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Abstract— In this paper, we present a novel, scalable ap-
proach for constructing open set, instance-level 3D scene repre-
sentations, advancing open world understanding of 3D environ-
ments. Existing methods require pre-constructed 3D scenes and
face scalability issues due to per-point feature representation,
additionally struggle with contextual queries. Our method
overcomes these limitations by incrementally building instance-
level 3D scene representations using 2D foundation models,
and efficiently aggregating instance-level details such as masks,
feature vectors, names, and captions. We introduce fusion
schemes for feature vectors to enhance their contextual knowl-
edge and performance on complex queries. Additionally, we
explore large language models for robust automatic annotation
and spatial reasoning tasks. We evaluate our proposed approach
on multiple scenes from ScanNet [1] and Replica [2] datasets
demonstrating zero-shot generalization capabilities, exceeding
current state-of-the-art methods in open world 3D scene under-
standing. Project page: https://opensu3d.github.io/

I. INTRODUCTION

Recent advancements in AI, particularly in open world
understanding of 2D images, are largely attributed to pre-
trained foundation models [3]–[5] and large vision language
models [6], [7]. However, extending these breakthroughs
to 3D environments remains a challenge. While innovative,
current 3D understanding methods [8]–[12] have not yet
achieved the performance levels seen in 2D. Addressing this
gap is critical for robotics applications, as it could transform
how robots perceive, interact, and reason within the three-
dimensional world.

Our work builds upon advancement in several research
areas. Foundation models [3], [5], [13] integrate visual and
textual information into a unified representation, enabling
multimodal understanding. [14], [15] and grounding ap-
proaches [16], [17], based on SAM [4] provide promptable,
open-vocabulary segmentation capabilities. Large language
models [18], [19] and large vision language models [7],
[20] have significantly advanced natural language and multi-
modal understanding. Traditional 3D scene understanding
approaches [21]–[24] created 3D metric semantic maps but
were limited by closed-set paradigms. In open-vocabulary 3D
scene understanding, early works [9], [11], [12], [25] faced
computational and scalability challenges, while later methods
[26], [27] adopted instance-centric approach but were limited
by non-incremental processing. Global 3D spatial reasoning
remains challenging, while conventional scene graph based
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approaches [23], [24] show limitations, early works [8], [10],
[28] leveraging LLMs for 3D reasoning, shows promising
results. Recent related works [27], [29]–[34] have also pro-
posed method to tackle these challenges. Unlike [32], [33],
we ensure semantic consistency through geometric overlap
in 3D space. [27], [31] are non-incremental and [29], [30]
struggle with contextual queries. In contrast to [32]–[34], we
explore in-context learning leveraging large context length of
LLM for complex spatial reasoning.

In this work, we present a novel approach for open-set 3D
scene representations enabling instance recall, segmentation,
annotation, and spatial reasoning. Our method leverages 2D
foundation [3], [4], [16], [35] and large language models
[7] to extract instance-level information from RGB images
and efficiently associate to 3D space. Following are the key
contributions:
1. An incremental and scalable approach for creating open-
set 3D scene representation using 2D foundation models.
2. Improved feature fusion formulation, enabling instance
identification through contextual queries.
3. Complex spatial reasoning using large language models
in conjunction with our open-set 3D scene representation.

II. METHOD

Given RGB-D image sequence with poses, the steps are:

A. Per-Image Feature Extraction

From images I a subset I ′ is sampled with stride s
to minimize computational redundancy. For each image,
GroundedSAM [16] obtains 2D masks M , bounding boxes
BB, and prediction scores Spred. Crops of each instance
based on bb ∈ BB are passed to GPT-4V [7] for names
N and captions C. Each instance is assigned a unique ID,
modifying 2D masks with these IDs and adding a border px
around each mask, updating M to M′. Feature vectors are
extracted using the CLIP [3] encoder in two stages: a global
feature vector fG from the entire image and instance-specific
feature vectors F = {fMS} by fusing feature vectors from
crops at multiple scales Sr. M ′, and instance-level metadata
including IDs, names n ∈ N , captions c ∈ C, prediction
scores spred ∈ Spred, fused feature vectors fMS ∈ F , and
global feature vector fG, are stored for each image in I ′.

B. 2D to 3D Fusion & Tracking

We initiate the fusion and tracking module by initial-
izing an empty 3D point cloud for the complete 3D
scene Pscene ∈ Rx,y,z,ID, and a global hash table Q
for tracking the unique IDs, defined as: Q : Q 7→
{ID ∈ uniq(ID ∈ Pscene) : {ID ∈ {M ′}}}.

https://opensu3d.github.io/


Fig. 1: Open World 3D Scene Understanding Pipeline. Our method takes a sequence of RGB-D images and constructs
a 3D scene representation for open vocabulary instance retrieval, open set annotation, segmentation, and spatial reasoning.

For each image I ′, we retrieve the depth map D, global
poses T , updated masks M ′, and camera intrinsic K. Each
pixel (u, v) ∈ I ′ is back-projected into 3D space, assigning
a semantic label from M ′ and aggregating into Pframe:

Pframe =
{
T
(
D(u, v) ·K−1

(
u v 1

)⊤)
,M ′(u, v)

}
(1)

Index pairs {(iframe, iscene)} are determined to identify
corresponding points between Pframe and Pscene. We sample
P ′

scene from Pscene using geometric bounds of Pframe to limit
search space. A KDTree search using Euclidean distance
function d(·, ·) to matches points p ∈ Pframe with q ∈ P ′

scene.
If d(p,q) < ϵ, we group indices to obtain index pairs
{(iframe, iscene)}, ensuring constant computation per update.
To update and track IDs, similar to [36] approach, we obtain
unique IDs {IDf} for each segment and the total point count
{cPf

} in Pframe. Using index pairs, we get overlapping points
from Pscene, deriving segment IDs {IDs} and their point
counts {cPs

}. The overlap ratio is evaluated as:

OverlapRatio =
max({cPs})

min(cPf
,max({cPs

}))
(2)

If the overlap ratio ≥ ρ, we replace and update IDs,
creating P ′

frame which is concatenated to Pscene. To retain
constant sparsity, points from P ′

scene may be deleted. The
updated IDs are appended to Q. If the overlap ratio does not
meet the threshold, a new entry is added.

1) Post Processing: The point cloud Pscene with updated
IDs, corresponding tracked overlapping IDs Q, along with
per-image metadata, is processed into instance-centric map
M = {(P, n, c, fMV, bb3D, (xc, yc))i|i ∈ uniq(ID ∈ Pscene)}.

For each 3D object Pi, DBSCAN clustering reduces
noise and generates fine-grained 3D masks. We compute the
3D bounding box bb3D,i and centroid (xc, yc)i. For each
multiview image of Pi, names N ′, captions C ′, prediction
scores S′

pred, and feature vectors F ′ are retrieved via Q for
aggregation. The label ni ∈ N ′ and caption ci ∈ C ′ with
the highest S′

pred are assigned to Pi. Alternatively, the top m
names from N ′ are refined via LLM [7] using the prompt:
“assign a single name to the object based on a given list

of names”, yielding label n′
i. Multiview feature vector fMVi

is obtained through fusion (Sec. II-B.2) of top m feature
vectors based on S′

pred.
2) Feature Fusion: Given feature vectors {f}k from

multi-scale crops of an image instance and {fMS}m from
multiview images of a 3D instance, a simple fusion scheme
aggregates these vectors as follows:

fMS =
1

k

k∑
i=1

fi (3) fMV =
1

m

m∑
i=1

fMSi
(4)

The fusion schemes in Eq. 3 and Eq. 4 lack contextual in-
formation, leading to suboptimal performance for contextual
queries (Table IV). [26] and our ablations (Sec. III-B.1) show
that while multiscale crops improve accuracy, larger crops
reduce object recall. To address this, we propose a modified
multiscale fusion scheme (Eq. 5), using weighted aggregation
where f1 is feature vector from best-fit crop and ε ≈ 1e−8.

fMS =
1

k

k∑
i=1

(
f1 · fi

max(∥f1∥2 · ∥fi∥2, ε)

)
· fi (5)

For multiview feature fusion, inspired by per-pixel represen-
tation in [12], we incorporate global feature vector fG from
the entire image into our per-instance representation, defined
as:

fMV =
1

m

m∑
i=1

fMSi
+

(
fMSi

· fGi

max(∥fMSi
∥2 · ∥fGi

∥2, ε)

)
·fGi

(6)

C. Instance Retrieval & Segmentation

Query K is processed using the CLIP [3] text encoder to
obtain the feature vector fK, cosine similarity scores {Sscore}
are computed with all fMV ∈ M. The segmentation mask of
the 3D instance with the highest similarity score is retrieved
as the most likely response to K.

D. Spatial Reasoning

For complex spatial reasoning, our approach involves in-
context learning, leveraging large context window of LLM
[7]. Adopting stratergy of [37] for 3D, M′ = M\{P, fMV}
is provided to LLM along with a query and system prompt
crafted using the following prompting strategy:



1. Use ‘Name’ & ‘Description’ to understand object.
2. Use ‘ID’ to refer object.
3. Use ‘Cartesian Coordinates’.
4. Get ‘Centroid’ & ‘Bounding Box’ information.
5. Compute ‘Euclidean Distance’ if necessary.
6. Assume ‘Tolerance’ if necessary.

III. EXPERIMENTS

A. Implementation Details

1) Datasets: Scenes from Replica [2] (room0, room1,
room2, office0-office4) and ScanNet [1] (scene0000 00,
scene0034 00, scene0164 03, scene0525 01, scene0549 00)
were used for evaluation. Similar to [12], [33] limited scenes
were selected due to extensive manual evaluations.

2) Hyperparameter Settings: We use top m = 5 images,
k = 3 crop levels with scaling ratio Sr = [0.8, 1, 1.2],
and stride s = 40. GroundedSAM [16] thresholds: IoU 0.4,
bounding box 0.25, text 0.25. Mask border padding: px = 20
pixels. Overlap ratio: voxel size ϵ = 0.02, threshold ρ = 0.3.
DBSCAN: epsilon 0.1, minimum cluster 20 points. GPT-4
[7] temperature: 0.

3) Filtering and Post-Processing: Large background ob-
jects (walls, ground, roof, ceiling) and those with bounding
boxes > 95% of image area are excluded to prevent their
feature vectors from exhibiting similarity to foreground ob-
jects. In DBSCAN, clusters with points ≥ 80% of the largest
cluster are considered separate instances with unique IDs and
attributes. For undetectable objects by GPT-4 [7], instances
are labeled using RAM++ [35] with captions: “an {object}
in a scene”.
B. Results and Discussion

1) Ablation Studies: We conducted ablation studies on
Crop Level k, Top Images m, and Crop Ratios Sr using
[26]’s setup. Top Images m influence multiview feature
fusion (Eq. 6), while Crop Ratio Sr (ratio for scaling sides
of crop) and Crop Level k affect multiscale fusion (Eq. 3),
with higher k subsequently leading to larger crops. Extreme
values of these hyperparameters can degrade performance.
Low m, Sr and k reduces redundancy, while high m may
include poor images, whereas larger Sr provide more context
but may saturate similarity scores as leading to performance
deterioration, shown in Table I.

Parameter Value Replica [2]

mAcc F-mIoU AP AP50 AP25

Top Images (m)
1.0 39.6 43.4 8.7 19.3 27.2
5.0 40.8 44.7 8.9 19.6 27.7

10.0 39.3 44.3 8.7 19.1 27.5

Crop Levels (k)
1.0 35.9 43.6 9.1 19.6 27.7
3.0 40.8 44.7 8.9 19.6 27.7
5.0 39.4 44.3 8.8 19.4 26.9

Crop Ratio (Sr)
[0.1,1,1.1] 39.9 44.4 8.9 19.4 28.1
[0.8,1,1.2] 40.8 44.7 8.9 19.6 27.7
[0.7,1,1.3] 39.9 44.8 8.9 19.4 27.3

TABLE I: Ablation Study of Hyperparameters. Total
images m w.r.t best prediction scores (spred) for multiview
fusion; effect of crop ratio Sr and number of crops k on
multiscale fusion.

2) Quantitative Comparison with Baseline Methods: For
quantitative evaluation, as in [26], [33], 3D masks were re-
trieved with ground truth labels and the prompt: “an {object}
in a scene”. Masks were downsampled to 0.25cm voxel
size, followed by nearest neighbor search for intersecting
points. Results on the Replica [2] dataset were compared
against state-of-the-art models [12], [26], [31], [33], using
identical prompts and foundation models with direct feature
fusion formulation (Eq. 4, 3) for fair comparision. Our
method demonstrates better performance than baselines on
quantitative metrics, as shown in Tables II and III.

Method
Replica [2]

mAcc F-mIoU

ConceptFusion [12] 24.2 31.3
ConceptFsuion+SAM [12] 31.5 38.7
ConceptGraph [33] 40.6 36.0
ConceptGraph-Detector [33] 38.7 35.4
OpenSU3D (Ours) 42.6 40.9

TABLE II: Comparison of open-vocabulary segmentation
results with ConceptGraph [33] setup.

Method
Replica [2]

AP AP50 AP25

OpenMask3D [26] 13.0 18.4 24.2
OpenMask3D+Segment3D [31] - 18.7 -
OpenSU3D (Ours) 8.9 19.6 27.7

TABLE III: Comparison of open-vocabulary segmentation
results with OpenMask3D [26] setup.

3) Qualitative Comparison with Baseline Methods: The
quantitative evaluation focused on closed vocabulary assess-
ments and recall accuracy this does not reflect real-world
open vocabulary needs. Additionally, mask proposal-based
evaluations [31] may not fully capture true performance
against closed-set ground truth. To address this, we provide
qualitative comparisons with baseline works (as shown in
Fig. 2), assessing segmentation mask recall for given open
vocabulary queries. Our approach resulted improves 2D-
to-3D associations and similarity score distribution with
proposed multiscale and multiview feature fusion (Eq. 5, 6).

“a picture on wall” ConceptGraph [33] OpenSU3D (Ours)

“an empty vase” OpenMask3D [26] OpenSU3D (Ours)

Fig. 2: Text-Instance Similarity Heatmaps. Cosine similar-
ity for text queries using ConceptGraph [33], OpenMask3D
[27] and our method. ■: max, ■: min similarity.



4) Assessment of Feature Fusion Schemes: s A compre-
hensive qualitative assessment with over 1,000 queries con-
taining instances, affordances, properties, and relative queries
was made. Performance was evaluated based on CLIP [3]
instance retrieval (Sec. II-C) for four fusion schemes: Scheme
1 represents direct aggregation of multiscale (Eq. 3) and
multiview features (Eq. 4), Scheme 2 utilizes (Eq. 3) with
updated multiview features (Eq. 6), Scheme 3 utilizes (Eq. 4)
with updated multiscale features (Eq. 5) with increased crop
expansion ratios (Sr = [1, 2, 4]), and Scheme 4 represents
combination of both updated multiview and multiscale fusion
formulations (Eq. 5, 6). As shown in Table IV and Fig. 3 for
instance, property, and affordance queries, performance the
updated fusion formulations in Schemes 2, 3, and 4 improved
the recall of instance masks and similarity score distribution,
with Scheme 4 performing the best overall.

Feature Fusion
Replica [2] ScanNet [1]

Inst. Aff. Prop. Rel. Inst. Aff. Prop. Rel.

Scheme 1 0.8 0.7 0.7 0.3 0.8 0.8 0.7 0.4
Scheme 2 0.8 0.7 0.9 0.5 0.9 0.7 0.8 0.6
Scheme 3 0.9 0.9 0.9 0.6 0.9 0.8 0.7 0.6
Scheme 4 0.8 0.9 0.9 0.6 0.9 0.7 0.7 0.7

TABLE IV: Evaluation of feature fusion schemes. Accu-
racy of fusion schemes for retrieval with “Inst.” (instance),
“Aff.” (affordance), “Prop.” (property), and “Rel.” (relative)
text queries, as assessed by a human evaluator.

Query: “plant on shelf”

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Query: “plant on table”

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Fig. 3: Relative Query Similarity Heatmaps. For a given
text query, per-instance cosine similarity heatmaps across
feature fusion schemes. ■: max, ■: min similarity.

5) Open Set Annotation and Segmentation: Annotation
accuracies for directly assigned labels n using the maximum
prediction score S′

pred and labels n′, where top m labels
based on S′

pred are refined by LLM (see Sec. II-B.1), were
manually verified across Replica [2] and ScanNet [1] scenes.
To evaluate open set segmentation, mask merging accuracy
is determined by counting and classifying under-merges and
over-merges as faulty. Evaluation summarized in Table V
shows that LLM labels n′ are more accurate and concise
than direct labels n, also helping to filter out large instances
(Sec. III-A.3) and slightly improving mask merging accuracy.

Ins. Query: “bottle case” Aff. Query: “place to cook”

Prop. Query: “green towel” Rel. Query: “green towel next
to sink”

Fig. 4: Text-Instance Similarity per Query Type. For a
given text query, per-instance cosine similarity heatmaps for
different query types. ■: max, ■: min similarity.

Labels
Replica [2] ScanNet [1]

Label Acc. Merge Acc. Label Acc. Merge Acc.

Direct Label (n) 0.83 0.87 0.75 0.85
LLM Label (n′) 0.87 0.88 0.84 0.87

TABLE V: Qualitative evaluation of segmentation and
annotation accuracy. For Direct Label (n) and LLM Label
(n′), the annotation and merge accuracy of segmentation
masks, as assessed by a human evaluator.

6) Complex Spatial Reasoning: To assess spatial rea-
soning, we posed 70 complex spatial reasoning questions
(Example, Fig. 1 “Which sink is closer to bed”) across all
scenes. The manual assessment showed, with our approach
(see II-D) LLM [7] demonstrated effective reasoning ability
in 3D space over constructed representation. LLM exhibited
higher accuracy in scenes from Replica [2] (0.83), compared
to ScanNet [1] (0.68). This decline in performance can be
attributed to a comparatively higher incidence of flaws in
merging and label assignment in larger ScanNet [1] scenes.

IV. CONCLUSION
In conclusion, this study presents a scalable and in-

cremental framework for constructing open set 3D scene
representation for open world 3D scene understanding tasks,
addressing the limitations of current methods. By leveraging
2D foundation models, our approach constructs detailed
instance level 3D scene representations, efficiently tracking
and associating instance-specific information such as feature
vectors, names, and captions. The proposed feature fusion
schemes encompass contextual information, enhancing per-
formance on relative queries, while large language models
improve annotation and enables complex spatial reasoning.
The effectiveness of this approach is limited by the capa-
bilities of its underlying foundation models and occasional
merging flaws. Comprehensive evaluations show that our
method achieves superior zero-shot generalization compared
to state-of-the-art solutions. In the future, we plan to explore
post-processing methods to refine mask merging, spatio-
temporal reasoning in 3D dynamic scenes and extend our
approach from indoor to large-scale outdoor environments.
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