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Abstract
We present a simulation method for the dynam-
ics of continuous-variable quantum many-body
systems based on neural-network quantum states.
The focus is put on dynamics of experimentally
relevant two-dimensional quantum rotors. We
simulate previously unreachable system sizes and
simulation times using a neural-network trial
wavefunction in a continuous basis and using mod-
ern sampling approaches based on Hamiltonian
Monte Carlo. The method is demonstrated to be
able to access quantities like the return probability
and vorticity oscillations after a quantum quench
in two-dimensional systems of up to 64 (8 × 8)
coupled rotors. Our approach can be used for ac-
curate non-equilibrium simulations of continuous
systems at previously unexplored system sizes
and evolution times, bridging the gap between
simulation and experiment.

1. Introduction
Non-equilibrium quantum many-body physics has been
at the forefront of condensed matter, atomic physics and
chemistry research for over a decade (Warren et al., 1993;
Polkovnikov et al., 2011). The field is driven by remark-
able progress in our ability to coherently control matter at
the atomic scale. This control has resulted in the creation
of novel phases of matter, including observations of light-
induced superconductivity (Budden et al., 2021), cavity-
enhanced chemical reactions (Thomas et al., 2019) and dy-
namical phase transitions (Zhang et al., 2017).

The capacity to precisely control (Sivak et al., 2022; Porotti
et al., 2022; Metz & Bukov, 2022; Bukov et al., 2018) mod-
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ern quantum experiments and hardware is roadblocked by
the scale and quality of numerical simulations of the real-
time evolution of quantum systems. At its core, the problem
is related to fast entanglement growth in systems out of equi-
librium, which forces one to keep track of all the intricate
correlations that build up in the system. While there has
been considerable progress (Zaletel et al., 2015; Wurtz et al.,
2018; Czarnik et al., 2019; Hubig et al., 2020; Zhou et al.,
2020), challenges remain, in particular if one moves away
from simple one-dimensional spin models.

Recently, it has been proposed that classical AI methods
might alleviate some of the problems (Carleo et al., 2012;
2017; Schmitt & Heyl, 2020; Hofmann et al., 2022; Bari-
son et al., 2021) with efficient quantum state representation.
These proposals rely on encoding relevant information in an
exponentially many quantum amplitudes into polynomially
many parameters of a classical model such as a neural net-
work. In practice, however, it has been difficult to achieve
reliable results due numerical instabilities resulting from
a combination of Monte Carlo noise and flatness of the
quantum geometry of modern neural-network wave func-
tions (Czischek et al., 2018; Schmitt & Heyl, 2020; Amari,
1998; Yuan et al., 2019; Stokes et al., 2020).

In this work, we present an ab-initio approach for reliably
capturing long-time dynamics of 2D lattice models with con-
tinuous degrees of freedom, without an underlying dataset,
by projecting the full Schrödinger dynamics into the space
of neural-network parameters. A combination of methods
that were previously unexplored in the field of variational
simulations are used - the Hamiltonian Monte Carlo sampler,
a tailored parameterized wavefunction based on convolu-
tional neural networks and a modification of natural gradient
descent optimization. We focus on the quantum rotor model
with direct applications to arrays of coupled Josephson junc-
tions and explore previously unreachable system sizes and
evolution times, up to 8× 8 square lattices.

The paper is organized as follows. First, we introduce
the quantum rotor model and the variational wavefunc-
tion. Then, we outline the Hamiltonian Monte Carlo sam-
pler and its connection to the time-dependent variational
Monte Carlo algorithm. Finally, we present results for the
two-dimensional model. Our simulations are substantiated
by self-consistency checks when key hyperparameters are
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changed and by comparing our approach to independent
tensor-network calculations in one and two spatial dimen-
sions.

2. Model and Methods
Consider a system of continuous planar rotors with angles θk
with respect to an arbitrary axis, on a lattice Λ with N sites.
We use the basis |θ⟩ ≡ |θ1, . . . , θN ⟩ for the underlying
Hilbert space H and examine an effective Hamiltonian that
captures the relevant physics such experiments:

H =
gJ

2

∑
k

L2
k − J

∑
⟨k,l⟩

n̂k · n̂l , (1)

where Lk = −i ∂θk and n̂k = (cos θk, sin θk) in the contin-
uous basis |θ⟩ of choice. The Hamiltonian in Eq. 1 is often
called the Quantum Rotor Model (QRM). Its equilibrium
(time-independent) properties (José et al., 1977) have been
studied using Variational Monte Carlo (VMC) (Stokes et al.,
2021) and other Quantum Monte Carlo (QMC) (Jiang et al.,
2019) methods.

However, as noted in the introduction, real-time evolution
properties of the QRM have barely been explored. This
is mainly due to the lack of suitable methods that can ac-
cess experimentally relevant evolution times t ≫ J−1, at
large system sizes in two dimensions. Angles θk could,
for example, represent superconducting phases of adjacent
Josephson junctions (Josephson, 1962; 1965; Vogt et al.,
2015; Martinoli & Leemann, 2000; Kockum & Nori, 2019)
set up in a two dimensional arrays. Therefore, the ability to
simulate relatively large system sizes is not only of theoreti-
cal interests but has technological applications in the study
of dynamics of such experiments (Berke et al., 2022).

The evolution equation for a state Ψ = Ψ(θ, t), in the
continuous basis |θ⟩, reads:

i
∂Ψ

∂t
= −gJ

2

∑
k

∂2Ψ

∂θ2k
− J

∑
⟨k,l⟩

cos(θk − θl)Ψ (2)

with appropriate periodic boundary conditions

Ψ(θ1, . . . , θk + 2π, . . . , θN ) = Ψ(θ1, . . . , θk, . . . , θN )
(3)

for each rotor k. Eq. 2 is prohibitively expensive to solve
exactly even for a handful of interacting rotors. The contin-
uous nature of the |θ⟩ basis exacerbates the problem.

2.1. Variational simulation

We represent a quantum state using a wavefunction ψα(θ)
where α ∈ CP is a set of P complex variational parameters.

Since any |ψ⟩ ∈ H admits an expansion in terms of |θ⟩,
we define the following un-normalized variational quantum
state (VQS):

|ψα⟩ =
∫

dθ ψα(θ) |θ⟩ (4)

where dθ ≡ dθ1 · · · dθN . The integral is performed over
the cube [−π, π]N .

Our simulation of the real-time dynamics of the state given
in Eq. 4 is based on the time-dependent Variational Monte
Carlo (t-VMC) method (Becca & Sorella, 2017; Carleo et al.,
2012). The core assumption that allows us to approximately
solve Eq. 2 is that of time dependence of parameters α =
α(t). In simple words, the method relies on using the neural
network trial state as a change of variables, allowing one to
approximate the linear Eq. 2 in an exponentially large space
as a nonlinear equation in the polynomially large parameter
(α(t)) space.

Optimal trajectories α(t) induced by unitary hamilto-
nian evolution e−iHt |ψα⟩ can conveniently be found
by extremizing the time-dependent variational principle
(TDVP) (Yuan et al., 2019) action

C[α] =
∫

dt
〈
Ψα(t)

∣∣ (i d
dt

−H

) ∣∣Ψα(t)〉 . (5)

where |Ψα⟩ is a normalized version of state |ψα⟩. Opti-
mal evolution equations (after the change of variables is
performed) read i Sα̇ = g, where

Sµν =
〈
O†
µOν

〉
−
〈
O†
µ

〉〈
Oν

〉
gµ =

〈
O†
µH
〉
−
〈
O†
µ

〉〈
H
〉 (6)

with averages ⟨·⟩ ≡ ⟨ψα|·|ψα⟩/⟨ψα|ψα⟩ being performed at
time t (i.e. for α = α(t)). Operators Oµ are defined by
∂αµ |ψα⟩ = Oµ |ψα⟩ or

Oµ(θ, t) =
∂

∂αµ
lnψα(t)(θ) (7)

and can be evaluated using automatic differentiation.

We note that the matrix S is commonly called the quantum
geometric tensor (QGT) or quantum Fisher information
matrix (Sorella, 1998; Amari, 1998; Stokes et al., 2020) and
corresponds to the metric tensor of the parameter manifold
induced by the distance in H between states defined in Eq. 4.
In Eqs. 6, we have chosen our ansatz ψα such that it is a
holomorphic function of complex parameters α.

Since quantum averages over an exponentially large Hilbert
space H in Eq. 6 cannot be computed exactly, Markov chain
Monte Carlo (MCMC) sampling methods are employed
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Figure 1. Top: The ansatz ψα(θ) architecture used for simulations of two-dimensional QRM systems. It amounts to a two-layer
convolutional neural network with an activation function given by Eq. 14. To enforce periodicity and improve expressivity, we precalculate
sines and cosines of input angles which are treated as different input channels by the CNN. The final layer outputs a single channel and all
of its components are summed into a single complex number (because of complex parameters α ∈ CP ) we then interpret as lnψα(θ).
Bottom: An illustration of the Hamiltonian Monte Carlo algorithm. Dummy momentum variables are introduced and sampling the given
N -dimensional probability distribution is rewritten in 2N -dimensional phase space with an artificial effective Hamiltonian H̃ . Samples
are collected as snapshots of solutions of Hamilton’s equations of motion.

(Metropolis et al., 1953; Hastings, 1970). In VMC calcu-
lations, it is common to rewrite quantum averages, such
as those in Eq. 6, as expressions amenable to estimation
through sampling. For example, in the case of the Hamilto-
nian H , we obtain the local energy EL:

E = ⟨H⟩ = ⟨ψα|H |ψα⟩
⟨ψα|ψα⟩

=

∫
dθ pα(θ)EL(θ) (8)

where

pα(θ) ∝ |ψα(θ)|2 and EL(θ) =
⟨θ|H |ψα⟩
⟨θ|ψα⟩

. (9)

For more details about the specific sampling algorithm em-
ployed in this work, we refer the reader to Sec 2.2 and
Appendix A.1.

After computing the matrix S and the vector g at time t,
one can formally define α̇ = −i S−1g and use any ordinary
differential equation (ODE) integrator (see Appendix A.3)
to obtain the next set of parameters, at time t + δt. For
example, if a simple Euler integrator is chosen, the update
reads

α′ = α− i δt S−1∇αE (10)

which can be interpreted as natural gradient descent (NGD)
(Amari, 1998) with imaginary learning rate. Indeed, if one
is interested in finding the ground state of the same hamilto-
nian, the update rule in Eq. 10 can be show to lose the factor

of i. We refer the interested reader to an excellent overview
of related methods in Ref. (Yuan et al., 2019).

However, the inverse S−1 is often ill-defined. One rea-
son is that Monte Carlo estimates of matrix elements are
noisy. Noise accumulates to render the matrix singular
by making a small eigenvalues vanish. Therefore, quickly
and efficiently obtaining many uncorrelated samples from
p(θ, t) ∝ |ψα(t)(θ)|2 is crucial. The other reason is that
the specific choice of ψα introduces redundancy between
different parameters, producing linearly dependent or van-
ishing rows/columns in S. Therefore, choosing an efficiently
parameterized trial wavefunction is equally important. In
practice, adding more parameters to the wavefunction can
sometimes unexpectedly reduce accuracy by making S ill-
conditioned. In this work, we use a custom pseudoinverse
S−1 by diagonalizing S each time step. For more details on
regularization, see Appendix A.2.

After calculating averages in Eq. 6 and appropriately reg-
ularizing the QGT inverse S−1, one can use any external
ODE integrator to perform time-stepping in the top-level
equation α̇ = −i S−1g. In this work, we use the embedded
Bogacki-Shampine adaptive solver RK3(2) from the Runge-
Kutta family. (Bogacki & Shampine, 1989; Butcher, 2008;
Press et al., 1992)

2.2. Hamiltonian Monte Carlo

Hilbert space averages defined in Eq. 6 cannot be evaluated
analytically for an arbitrary ψα. To perform this task in an
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efficient and scalable way, we employ Hamiltonian Monte
Carlo (HMC) (Neal, 2011; Betancourt, 2017) to obtain sam-
ples from the distribution pα(θ) ∝ |ψα(θ)|2 at each time
step t. We make this choice because HMC offers a system-
atic way of making large steps in MCMC proposals while
still keeping acceptance probabilities high, unlike more con-
ventional approaches like Random Walk Metropolis (RWM).
This results in a Markov chain with considerably lower auto-
correlation times, allowing for treatments of larger systems
with less overall runtime spent on sampling.

For a generic probability distribution p(θ), HMC augments
the configuration space with artificial momentum variables
π = (π1, . . . , πN ) ∼ N (0,M):

p(θ) ∝
∫

dπ exp

{
−1

2
π⊤M−1π + ln p(θ)

}
(11)

for some choice of a positive-definite mass matrix M . In-
terpreting the exponent in Eq. 11 as an effective classical
hamiltonian βH̃(θ,π) inducing a Boltzmann weight e−βH̃ ,
Monte Carlo updates can be defined through numerical inte-
gration of relevant Hamilton’s equations. Owing to insights
from statistical physics, we know that a large number of par-
ticles in equilibrium following classical equations of motion
have precisely this desired Boltzmann distribution.

Given θ(0), π(0) and a small step size ε, the leapfrog in-
tegrator (Neal, 2011) is chosen to propagate Hamilton’s
equations θ̇ = ∂H̃

∂π and π̇ = −∂H̃
∂θ . This specific integrator

is chosen because of its symplectic (Neal, 2011; Press et al.,
1992) property – it conserves energy/probability exactly,
allowing for large jumps in the θ-space while keeping high
acceptance probabilities.

After integrating for L steps, the new configuration
(θ(Lε),π(Lε)) is proposed as the next sample in the
Markov chain. It is common to apply the Metropolis-
Hastings accept-reject step (Metropolis et al., 1953; Hast-
ings, 1970) despite the fact that the new configuration has
the same energy (probability) as the initial one. This is done
to offset the effects of unwanted numerical errors in the
leapfrog scheme, usually improving overall performance for
many samples. (Neal, 2011; Betancourt, 2017)

These Hamilton’s equations simulate a swarm of effective
classical particles whose positions and momenta follow the
desired joint Boltzmann distribution in Eq. 11. Discarding
all π samples is equivalent to marginalizing the distribution
in Eq. 11. In practice, randomness is injected by sampling
the normal distribution π(0) ∼ N (0,M) each time initial
conditions are required for numerical integration.

Choosing the mass matrix M , the time step ε and the inte-
gration length L carefully is crucial for efficient exploration
of the configuration space. In this work, we chose to set M
and ε automatically, by using heuristically proven (Nesterov,

2009; Hoffman & Gelman, 2011; Betancourt, 2017) algo-
rithms operating samples from an extended warmup phase
for each Markov chain individually. Integration length L
was treated as a hyperparameter. For more details and spe-
cific values, see Appendix A.1.

2.3. The trial wavefunction

In this work, we use a variant of the standard Convolutional
Neural Network (CNN) architecture (LeCun et al., 2015;
Carleo et al., 2019) to model ψα(θ). Our approach is built
on those of Refs. (Schmitt & Heyl, 2020; Pescia et al., 2022).
Specifically, we set

lnψα(θ) =
1√
2KN

2K∑
c=1

∑
k

[
wcD ∗ hcD−1(θ)

]
k
, (12)

where ∗ denotes a convolution over lattice indices k and
c = 1, . . . , 2K is the channel index. Features hcD−1(θ) are
the output of D − 1-layer CNN.

We include all weights and biases into the set of trainable
parameters α and use automatic differentiation (AD) tech-
niques to obtain all derivatives Oµ required for evaluation
of Eqs. 6. For CNN inputs h0, we concatenate the following
features:

h0 =
{
(cosnθk, sinnθk)

∣∣∣ n = 1, . . . ,K
}

(13)

along the channel axis, as illustrated on Fig. 1. This con-
struction allows us to include a limited number of higher
Fourier modes a priori, improving ansatz expressivity in
a controlled way. In this work, we set D = 2, K = 4 for
larger two-dimensional (8× 8) experiments and K = 1 for
smaller systems.

To maintain analytic dependence on parameters α, we re-
strict the CNN nonlinearities fd to polynomial functions.
The Taylor expansion of the logarithm of the zeroth-order
modified Bessel function of the first kind is used:

ln I0(z) =
z2

4
− z4

64
+

z6

576
+O(z8) . (14)

This particular activation function choice is motivated by the
appearance of I0 in the version of the Restricted Boltzmann
Machine (RBM) adapted to the QRM in Ref. (Stokes et al.,
2021). This approach has the advantage of maintaining the
holomorphic dependence of ψα on α and preserving the
form of Eqs. 6.

In this work, we focus on a simple 2-layer CNN ansatz to
control the number of parameters P . In addition nontrivially
affecting the QGT inverse (see subsection 2.1), the diago-
nalization cost in order to regularize the inverse grows as
O(P 3). Heuristically, we also find that introducing more
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Figure 2. Results for different quenches from initial value gi = 3 on a two-dimensional 8 × 8 square lattice. Left: Potential energy,
magnetization and angular variance as functions of real time. For the small quench to gf = 4.5, we observe the expected behavior with
slower approach to the new ordered equilibrium state. Convergence is similar to adiabatic change. The moderate quench to gf = 6.0
exhibits a sharp increase in rotor angle variance is accompanied by a single flip (right panel) in the average magnetization at t ≈ J−1.
For the large quench to gf = 9.0, many rotor flips occur after the first one, indicating much more detailed exploration of the underlying
Hilbert space. Convergence to the new equilibrium starts taking place only for t ≳ 5J−1. Right: A parametric plot of the mean rotor
direction. We observe a more thorough exploration of the magnetization sphere for larger quenches.

parameters α requires more Monte Carlo samples to cor-
rectly resolve the relevant averages in Eq. 6 and does not
significantly contribute to simulation accuracy in our case.
A systematic investigation of larger neural-network archi-
tecture details is left for future work.

3. Results
In this section, we study dynamical properties of several
observables of the QRM, focusing on the two-dimensional
model. A series of benchmarks in one and two dimensions
can be found in section 3.1.

We simulate the effects instantaneous quenches of the cou-
pling constant g in Eq. 1. Specifically, we initialize pa-
rameters α of the ansatz ψα illustrated on Fig. 1 to the
ground state of the QRM hamiltonian with g = gi using
imaginary-time Variational Monte Carlo (VMC) (Carleo
et al., 2019; Becca & Sorella, 2017) methods. We then sim-
ulate real-time dynamics under g = gf . In this work, we
focus on quenches from the ordered phase to the disordered:
gi < gc < gf .

In Fig. 2, we choose a square 8 × 8 lattice, tracking the
dynamics of the potential energy density

ϵp(t) = − J

N

〈∑
⟨k,l⟩

n̂k · n̂l

〉
t

(15)

and the average magnetization magnitude M

M(t) =
1

N

〈∣∣∣∑
k
n̂k

∣∣∣〉
t
, (16)

along with its x, y components defined by M =
N−1

∑
k ⟨n̂k⟩t. Averages ⟨·⟩t are performed with respect

to the ansatz state at time t. In addition, corresponding
circular variances were defined as Var(θk) = −2 ln |⟨n̂k⟩t|
and averaged over the lattice index k.

These observables were chosen as a proxy for thermalization.
Across a wide range of quenches we observe convergence
to their respective equilibrium values at g = gf , see Fig. 2.
We observe two distinct dynamical regimes in relation to
the quantum critical point gc ≈ 4.25, when gi < gc. For
small quenches (left column of Fig. 2) we see the expected
outcome – slower equilibriation with only small fluctuations
in the direction of the magnetization. However, for mod-
erate to large quenches in Fig. 2, we observe a (transient)
demagnetization of the sample and convergence to a new
equilibrium state.

In addition, we define a measure of average vorticity

v(A) =
1

|A|

∫
A

da · ∇ × n̂ =
1

|A|

∮
∂A

dℓ · n̂ (17)

over a surface A with edge ∂A on the lattice. Using Stokes’
theorem, we rewrite the expression as a contour integral
over ∂A in the positive direction. On Fig. 3 (right panel),
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Figure 3. Fidelity and vorticity as functions of time. Left: Time-dependent many-body fidelity F (t) defined in Eq. 18, for a number of
quenches. For trajectories quenching to values of gf in the same equilibrium phase, we see convergence to nonzero values at late times.
Conversely, trajectories with gf > gc converge to F (t→ ∞) = 0. Additionally, τ1/2 (the time it takes for fidelity to decrease by 50%) is
shown to scale linearly with g in agreement with the appropriate uncertainty relation ∆E∆t ≥ 1/2. Right: The onset of vorticity (defined
in Eq. 17) for three quenches of increasing magnitude.

we plot v(A) averaged over all nℓ square ℓ × ℓ surfaces:
vℓ = n−1

ℓ

∑
|A|=ℓ2 v(A). As expected, we find almost zero

vorticity for quenches in the ordered phase, while larger
fluctuations are generated for quenches across the critical
point. We postpone a detailed analysis for future work.

Aside from local observables, such as energy and magne-
tization, one also has access to global observables such as
the Loschmidt echo. The latter has some interesting prop-
erties in the context of dynamical phase transitions (Heyl
et al., 2013) and quantum chaos (Schmitt et al., 2019). The
Loschmidt echo expresses the quantum state overlap be-
tween the initial state and some time-evolved state. In gen-
eral, the fidelity F (Ψ,Φ) between two generic normalized
quantum states Ψ and Φ is defined as F (Ψ,Φ) = |⟨Ψ|Φ⟩|2.
For real-time evolution, we expect the fidelity F (Ψ(t =
0),Ψ(t)) to decay as a function of time t, for any given
initial state |Ψ(t = 0)⟩.

To evaluate this quantity using Monte Carlo sampling of
unnormalized ansatz wavefunctions ψ(θ, t) = ψα(t)(θ), we
rewrite the fidelity definition as:

F (t) =

〈
ψ(θ, t)

ψ(θ, 0)

〉
θ∼|ψ(·,0)|2

〈
ψ(θ, 0)

ψ(θ, t)

〉
θ∼|ψ(·,t)|2

,

(18)

which is manifestly independent of the normalization factor.
In practice, we take the real part of Eq. 18 to discard the
small nonzero imaginary part coming from finite-sample
estimates of the two factors. In addition, we calculate and
store both factors in log-space to preserve accuracy and
maintain numerical stability.

As expected, we find that that the return probability (or fi-
delity in short) decays quickly with time, as illustrated in
Fig. 3 (left panel). For smaller quenches, the fidelity shoots
back up to a nonzero value suggesting a finite overlap be-

tween the initial state the long time "equilibrium" state after
the quench. The latter may be interpreted as a signature of
quenching between two Hamiltonians in the ordered phase.

As a measure of the fidelity decay, we introduce another
time scale τ1/2 defined as the time needed for the fidelity to
decrease by 50%. We observe that τ1/2 has increases linearly
with the quench gf . This result matches basic estimates
given by the second-order short-time expansion of F (t)
and uncertainty relation ∆E∆t ≥ 1/2. Therefore, fidelity
decay time can be lower bounded by ∆E−1, estimated using
samples from the initial state ψα(0) (Mandelstam & Tamm,
1991). Reference points from this calculation are presented
in Fig. 3 (left, inset). This comparison demonstrates that
the t-VMC method can be used to estimate quantities of
experimental interest for system sizes unreachable by other
wavefunction-based methods.

3.1. Benchmarks

To substantiate our results, we perform a series of bench-
marks and compare results to tensor-network simulations
for a one- and two-dimensional versions of the model. In
particular we benchmark the results with the time-evolving
block decimation (TEBD) (Vidal, 2003; 2004) algorithm.
For all benchmarks, states were initialized to the coherent
superposition of all basis states |ψ(0)⟩ ∝

∫
dθ |θ⟩ by ex-

plicitly setting the final convolution kernel wcD (Eq. 12) to
zero. All presented tensor-network simulations have been
performed with a fixed singular value cutoff. Convergence
within the matrix product state (MPS) variational manifold
has been confirmed by repeating simulations with larger
cutoff values.

We organize numerical benchmarks as follows. First, we
compare t-VMC results with TEBD for an extended one-
dimensional and a smaller two-dimensional system. Practi-
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Figure 4. One- and two-dimensional benchmarks and comparison with tensor-network data. Evolution was performed starting from
a coherent superposition state |ψ(0)⟩ ∝

∫
dθ |θ⟩. Results are compared with the TEBD tensor-network algorithm evolving a Matrix

Product State (MPS) in the conjugate angular-momentum eigenbasis (see Sec. 3.1 and Appendix B). Left: A one-dimensional benchmark
on a chain with N = 64 rotors and open boundary conditions. Center: A two-dimensional benchmark of the t-VMC method on a 4× 4
lattice and open boundary conditions. We note that disagreement between t-VMC and TEBD results appears as the maximum bond
dimension χmax is reached. Singular value cutoff of 10−12 was used. Right: The growing number of MPS parameters PMPS associated
with the increasing bond dimension χ is plotted in units of the number of the CNN parameter count PCNN as a function of time. One- and
two-dimensional cases are compared. A cutoff of χmax = 1000 was reached in the 2D system for the singular value cutoff of 10−9.

cal error estimates are defined. Then, we turn to examining
effects of key hyperparameters in the t-VMC approach and
show evidence of self-consistent convergence.

Following Refs. (Schmitt & Heyl, 2020; Carleo & Troyer,
2017), we use the following figure of merit:

r(t) =
D
(
ψ(t+ δt), e−iHδt ψ(t)

)
D (ψ(t), e−iHδt ψ(t))

(19)

where |ψ(t)⟩ =
∣∣ψα(t)〉. In Eq. 19, D(·, ·) represents the

Fubini-Study distance on the Hilbert space H. We estimate
r2(t) at each time t using HMC samples from the ansatz
(see Ref. (Schmitt & Heyl, 2020) and Appendix D). Intu-
itively, r2(t) measures an appropriately normalized mea-
sure of deviation between the full state e−iHδt |ψ(t)⟩ af-
ter one time step δt and its projection onto the variational
manifold

∣∣ψα(t+δt)〉. We plot the integrated square error
R2(t) =

∫ t
0
r2(s) ds to reflect error propagation through

time as accurately as possible. We remark that R2(t) should
be interpreted an upper bound on the square of the integrated
error R(t) =

∫ t
0
r(s) ds due to the triangle inequality.

In Fig. 4 (left), we show that this algorithm performs well
on a one-dimensional system of N = 64 rotors where the
growth of the so-called bond dimension χ is limited. Con-

vergence to appropriate equilibrium values is reached for
both methods with good agreement at intermediate times
for the dynamics of potential energy density ϵp(t) and the
Loschmidt echo F (t). The integrated residual R2(t) grows
more rapidly for lower values of g. This is expected because
the initial state ψ(0) has lower energy for larger values of g
in the QRM hamiltonian, Eq. 1, representing a more typical
state in the disordered phase.

In contrast to the 1D case, in Fig. 4 (center), we observe
that the TEBD method exponentially grows the MPS bond
dimension χ past the cutoff χmax = 1000 at relatively short
times. We plot the number of parameters PMPS in the MPS
as a function of time in the right panel of Fig. 4, in units of
the number of parameters PCNN in the CNN ansatz presented
in this work. We see qualitative agreement between the two
methods for early times, before χ grows to the point where
further simulation is numerically prohibitively expensive.

In Fig. 5 we show evidence that the variance of observables
is controllable through the most important Monte Carlo
(HMC) hyperparameters while the bias is mostly controlled
by different regularizations of the S-matrix inverse (Eq. 6).
In the top panel of Fig. 5, we see that the standard deviation
of the estimator for total magnetization M(t) scales with
the number of HMC samples Ns in an expected way: σM ∝
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Figure 5. Effects of key hyperparameters on magnetization mea-
surements. All experiments were performed on a one-dimensional
chain with N = 32. Top: Effects on magnetization estimates
by varying the number of HMC samples Ns. Errors were esti-
mated using bootstrap resampling independently at different times
show expected scaling σM ∝ N

−1/2
s in all cases. Middle: Vari-

ance change in magnetization estimates by varying the number of
leapfrog integrator steps L between HMC proposals. In the L→ 1
limit, HMC approaches the random-walk Metropolis sampler. Bot-
tom: Bias increase associated with changing the pseudoinverse
cutoff parameter rc (see Appendix A.2).

N
−1/2
s for three different times during the evolution.

In addition, we report that heuristically varying the number
of leapfrog integration steps L increases estimator variances
the most around segments of trajectories with higher cur-
vature, as evidenced by the middle panel of Fig. 5. Intu-
itively, in the limit of L→ 1 and small leapfrog step sizes
ε, HMC approaches random-walk Metropolis sampling (see
Ref. (Betancourt, 2017) and Appendix A.1) which suffers
from lower acceptance rates and longer mixing times in
cases of sharply-peaked target distributions. We observe
that even a moderate increase to L ≈ 10 accompanied by
automatic hyperparameter tuning described in Sec. 2.2 con-
siderably reduces variance.

Finally, we explore the effects of S-matrix regularization
(see Appendix A.2 for details). In practice, when calculating
the pseudoinverse, we discard all eigenvalues of S smaller
than rc times the maximum eigenvalue. In the bottom panel
of Fig. 5, we see that, increasing rc leads to increased estima-
tor bias – excluding relevant eigenvalues from participating

in time evolution can lead to a failure to capture relevant
physics.

Overall, both t-VMC and TEBD algorithms predict similar
dynamical behavior of the potential energy density (Eq. 15)
and the fidelity (Eq. 18), as shown on Fig. 4. However,
the number of parameters in the MPS grows exponentially
due to entropy build-up during time-evolution. Tensor-
network real-time evolution algorithms (Haegeman et al.,
2011; 2016) based on MPS or two-dimensional architectures
such as projected entangled pair states (PEPS) (Verstraete &
Cirac, 2004; Czarnik et al., 2019) face several challenges to
extend to late times and higher dimensions. Incorporating
continuous degrees of freedom exacerbates the problem –
tensor network algorithms are limited to using the locally
truncated eigenbasis of the angular momentum operator Lk
in the QRM hamiltonian in Eq. 1, in contrast to the t-VMC
method (see Appendix B).

4. Conclusion
We present a method to approximate unitary dynamics of
continuous-variable quantum many-body systems, based
on custom neural-network quantum states. The approach
employs Hamiltonian Monte Carlo sampling and custom
regularization of the quantum geometric tensor. The method
was benchmarked on quench dynamics of two-dimensional
quantum rotors. We indicated that our calculations are
able to access non-local quantities like the return probabil-
ity. Good agreement was found with tensor-network-based
TEBD simulations for the case of one-dimensional systems
of comparable size. Finally, we showed evidence that the
method is controlled by a handful of key hyperparameters.
Our approach paves the way for accurate non-equilibrium
simulations of continuous systems at previously unexplored
system sizes and evolution times, bridging the gap between
simulation and experiment.
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Software libraries

The code used in this work has been packaged into
an installable library and is publicly available to re-
produce any results in this work or explore new ones:
github.com/Matematija/continuous-vmc.

It was built on JAX (Bradbury et al., 2018) for array manipu-
lations, automatic differentiation for sampling and optimiza-
tion and GPU support, Flax (Heek et al., 2020) for neural-
network manipulation and NumPy (Harris et al., 2020) and
SciPy (Virtanen et al., 2020) for CPU array manipulations.
Matplotlib (Hunter, 2007) was used to produce figures.
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A. Simulation details
In this appendix, we mention some of the details of numerical simulations performed in this work that have not been
discussed in the main text. We also clearly state different hyperparameters and their observed effect on performance and
numerical stability.

A.1. Hamiltonian Monte Carlo details

As noted in the main text, the Hamiltonian Monte Carlo (HMC) algorithm used in this work has many important hyper-
parameters. To define the proposal, we must specify: the leapfrog integration length L, leapfrog step size ε the mass
matrix M . We assume that the mass matrix is diagonal M = diag(m1, . . . ,mN ). Samples are proposed by numerically
integrating Hamilton’s equations corresponding to the hamiltonian H̃ = 1

2π
⊤M−1π − lnV (θ) along an fictitious time

axis τ , unrelated to t in Eq. 5:

π(τ + ε/2) = π(τ)− ε

2

∂V

∂θ
(θ(τ))

θ(τ + ε) = θ(τ) + εM−1 π(τ + ε/2)

π(τ + ε) = π(τ + ε/2)− ε

2

∂V

∂θ
(θ(τ + ε))

(20)

We fix L heuristically and adaptively set M and ε during an extended warm-up phase for each Markov chain independently.
In other words, before any samples are collected for evaluation of Eq. 6, each chain is run for Nw steps. Following the
popular software package Stan (Carpenter et al., 2017), we subdivide the warmup period into Np + 2 phases (windows),
each of which is one of two types:

• Fast: Samples are collected and only step size ε is adapted using the online optimization algorithm in Ref. (Nesterov,
2009). Mass matrix remains unchanged. Fast windows are used to efficiently initialize the chain by moving it towards
a typical set of highly-probable samples.

• Slow: Samples are collected and both step size ε and the mass matrix M are estimated. Step size is estimated the
same way as in the fast window. Mass matrix elements are estimated as the variance of corresponding variables:
mk = Var(θk) using the appropriate formula for the variance of periodic random variables presented in the main text,
Sec. 3.

After initializing each θk ∼ Uniform(−π, π), we begin the warm-up phase with a single fast window of length Nw/12,
followed by 5 fast windows. The first fast window is Nw/36 steps long with each subsequent slow window doubling in size.
Finally, we end the warm-up by running an additional fast window for the remaining Nw/18 steps. After each window, the
HMC transition kernel (the leapfrog ODE solver) is updated with adapted values for ε and M (for slow windows). After the
final fast window, all hyperparameters are locked in and actual collection of the Ns for Eq. 6 begins. The full list of relevant
hyperparameters can be found in Table A.1.

We use automatic differentiation (using JAX (Bradbury et al., 2018)) to obtain numerically exact gradients ∇θ ln p(θ, t)
of needed to run the leapfrog integrator. To avoid loss of accuracy or numerical instabilities through exponentiation, we
employ the following identity:

ln p(θ, t) = ln
∣∣ψα(t)(θ)∣∣2 = 2Re

{
lnψα(t)(θ)

}
, (21)

when the logarithm of the wavefunction is parameterized instead of the wavefunction itself.

For completeness, we note that a common precaution against leapfrog integration getting stuck in regions of high curvature
used in this work. Instead of fixing the integration length to a specific value L = L0, it is randomly chosen between
(1−γ)L0 and (1+γ)L0 each time the integrator is called, with a new hyperparameter 0 ≤ γ < 1. This jittering of trajectory
lengths can help HMC walkers move away from regions of high curvature if they get stuck (Betancourt, 2017; Neal, 2011;
Carpenter et al., 2017). To collect more independent samples by utilizing modern massively-parallel GPU hardware, we run
Nc such chains in parallel, each one warmed up independently.

Finally, we note that the HMC proposal generated by the leapfrog integrator approaches the random-walk Metropolis (RWM)
update:

θ′ = θ +
√
Σ z ; z ∼ N (0,1) , (22)
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Symbol Name Value Domain Description

ε Step size Dynamically
adapted R The leapfrog integrator step size.

M Mass matrix Dynamically
adapted RN

2 The covariance (metric) tensor of
the dummy momentum variables π.

L (Average) integration length 20 N
The number of leapfrog steps taken before

proposing a sample. (If γ > 0, we relabel L→ L0.)

γ Jitter 0.2 [0, 1⟩ Randomness for L during sampling – it is drawn
uniformly between (1− γ)L0 and (1 + γ)L0.

ε0 Initial step size 0.1 R A guess for the value of ε
to refine during the warmup phase.

δ Target acceptance rate 0.8 [0, 1]
Target acceptance rate used for

optimization of ε by algorithm in Ref. (Nesterov, 2009).

Nw Length of warmup phase 800 N
Total number of MC samples
used for extended warmup.

Np Number of slow windows 5 N
Total number of slow

adaptation windows during warmup.

Ns Number of samples 2000 N
Total number of samples

(per chain).

Nc Number of chains 20 N
Total number of independent

Markov chains.

Table 1. The list of relevant hyperparameters for the Hamiltonian Monte Carlo algorithm with their values used in this work.

in the limit of few leapfrog integrator steps: L→ 1. Indeed, for L = 1 and small step sizes ε, Eq. 20 becomes

θ′ = θ(ϵ) = θ(0) + εM−1π(ε/2) = θ(0) + εM−1π(0)− ε2

2
M−1 ∂V

∂θ
(θ(0)) = θ(0) + εM−1π(0) +O(ε2) , (23)

where M−1 is equivalent in effect to the
√
Σ matrix and π(0) ∼ N (0,M−1) by construction in Eq. 11.

A.2. Numerical regularization schemes

After evaluating the averages in Eq. 6 at time t, one needs to solve the linear system i Sα̇ = g to obtain α̇ needed to progress
to time t+ δt. Since the S matrix is singular in most cases of interest, a robust regularization scheme is needed. As pointed
out in the main text, replacing S → S + ϵ1 is often enough in the case of ground-state searches (imaginary-time evolution).
We remark that this is equivalent to the L2-regularized least-squares solution of i Lα̇ = h.

α̇ = argmin
α̇∈CP

{
∥i L α̇− h∥22 + ϵ∥α̇∥22

}
(24)

where L†L = S is the Cholesky decomposition of the S-matrix (assuming S is positive-definite), L†h = g, and ∥·∥2 is the
standard euclidean 2-norm on CP .

We instead adopt a regularization scheme based on the spectrum of the S-matrix, S = UΣU†, where Σ = diag(σ2
1 , . . . , σ

2
P ).

Our definition of the pseudoinverse is S−1 ≈ U Σ̃−1U† with:

Σ̃−1
µν = f(σ2

µ)
δµν
σ2
µ

and f(σ2) =
1

1 +
(
λ2
/σ2
)6 . (25)

In the limit of λ2 → 0, we recover the actual matrix inverse. As opposed to the more traditional choice of the step-function
f(σ2) = θ(σ2 − λ2), we find that choosing a smooth functional form for f(σ2) in Eq. 25 makes the adaptive time-stepping
in the top-level integration routine (see Appendix A.3) more stable.
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Figure 6. Some ODE integrator and regularization details. Left: The effective rank of the S-matrix ρ(S) as a function of time, reflecting
the internal dimensionality of the parameter manifold α, as discussed in Sec. A.2. Center: Time steps δt taken by the adaptive ODE
integrator of choice. Right: Approximate conservation of energy as a function of time, for different quenches.

We set λ2 to:

λ2 = λ2(σ2
1 , . . . , σ

2
P ) = max

(
ac, rc ×max

µ
(σ2
µ)

)
, (26)

each iteration, with ac = 10−4 and rc = 10−2 chosen for 2D calculations and ac = 10−5 and rc = 10−4 for 1D benchmarks.
To track potential over-regularization and as a measure of ansatz expressivity, we define the effective rank ρ(S) =

∑
µ f(σ

2
µ).

Intuitively, since 0 < f(σ2) < 1 for all eigenvalues σ2, ρ(S) can be interpreted as the effective number of eigenvalues that
have not been set to zero by the regularization function f . In other words, it corresponds to the number of parameters in α
that get updated at time t.

We plot ρ(S) as a function of time on Fig. 6 for some simulated quenches. In all cases, we see that the effective rank
increases rapidly to ρ ∼ 1 at intermediate times that, for larger quenches, correspond to rapid oscillations and onset of
vorticity. In those cases, it is natural to interpret this regime as almost all parameters α being important to capture the
relevant physics. At later times, ρ converges to values below 10%, indicating equilibration and less oscillatory behavior.

For completeness, we mention that alternative regularization techniques have been explored as well. For example, the
method of Schmitt and Heyl in Ref. (Schmitt & Heyl, 2020), based on the signal-to-noise ratio (SNR) for each eigenvalue
in σ2, represents a computationally and physically well-motivated approach. However, it did not bring any measurable
performance improvement in our case.

A.3. The time-dependent variational principle and ODE integrators

To make use of the TDVP action in Eq. 5 in the main text, to propagate the variational parameters forward in time, one must
construct the corresponding Euler-Lagrange equations. To this end, we first manipulate the action into a more transparent
form:

δC[α] = δ

∫
dt
〈
Ψα(t)

∣∣ (i d
dt

−H

) ∣∣Ψα(t)〉 = (27)

= δ

∫
dt

 i

2

〈
ψα(t)

∣∣∣ψ̇α(t)〉−
〈
ψ̇α(t)

∣∣∣ψα(t)〉〈
ψα(t)

∣∣ψα(t)〉 −
〈
ψα(t)

∣∣H ∣∣ψα(t)〉〈
ψα(t)

∣∣ψα(t)〉
 = (28)

= − δ

∫
dt

∫
dθ

∣∣〈θ∣∣ψα(t)〉∣∣2〈
ψα(t)

∣∣ψα(t)〉
{
Im
∑
µ

Oµ(θ, t)α̇µ(t) + EL(θ, t)

}
∝ (29)

∝
∫

dt
∑
µ

{
i
∑
ν

Sµν(t) α̇ν(t)− gµ(t)

}
δαµ(t)− c.c. , (30)

where we used definitions of Sµν , gµ and EL from Eqs. 8 and 6, respectively as well as α̇ = dα/dt. The explicit form of
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log-derivative operators Oµ introduced in the main text is

Oµ(θ, t) =
∂

∂αµ
lnψα(t)(θ) (31)

in the |θ⟩ basis. We note that the expression in Eq. 29 and the definitions of S and g in Eq. 30 change form if ψα(θ) cannot
be interpreted as a holomorphic function of α. The reader is referred to Ref. (Yuan et al., 2019) for detailed derivations.

We implement and experiment with a number of different Runge-Kutta (Press et al., 1992) (RK) ODE solvers. Heuristically,
we notice that higher-order adaptive embedded solvers do help offset the effects of imperfect Monte Carlo estimates of S
and g in two ways:

• Adaptive solvers are naturally higher-order because of an embedded lower-order method. Using an adaptive solver can
locally adjust the time step δt, usually drastically reducing the overall number of time steps required.

• The solution at t+ δt is constructed as a linear combination of solutions estimated on a fixed set of points within the
interval [t, t+ δt]. Any leftover errors in these intermediate estimates have a higher probability of canceling out.

In this work, we choose the adaptive third-order method with an embedded second order method using the Bogacki-
Shampine (Bogacki & Shampine, 1989; Butcher, 1963; 2008; Press et al., 1992) pair of formulas. It balances being
low-enough order to avoid wasting computational resources with still being high-enough order to allow for adaptive
time-stepping.

For quenches shown in Fig. 2, we show variations in δt in Fig. 6 (center panel). We note that the time stepping varies more
in regions of higher curvature (kinetic energy, shorter times) and for larger quenches, successfully adjusting to conserve
energy in all cases (Fig. 6 right). For longer times, on the order of thermalization in observed quenches, variations are
reduced and δt approximately converges to a constant value.

B. Angular momentum basis and tensor network calculations
In this appendix we focus on some of the conventions and formalism involved with treating the QRM in the discrete
eigenbasis of the angular momentum operator Lk. This basis is useful for attacking the model with tensor-network methods
or perturbation theory.

In the |θ⟩ basis, we have Lk = −i ∂k (where we adopt the convention ∂k ≡ ∂θk ). Therefore:

− i
∂

∂θ
⟨θ|m⟩ = m ⟨θ|m⟩ =⇒ ⟨θ|m⟩ = e−imθ√

2π
; m ∈ Z , (32)

which is identical to eigenfunctions for a particle on a circle at each lattice site – we have a product basis basis |m⟩ =
|m1, . . . ,mN ⟩. The hamiltonian given in Eq. 1 then reads:

⟨m′|H |m⟩ = gJ

2

∑
k

m2
k − J

∑
⟨k,l⟩

⟨m′| n̂k · n̂l |m⟩ . (33)

After inserting the identity 1 =
∫
dθ |θ⟩⟨θ| into the second term and simple integration, we obtain

⟨m′
k,m

′
l| n̂k · n̂l |mk,ml⟩ =

1

2

(
δm′

k,mk+1δm′
l,ml−1 + δm′

k,mk−1δm′
l,ml+1

)
. (34)

where δ·· is the Kronecker delta symbol. The structure of Eq. 34 suggests rewriting the original Hamiltonian as:

H =
gJ

2

∑
k

L2
k −

J

2

∑
⟨k,l⟩

(
L+
k L

−
l + L+

l L
−
k

)
(35)
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where

L+
k ≡

∑
mk∈Z

|mk + 1⟩⟨mk| and L−
k ≡

∑
mk∈Z

|mk − 1⟩⟨mk| so that
[
L+
k , L

−
k

]
= 0 , (36)

for all k ∈ Λ. To perform tensor-network calculations, we truncate local basis states to {|−M⟩ , . . . , |M⟩} so that
L+ |M⟩ = L− |−M⟩ = 0. Namely, we set:

L+ →


0 1

0 1
. . .

0 1
0

 , L− →


0
1 0

1
. . . 0

1 0

 (37)

to build a Matrix Product Operator (MPO) representation of the Hamiltonian. For use in real-time evolution through the
TEBD algorithm in Sec. 3.1 in the main state, we initialize the trial wavefunction as a Matrix Product State (MPS) (White,
1992) (see Appendix C.2). We exploit

|ψ(t = 0)⟩ ∝
∫

dθ |θ⟩ =
∏
i∈Λ

|mi = 0⟩ (38)

to match the initial state given in the main text in Sec. 3.1 by initializing the corresponding MPS to have bond dimension
χ = 1.

C. Variational Quantum States on a circle
In order to perform numerically efficient t-VMC iterations described in Sec. 2.1, we need to keep the parameter count in ψα
relatively low (order 102-104 on modern GPU hardware.). The reason for this constraint is the regularization scheme we
employ to stabilize the QGT inverse in Eq. 6 – each iteration requires us to diagonalize the P × P hermitian matrix S which
becomes prohibitively expensive and memory-consuming for large parameter counts P . We note that iterative solvers such
as the conjugate gradient can formally help push the limit of tractable P by several orders of magnitude. However, that
speedup comes at the cost of having to rely on weaker regularization schemes that do not require the full QGT spectrum. In
this appendix, we describe different ansatzes (trial wavefunctions) considered in our simulations.

C.1. The Jastrow wavefunction

The Jastrow wavefunction is defined as:

lnψα(θ) =
1

2

∑
ij

wij n̂i · n̂j =
1

2

∑
ij

wij cos(θi − θj) (39)

where α = {wij} is a symmetric matrix of variational parameters. The advantage of a simple Jastrow ansatz is the fact that
the QGT given in Eq. 6 is never ill-conditioned. However, Jastrow expressivity is limited compared to deeper neural-network
quantum state parametrizations.

C.2. Matrix Product States

Using notation and conventions laid out in Appendix B, one can write down a traditional MPS ansatz in the discrete angular
momentum basis |m⟩:

ψα(θ) =

M∑
m1=−M

· · ·
M∑

mN=−M
cm1···mN

e−i
∑

imiθi ; cm1···mN
=

χ1∑
l1=1

· · ·
χN∑
lN=1

Am1

l1
Am2

l1l2
· · ·AmN−1

lN−2lN−1
AmN

lN−1
. (40)

In one spatial dimension and for ground state searches (imaginary time evolution), this trial wavefunction form is the most
accurate due to the Density Matrix Renormalization Group algorithm (DMRG) (White, 1992) algorithm. Expressivity is
controlled by bond dimensions χi and the basis truncation parameter M .
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C.3. The (circular) Restricted Boltzmann Machine

The circular Restricted Boltzman Machine (RBM) (Stokes et al., 2021) is defined as:

ψα(θ) ∝
∫

dµ(ĥ) exp

∑
j

aj · n̂j +
∑
k

bk · ĥk +
∑
jk

wjk n̂j · ĥk

 (41)

where α = {aj ,bk, wjk} are variational parameters and dµ(ĥ) is the relevant measure for hidden units ĥk. It is natural to
choose hidden units to have the same intrinsic Hilbert space as visible rotors n̂j . Therefore, for the O(2) Quantum Rotor
Model, we choose

ĥk = (cosϕk, sinϕk) so that dµ(ĥ) = dϕ = dϕi dϕ2 · · · dϕNh , (42)

up to an overall multiplicative constant. We note that the number hidden units Nh is a hyperparameter and can be increased
to control ansatz expressivity.

After performing the integrals in Eq. 41, one obtains the following closed-form expression:

lnψα(θ) =

N∑
j=1

aj · n̂j +
Nh∑
k=1

ln I0

(√∑
l
(xk)

2
l

)
(43)

where (xk)l stands for the l-th component of vector xk = bk +
∑
j wjkn̂j and I0 is the zeroth-order modified Bessel

function of the first kind.

Instead of a full dense matrix, we can restrict the general linear map n̂j 7→
∑
j wjkn̂j to a convolution, assuming that

underlying rotors are arranged in a square lattice. This restriction cuts P down by approximately an order of magnitude
while not sacrificing any measurable accuracy in ground state optimization tasks.

C.4. Activation functions

In order to define an analytic ansatz ψα with no hidden sigularities, care must be taken when choosing activation functions
for complex-valued inputs. Informally, singularities often appear in one of the following two ways, when using holomorphic
activations:

• A well-behaved function (or its derivatives) on the real axis has singularities on the imaginary axis. This is the case for
tanh and ln I0 from Eq. 41, for example.

• An otherwise well-behaved function has a branch cut that is crossed during time evolution. Side-effects include sudden
jumps in conserved quantities during real-time evolution. This is the case for ln I0 from Eq. 41 and similar functions
involving logarithms and/or roots.

There are two solutions to this problem. As noted in the main text, one can restrict themselves to (higher-order) polynomial
activations which are analytic everywhere and have no branch cuts. Inspired by Eq. 41, we use Taylor expansions of ln I0
and its gradient:

ln I0(z) =
z2

4
− z4

64
+

z6

576
+O(z8) and

I1(z)

I0(z)
=
z

2
− z3

16
+
z5

96
+O(z7) . (44)

This approach has the advantage of maintaining the holomorphic dependence of ψα on α and preserving the form of Eq. 6.
We note that if the effect of isolated singularities is not as important, Padé approximants often provide better approximations
of target functions (and better ground state energies) while still eliminating branch cuts.

The second option is abandoning holomorphicity in parameters α and applying well-behaved real activations to real and
imaginary parts of the input separately. In that case, Eq. 6 must be corrected. We refer interested readers to the excellent
overview of subtleties associated with complex parameters in Ref. (Yuan et al., 2019).
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D. The R2 performance metric
In the main text, we define a measure of time-dependent integration error in Eq 19, following Refs. (Schmitt & Heyl, 2020;
Carleo & Troyer, 2017). The Fubini-Study distance D(·, ·) on the Hilbert space H defined as:

D(ψ, ϕ) = cos−1
(√

F (ψ, ϕ)
)
= cos−1

√ |⟨ψ|ϕ⟩|2

⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

 . (45)

Using a consistent Taylor expansion in the limit of δt≪ J−1,

e−iHδt =1− iHδt+O(δt2) (46)

|ψ(t+ δt)⟩ =

(
1 + δt

∑
µ

α̇µOµ

)∣∣ψα(t)〉+O(δt2) , (47)

authors in Ref. (Schmitt & Heyl, 2020) rewrite Eq. 19 as:

r2(t) = 1− 1

VartH

∑
µν

S−1
µν g

∗
µgν +O(δt2) . (48)

In Eq. 48, we used notation from Eq. 6 in the main text with

VartH =
〈
H2
〉
t
− ⟨H⟩2t ≈

〈
|EL − ⟨EL⟩|2

〉
t

(49)

Finally, the R2 figure of merit is constructed as a time-integral of r2: R2(t) =
∫ t
0
r2(s)ds. We note that r2(t) and R2(t) are

readily available for estimation through Monte Carlo sampling.


