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Abstract

Revealing the syntactic structure of sentences001
in Chinese poses significant challenges for002
word-level parsers due to the absence of clear003
word boundaries. To facilitate a transition from004
word-level to character-level Chinese depen-005
dency parsing, this paper proposes modeling006
latent internal structures within words. In this007
way, each word-level dependency tree is inter-008
preted as a forest of character-level trees. A009
constrained Eisner algorithm is implemented010
to ensure the compatibility of character-level011
trees, guaranteeing a single root for intra-word012
structures and establishing inter-word depen-013
dencies between these roots. Experiments on014
Chinese treebanks demonstrate the superiority015
of our method over both the pipeline frame-016
work and previous joint models. A detailed017
analysis reveals that a coarse-to-fine parsing018
strategy empowers the model to predict more019
linguistically plausible intra-word structures.020

1 Introduction021

In the field of natural language processing, depen-022

dency parsing plays a crucial role in revealing the023

syntactic structure of sentences, thereby forming024

the foundation for numerous downstream applica-025

tions such as machine translation (Shen et al., 2008;026

Wu et al., 2017), information extraction (Culotta027

and Sorensen, 2004; Gamallo et al., 2012), and sen-028

timent analysis (Nakagawa et al., 2010; Sun et al.,029

2019).030

This task, although straightforward in space-031

delimited languages, encounters significant chal-032

lenges in languages like Chinese, where explicit033

word boundaries are absent. Traditional Chinese034

parsing methods rely heavily on word-level tree-035

banks, necessitating the segmentation of text into036

distinct words before parsing. This prerequisite037

not only adds an additional layer of complexity038

but also makes the parsing outcome vulnerable to039

inaccuracies in segmentation.040

The need to address these issues has prompted a 041

transition from word-level to character-level Chi- 042

nese dependency parsing. However, the lack of 043

character-level Chinese treebanks presents a chal- 044

lenge. As a workaround, researchers have endeav- 045

ored to derive character-level dependency trees 046

from word-level ones (Hatori et al., 2012; Zhang 047

et al., 2014, 2015; Kurita et al., 2017; Li et al., 048

2018; Yan et al., 2020; Wu and Zhang, 2021). 049

Zhang et al. (2014) pioneered the integration 050

of character- and word-level annotations. Figure 1 051

demonstrates a fully depicted character-level depen- 052

dency tree (Figure 1b) by combining the word-level 053

tree (Figure 1a) with annotated intra-word struc- 054

tures. Nonetheless, the application of this method 055

is constrained by the non-trivial task of deriving 056

linguistically coherent intra-word structures. 057

Some researchers have opted for a simpler ap- 058

proach by defining pseudo intra-word structures 059

(Hatori et al., 2012; Yan et al., 2020). As illustrated 060

in Figure 1c, these structures utilize a left-wavy pat- 061

tern, with the rightmost character acting as the root 062

and other characters headed by their right-adjacent 063

characters. Although this method circumvents the 064

labor-intensive annotation process, it may not ac- 065

curately represent the syntactic roles of characters. 066

This paper proposes a new approach to character- 067

level Chinese dependency parsing via modeling 068

latent intra-word structure. As illustrated in Fig- 069

ure 1d, our approach allows for the implicit repre- 070

sentation of all potential internal structures within 071

words. For example, for the word “发展 (de- 072

velop)”, both “发 (grow)→展 (expand)” and “发 073

(grow)←展 (expand)” are acceptable structures. In 074

this way, each word-level dependency tree is inter- 075

preted as a forest of character-level trees. 076

Central to our approach is a constrained Eisner 077

algorithm (Eisner, 1996), crafted to maintain the 078

compatibility of character-level trees it generates. 079

This algorithm enforces two critical constraints: 080

the single-root subtree constraint and the root-as- 081
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上海 计划 发展 金融业

root

nsubj ccomp dobj

Shanghai plans to develop the financial sector

(a) A word-level dependency tree

上 海 计 划 发 展 金 融 业

root

frag
nsubj

app
ccomp

coo
app

app
dobj

up sea plan plot grow expand gold current sector

(b) Zhang et al. (2014): annotated intra-word structure

上 海 计 划 发 展 金 融 业

root

app
nsubj

app app
ccomp

app app
dobj

up sea plot plan launch expand gold fuse sector

(c) Yan et al. (2020): pseudo leftward intra-word structure

上 海 计 划 发 展 金 融 业
up sea plan plot grow expand gold current sector

root
nsubj ccomp dobj

app app app appapp app

(d) Ours: latent intra-word structure

Figure 1: A word-level dependency tree and corresponding character-level trees with three types of intra-word
structure. Intra-word dependencies are represented by dashed arcs and their labels are omitted.

head constraint, which together guarantee that each082

word corresponds to a single-root subtree and that083

inter-word dependencies link to root characters of084

subtrees. Furthermore, we introduce a coarse-to-085

fine parsing strategy to refine the parsing process.086

Our primary contributions include:087

• This work explores modeling latent intra-word088

structure for character-level Chinese dependency089

parsing.090

• By implementing a novel, linguistically informed091

algorithm, the compatibility of character-level092

trees with their word-level counterparts is en-093

sured.094

• We devise a coarse-to-fine parsing strategy that095

improves parsing accuracy and generates more096

linguistically plausible intra-word structures.097

• Experiment results on Chinese treebanks demon-098

strate that our approach outperforms both the099

pipeline model and previous joint models. Ad-100

ditionally, we provide insightful analyses of the101

predicted intra-word structures.102

We will release our code on Github.103

2 Parsing with Latent Structure104

2.1 Word-level Tree to Char-level Forest105

Latent Structure. To transform word-level trees106

into character-level trees, previous studies typically107

defined fixed internal structures for each word, ei-108

ther annotated by human experts (Zhang et al.,109

2014) or generated through rules (Yan et al., 2020).110

Our approach does not explicitly define intra-word111

structures. Instead, it allows for the representation112

of all possible internal structures within each word.113

This method acknowledges the multifaceted nature114

of language, where a single word may have multi- 115

ple structures, especially for words with multiple 116

parts of speech and coordinate characters (Gong 117

et al., 2021). The implicit representation of intra- 118

word structures empowers the model to identify the 119

most plausible structure based on context. 120

Conversion. The latent nature of the intra-word 121

structures facilitates a flexible construction of 122

character-level dependencies, which are catego- 123

rized into intra-word and inter-word for clarity. 124

Within a given word, any two characters can form 125

an intra-word dependency. Conversely, given a 126

head-modifier pair, an inter-word dependency can 127

originate from any characters in the head word to 128

any characters in the modifier word. In this way, 129

a word-level dependency tree can be interpreted 130

as a forest comprising various potential character- 131

level trees, as illustrated by the specific examples 132

in Figures 1b and 1c for the forest in Figure 1d. 133

2.2 Compatibility: Two Constraints 134

The aforementioned conversion process is struc- 135

turally sound, indicating there are no conflicts be- 136

tween character-level and word-level dependencies. 137

However, ensuring the character-level trees faith- 138

fully represent both the internal structure of words 139

and the syntactic relationships between them re- 140

quires addressing compatibility issues. These is- 141

sues, while not explicitly defined, adhere to certain 142

linguistic principles. To this end, we introduce two 143

constraints: 144

(1) The single-root subtree constraint. This 145

constraint upholds the linguistic principle that each 146

word corresponds to a single-root subtree within 147
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发 展 金 融 业
grow expand gold current sector

(a) Two root characters:
“金(gold)” and “业(sector)”

发 展 金 融 业
grow expand gold current sector

(b) Non-root character
“展(expand)” as head

Figure 2: Two examples that violate compatibility con-
straints. The incorrect characters and arcs are high-
lighted in red. Triangles represent complete spans, while
trapezoids represent incomplete spans. Dashed or solid
lines are used to indicate intra-word or inter-word.

the character-level trees. It implies several aspects:148

(i) characters in the word form a subtree; (ii) there149

is a single, most important character representing150

the word, selected as the root of the subtree; (iii) all151

other characters are descendants of this root char-152

acter; (iv) given the single-headed nature of depen-153

dency trees, the root character—and only the root154

character—can modify a character from another155

word, resulting in an inter-word dependency. An156

illustration showing a word erroneously assigned157

two root characters is provided in Figure 2a.158

(2) The root-as-head constraint. While the159

single-root subtree constraint guarantees that only160

the root character can act as the modifier in an inter-161

word dependency, it is possible that a root character162

of one word modifies a non-root character in an-163

other word, as shown in Figure 2b. To accurately164

reflect the relation between intra-word structures,165

we require that only the root character of a word166

can serve as the head in an inter-word dependency.167

The two constraints collectively assert that a root168

character not only represents the central syntactic169

role of the word but also exclusively participates in170

forming inter-word dependencies.171

2.3 The Constrained Eisner Algorithm172

This subsection elaborates on the implementation173

of two compatibility constraints using a modified174

version of the Eisner algorithm (Eisner, 1996).175

Eisner algorithm. The Eisner Algorithm is a dy-176

namic programming algorithm designed to find the177

highest-scoring dependency tree for a given sen-178

tence. It works by iteratively combining spans179

into larger spans and ultimately into a complete180

tree. The algorithm considers two types of spans:181

complete spans and incomplete spans. Complete182

spans comprise a head word and its descendants183

on one side. Incomplete spans encompass a de-184

Algorithm 1 Constrained Eisner Algorithm.
1: Input: arc scores s(i, j), word-level tree Tw

2: ▷ arc scores conflicting with Tw are masked to −∞ ◁
3: Define: I, C ∈ Rn×n

4: Initialize: Ci→i = 0, 1 ≤ i ≤ n
5: for w = 1, . . . , n do
6: for i = 1, . . . , n− w do
7: j = i+ w

8: Ii→j = max
i≤k<j

(s(i, j) + Ci→k + Ck+1←j)

9: Ii←j = max
i≤k<j

(s(j, i) + Ci→k + Ck+1←j)

10: Ci→j = max
i<k≤j

(Ii→k + Ck→j)

11: ▷ j belongs to the right boundaries of the words ◁
12: ▷ if (i,k) inside a word, (k,j) also inside this word ◁

13: Ci←j = max
i≤k<j

(Ci←k + Ik←j)

14: ▷ i belongs to the left boundaries of the words ◁
15: ▷ if (k,j) inside a word, (i,k) also inside this word ◁
16: return C1→n

pendency and the region between the head and 185

modifier. Please refer to the examples in Figure 2. 186

Given all scores of character-level dependencies, 187

it is straightforward to obtain an optimal character- 188

level tree using the Eisner algorithm. However, 189

it is more complex to derive an optimal character- 190

level tree that is compatible with a given word-level 191

tree. To satisfy the compatibility constraints, we 192

propose a constrained Eisner algorithm, presented 193

in Algorithm 1.1 194

Constraint enforcement. To clarify the imple- 195

mentation of two constraints, we first differentiate 196

spans into two types: intra-word and inter-word. 197

Intra-word spans consist solely of intra-word de- 198

pendencies, spanning either part or the entirety of 199

a word. Inter-word spans contain at least one inter- 200

word dependency, spanning multiple words. Please 201

refer to the examples in Figure 2. 202

For the single-root subtree constraint, we ob- 203

serve that cases of multi-roots arise from inter-word 204

complete spans including residual characters from 205

a word (see Figure 2a for an example). Inspired by 206

recent work (Zhang et al., 2021, 2022), we stipulate 207

that inter-word complete spans must terminate at 208

word boundaries. 209

For the root-as-head constraint, based on our ob- 210

servations, instances where non-characters become 211

the heads of inter-word dependencies arise when 212

combining an intra-word incomplete span with an 213

inter-word complete span. An example is provided 214

in Figure 2b. Therefore, we prohibit all such combi- 215

nation operations. To the best of our knowledge, we 216

are the first to address the root-as-head constraint 217

1During training, a constrained Inside algorithm is used to
enumerate all compatible character-level trees.
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in graph-based dependency parsing.218

The implementation of two constraint rules is219

straightforward by using auxiliary mask tensors.220

The additional time complexity is O(n3) but be-221

comes negligible when accelerated by GPUs.222

2.4 A Coarse-to-Fine Parsing Strategy223

In the absence of the word-level trees, determining224

the intra-word and inter-word roles for a depen-225

dency in the character-level trees is not straightfor-226

ward. As the Eisner algorithm conflates two dis-227

tinct roles, determining these roles can only occur228

after the arc labeling step (described in Section 3),229

potentially resulting in the cases that an intra-word230

dependency arc overlays an inter-word dependency231

arc.2 These illegal arcs hinder the recovery from232

character-level trees to word-level trees (see Ap-233

pendix A.1 for details).234

To ensure the validity of output trees, we pro-235

pose a coarse-to-fine parsing strategy, explicitly236

assigning each arc two scores for intra-word and237

inter-word roles. The core idea is to first construct238

intra-word spans and then inter-word spans, thus239

ensuring that intra-word dependency arcs underlie240

the inter-word dependency arcs. The deduction241

rules are depicted in Figure 3. We refer interested242

readers to Algorithm 2 in the appendix for details.243

3 Model244

Notations. Given a sentence x = c0, c1, . . . , cn,245

where ci represents the ith character of x and c0246

denotes an artificial ROOT token, a labeled depen-247

dency tree for x is denoted as t. We view t as a248

set of labeled dependency arcs, using (i, j, l) ∈ t249

to indicate an arc from character ci to cj with a250

label l ∈ L, where L is the set of dependency la-251

bels.3 Additionally, an unlabeled dependency tree252

is denoted as y and an unlabeled dependency arc253

is denoted as (i, j).254

3.1 Parsing Modeling255

Adhering to Dozat and Manning (2017), we employ256

a two-stage parsing framework that first predicts257

unlabeled trees and then labels the arcs in these258

trees. The score of an unlabeled dependency tree259

is the cumulative sum of its unlabeled arc scores:260

s(x,y) =
∑

(i,j)∈y

s(i, j) (1)261

2Under ideal conditions, all intra-word arcs should underlie
the inter-word arcs, as depicted in Figure 1d.

3An additional INTRA label is used to indicate the intra-
word dependency arcs.

LINK(WI,WI→WI): LINK(WI,WI→WE): LINK(WI,WE→WE):
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Figure 3: Deduction rules for coarse-to-fine parsing.
Dashed or solid lines are used to indicate intra-word
spans (WI) or inter-word spans (WE). The highlighted
rule can be ignored to satisfy the root-as-head constraint.
We present only R-rules, omitting the symmetric L-rules
and initial conditions for brevity.

The conditional probability of a unlabeled tree 262

y is defined as: 263

p(y|x) = es(x,y)

Z(x) ≡
∑

y′∈Y(x)
es(x,y′)

(2) 264

where Z(x) is known as the partition term, and 265

Y(x) denotes the set of all possible (projective) 266

trees for x. 267

Forest probability. The forest, denoted as F , 268

comprises dependency trees that meet compatibility 269

constraints. The probability of F is the aggregate 270

probability of each tree y within F . 271

p(F|x) =
∑
y∈F

p(y|x)

=

Z(x,F) ≡
∑
y∈F

es(x,y)

Z(x)

(3) 272

where Z(x,F) can be computed via a constrained 273

Inside algorithm, by substituting the max-product 274

in Algorithm 1 with the sum-product. 275

3.2 Training 276

During training, the loss for a sentence x is com- 277

posed of two parts: (unlabeled) tree loss and label 278
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loss.279

L(x) = Ltree(x) + Llabel(x) (4)280

Tree loss. Given a sentence x, the tree loss is281

naturally defined as the negative log-probability of282

the forest F :283

Ltree(x) = − log p(F|x) (5)284

Label loss. The probability of assigning label l285

to an unlabeled arc (i, j) is defined as:286

p(l|i, j) = es(i,j,l)∑
l′∈L e

s(i,j,l′)
(6)287

The label loss is the sum of negative log proba-288

bilities of correctly labeling each arc in the forest289

F .4290

Llabel(x) =
∑
y∈F

∑
(i,j)∈y

− log p(l|i, j) (7)291

3.3 Inference292

To parse a sentence x, the model first selects the293

highest-scoring unlabeled tree ŷ via (vanilla) Eis-294

ner algorithm.295

ŷ = arg max
y∈Y(x)

s(x,y) (8)296

Subsequently, the optimal label for each arc297

(i, j) ∈ ŷ is determined.298

l̂ = argmax
l∈L

s(i, j, l) (9)299

3.4 Network Architecture300

Encoding. The sentence x is directly input into301

the pre-trained BERT model, and the output from302

the last layer is used as the representation of char-303

acters.304

. . . ,hi, · · · = BERT(. . . , ci, . . . ) (10)305

Scoring. To score dependency arcs, we utilize the306

biaffine attention mechanism as outlined by Dozat307

and Manning (2017). In the coarse-to-fine parsing,308

intra- and inter-word arcs are scored separately309

through distinct biaffine attentions. More details310

are provided in Appendix A.3.311

4 Experiments312

Data. We conduct experiments on three ver-313

sions of the Penn Chinese Treebank (CTB): CTB5,314

4Refer to Appendix A.2 for the enumeration of these arcs.

CTB6, and CTB7.5 The split of train, development, 315

and test sets follows established practices (Zhang 316

and Clark, 2010; Yang and Xue, 2012; Wang et al., 317

2011). Table 5 in the appendix provides detailed 318

statistics. The conversion from phrase structures 319

to dependency structures is performed using two 320

methods: (1) the Stanford parser v3.3.06 with Stan- 321

ford Dependencies (SD) (de Marneffe et al., 2006); 322

(2) the Penn2Malt tool7 with the head-finding rules 323

as described by Zhang and Clark (2008), hence- 324

forth referred to as Z&C. Only projective trees are 325

retained during training. An intra-word structure 326

dataset annotated by Gong et al. (2021) on CTB5 327

is utilized for experiments and analysis.8 328

Evaluation metrics. For Chinese word segmen- 329

tation (CWS), we employ standard F1 measures 330

(F1seg). For dependency parsing, evaluation is con- 331

ducted at the word level, using word-level F1 scores 332

(UFdep and LFdep) as the evaluation metrics (Yan 333

et al., 2020). A dependency arc is considered cor- 334

rect only if the head-modifier word pair is correctly 335

segmented. Punctuation is excluded during the 336

evaluation of dependency parsing. 337

Baseline and proposed models. The evaluation 338

includes the following models: 339

• TreeCRF: A word-level biaffine parsing model 340

with a CRF loss, detailed in Zhang et al. (2020). 341

• Pipeline: This framework first performs CWS 342

by assigning ‘BMES’ tags to characters and then 343

feeds the segmented results into TreeCRF. 344

• Leftward: A model uses pseudo leftward intra- 345

word structures as described by Yan et al. (2020). 346

• Latent: The proposed model uses latent intra- 347

word structures. The constrained Eisner algo- 348

rithm is used to ensure compatibility. 349

• Latent-c2f: Enhancing Latent with a coarse-to- 350

fine parsing strategy, as described in Section 2.4. 351

Results using pseudo rightward structures and an- 352

notated structures are provided in Appendix B.1. 353

Hyper-parameters. All models utilize the “bert- 354

base-chinese”9 as the encoder to obtain contextual 355

representations. For word-level models, word rep- 356

resentations are derived by averaging the corre- 357

sponding character representations. The configu- 358

ration of the scoring layer adheres to Zhang et al. 359

5https://catalog.ldc.upenn.edu/LDC2010T07
6https://nlp.stanford.edu/software/lex-parser.shtml
7https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
8https://github.com/SUDA-LA/wist
9https://huggingface.co/bert-base-chinese
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Model
CTB5 CTB6 CTB7

F1seg UFdep LFdep F1seg UFdep LFdep F1seg UFdep LFdep

w/ head-finding rules of SD
Yan et al. (2020) 98.46 89.59 85.94 – – – 97.06 85.06 80.71

Pipeline 98.72 90.93 88.39 97.23 87.09 83.86 97.16 85.77 82.00
Leftward 98.76 90.91 88.37 97.30 87.21 84.04 97.22 85.85 82.17
Latent (Ours) 98.76 91.06 88.49 97.28 87.22 84.03 97.17 85.74 82.04
Latent-c2f (Ours) 98.79 90.95 88.34 97.33 87.30 84.12 97.22 85.90 82.23

w/ head-finding rules of Z&C
Hatori et al. (2012)† 97.75 81.56 – 95.45 74.88 – 95.42 73.58 –
Zhang et al. (2014)† 97.67 81.63 – 95.63 76.75 – 95.53 75.63 –
Zhang et al. (2015)† 98.04 82.01 – – – – – – –
Kurita et al. (2017)† 98.37 81.42 – – – – 95.86 74.04 –
Wu and Zhang (2021)‡ 98.57 – 90.38 97.32 – 86.49 97.25 – 84.68

Pipeline 98.72 92.00 91.04 97.23 87.71 86.77 97.16 86.39 85.19
Leftward 98.67 91.98 91.03 97.39 88.02 87.06 97.26 86.48 85.30
Latent (Ours) 98.74 92.16 91.25 97.37 87.99 87.06 97.22 86.50 85.33
Latent-c2f (Ours) 98.77 92.03 91.08 97.37 88.10 87.14 97.26 86.55 85.37

Table 1: Results on CTB5, CTB6, and CTB7 test sets. The best results are in bold. † indicates using additional
POS tag information. ‡: Wu and Zhang (2021) consider a dependency arc correct even if the head word is wrongly
segmented; thus, the reported results are not directly comparable to ours.

(2020). Refer to Appendix A.4 for detailed hyper-360

parameter settings and optimization procedures.361

All results are averaged over four runs with dif-362

ferent random seeds.363

4.1 Main Results364

Comparison with the pipeline framework. As365

shown in Table 1, our latent models (Latent and366

Latent-c2f) consistently outperform the pipeline367

model across all metrics, except for LFdep on368

CTB5 using SD, where Latent-c2f is lower by369

0.05%. Latent-c2f achieves absolute improvements370

of 0.27% and 0.37% in LFdep score on CTB6 across371

two dependency representations. Similar improve-372

ments are observed on CTB5 and CTB7. The373

results demonstrate the efficacy of our proposed374

latent parsing method in mitigating the error propa-375

gation problem.376

Comparison with previous joint models. Ta-377

ble 1 also compares our method against previous378

joint models. The majority of prior models rely on379

traditional discrete features or static embeddings,380

resulting in performance lag compared to our latent381

models. The exception is Yan et al. (2020), which382

utilizes pre-trained BERT. Nevertheless, our latent383

models achieve substantial improvements, e.g., a 384

1.52% increase in LFdep on CTB7. 385

Notably, Leftward can be considered a reim- 386

plementation of Yan et al. (2020), employing the 387

same network architecture and hyper-parameter 388

settings as our latent models. In comparison, La- 389

tent achieves comparable parsing performance and 390

Latent-c2f achieves better parsing performance. 391

Parsing with gold-standard segmentation. To 392

isolate the impact of word segmentation errors on 393

parsing performance, we also conduct experiments 394

using gold-standard segmentation, employing at- 395

tachment score metrics (UAS and LAS). 396

As shown in Table 2, character-level models lag 397

behind the word-level model (TreeCRF) by a signif- 398

icant margin, except for Latent on CTB5.10 Among 399

character-level models, Latent-c2f significantly en- 400

hances the performance of Latent on CTB7 and 401

two latent models consistently outperform Left- 402

ward. This suggests that our latent models possess 403

a superior ability in identifying head characters of 404

words, and enforcing the rightmost character as 405

10This discrepancy may be attributed to the utilization of
word-level information. Unlike word-level models that can
directly utilize word representations, character-level models
are merely aware of word boundaries.
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Model
CTB5 CTB7

UAS LAS UAS LAS

w/ head-finding rules of SD
TreeCRF 92.83 90.14 90.14 85.89

Leftward 92.69 89.91 89.08 84.77
Latent (Ours) 92.99 90.19 89.29 84.99
Latent-c2f (Ours) 92.84 89.99 89.69 85.45

w/ head-finding rules of Z&C
TreeCRF 93.95 92.90 90.52 89.16

Leftward 93.77 92.70 89.67 88.26
Latent (Ours) 93.96 93.00 89.86 88.46
Latent-c2f (Ours) 93.88 92.89 90.06 88.70

Table 2: Results using gold-standard segmentation on
CTB5 and CTB7 test sets. Best results are in bold.

Model
CTB7

F1seg UFdep LFdep CM

w/ head-finding rules of SD
Latent-c2f 97.12 85.59 81.87 29.22
- single-root 96.89 85.31 81.57 28.16
- root-as-head 97.07 85.52 81.79 28.59
- both constraints 96.80 85.21 81.48 27.26

Table 3: Ablation study on CTB7 dev set. “CM”: Com-
plete match of labeled dependency trees.

the word head may not be the best practice.406

4.2 Analysis407

Impact of proposed constraints. Ablation stud-408

ies are conducted to investigate the individual and409

combined effects of the single-root subtree and410

root-as-head constraints. Complete match (CM)411

scores for the entire dependency tree are also pro-412

vided. The removal of both constraints, as shown413

in Table 3, results in the lowest LFdep score. The414

individual application of each constraint is less ef-415

fective than using both constraints together. No-416

tably, the absence of the single-root subtree con-417

straint leads to a more significant decline in perfor-418

mance. This is justified by the fact that the single-419

root subtree constraint minimizes the segmentation420

of words into disjoint parts. The application of421

the root-as-head constraint alone offers a modest422

0.08% improvement in LFdep but leads to a sub-423

stantial 0.63% increase in CM. The results indicate424

that an accurate representation of intra-word struc-425

Structure
Latent Latent-c2f

Annt.
SD Z&C SD Z&C

99.52 99.70 49.32 50.26 48.07
0.48 0.30 50.68 49.74 51.93

91.34 91.32 41.04 42.39 34.67
0.02 0.02 4.67 1.64 34.20
0.01 0.00 40.20 37.64 1.87

54.06 55.34 10.07 9.28 7.24
0.00 0.00 21.33 30.83 0.07
2.77 2.66 1.78 0.98 15.45
0.00 0.00 5.27 2.48 7.20

Table 4: Distribution of intra-word structures predicted
by our latent models on CTB6 test set. “Annt.” denotes
annotated structures. Only high-frequency structures
are provided. Filled dots represent root characters.

tures and their syntactic relationships is beneficial 426

for parsing performance and tree completeness. 427

Distribution of predicted intra-word structures. 428

A unique feature of our method is its capacity to 429

infer complex intra-word structures. We assess the 430

distribution of predicted structures, grouping them 431

by word length to evaluate common patterns.11 We 432

focus on words of two, three, and four characters, 433

as longer words are infrequent. A reference distri- 434

bution of annotated structures by Gong et al. (2021) 435

is also provided. High-frequency structures are 436

shown in Figure 4. A comprehensive overview is 437

available in Table 6 in the appendix. 438

For Latent, a prevalent left-wavy pattern emerges 439

across words of varying lengths. Latent-c2f al- 440

leviates this leftward bias. For two-character 441

words, the left-headed and right-headed structures 442

in Latent-c2f are balanced, closely aligning with 443

the annotated ones. For three- and four-character 444

words, Latent-c2f can predict right-branched struc- 445

tures, which are seldom or never observed in La- 446

tent. 447

The leftward bias in Latent deserves further dis- 448

cussion. The Latent model, employing the Eis- 449

ner algorithm, does not distinctly differentiate be- 450

tween intra- and inter-word dependencies. Con- 451

sequently, this conflation unintentionally transfers 452

the arc direction bias from the inter-word depen- 453

dencies—derived from word-level trees—to the 454

inherently latent intra-word dependencies. Given 455

11The complete match evaluation is presented in Ap-
pendix B.2.
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Figure 4: The unlabeled attachment score (UAS) for
words of different lengths on CTB7 test set using SD.

that Chinese is a left-branching language, CTB ex-456

hibits a predominant occurrence of leftward arcs457

over rightward ones, with a distribution of 60%458

on SD and 70% on Z&C. The Latent-c2f model459

utilizes dual biaffine attention mechanisms for scor-460

ing dependencies, which serves to selectively filter461

arc direction information, thereby mitigating the462

inherent leftward bias observed in Latent.463

Performance across word lengths. We further464

investigate the performance of character-level mod-465

els across words of different lengths. The results in466

Figure 4 are obtained using gold-standard segmen-467

tation. Latent-c2f exhibits the best performance for468

words of lengths 1, 2, and 3. However, for words469

with a length greater than or equal to 4, Latent-c2f470

performs worse than Latent, suggesting that coarse-471

to-fine parsing may not be advantageous for longer472

words. Interestingly, the performance difference473

between Leftward and Latent is marginal for words474

of length 2 and 3. This is consistent with the in-475

formation in Table 4, where intra-word structures476

of lengths 2 and 3 primarily exhibit a left-wavy477

pattern for Latent, nearly identical to Leftward.478

5 Related Work479

Intra-word structure. Zhao (2009) were the first480

to explore intra-word structures in Chinese through481

unlabeled dependency forms. Li (2011) and Zhang482

et al. (2013) extended this work by introducing483

constituency trees to depict these structures, which484

were further refined by Zhang et al. (2014) through485

their conversion of constituency trees into depen-486

dency trees. Gong et al. (2021) went on to investi-487

gate intra-word (labeled) dependencies, positioning488

the parsing of these structures as a distinct task.489

Character-level dependency parsing. The area 490

of character-level dependency parsing, especially 491

within the context of Chinese, has undergone signif- 492

icant evolution. Hatori et al. (2012) led the initial 493

efforts by introducing a transition-based parser that 494

leveraged pseudo intra-word structures. This was 495

followed by Zhang et al. (2014), who integrated an- 496

notated intra- and inter-word dependencies. Subse- 497

quent studies aimed to enhance the transition-based 498

parsers with neural networks (Kurita et al., 2017; 499

Li et al., 2018). Yan et al. (2020) were the first to 500

adopt the graph-based parsing approach. 501

Span constraints. The dependency structure is 502

closely related to spans (not limited to phrases and 503

words). Spitkovsky et al. (2010) demonstrated how 504

naturally annotated spans could be transformed into 505

dependency structures by applying various parsing 506

constraints. For transition-based parsers, Nivre 507

et al. (2014) emphasized the necessity of a single- 508

root subtree over the input spans. Similarly, Zhang 509

et al. (2022) framed span-based semantic role la- 510

beling as dependency parsing, enforcing semantic 511

arguments corresponding to single-root subtrees. 512

6 Conclusion 513

This paper explores modeling latent intra-word 514

structures for character-level Chinese dependency 515

parsing. Our approach, underpinned by the con- 516

strained Eisner algorithm, ensures the compatibility 517

of constructed character-level trees. The incorpo- 518

ration of a coarse-to-fine parsing strategy further 519

enhances the effectiveness and rationality of the 520

parsing process. Our experiments and detailed anal- 521

yses reveal the following findings: 522

• Our method outperforms not only the pipeline 523

model but also previous joint models in character- 524

level Chinese dependency parsing. 525

• Given gold-standard segmentation, our latent 526

models, especially the coarse-to-fine one, demon- 527

strate superior capability in identifying the head 528

character of a word, suggesting that designating 529

the rightmost character as the head of the word 530

may not be optimal. 531

• The proposed compatibility constraints can im- 532

prove both parsing accuracy and the complete- 533

ness of tree structures. 534

• The intra-word structures predicted by the latent 535

model tend to exhibit a left-wavy shape. The 536

coarse-to-fine strategy alleviates the leftward bias 537

and produces structures more aligned with manu- 538

ally annotated ones. 539
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7 Limitations540

Projectivity. Our method treats intra-word struc-541

tures as latent, offering a flexible and rich repre-542

sentation of internal word structures. However, it543

operates within the confines of projective parsing544

due to the inherent nature of the Eisner algorithm.545

This constraint might limit the applicability of the546

model in accurately parsing non-projective trees.547

Computational Efficiency. The introduction of548

constraints into the Eisner algorithm undoubtedly549

increases its complexity. Although auxiliary ten-550

sors and GPU utilization help mitigate the addi-551

tional time burden, computational efficiency re-552

mains a concern, particularly as the necessity to cal-553

culate inside scores twice doubles the training du-554

ration. Moreover, the incorporation of a coarse-to-555

fine strategy, while beneficial for parsing accuracy,556

further compounds the computational demands.557

8 Ethics Statement558

We are committed to upholding high ethical stan-559

dards throughout this paper. Our research focuses560

on Chinese dependency parsing, utilizing the Penn561

Chinese Treebank (LDC2010T07) for experimental562

purposes. We have obtained the necessary permis-563

sions and licenses for the acquisition of the data,564

and we strictly adhere to the terms of use associated565

with it. Researchers with access to the treebank can566

replicate our experiments using our provided code.567

Moreover, the annotated intra-word structures used568

for analysis are openly accessible and do not im-569

pose any acquisition or usage requirements. We570

believe that the utilization of these datasets will not571

compromise the confidentiality or integrity of indi-572

viduals, nor will it contain offensive content. Ad-573

ditionally, given that our work primarily explores574

syntactic methodologies, we do not foresee any575

potential risks associated with our research.576
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A Implementation Details780

A.1 Char-Tree to Word-Tree Recovery781

After predicting an optimal character-level tree, a782

word-level tree can be recovered from it. The first783

step is to identify all subtrees corresponding to784

words, which must satisfy two conditions: (1) con-785

tain only intra-word dependency arcs (indicated by786

an INTRA label); (2) be linked by an inter-word787

dependency arc (indicated by common syntactic788

labels). Next, these subtrees are collapsed into789

words. Finally, the character-level inter-word arcs790

are revived into word-level arcs.791

A.2 Loss Function792

To calculate the label loss, we need to enumerate793

each arc in each tree in the forest, which is expo-794

nential in the worst case. Inspired by Zhang et al.795

(2022), we find this enumeration can be integrated796

into the computation of the tree loss.797

First, we define the probability of assigning the798

labels to all arcs in the unlabeled tree y as:799

p(r|x,y) =
∏

(i,j)∈y

p(l|i, j) (11)800

where r is the set of labels for all arcs in y.801

Then, we define the probability of the labeled802

tree t of a given sentence x as:803

p(t|x) = p(y|x) · p(r|x,y) (12)804

Dataset Train Dev. Test

CTB5 18,104 352 348
CTB6 23,420 2,079 2,796
CTB7 31,112 10,043 10,292

Table 5: Data statistics. We present the number of
sentences in the training, development, and test sets.

Structure
Latent Latent-c2f

Annt.
SD Z&C SD Z&C

99.52 99.70 49.32 50.26 48.07
0.48 0.30 50.68 49.74 51.93

91.34 91.32 41.04 42.39 34.67
0.02 0.02 4.67 1.64 34.20
7.03 8.10 8.15 7.31 5.78
0.01 0.00 40.20 37.64 1.87
0.02 0.01 2.96 9.14 7.02
0.96 0.19 2.37 1.60 15.30

54.06 55.34 10.07 9.28 7.24
12.37 22.33 9.28 12.08 9.39
0.44 1.98 18.72 14.79 0.57
0.00 0.00 21.33 30.83 0.07
0.04 0.00 6.19 3.92 11.94
2.77 2.66 1.78 0.98 15.45
0.00 0.00 5.27 2.48 7.20
0.32 0.20 0.20 0.00 7.13

Table 6: Distribution of intra-word structures predicted
by our latent models on the CTB6 test set. “Annt.” de-
notes annotated structures. Filled dots represent root
characters.

Finally, the loss function is defined as the nega- 805

tive log-likelihood of the labeled forest T : 806

L(x) = − log p(T |x)

p(T |x) =
∑
t∈T

p(t|x)

=

∑
y∈F es(x,y) · p(r|x,y)

Z(x)

=

∑
y∈F

∏
(i,j)∈y e

s(i,j)+log p(l|i,j)

Z(x)

(13) 807

By adding the log probability of labels to the arc 808

scores, the label loss is naturally integrated into the 809

tree loss via the constrained Inside algorithm. 810
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Algorithm 2 Coarse-to-fine Eisner Algorithm.

1: Input: intra-word arc scores ŝ(i, j) and inter-word arc scores s(i, j)
2: Define: Î , I, Ĉ, C ∈ Rn×n ▷ The hat symbol denotes an intra-word span
3: Initialize: Ĉi→i = 0, Ci→i = −∞, 1 ≤ i ≤ n
4: for w = 1, . . . , n do
5: for i = 1, . . . , n− w do
6: j = i+ w

7: Îi→j = max
i≤k<j

(ŝ(i, j) + Ĉi→k + Ĉk+1←j)

8:
Ii→j = max

i≤k<j
(s(i, j) + Ĉi→k + Ĉk+1←j , s(i, j) + Ĉi→k + Ck+1←j ,

s(i, j) + Ci→k + Ĉk+1←j , s(i, j) + Ci→k + Ck+1←j)

9: Îi←j = max
i≤k<j

(ŝ(j, i) + Ĉi→k + Ĉk+1←j)

10:
Ii←j = max

i≤k<j
(s(j, i) + Ĉi→k + Ĉk+1←j , s(j, i) + Ĉi→k + Ck+1←j ,

s(j, i) + Ci→k + Ĉk+1←j , s(j, i) + Ci→k + Ck+1←j)

11: Ĉi→j = max
i<k≤j

(Îi→k + Ĉk→j)

12: Ci→j = max
i<k≤j

(Îi→k + Ck→j , Ii→k + Ĉk→j , Ii→k + Ck→j)

13: Ĉi←j = max
i≤k<j

(Ĉi←k + Îk←j)

14: Ci←j = max
i≤k<j

(Ci←k + Îk←j , Ĉi←k + Ik←j , Ci←k + Ik←j)

15: return C1→n

A.3 Coarse-to-fine Scoring811

To score a dependency arc i→ j, we first feed the812

output from encoder h into two MLPs to obtain the813

representations of character as head and modifier.814

Then, to distinguish the intra-word and inter-word815

roles, the arc is scored by two different biaffine816

layers.817

h
(arc−head)
i = MLP(arc−head)(hi)

h
(arc−mod)
j = MLP(arc−mod)(hj)

s(intra)(i, j) = h
(arc−head)
i W (intra)h

(arc−mod)
j

s(inter)(i, j) = h
(arc−head)
i W (inter)h

(arc−mod)
j

(14)818

A.4 Hyper-parameter Details819

We utilize the default parameter configurations for820

pre-trained BERT and directly fine-tune the entire821

model. The configuration of the scoring layer ad-822

heres to Zhang et al. (2020). We employ AdamW823

(Loshchilov and Hutter, 2019) for parameter opti-824

mization with β1 = 0.9, β2 = 0.9, ϵ = 1× 10−12,825

and weight decay of 0. The learning rate is set826

to 5× 10−5 for the encoder and 1× 10−3 for the827

scorer. The dropout rate is set to 0.1 for the encoder828

and 0.33 for the scorer. We train the model for 10829

epochs with 1,000 tokens per batch. 830

B Supplementary Results 831

B.1 Additional Models 832

Two additional models are included in the compar- 833

ison, employing different strategies to handle the 834

internal structures of words: 835

• Rightward: A model uses pseudo intra-word 836

structures in a right-wavy pattern, which is sim- 837

ilar to the leftward pattern but in the opposite 838

direction. 839

• Annotated: A model uses annotated intra-word 840

structures by Gong et al. (2021). If no annotated 841

structure is available for a word, the latent struc- 842

ture is employed. 843

The results are presented in Table 7. Right- 844

ward achieves performance similar to Leftward. 845

Specifically, it performed slightly better on SD but 846

slightly worse on Z&C. Surprisingly, Annotated 847

only achieves comparable performance to Pipeline. 848

Comparing Annotated and Latent, the use of anno- 849

tated structures does not improve performance and 850

even degrades it. This finding is consistent with 851

Wu and Zhang (2021), who observed that using 852

annotated structures by Zhang et al. (2014) is detri- 853

mental to neural dependency parsers. Two points 854

12



Model
CTB5 CTB6 CTB7

F1seg UFdep LFdep F1seg UFdep LFdep F1seg UFdep LFdep

w/ head-finding rules of SD
Pipeline 98.72 90.93 88.39 97.23 87.09 83.86 97.16 85.77 82.00
Annotated 98.68 90.74 88.05 97.30 87.10 83.87 97.17 85.70 81.95
Leftward 98.76 90.91 88.37 97.30 87.21 84.04 97.22 85.85 82.17
Rightward 98.76 90.83 88.24 97.35 87.34 84.12 97.23 85.89 82.23
Latent (Ours) 98.76 91.06 88.49 97.28 87.22 84.03 97.17 85.74 82.04
Latent-c2f (Ours) 98.79 90.95 88.34 97.33 87.30 84.12 97.22 85.90 82.23

w/ head-finding rules of Z&C
Pipeline 98.72 92.00 91.04 97.23 87.71 86.77 97.16 86.39 85.19
Annotated 98.66 91.85 90.92 97.34 87.87 86.90 97.23 86.35 85.17
Leftward 98.67 91.98 91.03 97.39 88.02 87.06 97.26 86.48 85.30
Rightward 98.72 91.65 90.71 97.33 87.84 86.90 97.26 86.46 85.28
Latent (Ours) 98.74 92.16 91.25 97.37 87.99 87.06 97.22 86.50 85.33
Latent-c2f (Ours) 98.77 92.03 91.08 97.37 88.10 87.14 97.26 86.55 85.37

Table 7: Results on CTB5, CTB6, and CTB7 test sets. The best results are in bold.

Model CM CMM-1

Latent (SD) 42.86 44.20
Latent (Z&C) 42.77 44.11
Latent-c2f (SD) 44.26 85.00
Latent-c2f (Z&C) 42.41 84.36

Table 8: Complete match (CM) of intra-word structures
on CTB6 test set.

can be concluded from the results:855

• Both leftward and rightward intra-word struc-856

tures are effective for the joint CWS and depen-857

dency parsing task.858

• The usefulness of annotated structures in the deep859

learning era is questionable and deserves further860

investigation.861

B.2 Complete Match of Structures862

In addition to investigating the distribution of intra-863

word structures, we utilize the complete match864

(CM) metric to evaluate the performance of our865

latent models in predicting intra-word structures.866

The complete match measures the percentage of867

words with correct whole structures. Here, we re-868

fer to the intra-word structures annotated by Gong869

et al. (2021) as the gold standard. We calculate870

the average of the results from four seed models.871

Additionally, since no gold-standard structures are872

employed during training, the evaluation can be873

regarded as unsupervised. Following studies on874

unsupervised POS tagging (Johnson, 2007; Tran 875

et al., 2016), we employ a many-to-one (M-1) map- 876

ping to align the predicted structures with the gold 877

standard. Specifically, if any predicted structure by 878

a seed model matches the gold standard, it is con- 879

sidered a complete match. The results are shown in 880

Table 8. Compared to Latent, Latent-c2f achieves 881

a similar CM score but higher M-1 mapping re- 882

sults. This is because Latent-c2f favors leftward 883

arcs in some seed models and rightward arcs in 884

others. When employing a many-to-one mapping, 885

more structures predicted by Latent-c2f align with 886

their gold-standard counterparts. 887

B.3 Model Focus on Optimal Structure 888

Prediction 889

During inference, our method enables investigation 890

into the feasibility of all possible internal structures 891

within each word. Considering the challenge of 892

enumerating all structures, we assess the model 893

focus on each arc using marginal probabilities. We 894

analyze the sentence “金/杯子/的/白开水” (The 895

clear water in a golden cup) using the Latent-c2f 896

model as a case study. Figure 5 displays the prob- 897

ability matrix for this sentence. For the word “杯 898

子 (cup)”, the model confidently identifies a de- 899

pendency from character “杯 (cup)” to character 900

“子 (child)”. However, the model struggles to deter- 901

mine the head character of “白 (white)” in the word 902

“白开水 (clear water)”. This case study demon- 903
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金 杯 子 的 白 开 水

金

杯

子

的

白

开

水

0 0 0 0 0 0 0

1 0 1 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0.01 0

0 0.13 0 0 0.5 0 0.13

0 0.87 0 0 0.5 0.86 0

0

0.2

0.4

0.6

0.8

1

Figure 5: The probability matrix for the sentence “金/杯
子/的/白开水” (The clear water in a golden cup). The
cell (i, j) corresponds to an arc from i to j.

strates that the model is very certain about the opti-904

mal structure for some words but still leaves room905

for predictions on other structures.906
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