
Unifying and Understanding Overparameterized Circuit Representations
via Low-Rank Tensor Decompositions

Antonio Mari1 Gennaro Vessio1 Antonio Vergari2

1Computer Science Dept., University of Bari Aldo Moro, Italy
2School of Informatics, University of Edinburgh, UK

Abstract

Tensorizing probabilistic circuits (PCs) – struc-
tured computational graphs capable of efficiently
and accurately performing various probabilistic
reasoning tasks – is the go-to way to represent and
learn these models. This paper systematically ex-
plores the architectural options employed in mod-
ern overparameterized PCs, namely RAT-SPNs,
EiNets, and HCLTs, and unifies them into a single
algorithmic framework. By trying to compress the
existing overparameterized layers via low-rank de-
compositions, we discover alternative parameteri-
zations that possess the same expressive power but
are computationally more efficient. This empha-
sizes the possibility of “mixing & matching” dif-
ferent design choices to create new PCs and helps
to disentangle the few ones that really matter.

1 INTRODUCTION

Probabilistic circuits (PCs) [Vergari et al., 2020, Choi et al.,
2020] have recently emerged as a framework to unify sev-
eral, apparently different, tractable probabilistic models
(TPMs). To this end, TPMs are represented as structured
computational graphs that include three kinds of units: in-
put, sum, and product units. Input units represent simple,
tractable distributions defined over a subset of the vari-
ables of interest, while sum (or product) units compute a
weighted average (or product) of their inputs. In this uni-
fied framework, one can abstract from the many syntac-
tic formalisms of TPMs and focus only on the structural
properties of these computational graphs that are crucial
for performing specific reasoning tasks exactly and effi-
ciently. E.g., to guarantee the tractability of marginaliza-
tion, a TPM cast as a circuit only requires smoothness
and decomposability [Choi et al., 2020, Darwiche, 2009]
as structural properties, or compatibility and structured-

Table 1: Destructuring modern PC architectures into
smaller design choices for building region graphs, layer pa-
rameterization, and folding (see Fig. 1) that can be mixed
& matched with new ones (see Sections 2 and 3).

PC REGION GRAPH LAYER FOLD

RAT-SPN RND TUCKER 7

EINET PD/RND TUCKER 3

HCLT CLT CP 7

MIX &
MATCH

{
RND, QG,
PD, CLT

}
×


TUCKER

CP
CP-S

 3

decomposability to compute powers and other divergences
tractably [Vergari et al., 2021].

The most effective way to learn PCs from data requires
building overparameterized circuits, comprising millions
or even billions of parameters [Liu et al., 2022], and train-
ing these parameters by SGD or EM [Peharz et al., 2016,
2020b]. This approach has been popularized by modern cir-
cuit architectures such as RAT-SPNs [Peharz et al., 2020b],
Einsum networks (EiNets) [Peharz et al., 2020a], and hid-
den Chow-Liu trees (HCLTs) [Liu and Van den Broeck,
2021]. Algorithms for learning these circuits have been
proposed from different perspectives, seemingly with dif-
ferent recipes, and in practice, PCs learned in these ways
are treated as different models. However, a closer look re-
veals that they can be understood under a single framework,
within which only a few algorithmic choices truly influence
circuit performance and learnability.

In this paper, we systematize the process of representing
and learning overparameterized circuits as a pipeline com-
prising three macro stages (Fig. 1): I) building a general
skeleton that guarantees (structured-)decomposability, also
called region graph; II) overparameterizing the skeleton
with sum and product units and vectorizing their compu-
tations, and III) optionally folding such a computational
graph into a denser tensor representation. This opens up

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

mailto:<antonio.mari02@outlook.com>?Subject=UAI TPM Paper - Unifying and Understanding


𝑋1, 𝑋2 𝑋3

𝑋1, 𝑋2, 𝑋3 𝑋3, 𝑋4, 𝑋5

𝑋4, 𝑋5

I. Build a region graph

× × ××… × × ××… …
W(1)

⊗
…
W(2)

⊗

II. Overparameterize & Vectorize

……
𝒲

⊗

III. Folding

Figure 1: The general recipe for building overparameterized circuits consists of (I) building a hierarchical scope parti-
tioning or region graph (RG) to ensure decomposability, then (II) overparameterizing the RG, e.g., by using TUCKER (see
Section 2) or (collapsed) CPlayers (see Section 3), and (III) optionally folding the graph to reduce time/memory consump-
tion during execution. Finally, parameters can be learned via EM or SGD variants such as Adam.

the possibility of “mixing & matching” existing algorith-
mic choices to realize stages I-III and easily design novel
circuit architectures (Table 1). Furthermore, we analyze
how the different layer parameterizations (II) relate to each
other via low-rank tensor decompositions. In this light,
we can connect existing parameterizations (Section 2) and,
at the same time, discover alternative parameterizations
that can be more parameter-efficient (Section 3). Finally,
we evaluate the performance of several combinations in
this “architectural spectrum”, highlighting the trade-offs
in terms of time and space complexity and accuracy (Sec-
tion 4). This helps shed light on what key algorithmic fac-
tors underlie the performance boosts recently reported in
the circuit literature [Dang et al., 2022].

2 REPRESENTING AND LEARNING
OVERPARAMETERIZED CIRCUITS

Notation. We follow Vergari et al. [2019] in represent-
ing tensorized PCs1 as structured neural networks whose
units can be grouped into layers, i.e., computational ab-
stractions that can be better mapped to modern deep learn-
ing frameworks. We denote a vectorized layer of a PC as
o, ℓ, r ∈ RK , consisting of K (sum, product or input) units,
all defined over a set of random variables (RVs) X, also
called its scope. We denote the k-th unit as, e.g., ok. In the
following, we will assume that PCs are smooth and decom-
posable. For a formal definition of circuits and these struc-
tural properties, see Choi et al. [2020] and Appendix A.

Building region graphs. Figure 1 illustrates our proposed
abstract pipeline to represent and learn tensorized PCs. The
first step is to build a hierarchical scope partitioning [Ver-
gari et al., 2021], also called region graph (RG) [Dennis
and Ventura, 2012]. Intuitively, building an RG is equiva-
lent to recursively partitioning a set of RVs X into disjoint
scopes, thus providing a skeleton for smooth and decom-
posable circuits. More formally, an RG over RVs X is a bi-

1Our analysis can be extended to non-monotonic PCs and non-
probabilistic circuits [Vergari et al., 2021], i.e., circuits with non-
positive parameters and non-positive outputs, relaxing the non-
negativity constraint in the tensor factorization considered.

partite graph whose nodes are either regions, denoting sub-
sets of X, or partitions, denoting how to split a region into
a set of disjoint sub-regions. W.l.o.g., we consider RGs that
only partition a region into two, i.e., R = R′ ∪ R′′, with
R′ ∩R′′ = ∅. We denote an RG by its root regionR = X.

The simplest domain-agnostic way to build an RG is to ran-
domly create partitions, as proposed by RAT-SPNs [Peharz
et al., 2020b], a strategy we denote by RND. Alternatively,
one can mechanically partition pixels X for specific do-
mains such as images by “cutting” the image along its axis,
as proposed in Poon and Domingos [2011], denoted as the
PD architecture. Finally, one can learn to partition RVs, as
implicitly done by HCLTs [Liu and Van den Broeck, 2021],
which first learn a latent tree model [Choi et al., 2011]
whose RV ordering is given heuristically by the Chow-Liu
algorithm (CLT) [Chow and Liu, 1968], and then compile
it into a PC. We show in Appendix B.1 that this construc-
tion induces an RG over X, and thus that HCLTs can be
cast within our 3-stage construction as well, even if they are
motivated from a compilation perspective. If an RG splits
each region in a single partition, as the CLT construction
does, the resulting PC will be not only decomposable but
also structured-decomposable (see Appendices A and B.1).

Overparameterize & vectorize. An RG is then “popu-
lated” by sum, product, and input units, a process that we
denote as overparameterization since more than a single
unit is associated with a region or partition. Units associ-
ated with the same region or partition, which share the same
scope, can then be vectorized in layers (Fig. 1, II), thus
becoming amenable to tensor-based computations. Leaf re-
gions, i.e., regions that are not further partitioned, are asso-
ciated input units, while sum and products populate inner
regions and partitions.

RAT-SPNs associate K sum (resp. input) units with each
inner (resp. leaf) region in an RG and introduce K2 prod-
ucts in a partition to realize a vector cross-product. There-
fore every partitionRo = (Rl,Rr) identifies three vectors
o, ℓ, r ∈ RK . The k-th unit of o computes:

ok = ℓ⊤W (k)r, (TUCKER)

where W (k) is the k-th slice of the tensor W ∈ RK×K×K
+

that contains the non-negative parameters of the layer. We

2



…
W𝑛

⊗

(a) TUCKER layer

𝐴𝑛 𝐵𝑛

𝐶𝑛

⊙

(b) CP factorization

𝐴𝑛𝐶𝑛−1 𝐵𝑛𝐶𝑛−1

⊙

(c) Collapsing Cn

Figure 2: From TUCKER to CP layers. Layers in HCLTs
can be interpreted as collapsed (c) low-rank approxima-
tions (b) of layers in RAT-SPNs and EiNets (a). They can
also be folded and used with other RGs.

name this parameterization TUCKER layer as it takes the
same form of a non-negative TUCKER tensor factoriza-
tion [Tucker, 1966].2 As such, K can be thought of as the
rank of an implicit factorization. Intuitively, the larger K,
the greater the number of parameters in W and the greater
the expressiveness of PCs whose layers are parameterized
as Eq. (TUCKER). TUCKER layers also appear in overpa-
rameterized logical circuits [Ahmed et al., 2022].

Folding. The optional and final step in representing an
overparameterized and tensorized PC is to group many lay-
ers that share the same functional form and “stack”, or
“fold” them, into a denser tensor representation. This is
the core ingredient of the additional speed-up introduced
by EiNets [Peharz et al., 2020a]. A folded layer in an
EiNet stacks F TUCKER layers, is parameterized by W ∈
RK×K×K×F

+ , and outputs a matrix O ∈ RK×F whose
(k, f)-entry is defined as

Ok,f = (ℓ(f))⊤W (k,f)r(f) (TUCKER-f)

where W (k,f) is the (k, f)-slice of W and ℓ(f) (resp. r(f))
are the f -th column of the matrix L ∈ RK×F (resp. R ∈
RK×F ) that stacks the input vectors for the left (resp. right)
input regions. Note that this parameterization, which we
denote as TUCKER-f, essentially encodes the same circuit
semantics as Eq. (TUCKER), and thus the same expressive-
ness. Consequently, neither the folding nor the layer param-
eterization of RAT-SPNs and EiNets can be responsible for
the difference in performance that is usually reported be-
tween these models [Liu et al., 2022]. The key factor must
lie in the choice of RG used (as we will confirm in Sec-
tion 4) or a discrepancy in other hyperparameters used to
learn these models, e.g., the optimizer employed. We con-
sistently use Adam in our experiments (Section 4), refuting
the common belief that SGD-based optimizers are worse
than EM.

2Specifically it takes the form of a TUCKER2 factorization
[Kolda and Bader, 2009]. A PC such as a RAT-SPN or EiNet over
RVs X can thus be viewed as performing a sophisticated hier-
archical non-negative TUCKER2 decomposition of a probability
(quasi-)tensor encoding p(X) [Grasedyck, 2010].

3 FROM TUCKER TO CP LAYERS

Although expressive, TUCKER layers require learning and
storing K3 parameters. In light of the need for more pa-
rameter efficient parameterizations, we propose to com-
press the parameter tensor W of TUCKER layers via a non-
negative CANDECOMP-PARAFAC (CP) [Cichocki et al.,
2007] low-rank decomposition. I.e., given a rank R ≤ K
we assume that each entry of the tensor Wn that parame-
terizes the n-th layer in a PC can be computed as Wn

i,j,k =∑R
r=1 A

n
irB

n
jrC

n
kr where An, Bn, Cn ∈ RK×R

+ encode the
new circuit parameters. By re-arranging matrix multiplica-
tions, it is easy to show that such a layer would compute:

o = Cn(Anℓ)⊙ (Bnr) (R-rank CP)

where ⊙ denotes the element-wise product. This new pa-
rameterization via low-rank tensors, illustrated in Fig. 2,
requires only 3KR parameters and thus allows for faster
inference (see Table 3). Note that we can effectively col-
lapse the two adjacent sum layers parameterized by Cn−1

and An (or Bn) since a combination of linear operations
is a linear operation. In this way, the following simplified
layer parameterization is obtained:

o = (A′ℓ)⊙ (B′r) (CP)

where A′ = AnCn−1 and B′ = BnCn−1. In a PC com-
posed of such layers, which we call “collapsed CP”, or
simply CP layers, the rank of each layer is R, except for
the input layers that can still accommodate Kin different
input units. Through this collapsing, we retrieve the layer
parameterization of HCLTs and other PCs that are the out-
put of a compilation process, with the slight difference that
they generally assume K = R for all layers. All in all, by
disentangling CP layers from a CLT-based RG, we can use
them in non-structured decomposable PCs, e.g., by having
non-tree RGs (see Table 1 and Section 4), and better under-
stand the effect of using low-rank layer parameterizations
instead of TUCKER during learning (Section 4).

By analogy, we can also apply a non-negative CP decom-
position to the folded tensor Wn in TUCKER-f layers, i.e.,
parameterize its (i, j, k, f) entry as

∑R
r=1 A

n
irB

n
jrC

n
krD

n
fr

with the introduction of an additional matrix Dn ∈ RR×F
+

per folded layer n. Note that this decomposition is much
more parameter efficient and compact as the matrices An,
Bn, and Cn are shared across all folds f . Analogous to the
collapse of a rank-R CP layer, we can collapse adjacent
sum layers and obtain a simplified layer that computes:

o(f) = (A′ℓ(f))⊙ (B′r(f)) (CP-s)

Note that this parameterization, which we call CP shared,
(CP-s), is different from folding a PC with CP layers
(which we denote as CP-f), in that all the parameters A′

and B′ are shared across all folds.

3



16 32 64 128 256 512
K

0.0
0.1
0.2
0.3

forward time (s)

16 32 64 128 256 512
K

0

10

20

forward space (GB)

16 32 64 128 256 512
K

0.0

0.5

1.0
backward time (s)

16 32 64 128 256 512
K

0

10

20

backward space (GB)
PD-CP-f
PD-CP-s
PD-Tucker-f
QG-CP-f
QG-CP-s
QG-Tucker-f

Figure 3: Different RGs and layer parameterizations yield different time/space performance. Time (seconds) and
memory usage (GBs) for TUCKER-f, CP-s, and CP-f layers with PD and QG RGs for different values of K (x-axis).

106 107 108 109

# Params
1.1
1.2
1.3
1.4
1.5

bp
d

QG-CP-f
QG-Tucker-f

PD-CP-f
PD-Tucker-f

1 2 4 8 16 32 64
Rank (R)

1.2
1.3
1.4
1.5
1.6

Tucker
NN-CP

Random init
Fine-tuned

Figure 4: The learning and compression performance of
different models depend on RG and layer parameterization.
We show the bpd on the y-axis for models learned from
scratch w.r.t. the number of parameters (left) or rank when
compressed from a QG-TUCKER-f model (right).

A new nomenclature. By decomposing the process of
representing overparameterized circuits into three macro
stages in the previous section and now categorizing layer
parameterizations via tensor decompositions, we can pre-
cisely denote old and new PC architectures, highlighting
how they differ. For example, in our nomenclature, RAT-
SPNs can be denoted as RND-TUCKER and EiNets as
RND-TUCKER-f if they use random RGs, making ex-
plicit the encoding of the same computational graphs, only
folded. By changing RG, we could have PD-TUCKER-f as
well as CLT-TUCKER-f or PD-CP-f, “mixing & matching”
the ingredients behind HCLTs, which in our nomenclature
would be denoted as CLT-CP.

4 EXPERIMENTS

In this section, we evaluate how changing the ingredients in
the “overparameterized PC recipe” can lead to different ac-
curacy and computational efficiency performance. To disen-
tangle and measure the effect of different RGs, we employ
both PD RGs as well as a simpler but still image-aware
and dataset-agnostic RG, which we call quad graph (QG).
QGs have fewer parameters than PDs but are more ex-
pressive than CLTs (see Appendix A for details). We train
and evaluate our models on MNIST [LeCun et al., 2010]
and Fashion-MNIST (FMNIST) [Xiao et al., 2017], using
Adam as an optimizer (Appendix C.2).

Benchmarking. We compared the time and memory peak
for PCs built with PD or QG and with TUCKER-f, CP-
f, CP-s layers, varying K in {16, 32, 64, 128, 256, 512}
(Fig. 3). We can observe that QGs can be more parsimo-
nious than PDs, and that CP-f and CP-s layers scale more
gracefully for larger values of K, which may be impractical
for TUCKER-f. Non-folded versions of these parameteriza-
tions can be an order of magnitude slower in our PyTorch
implementation [Peharz et al., 2020b].

Learning. Fig. 4 (left) shows the bits-per-dimension (bpd)
on the test set for MNIST (analogous results on FMNIST
can be found in Appendix C.2). First, it can be seen that QG
leads to better performance than PD. Moreover, TUCKER-f
and CP-f have essentially identical performance on PD and
for small values of K on QG, while for larger values of K,
CP-f obtains significantly better bpd (1.16). For K ≥ 256,
CP-s performs better than TUCKER-f and comes close to
CP-f (see Appendix C.2).

Compression. Finally, we investigate what we lose in accu-
racy when we compress a more expressive model, say using
QG-TUCKER-f, into a lower-rank model, say R-ranked CP-
f. First, we compress each tensor slice W(f) of a TUCKER-
f layer by performing non-negative CP via alternating least
squares [Shashua and Hazan, 2005]. As expected, a data-
agnostic compression scheme increases bpd (Fig. 4 (right)).
However, using these compressed tensors to initialize a R-
ranked CP-f layer and using fine-tuning can outperform not
only a randomly initialized model but also the original un-
compressed model.

5 CONCLUSION

In this work, we systematized the construction of modern
overparameterized circuits in a single pipeline, highlight-
ing how the different stages, such as RG construction and
layer parameterization, are related. We proposed a precise
nomenclature to denote existing and new architectures that
can be created by mixing & matching these ingredients.
Our analysis on layer parameterizations, based on tensor
decompositions, and experiments highlight how lower-rank
structures can be easier to learn and suggest possible future
venues for performing structure [Dang et al., 2022] or rep-
resentation learning [Vergari et al., 2018] with circuits.

4



References

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy
Van den Broeck, and Antonio Vergari. Semantic prob-
abilistic layers for neuro-symbolic learning. Advances
in Neural Information Processing Systems, 35:29944–
29959, 2022.

Myung Jin Choi, Vincent YF Tan, Animashree Anandku-
mar, and Alan S Willsky. Learning latent tree graphi-
cal models. Journal of Machine Learning Research, 12:
1771–1812, 2011.

YooJung Choi, Antonio Vergari, and Guy Van den
Broeck. Probabilistic Circuits: A Unifying Framework
for Tractable Probabilistic Modeling. 2020.

CKCN Chow and Cong Liu. Approximating discrete prob-
ability distributions with dependence trees. IEEE trans-
actions on Information Theory, 14(3):462–467, 1968.

Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari.
Nonnegative matrix and tensor factorization [lecture
notes]. IEEE signal processing magazine, 25(1):142–
145, 2007.

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse
probabilistic circuits via pruning and growing. Advances
in Neural Information Processing Systems, 35:28374–
28385, 2022.

Adnan Darwiche. Modeling and reasoning with Bayesian
networks. Cambridge university press, 2009.

Aaron Dennis and Dan Ventura. Learning the architecture
of sum-product networks using clustering on variables.
Advances in Neural Information Processing Systems, 25,
2012.

Lars Grasedyck. Hierarchical singular value decomposi-
tion of tensors. SIAM journal on matrix analysis and
applications, 31(4):2029–2054, 2010.

Tamara G Kolda and Brett W Bader. Tensor decompo-
sitions and applications. SIAM review, 51(3):455–500,
2009.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Anji Liu and Guy Van den Broeck. Tractable regularization
of probabilistic circuits. Advances in Neural Information
Processing Systems, 34:3558–3570, 2021.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scal-
ing Up Probabilistic Circuits by Latent Variable Distilla-
tion. arXiv preprint arXiv:2210.04398, 2022.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro M. Domingos. On Theoretical Properties of
Sum-Product Networks. In International Conference on
Artificial Intelligence and Statistics, 2015.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro
Domingos. On the latent variable interpretation in sum-
product networks. IEEE transactions on pattern analysis
and machine intelligence, 39(10):2030–2044, 2016.

Robert Peharz, Steven Lang, Antonio Vergari, Karl
Stelzner, Alejandro Molina, Martin Trapp, Guy Van den
Broeck, Kristian Kersting, and Zoubin Ghahramani. Ein-
sum networks: Fast and scalable learning of tractable
probabilistic circuits. In International Conference on
Machine Learning, pages 7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kerst-
ing, and Zoubin Ghahramani. Random sum-product net-
works: A simple and effective approach to probabilistic
deep learning. In Uncertainty in Artificial Intelligence,
pages 334–344. PMLR, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product net-
works: A new deep architecture. In 2011 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCV
Workshops), pages 689–690. IEEE, 2011.

Amnon Shashua and Tamir Hazan. Non-negative tensor
factorization with applications to statistics and computer
vision. In Proceedings of the 22nd international confer-
ence on Machine learning, pages 792–799, 2005.

Ledyard R Tucker. Some mathematical notes on three-
mode factor analysis. Psychometrika, 31(3):279–311,
1966.

Antonio Vergari, Robert Peharz, Nicola Di Mauro, Ale-
jandro Molina, Kristian Kersting, and Floriana Esposito.
Sum-product autoencoding: Encoding and decoding rep-
resentations using sum-product networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Antonio Vergari, Nicola Di Mauro, and Floriana Espos-
ito. Visualizing and understanding sum-product net-
works. Machine Learning, 108:551–573, 2019.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy
Van den Broeck. Probabilistic circuits: Representations,
inference, learning and applications. In Tutorial at the
The 34th AAAI Conference on Artificial Intelligence,
2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso,
and Guy Van den Broeck. A Compositional Atlas of
Tractable Circuit Operations: From Simple Transforma-
tions to Complex Information-Theoretic Queries. arXiv
preprint arXiv:2102.06137, 2021.

5



Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking Ma-
chine Learning Algorithms. ArXiv, abs/1708.07747,
2017.

6



A BACKGROUND ON CIRCUITS

In this section, we report formal definitions of circuits and
their structural properties, examining which are met in ex-
isting architectures.

Definition A.1 (Circuit). A circuit c over variables X is
a parameterized computational graph encoding a function
c(X) and recursively defined as one of the followings:

1. A paremeterized function over X (input unit):

c(X) = fθ(X)

2. A product of circuits over subsets of X (product unit):

c(X) =
∏
i

ci(ϕ(ci))

3. A weighted sum of circuits over subsets of X (sum
unit):

c(X) =
∑
i

wici(ϕ(ci))

In the formulas, wi ∈ R are the sum parameters and each
ϕ(ci) ⊆ X is called the scope of the circuit ci (conse-
quently ϕ(c) = X =

∪
i ϕ(ci)). For a sum unit (resp. prod-

uct unit) c, we define its input as in(c) = {ci}i.

Definition A.2 (Probabilistic Circuit). A PC over variables
X is a circuit c encoding a (possibly non-normalized) dis-
tribution, e.g., a function that is non-negative for all values
of X:

c(x) ≥ 0, ∀x ∈ dom(X)

Definition A.3 (Smoothness). A circuit is smooth if, for
each sum unit n, its inputs depend on the same variables:
∀c1, c2 ∈ in(n), ϕ(c1) = ϕ(c2).

Definition A.4 (Decomposability). A circuit is decompos-
able if the inputs of each product unit n depend on disjoint
sets of variables: in(n) = {c1, c2}, ϕ(c1) ∩ ϕ(c2) = ∅.

Definition A.5 (Compatibility). Two circuitsP andQ over
variables X are compatible if (i) they are smooth and de-
composable and (ii) any pair of product units n ∈ P and
m ∈ Q with the same scope can be rearranged into binary
products that are mutually compatible and decompose in
the same way: (ϕ(n) = ϕ(m) =⇒ (ϕ(ni) = ϕ(mi),
ni and mi are compatible) for some rearrangement of the
inputs of n (resp. m) into n1, n2 (resp m1, m2).

Definition A.6 (Structured-decomposability). A circuit is
structured-decomposable if it is compatible with itself.

Although all PC architectures mentioned in this paper are
smooth and decomposable, only PCs built upon RGs in
which every region node has a single child (i.e., is parti-
tioned in a single way) are also structured-decomposable.

Table 2: Structural properties of modern PC architec-
tures: they are all smooth and decomposable, but HCLTs
are also structured-decomposable. RND based PCs are
guaranteed to be structured-decomposable only if rep = 1
(see Appendix B.1).

PC SMO. DEC. STR-DEC.

RAT-SPN (RND-TUCKER) 3 3 3
EINET (RND-TUCKER-F) 3 3 3
EINET (PD-TUCKER-F) 3 3 7
HCLT (CLT-CP) 3 3 3

Note that such circuits are potentially less expressive be-
cause they belong to a restricted class.

We report structural properties of the examined architec-
tures in Table 2.

B PIPELINE INGREDIENTS

In this section, we present and discuss the algorithms in-
volved in each step of the general recipe for building over-
parameterized circuits (Fig. 1). In particular, we provide an
overview of the mentioned RG structures and describe our
proposed RG, the quad graph. Then we provide pseudo-
codes for the overparametrization (and vectorization) and
folding steps.

B.1 EXISTING REGION GRAPHS

Random Region Graph. The simplest RG structure is
the Random RG (RND), proposed in [Peharz et al.,
2020b]. It recursively splits regions into random, balanced
2-partitions, until a maximum depth D is reached. This
mechanism is repeated rep times, and all obtained RGs,
called “repetitions”, are merged into one, sharing com-
mon region nodes. Specifically, since the root is the same
for each repetition, the complete RG’s root will have one
(partition node) child for each different 2-partition of the
whole scope. Consequently, the structure will be structured-
decomposable only if rep = 1. Note that this structure is
dataset-agnostic and depends only on the number of RVs.
The hyper-parameters for its construction are rep and D.

Poon Domingos structure. A structure tailored for images
was introduced in [Poon and Domingos, 2011] and later
named Poon Domingos (PD) structure. It decomposes a
W × H image into rectangles of size ∆ × ∆ (where ∆
is a hyper-parameter) and combines them in a dynamic
programming fashion, building a∆ × b∆ rectangles, for
a ∈ {1, 2, . . . , W

∆ } and b ∈ {1, 2, . . . , H
∆}. Note that each

rectangle constitutes an input region and that the number of
regions grows according to O( 1

∆3 ) [Peharz et al., 2015].

7



HCLT Region Graph. Finally, the most recently intro-
duced RG structure, namely CLT, is dataset-aware and is
based on the Chow-Liu tree algorithm [Chow and Liu,
1968]. The algorithm learns the tree-shaped probabilis-
tic graphical model that best approximates the data dis-
tributions in terms of Kullback-Leibler divergence. Once
learned, this tree is rooted. Then, a region graph can be
constructed in the following way. Since each tree node n is
associated with an RV Xn, we define:

R(n) = {Xn} ∪
∪

c∈ch(n)

R(c)

where ch(n) is the set of n’s children. The region graph is
easily obtained by replacing each node n with the region
node R(n) and replacing each connection with a partition
node, creating additional children (input) regions {Xn}
when needed to complete the partitions.

B.2 QUAD GRAPH

We propose the quad graph (QG), a novel image-tailored
RG that takes a simple yet effective approach to deal with
image data. Inspired by PD, the goal was to provide a more
parameter-efficient solution (e.g., for K = 128, PD-CP-f
has 128.4M parameters while QG-CP-f only 76.8M).

Construction. Starting from the leaves, one for each pixel,
the RG is built in a bottom-up fashion, recursively merging
(2×2) squares of contiguous regions into one (see Fig. 5a).

Initially, a region for each pixel is added to the RG (bot-
tom of Fig. 5a). Then, looking at the whole image (at the
top of the figure, which will be the root region, though
not yet created), starting from the upper left corner, we
can figure out which existing regions compose disjoint
2 × 2 blocks, forming squares (e.g. [X1, X2, X5, X6] and
[X3, X4, X7, X8]). We merge each group of four regions
using the PD (2 × 2) structure, depicted in Fig. 5b: here,
the generic blocks A,B,C,D are merged to form either
horizontal slices (A,B and C,D) or vertical slices (A,C
and B,D), then each pair of slices is merged to reconstruct
the complete block A,B,C,D. This process is iterated un-
til the whole image is enclosed in a single region, requiring
max{⌈log(W )⌉, ⌈log(H)⌉} iterations.

Note that unless the image is of size 2n × 2n, sometimes
it will not be possible to merge 2 × 2 blocks. As an exam-
ple, look at Fig. 5c: starting from the upper left corner of
the image and grouping adjacent pixels, some blocks of re-
gions ([X3, X6] and [X7, X8]) will not be able to form a
square, but will instead be directly merged. Moreover, a re-
gion (X9) will not be merged at all, skipping directly to the
next iteration to be merged. Consequently, QG RG is not
perfectly balanced in the general case.

Pseudo-code. Algorithm 1 specifies the construction pro-
cess for image data of size W×H . 2D array-shaped buffers

Algorithm 1 quadGraph(W,H)

1: Input: Image width W and height H .
2: Output: The QG region graph R for image data with

width W and height H .
3: leaves: buffer of size W ×H
4: for i, j s.t. i ∈ {1, . . . ,W}, j ∈ {1, . . . , H} do
5: leaves[i, j] = {Xij}
6: lastLayer← leaves
7: while W > 1 ∨H > 1 do
8: W ← ⌈W/2⌉
9: H ← ⌈H/2⌉

10: layer: buffer of size W ×H
11: for i, j s.t. i ∈ {1, . . . ,W}, j ∈ {1, . . . , H} do

12:
regions← [lastLayer[a, b] :
(a, b) ∈ {2i, 2i+ 1} × {2j, 2j + 1}]

13: if |regions| = 1 then
14: layer[i, j]← regions[0]
15: else if |regions| = 2 then
16: layer[i, j]← merge(regions[0], regions[1])
17: else if |regions| = 4 then
18: layer[i, j]← pd2by2(regions)

19: lastLayer← layer

20: R← lastLayer[0, 0]
21: returnR

are used to store regions temporarily (lines 3, 10), and par-
tition nodes (as well as internal region nodes) are created
implicitly using the following auxiliary functions:

• merge (line 16), which takes two regionsRA,RB , cre-
ates the partition node P = {RA,RB} and the subse-
quent region nodeR = RA ∪RB , returningR.

• pd2by2 (line 18), which takes a list of four regions
as input and exploits merge to construct the structure
depicted in Fig. 5b, returning its root region.

B.3 OVERPARAMETERIZATION

The overparameterization algorithm of an RG (Algo-
rithm 2) creates and vectorizes K distributions for each
input region node (lines 4-6). Consequently, the circuit is
completed by iterating over each partition node n (lines 8-
12): a specialized makeLayer procedure builds the layers
(line 11), i.e., computational graphs encoding vectorized
functions c : RK

+ × RK
+ → RK′

+ . The inputs of each layer
correspond to n’s children, while the output constitutes a
vector of sum nodes and corresponds to n’s parent.

Note that the choice of the implementation for makeLayer
determines the type of parameterization: Algorithm 3 con-
tains the procedures for Eq. (TUCKER) and Eq. (CP).

8



𝑋1, X2, X3, X4
𝑋5, X6, X7, X8
𝑋9, X10, X11, X12
𝑋13, X14, X15, X16

𝑋1, 𝑋2
𝑋5, 𝑋6

𝑋3, 𝑋4
𝑋7, 𝑋8

𝑋9, 𝑋10
𝑋13, 𝑋14

𝑋11, 𝑋12
𝑋15, 𝑋16

𝑋1 𝑋2 𝑋5 𝑋6 𝑋11 𝑋12 𝑋15 𝑋16

PD 2 × 2

PD 2 × 2PD 2 × 2
. . .

(a) Quad graph (QG) (4× 4)

𝐴 𝐵 𝐶 𝐷

𝐴, 𝐵 𝐵, 𝐷 𝐴, 𝐶 𝐶, 𝐷

𝐴, 𝐵
𝐶, 𝐷

(b) Poon Domingos (PD) (2× 2)

𝑋1, 𝑋2, 𝑋3
𝑋4, 𝑋5, 𝑋6
𝑋7, 𝑋8, 𝑋9

𝑋1, 𝑋2
𝑋4, 𝑋5

𝑋3, 𝑋6 𝑋7, 𝑋8 𝑋9

𝑋1 𝑋2 𝑋4 𝑋5 𝑋3 𝑋6 𝑋7 𝑋8

PD 2 × 2

PD 2 × 2

(c) Odd values generate unbalanced graphs

Figure 5: The quad graph structure recursively partitions
a (squared) image in four squares, with each partition struc-
tured as a 2 × 2 Poon Domingos. In the general case, the
structure is unbalanced

B.4 FOLDING

Different strategies for folding a circuit vary in the choice
of layers to be included in the same fold. In [Peharz et al.,
2020a], a top-down (TD) folding algorithm was proposed.
Intuitively, each height level in Fig. 5a corresponds to a TD
fold, so all the layers constructed from horizontally aligned
regions will be folded together.

However, if, for instance, we were interested in folding all

Algorithm 2 parameterization(R,K,C)

1: Input: A region graphR, positive integers K and C.
2: Output: A smooth and decomposable circuit.
3: marked← ∅
4: for each input region node r ∈ R do
5: c ∈ RK : vector of K input nodes c
6: vec(r)← c
7: marked← marked ∪ {r}
8: while a partition node n ∈ R exists s.t. ch(n) ⊆

marked ∧ pa(n) /∈ marked do
9: l, r ← ch(n)

10: p← pa(n)
11: if p = root(R) then
12: K ′ ← C
13: else
14: K ′ ← K
15: vec(p)← makeLayer(vec(l), vec(r),K ′)
16: marked← marked ∪ {p}

return vec(root(R))

Algorithm 3 Layer builders

Input: Vectorized circuits ℓ, r ∈ RK
+ s.t. ϕ(ℓ) = Xl and

ϕ(r) = Xr with output size K ′

Output: a vectorized circuit o ∈ RK′

+ s.t. ϕ(o) = X and
X = Xl ∪Xr

1: procedure buildTUCKER(ℓ, r,K ′)
2: W ∈ RK×K×K′

(layer weights)
3: Let (o(X))k = (ℓ(Xl))i(W)ijk(r(Xr))j
4: return o

1: procedure buildCP(ℓ, r,K ′)

2: A ∈ RK′×K
+ , B ∈ RK′×K

+

3: Let o(X) = (A ℓ(Xl))⊙ (B r(Xr))
4: return o

input nodes together, this strategy would no longer work,
as one can see in Fig. 5c. Therefore, we propose a bottom-
up (BU) alternative approach (see Algorithm 4), using the
following operations:

• in (line 8), which takes as argument a layer l and re-
turns the set of layers whose output is an input for l;

• fold (line 10), which takes a set of layers as an argu-
ment and folds their computational graphs.

The BU procedure first folds the input layers together (as
"in" returns an empty set), and, at each iteration, forms
a new fold by selecting all remaining layers whose in-
puts have been folded. This is repeated until all layers are
folded.

Note that the BU and TD procedures give the same results
in the case of a balanced RG, and there is no general prefer-
ence between them, except when sharing parameters across
the same fold (as in Eq. (CP-s)). At this stage, the architec-

9



Algorithm 4 foldingBU(c)

1: Input: A vectorized circuit c
2: Output: -
3: Let L be the set of all layers
4: folded← ∅
5: while folded ̸= L do
6: layersToFold← ∅
7: for l ∈ L do
8: if in(l) ⊆ folded and l /∈ folded then
9: layersToFold← layersToFold ∪ {l}

10: fold(layersToFold)
11: folded← folded ∪ layersToFold

Table 3: Complexity summary for a single TUCKER-f or
CP-f layer. Note that space complexity only considers the
memory used for storing the (intermediate) results of the
operations, not counting parameters. Note that B represents
the batch size and F the number of stacked layers in the
folded-layer.

Layer # Params Fwd time Fwd space

TUCKER FK3 O(BFK3) O(BFK2)
CP (R-rank) 3FKR O(BFKR) O(BF (K + 3R))

tural choices require further experimentation.

C EXPERIMENTAL DETAILS

Hardware specifications. All experiments were run on a
server with an NVIDIA RTX A6000 GPU with 48GB of
memory. In all experiments, we used only a single GPU.

C.1 BENCHMARKING

Each benchmarking value is averaged over 100 repetitions
and measures a single forward or backward pass through
the computational graph, using randomly generated data
with a batch size of 128. Plots in Fig. 3 highlight the poly-
nomial difference in complexity between TUCKER and CP
parameterizations, as shown in Table 3. Note that space
complexity refers to the size of all intermediate results com-
puted, not counting parameters.

C.2 LEARNING

For all experiments, we chose categorical input distribu-
tions for the PCs. We used a validation set (5% of the orig-
inal training set) for each dataset and report the results on
the test set.

Parameter learning. We optimize the parameters with
Adam and clamp mixture parameters to a small value ε > 0

106 107 108 109

# Params
1.1
1.2
1.3
1.4
1.5

bp
d

QG-Tucker-f
QG-CP-f

QG-CP-s

106 107 108 109

# Params
3.2
3.4
3.6
3.8
4.0

bp
d

QG-CP-f
QG-Tucker-f

PD-CP-f
PD-Tucker-f

Figure 6: CP-s performance on MNIST are comparable
with those of previously presented parameterizations (left);
results on Fashion-MNIST demonstrate analogous prop-
erties for the different region graphs and layer parameteri-
zations (right).

(≃ 10−19) after each update to keep the weights non-
negative. Since this leads to non-normalized PCs, we opti-
mized the following MLE objective (given the dataset D):

L(D, c) =
∑
x∈D

(log(c(x))− log(Z))

where Z is the partition function of the PC.

Hyper-parameter search. We trained for up to 500 epochs
and performed early stopping (using the validation set). We
grid-searched over the following hyper-parameters using
the validation set:

• K ∈ {4, 8, 16, 32, 64, 128, 256, 512};
• lr ∈ {0.1, 0.01, 0.001};
• ∆ ∈ {4, 7} for the PD region graph;

• batch_size = 100.

Evaluation. We used the test set’s average bits-per-
dimension (bpd) as the evalutation criterion:

bpd(D, c) = −L(D, c)
d · log 2

where d is the number of features in dataset D. Fig. 6 com-
pares QG-CP-s and the previously presented parameteriza-
tions on MNIST and demonstrates similar properties of RG
and layer parameterizations on Fashion-MNIST.

10


	Introduction
	Representing and learning overparameterized circuits
	From Tucker to CP layers
	Experiments
	Conclusion
	Background on Circuits
	Pipeline Ingredients
	Existing Region Graphs
	Quad Graph
	Overparameterization
	Folding

	Experimental Details
	Benchmarking
	Learning


