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Abstract

Large-scale pre-trained language models, such
as BERT, RoBERTa, and GPT, achieve state-of-
the-art performance across various NLP tasks
but face significant deployment challenges in
resource-constrained environments due to high
computational demands. To address this, we
propose Clustering-Based Knowledge Distilla-
tion with Sentence Pruning Processing, a novel
framework that enhances knowledge transfer
by integrating multiple teacher models and
refining sentence-level representations. Our
approach employs cosine similarity measure-
ment to identify cluster centers based on the
strongest edge weights, ensuring that the most
informative sentences are preserved. Addition-
ally, clustering-based pruning with dynamic
thresholds, guided by TF-IDF-based impor-
tance scores, effectively removes redundant in-
formation while retaining critical knowledge.
By aggregating diverse knowledge from mul-
tiple teachers, Clustering-Based Knowledge
Distillation with Sentence Pruning Process-
ing enhances model robustness and general-
ization. Experimental results on multiple NLP
benchmarks demonstrate that our method out-
performs existing knowledge distillation tech-
niques, achieving higher accuracy while signifi-
cantly reducing computational overhead and in-
ference time. Notably, our framework achieves
up to 23x speedup on SST-2 and improves RTE
accuracy by 4.5%, demonstrating its effective-
ness for efficient NLP model deployment.

1 Introduction

Large-scale pre-trained language models, such as
BERT, RoBERTa, and GPT, have established new
benchmarks across various NLP tasks, achieving
state-of-the-art performance(Koroteev, 2021; De-
lobelle et al., 2020; Achiam et al., 2023). How-
ever, their substantial computational requirements
pose challenges for real-world deployment, par-
ticularly in low-power and constrained computing
environments(Jiao et al., 2020). To address this

challenge, Knowledge Distillation (KD) has been
widely adopted as an effective model compression
technique that transfers knowledge from a large
teacher model to a smaller student model, en-
abling efficient inference while maintaining high
performance.

Despite its effectiveness, conventional KD meth-
ods exhibit several limitations. Traditional KD
techniques primarily focus on aligning the output
distributions of teacher and student models, often
neglecting structured representations, such as
inter-sentence relationships and token-level impor-
tance(Wei et al., 2024). This oversimplified knowl-
edge transfer may lead to suboptimal learning in the
student model. Furthermore, most KD approaches
rely on a single teacher model, which restricts
the diversity of knowledge imparted to the student
model, potentially limiting its generalization abil-
ity(Pham et al., 2023). Additionally, transferring
knowledge directly from a complex teacher model
may introduce irrelevant information, thereby re-
ducing the overall learning efficiency of the student
model(Yuan et al., 2024).

A key observation motivating our study is that
different teacher models exhibit varying levels
of effectiveness depending on the downstream
task. As shown in Figure 1, RoOBERTa-Base gen-
erally achieves higher accuracy than BERT-Base
on MRPC and MNLI-mm tasks, indicating that it
encodes richer knowledge. However, when trans-
ferring knowledge from these teacher models to a
smaller student model (e.g., BERT3), we observe
that the student model trained with BERT-Base per-
forms better than the one trained with RoOBERTa-
Base. This suggests that using a stronger teacher
model does not always result in better student per-
formance, as excessively complex teacher models
may introduce hard-to-learn knowledge, making
student model training less effective.

To overcome these limitations, we propose
clustering-Based Knowledge Distillation with
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(a) MRPC dataset

(b) MNLI-mm dataset

Figure 1: Comparison of Teacher and Student Model
Performance on MRPC and MNLI-mm tasks. While
RoBERTa-Base outperforms BERT-Base as a stan-
dalone model, its knowledge transfer to student models
does not always lead to better performance, highlighting
the importance of structured knowledge distillation.

Sentence Pruning Processing, a novel frame-
work that enhances knowledge transfer by integrat-
ing multiple teacher models while refining the in-
put representation through sentence-level pruning.
Our method utilizes Clustering-Based Knowl-
edge Distillation with Sentence Pruning Process-
ing, which aggregates knowledge from multiple
teacher models to enhance robustness and diver-
sity while modeling inter-sentence relationships
through clustering-based representation. This ap-
proach effectively retains essential information, op-
timizing the student model’s learning process.

This study investigates the following key re-
search objectives:

* How can multiple teacher models be ef-
fectively integrated to enhance knowledge
transfer?

* How does sentence-level pruning improve
the efficiency of student model training?

* What are the effects of our method on the
student model’s performance, particularly
when applied to novel tasks or datasets?

The main contributions of this work are sum-
marized as follows. We introduce a clustering-
based saliency-driven pruning mechanism that
effectively compresses sentence representations
while preserving essential information, improv-
ing student model efficiency. Finally, we con-
duct comprehensive experiments on benchmark
NLP datasets to validate the effectiveness of the
proposed method, demonstrating superior perfor-
mance compared to conventional KD approaches.

2 Related Work

2.1 Knowledge Distillation

Knowledge Distillation (KD) has been widely stud-
ied as an effective model compression technique
that enables a smaller student model to inherit the
knowledge of a larger teacher model(Gu et al.,
2024).The conventional KD approach primarily
focuses on minimizing the divergence between
the teacher’s and student’s output distributions,
typically using soft probability distributions(Gao,
2023). introduced temperature scaling to soften
the logits, facilitating smoother knowledge transfer.
While KD has proven effective in reducing model
size without significant performance degradation,
most traditional approaches concentrate on align-
ing output distributions rather than capturing richer
structural knowledge(Zhang et al., 2024).

To mitigate this limitation, recent studies have
incorporated intermediate-layer feature matching,
where the student model learns from multiple hid-
den layers of the teacher (Haidar et al., 2021; Zhang
et al., 2024). However, these methods still struggle
to effectively utilize inter-sentence relationships,
which are crucial for NLP tasks. Motivated mod-
els have attempted to improve KD by introducing
reinforcement learning-based knowledge selection,
adaptive teacher-student interaction, and structured
representation learning. Despite these advance-
ments, existing approaches remain limited in han-
dling noisy knowledge, often leading to inefficient
student model training(Song et al., 2022; Xu et al.,
2020).

2.2 Ensemble-Based Knowledge Distillation

To enhance the quality of knowledge transfer, a
knowledge distillation based on ensembles has
been proposed, where multiple teacher models are
used instead of a single teacher. The key motivation
behind this approach is to improve generalization
by exposing the student model to diverse knowl-
edge representations from different teachers (Yuan
et al., 2021; Wu et al., 2022; Gou et al., 2021).
One common strategy is to average the logits from
multiple teachers, thereby creating a more robust
probability distribution for the student model to
learn from.

Several studies have explored adaptive weight-
ing mechanisms to balance the influence of each
teacher, optimizing the relevance of transferred
knowledge(Du et al., 2020). Motivated models,
such as RL-KD ensembles, employ reinforcement



learning to dynamically select teachers based on
reward mechanisms, improving the effectiveness
of knowledge transfer (Qiu et al., 2022; Hong et al.,
2021). However, while ensemble-based KD im-
proves robustness, a major challenge is that direct
aggregation of multiple teacher outputs can intro-
duce conflicting information, making student train-
ing inefficient(Shao and Chen, 2023).

Recent research has attempted to refine teacher
selection through reinforcement learning and adap-
tive weighting, but these methods do not fully ad-
dress the problem of noisy, particularly in scenar-
ios where the student model has limited capacity to
process overly complex teacher outputs(Fan et al.,
2021; Yuan et al., 2021). This limitation highlights
the need for a more structured approach to selecting
and distilling knowledge from multiple teachers.

2.3 Limitations of Existing Approaches

Although KD has been instrumental in compress-
ing large-scale NLP models, existing methods still
have notable limitations. Single-teacher KD re-
stricts the diversity of knowledge transfer, whereas
ensemble KD methods often suffer from com-
putational inefficiencies(Wu et al., 2021; Wang
et al., 2022). Motivated models using reinforce-
ment learning for teacher selection have improved
knowledge transfer, but they still fail to efficiently
filter out irrelevant knowledge, leading to subop-
timal student model learning.

Additionally, most KD approaches overlook
the importance of structured representations,
leading to inefficient training of student models.
Clustering-based sentence selection methods of-
fer a promising solution to address these issues by
refining knowledge representations before distilla-
tion(Sadeghi et al., 2024).

To overcome these challenges, our work com-
bines ensemble knowledge distillation with sen-
tence clustering-based pruning using cosine sim-
ilarity measurement to transfer structured and
diverse knowledge while filtering out irrelevant
content. By leveraging multiple teacher models
and clustering-based pruning, which applies dy-
namic thresholds to reflect TF-IDF-based sen-
tence importance, our approach enhances the effi-
ciency of student model training while preserving
essential information. Our experimental results
demonstrate that integrating sentence clustering-
based pruning using cosine similarity measure-
ment with ensemble KD leads to superior perfor-
mance compared to previous models, achieving a

better trade-off between efficiency and accuracy.

3 Method

To address the limitations of conventional knowl-
edge distillation, we propose an Clustering-Based
Knowledge Distillation with Sentence Pruning
Processing framework. This approach enhances
knowledge transfer efficiency by integrating mul-
tiple teacher models and refining knowledge rep-
resentations through a clustering-based sentence
pruning mechanism. As illustrated in Figure 2, the
framework consists of key component: The frame-
work consists of Clustering-Based Knowledge
Distillation with Sentence Pruning Processing,
which aggregates knowledge from multiple teacher
models to enhance diversity and robustness while
removing irrelevant information through clustering-
based sentence pruning to optimize the student
model’s learning process.

3.1 Ensemble Knowledge Distillation

Traditional knowledge distillation methods primar-
ily rely on a single teacher model, limiting the
diversity of knowledge transferred to the student
model(Amirkhani et al., 2021). To mitigate this
issue, our approach employs an Clustering-Based
Knowledge Distillation with Sentence Pruning
Processing strategy that integrates multiple teacher
models. By combining the outputs of multiple
teachers, the student model benefits from a more
comprehensive and diverse set of representations,
thereby enhancing generalization performance and
reducing the risk of overfitting to a specific teacher
model.

As shown in Figure 2, each teacher model
produces sentence embeddings, which are aggre-
gated to form a unified representation computed as
Ecnsemble = % Zfil Er1,, where Er; denotes the
embedding from the ¢-th teacher model and NV is
the total number of teacher models.

To refine the knowledge transfer, the student
model is trained to minimize the discrepancy be-
tween its output distribution and the ensemble
teacher distribution using Kullback-Leibler Di-
vergence(KL) loss:

1 M P]'
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where P, ... and P, _ . denote the proba-
bility distributions of the student model and the en-

semble teacher for the j-th sentence, respectively.
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Figure 2: Overview of the Ensemble Knowledge Distillation Framework with Sentence clustering Processing

3.2 Clustering-based sentence pruning

Ensemble distillation provides a more comprehen-
sive and nuanced knowledge representation; how-
ever, directly utilizing multiple teacher outputs of-
ten introduces redundancy, leading to increased
computational overhead and decreased training effi-
ciency for the student model. To address this issue,
we propose a clustering-based sentence pruning
mechanism that systematically filters out less in-
formative sentences while preserving key semantic
information, thereby improving both efficiency and
effectiveness in knowledge transfer.

As illustrated in Figure 2, the pruning process
begins by constructing a clustering representation
of inter-sentence relationships(Li et al., 2019; Onan
et al., 2017). Each sentence is treated as a node in
a graph, with edges established based on seman-
tic similarity measures. The weight of the edge
between two sentences, wj;, is computed using
cosine similarity, formulated as:

E,, - E,,

= = @
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wij = cos(BEy,, Ey;)
where E,, and E,; denote the embeddings of
sentences v; and v;, respectively.

The proposed pruning mechanism follows a
structured multi-step approach. First, sentences
are clustered based on their semantic similarities,
where central nodes in the clustering graph rep-
resent the most contextually significant sentences.
Next, a clustering-based pruning strategy is ap-
plied to remove less informative sentences. Specif-
ically, a dynamic thresholding mechanism lever-
aging TF-IDF scores is used to quantify sentence
importance. The importance score of each sentence
is defined as:

TF(v;) — min(TF
I(wi) = max((le’) - mifl(Tll)
To determine the pruning threshold 7, we adopt a
two-stage filtering strategy. Initially, percentile-
based filtering is applied, where sentences with
importance scores below the 80th percentile are
removed. Subsequently, an adaptive thresholding
method refines the selection process by computing
T as:

3

T=u+0.50 @)

where o and o represent the mean and standard
deviation of the remaining sentence scores, respec-
tively. Sentences with importance scores below this
threshold are further pruned:

Vp'runed = {Ui eV | I(Uz) 2 T} (5)

This combined percentile-based and adaptive
thresholding approach ensures that only semanti-
cally meaningful and contextually significant sen-
tences are retained while filtering out less informa-
tive ones.

we employ an ensemble method that combines
the predictive probabilities of multiple teacher mod-
els (Teacherl, Teacher2) by averaging their outputs.
This approach provides a more generalized super-
visory signal to the student model by merging the
probability distributions predicted by individual
teacher models for the same input x.

Each teacher model generates a softmax out-
put for the input z, denoted as Pieqcper1(y|z) and
Preacher2(y|x). These distributions are averaged to
create a new probability distribution:

Pteachew‘l(y‘x) + PteacherQ(ykﬁ)
2

Penscmblc (y\l’) = (6)



Following the pruning process, sentence repre-
sentation learning is performed to enhance the
structural coherence of the remaining sentences.
The preserved sentences are optimized to main-
tain their contextual integrity while maximizing
the efficiency of knowledge transfer to the student
model. By leveraging inter-sentence relationships
within clusters, the proposed method refines sen-
tence embeddings to facilitate effective knowledge
distillation. Through this approach, the student
model benefits from a more compact yet informa-
tive representation, significantly improving both
training efficiency and model performance.

3.3 Student Model Training

Averaging reduces individual model bias, enabling
the student model to learn from a more stable prob-
ability distribution.

The student model is trained using both soft la-
bels from the teacher ensemble and hard labels
from ground truth. The training objective combines
Cross-Entropy (CE) Loss for accurate classifica-
tion and Kullback-Leibler (KL) Divergence Loss
to align the student’s predictions with the teacher
ensemble. A weighting parameter \ balances these
losses to optimize knowledge transfer.

By integrating multi-teacher ensemble learning
with clustering-based sentence pruning, our frame-
work enhances knowledge transfer efficiency while
maintaining computational efficiency and model
accuracy.

4 Experiments

4.1 Experimental Setup and Data Statistics

We evaluate the proposed approach on six NLP
tasks from the GLUE benchmark(Wang et al.,
2018), covering a diverse range of language un-
derstanding challenges. RTE involves textual en-
tailment, determining whether a premise entails a
hypothesis. QQP(Wang et al., 2018) assesses para-
phrase detection, identifying whether two Quora
questions are semantically equivalent. QNLI, re-
formulated from SQuAD(Rajpurkar et al., 2016),
evaluates whether a context passage contains the
answer to a given question. SST-2(Socher et al.,
2013), from the Stanford Sentiment Treebank, is
a binary sentiment classification task. MNLI-
m(Williams et al., 2017) is a subset of MNLI that
evaluates textual entailment across multiple gen-
res, where test samples match the domain of the
training data. MRPC(Dolan and Brockett, 2005)

is a paraphrase detection task assessing whether
two sentences express the same meaning despite
wording differences. These datasets encompass
textual entailment, paraphrase detection, sentiment
classification, and question-answering inference,
providing a robust framework for evaluating the
generalization of the proposed method. The dataset
statistics are summarized in Table 1.

Dataset #Train #Dev #Test
RTE 2,490 277 3,000
QQP 363,849 40,430 390,965
QNLI 104,743 5,463 5,463
SST-2 67,349 872 1,821
MNLI-m 392,702 9,815 9,796
MRPC 3,668 408 1,725

Table 1: Statistics of the datasets used in the experi-
ments.

4.2 Baseline Models and Implementation
Details

For evaluating our approach, we compared it
against multiple baseline methods. Vanilla Knowl-
edge Distillation (V-KD) (Hao et al.,, 2023)
trains student models using a single teacher,
such as BERT 5 or RoBERTaj3. U-Ensemble
Teacher(Yang et al., 2020), averages the outputs
of all teacher models by assigning them equal
weights. Rand-Single-Ensemble Teacher(Fukuda
et al., 2017), randomly selects a teacher model for
each mini-batch to generate soft targets for student
training. W-Ensemble Teacher(Chebotar and Wa-
ters, 2016), applies pre-determined, fixed weights
to each teacher model. In addition to these base-
lines, we proposed two improved ensemble strate-
gies. LR-Ensemble Teacher employs a Logistic
Regression-based approach to adaptively compute
the optimal weights for teacher models. Depend-
ing on whether the weights are learned from the
training set or the development set, the method
is referred to as LR-Train-Ensemble and LR-Dev-
Ensemble, respectively. For the teacher models,
we fine-tuned widely-used transformer architec-
tures, including BERT;2 and RoBERTa; 5, where
the subscript 12 denotes that each model consists
of 12 transformer layers. To construct student mod-
els, we utilized simplified versions of BERT, in-
corporating 4 and 6 transformer layers, denoted
as BERT, and BERTg, respectively. This aligns
with the methodology presented in Patient KD (Sun
et al., 2019).



4.3 Experimental Setup

Our experiments followed the Patient KD frame-
work (Sun et al., 2019). The student models,
BERT, and BERTg, were initialized using the bot-
tom 4 and 6 layers of BERT-Base. Their distil-
lation process involved tuning hyperparameters
such as temperature 7" values {5, 10, 20}, loss bal-
ance coefficients o {0.2,0.5,0.7}, and ~ values
{0.3,0.5,0.7,0.9}, optimized based on the devel-
opment set.

For fine-tuning the teacher models, we uti-
lized publicly available pre-trained weights from
BERT;2 and RoBERTa. The training setup in-
cluded learning rates of {le — 5,2¢ — 5, 5¢ — 5},
a batch size of 32, a sequence length of 128, and 4
training epochs. The best-performing model was
selected based on accuracy on the development set.

To enhance the distillation process, a logistic
regression-based policy function was employed for
teacher selection, optimized using Monte Carlo pol-
icy gradients (Williams, 1992). During knowledge
distillation pretraining, the student model was ini-
tialized with pre-trained BERT weights and trained
further using an average ensemble of teacher out-
puts.

4.4 Main Results

Following pretraining, Knowledge Distillation
(KD) and Teacher Selection (T'S) models (Ye et al.,
2020; Amara et al., 2022; Lee et al., 2023) were
trained iteratively in an alternating manner.

Table 2 provides general performance metrics for
various natural language processing (NLP) models
and is included to facilitate the understanding of
Table 3. Table 2 presents a comparison of different
models in terms of the number of parameters, com-
putational cost (FLOPs), speedup, and task-specific
performance.

Table 3 evaluates the impact of different teacher
configurations on student model performance.
Multi-teacher distillation with Sentence clustering
processor generally improves accuracy across tasks.
For RTE, using both BERT-Base and RoBERTa
achieves the highest accuracy (0.69), indicating
that diverse pre-trained models enhance general-
ization. SST-2 reaches 0.95 accuracy with BERT-
Base and BERT-Large, highlighting the effective-
ness of multi-teacher distillation for sentiment clas-
sification. QNLI shows mixed results: accuracy
improves from 0.83 to 0.84 with RoBERTa as a
teacher but drops to 0.59 when using a smaller

DistilBERT-4 student, suggesting that relational
reasoning tasks may require more structured knowl-
edge transfer.

Table 4 compares various knowledge distillation
methods, showing that Our Method achieves 87.17
accuracy on MNLI-m and 95.4 on SST-2, surpass-
ing conventional approaches and demonstrating
strong generalization in sentiment analysis tasks.
However, performance on MRPC (70.9) and RTE
(60.7) is slightly lower than RL-KD-based meth-
ods, indicating that additional optimization may
be needed for low-resource datasets due to lim-
ited reward signals. Overall, Our Method excels in
large-scale NLU tasks, highlighting the effective-
ness of reinforcement learning-based distillation.
Teacher Sentence Representation Learning, the fi-
nal stage of the Sentence clustering Processor, en-
hances knowledge transfer by capturing contextual
relationships, though improvements in structural
representation may be required for tasks like RTE.

The inference time was measured both before
and after applying sentence pruning to evaluate its
impact on computational efficiency. the model pro-
cessed all input sentences, and the inference time
(Thqse) was measured. After pruning, a sentence
selection mechanism was applied, where less im-
portant sentences were removed based on similarity
and saliency scores. The remaining sentences were
then passed through the model and the pruned infer-
ence time (T},yneq) Was measured using the same
method. The speed-up factor (S) was calculated as
the ratio of the baseline to the pruned inference time
(S = Tyase/Tprunea), quantifying the reduction in
computational cost achieved through pruning.

Table 5 presents the impact of sentence pruning
on accuracy and F1 score across three GLUE tasks:
SST-2, RTE, and QNLI. The pruning process led to
varying effects on model performance, with accu-
racy retention differing across tasks. In the SST-2
dataset, the pruning rate was 5.7%, resulting in a
marginal decrease of 0. 50% in precision and 0.
34% in the F1 score, indicating that the model re-
mained relatively robust to pruning. Conversely,
in the RTE dataset, pruning led to a significant im-
provement in accuracy, increasing from 64.29% to
68.75% (+4.5%), with a corresponding F1 score
increase of +2.6%. This suggests that pruning effec-
tively removed non-informative sentences, thereby
enhancing model performance. In contrast, for
QNLI, which had a pruning rate of 31.7%, the accu-
racy decreased slightly by 0.62%, and the F1 score
was reduced by 0.35%. These results indicate that



System #Params | #FLOPs | Speedup | RTE | QQP | QNLI | SST-2 | Avg
BERT_BASE (Teacher) 109M 22.5B 1.0x 67.0 | 71.1 | 909 | 934 |80.6
DistilBERT_6 (Student) 67.0M 11.3B 2.0x 584 | 70.1 | 88.9 | 92.5 |77.5
DistilBERT_4 (Student) 52.2M 7.6B 3.0x 54.1 | 685 | 852 | 914 |74.8
BERT_LARGE (Teacher) | 340M 110B - 704 | 704 | 923 | 932 |81.6
RoBERTa (Teacher) 125M 40B - 86.6 | 86.6 | 94.7 | 964 |91.1

Table 2: Comparison of different models in terms of parameter count, FLOPs, speedup, and performance across

NLP tasks. The best accuracy for each task is highlighted in bold.
Task Teacherl Teacher2 Student Accuracy | Trend
RTE bert-base-uncased | bert-large-uncased bert-base-uncased 0.68 T
QQP | bert-base-uncased | bert-large-uncased bert-base-uncased 0.85 T
QNLI | bert-base-uncased | bert-large-uncased bert-base-uncased 0.83 1
SST-2 | bert-base-uncased | bert-large-uncased bert-base-uncased 0.94 T
Avg - - - 0.82 T
RTE | bert-base-uncased roberta-base distilbert-base-uncased_6 0.69 T
QQP | bert-base-uncased roberta-base distilbert-base-uncased_6 0.86 T
QNLI | bert-base-uncased roberta-base distilbert-base-uncased_6 0.84 J
SST-2 | bert-base-uncased roberta-base distilbert-base-uncased_6 0.93 T
Avg - - - 0.83 T
RTE | bert-base-uncased | bert-large-uncased | distilbert-base-uncased_4 0.61 T
QQP | bert-base-uncased | bert-large-uncased | distilbert-base-uncased_4 0.72 T
QNLI | bert-base-uncased | bert-large-uncased | distilbert-base-uncased_4 0.59 K
SST-2 | bert-base-uncased | bert-large-uncased | distilbert-base-uncased_4 0.95 T
Avg - - - 0.72 1

Table 3: Performance comparison of different student models trained with various teacher configurations. The best
accuracy per task is highlighted in bold, and performance changes are indicated with arrows.

while pruning improves computational efficiency,
its impact on accuracy is task-dependent.

Table 6 evaluates the inference time and compu-
tational speed-up achieved through pruning. The
inference time was measured by starting a timer
immediately before passing the input data to the
model. For the Baseline model, the full input
text was provided without any pruning, while the
Pruned model first applied a clustering-based sen-
tence pruning mechanism, retaining only the most
informative sentences before feeding them into the
model. The timer was stopped as soon as the model
produced the output, ensuring that only the forward
pass execution time was recorded.

All experiments were conducted using NVIDIA
RTX 6000 Ada GPUs (0 to 7), leveraging multi-
GPU parallelism to optimize inference efficiency.

The SST-2 task, despite a relatively low pruning
rate (5.7%), exhibited a substantial speed-up of
23x, with inference time reducing from 1.15s to
0.05s. Similarly, RTE achieved a 2.5x reduction
in inference time, dropping from 0.05s to 0.02s,
demonstrating that pruning significantly reduces
computational overhead while maintaining or even
improving accuracy. For QNLI, the inference time
improved from 0.37s to 0.23s, corresponding to a
1.6x speed-up. While the absolute speed gains vary
by task, the results highlight the efficiency gains

0.8200
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Figure 3: Clustering Method Performance: Comparison
of Accuracy and Silhouette Score across different clus-
tering methods.(Using MNLI-m Dataset)

achievable through pruning, particularly in tasks
where less important information can be effectively
removed without degrading performance.

These findings collectively indicate that sentence
pruning can enhance inference efficiency with min-
imal impact on accuracy, and in some cases, even
improve performance by reducing noise. How-
ever, the extent of performance retention is highly
task-dependent, suggesting that pruning strategies
should be carefully designed based on task charac-
teristics.

Figure 3 compares the performance of various



Teacher Student | Strategy | MNLI-m (Acc.) | MRPC (Acc.) | RTE (Acc.) | SST-2 (Acc.)
Rand-Single-Ensemble | BERT6 | V-KD 80.7 777 61.7 90.6
W-Ensemble BERT6 | V-KD 77.2 81.1 62.1 90.6
LR-Dev-Ensemble BERT6 | V-KD 81.1 80.6 64.6 90.8
Best-Single-Ensemble | BERT6 | V-KD 80.5 80.4 66.1 90.3
MT-BERT-Ensemble | BERT6 | RL-KD - - 75.7 94.6
RL-KD (reward1) BERT6 | RL-KD 82.0 82.8 67.1 91.7
RL-KD (reward2) BERT6 | RL-KD 82.1 82.1 67.2 91.4
RL-KD (reward3) BERT6 | RL-KD 81.6 83.3 68.2 92.3
Our Method BERT6 | RL-KD 87.17 70.9 60.7 95.4

Table 4: Performance comparison of different knowledge distillation methods using BERT6 as the student model.
Rand-Single-Ensemble selects a single teacher randomly, while W-Ensemble applies weighted averaging of
multiple teachers. LR-Dev-Ensemble employs logistic regression for teacher selection, and Best-Single-Ensemble
chooses the best-performing teacher. RL-KD (reward1, reward2, reward3) uses reinforcement learning with
different reward settings for knowledge transfer. MT-BERT utilizes multi-teacher co-finetuning with shared pooling

and multi-teacher losses.

Task AAce.
(%)
-0.50
+4.5

-0.62

F1
Base |Pruned
39.27] 38.93
53.46| 56.02
39.09| 38.74

AF1
(%)
-0.34
+2.6
-0.35

Prune Acc

Rate (%)|Base |Pruned
5.7 |51.72| 51.22
32.8 [64.29| 68.75
31.7 |44.32| 43.70

SST-2
RTE
QNLI

Table 5: Impact of Sentence Pruning on Accuracy and
F1 Score.

Task | Inf. Time (s) | Inf. Time (s) | Speed-up (x)
Base Pruned

SST-2 1.15 0.05 23x

RTE 0.05 0.02 2.5x

QNLI 0.37 0.23 1.6%

Table 6: Impact of Sentence Pruning on Inference Time
and Speed-up.

clustering methods: Sentence Clustering Processor
(Ours), KMeans, Spectral, Agglomerative, Mean
Shift, and GMM. The blue bars represent accu-
racy, and the red bars indicate silhouette scores.
Sentence Clustering Processor (Ours) achieves the
highest accuracy (0.82) and a competitive silhou-
ette score (0.65), demonstrating its effectiveness.
KMeans, a centroid-based method, partitions
data into K clusters by minimizing the distance
between points and cluster centers, showing high
accuracy (0.78) but a lower silhouette score (0.58).
Spectral Clustering, which utilizes graph theory
and eigenvectors of similarity matrices, performs
moderately due to its reliance on pairwise sim-
ilarities. Agglomerative Clustering, a hierarchi-
cal method merging clusters based on proximity,
shows stable but average performance. Mean Shift,
which iteratively shifts points to high-density re-
gions, exhibits moderate scores. GMM (Gaussian
Mixture Model), a probabilistic method model-
ing data as a mixture of Gaussian distributions,
achieves a balance between accuracy (0.77) and

silhouette score (0.57). Overall, our Sentence Clus-
tering Processor outperforms traditional techniques
in both accuracy and cluster quality.

5 Conclusion

In this study, we propose a Clustering-Based
Knowledge Distillation with Sentence Pruning
framework to enhance student model training effi-
ciency. Our approach integrates multiple teacher
models for improved knowledge diversity and em-
ploys a clustering-based sentence pruning mech-
anism to remove less important content from in-
put representations. Experiments on SST-2, RTE,
and QNLI benchmarks show that our method re-
tains high accuracy while significantly reducing
inference time and computational cost. Notably,
pruning improved RTE accuracy by 4.5% and
achieved up to 23 inference speedup on SST-
2, demonstrating its effectiveness for resource-
constrained environments. Furthermore, multi-
teacher knowledge distillation combined with
task-aware sentence pruning enhances student
model performance by filtering irrelevant informa-
tion, addressing the redundancy often found in tra-
ditional knowledge distillation methods.

6 Limitations

Sentence pruning significantly enhances inference
speed, achieving up to 23x acceleration, but in-
troduces a trade-off between efficiency and accu-
racy. Tasks relying on rich contextual information
may suffer from accuracy degradation, necessitat-
ing adaptive pruning strategies that adjust based on
task complexity.
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