�B) is
an extended bipartition of P ∗ − r.

Conversely, given an extended bipartition (N+, N−, a1 �A ... �A a|N+|, b1 �B ... �B b|N−|),
define sets m+

1 = ∅, m−1 = ∅, m+
i = min(∪i−1

j=1a|N+|+1−j) for 2 ≤ i ≤ |N+| + 1 and m−i =

min(∪i−1
j=1b|N−|+1−j) for 2 ≤ i ≤ |N−| + 1. Define Jσi to be the filter with minimal elements

mσ
i for 2 ≤ i ≤ |Nσ| + 1 and let Jσ1 = ∅. Let Cσ = Jσ1 ( ... ( Jσ|Nσ|+1. Then (C+, C−) is a

non-interfering pair with |C+| + |C−| = |N+| + |N−| + 2 = d + 1, and this map from the set of
extended bipartitions to the set of non-interfering pairs of chains is an inverse of the mapping of the
previous paragraphs.

It remains to verify the runtime of computing the non-interfering pair of chains we constructed
above. Without loss of generality, we focus on J+

i . Filter J+
1 = ∅ and J+

2 is the set of elements with
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a 1 in row |N+| of matrix M , computed in time O(d). Now, suppose we have computed J+
i and

want to compute Ji+1. By comparing rows |N+|+ 1− i and |N+|+ 2− i of M , we can compute
the set pi of parents of a|N+|+1−i that are not parents of a|N+|+2−i (we include a|N+|+1−i ∈ pi) in
time O(d). Note that pi = Ji+1 − Ji. Then J+

i+1 = J+
i t pi where t is disjoint union. Thus each

filter of J+
1 ( . . . ( J+

|N+|+1 can be computed in time O(d), taking time O(d2) overall.

B EXPERIMENT PROOFS

B.1 EXPECTED SQUARED NORM

We start with a simple result about the expected squared `2 norm, E2
2. Recall from Section 4.1 that

E2
2(X) denotes the expected squared `2 norm of a uniform sample from X .

Lemma B.1. Then E2
2(X ⊕ Y ) = E2

2(X) + E2
2(Y ).

Proof. To uniformly sample X ⊕Y , we can uniformly sample x ∈ X, y ∈ Y and then return x⊕ y.
Samples x and y embed into disjoint coordinates of x⊕ y, so ‖x⊕ y‖22 = ‖x‖22 + ‖y‖22.

Lemma 4.1. Let E2
2(X) denote the expected squared `2 norm of a uniform sample from X , and let

Bdp denote the d-dimensional unit `p ball. Then E2
2(Bdp) = d

3

(
3d
d+2

)(
Γ( dp )Γ( 3

p )

Γ( 1
p )Γ( d+2

p )

)
, where Γ is the

gamma function, and E2
2(Bd∞) = d/3. Let rp,d = d1/p be the minimum radius for which rp,dBdp

contains Y(P ∗). By the above, E2
2(rp,dB

d
p) = r2

p,dE2
2(Bdp).

Proof. We use the fact that
∫ 1

0
ta−1(1− t)b−1 = Γ(a)Γ(b)

Γ(a+b) . Then

E2
2(Bdp) = |Bdp |−1

∫
|x1|p+...+|xd|p≤1

d∑
i=1

x2
i ∂x1...∂xd

= |Bdp |−1

∫
|x1|p+...+|xd|p≤1

dx2
1∂x1...∂xd

= |Bdp |−1

∫ 1

−1

dx2
1∂x1

∫
|x2|p+...+|xd|p≤1−|x1|p

∂x2...∂xd

= |Bdp |−1

∫ 1

−1

dx2
1|Bd−1

p |(1− |x1|p)
d−1
p ∂x1

= 2d|Bdp |−1|Bd−1
p |

∫ 1

0

x2(1− xp)
d−1
p ∂x.

We substitute y = xp to get

∂y = pxp−1∂x

∂x =
1

pxp−1
∂y

∂x =

(
1

p

)
y

1
p−1∂y
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and the chain of equalities continues with

E2
2(Bdp) =

(
2

3

)
d|Bdp |−1|Bd−1

p |
∫ 1

0

y
2
p (1− y)

d−1
p

(
3

p

)
y

1
p−1∂y

=

(
2

3

)
d|Bdp |−1|Bd−1

p |
(

3

p

)∫ 1

0

y
3
p−1(1− y)

d−1
p ∂y

=

(
2

3

)
d|Bdp |−1|Bd−1

p |
(

3

p

)Γ
(

3
p

)
Γ(d−1

p + 1)

Γ(d+2
p + 1)


=

(
2

3

)
d

(
(2Γ( 1

p + 1))d−1

Γ(d−1
p + 1)

)(
Γ(dp + 1)

(2Γ( 1
p + 1))d

)(
Γ( 3

p + 1)Γ(d−1
p + 1)

Γ(d+2
p + 1)

)

=

(
2

3

)
d

(
Γ(dp + 1)

2Γ( 1
p + 1)

)(
Γ( 3

p + 1)

Γ(d+2
p + 1)

)

=
d

3

(
3d

d+ 2

) Γ(dp )Γ
(

3
p

)
Γ( 1

p )Γ(d+2
p )

 .

For p =∞, we use

E2
2(Bd∞) = E2

2([0, 1]d) = dE2
2([0, 1]) = d

∫ 1

0

t2dt =
d

3

where the first equality comes from the fact that the expectation restricted to the positive orthant does
not change the expectation value because of symmetry over the orthants, and the second equality
comes from Lemma B.1.

We show that rp,d = d1/p. Note that rp,d is equal to the smallest radius such that rp,dBdp contains
the point (1, ..., 1) ∈ Y(P ∗) because if (1, ..., 1) ∈ rp,dBdp then all other binary vectors of length d
are also contained in rp,dBdp , i.e. Y(P ∗) ⊂ rp,dBdp .

Next, we show that E2
2(rp,dB

d
p) = r2

p,dE2
2(Bdp). Since rp,dBdp = {rp,dx : x ∈ Bdp},

E2
2(rp,dB

d
p) = |Bdp |−1

∫
|x1|p+...+|xd|p≤1

d∑
i=1

(rp,dxi)
2∂x1...∂xd

= r2
p,d|Bdp |−1

∫
|x1|p+...+|xd|p≤1

d∑
i=1

x2
i ∂x1...∂xd

= r2
p,dE2

2(Bdp).

B.2 ANALYTICAL GAUSSIAN MECHANISM COMPARISON

14
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Figure 8: A comparison of expected squared `2 norms for the 1-DP `∞ mechanism (with `∞ sensi-
tivity 1) and (1, 10−6)-DP analytical Gaussian mechanism (with `2 sensitivity

√
d).
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