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Abstract001

Large-scale pre-trained language models, such002
as BERT, RoBERTa, and GPT, achieve state-of-003
the-art performance across various NLP tasks004
but face significant deployment challenges in005
resource-constrained environments due to high006
computational demands. To address this, we007
propose Clustering-Based Knowledge Distilla-008
tion with Sentence Pruning Processing, a novel009
framework that enhances knowledge transfer010
by integrating multiple teacher models and011
refining sentence-level representations. Our012
approach employs cosine similarity measure-013
ment to identify cluster centers based on the014
strongest edge weights, ensuring that the most015
informative sentences are preserved. Addition-016
ally, clustering-based pruning with dynamic017
thresholds, guided by TF-IDF-based impor-018
tance scores, effectively removes redundant in-019
formation while retaining critical knowledge.020
By aggregating diverse knowledge from mul-021
tiple teachers, Clustering-Based Knowledge022
Distillation with Sentence Pruning Process-023
ing enhances model robustness and general-024
ization. Experimental results on multiple NLP025
benchmarks demonstrate that our method out-026
performs existing knowledge distillation tech-027
niques, achieving higher accuracy while signifi-028
cantly reducing computational overhead and in-029
ference time. Notably, our framework achieves030
up to 23× speedup on SST-2 and improves RTE031
accuracy by 4.5%, demonstrating its effective-032
ness for efficient NLP model deployment.033

1 Introduction034

Large-scale pre-trained language models, such as035

BERT, RoBERTa, and GPT, have established new036

benchmarks across various NLP tasks, achieving037

state-of-the-art performance(Koroteev, 2021; De-038

lobelle et al., 2020; Achiam et al., 2023). How-039

ever, their substantial computational requirements040

pose challenges for real-world deployment, par-041

ticularly in low-power and constrained computing042

environments(Jiao et al., 2020). To address this043

challenge, Knowledge Distillation (KD) has been 044

widely adopted as an effective model compression 045

technique that transfers knowledge from a large 046

teacher model to a smaller student model, en- 047

abling efficient inference while maintaining high 048

performance. 049

Despite its effectiveness, conventional KD meth- 050

ods exhibit several limitations. Traditional KD 051

techniques primarily focus on aligning the output 052

distributions of teacher and student models, often 053

neglecting structured representations, such as 054

inter-sentence relationships and token-level impor- 055

tance(Wei et al., 2024). This oversimplified knowl- 056

edge transfer may lead to suboptimal learning in the 057

student model. Furthermore, most KD approaches 058

rely on a single teacher model, which restricts 059

the diversity of knowledge imparted to the student 060

model, potentially limiting its generalization abil- 061

ity(Pham et al., 2023). Additionally, transferring 062

knowledge directly from a complex teacher model 063

may introduce irrelevant information, thereby re- 064

ducing the overall learning efficiency of the student 065

model(Yuan et al., 2024). 066

A key observation motivating our study is that 067

different teacher models exhibit varying levels 068

of effectiveness depending on the downstream 069

task. As shown in Figure 1, RoBERTa-Base gen- 070

erally achieves higher accuracy than BERT-Base 071

on MRPC and MNLI-mm tasks, indicating that it 072

encodes richer knowledge. However, when trans- 073

ferring knowledge from these teacher models to a 074

smaller student model (e.g., BERT3), we observe 075

that the student model trained with BERT-Base per- 076

forms better than the one trained with RoBERTa- 077

Base. This suggests that using a stronger teacher 078

model does not always result in better student per- 079

formance, as excessively complex teacher models 080

may introduce hard-to-learn knowledge, making 081

student model training less effective. 082

To overcome these limitations, we propose 083

clustering-Based Knowledge Distillation with 084
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(a) MRPC dataset (b) MNLI-mm dataset

Figure 1: Comparison of Teacher and Student Model
Performance on MRPC and MNLI-mm tasks. While
RoBERTa-Base outperforms BERT-Base as a stan-
dalone model, its knowledge transfer to student models
does not always lead to better performance, highlighting
the importance of structured knowledge distillation.

Sentence Pruning Processing, a novel frame-085

work that enhances knowledge transfer by integrat-086

ing multiple teacher models while refining the in-087

put representation through sentence-level pruning.088

Our method utilizes Clustering-Based Knowl-089

edge Distillation with Sentence Pruning Process-090

ing, which aggregates knowledge from multiple091

teacher models to enhance robustness and diver-092

sity while modeling inter-sentence relationships093

through clustering-based representation. This ap-094

proach effectively retains essential information, op-095

timizing the student model’s learning process.096

This study investigates the following key re-097

search objectives:098

• How can multiple teacher models be ef-099

fectively integrated to enhance knowledge100

transfer?101

• How does sentence-level pruning improve102

the efficiency of student model training?103

• What are the effects of our method on the104

student model’s performance, particularly105

when applied to novel tasks or datasets?106

The main contributions of this work are sum-107

marized as follows. We introduce a clustering-108

based saliency-driven pruning mechanism that109

effectively compresses sentence representations110

while preserving essential information, improv-111

ing student model efficiency. Finally, we con-112

duct comprehensive experiments on benchmark113

NLP datasets to validate the effectiveness of the114

proposed method, demonstrating superior perfor-115

mance compared to conventional KD approaches.116

2 Related Work 117

2.1 Knowledge Distillation 118

Knowledge Distillation (KD) has been widely stud- 119

ied as an effective model compression technique 120

that enables a smaller student model to inherit the 121

knowledge of a larger teacher model(Gu et al., 122

2024).The conventional KD approach primarily 123

focuses on minimizing the divergence between 124

the teacher’s and student’s output distributions, 125

typically using soft probability distributions(Gao, 126

2023). introduced temperature scaling to soften 127

the logits, facilitating smoother knowledge transfer. 128

While KD has proven effective in reducing model 129

size without significant performance degradation, 130

most traditional approaches concentrate on align- 131

ing output distributions rather than capturing richer 132

structural knowledge(Zhang et al., 2024). 133

To mitigate this limitation, recent studies have 134

incorporated intermediate-layer feature matching, 135

where the student model learns from multiple hid- 136

den layers of the teacher (Haidar et al., 2021; Zhang 137

et al., 2024). However, these methods still struggle 138

to effectively utilize inter-sentence relationships, 139

which are crucial for NLP tasks. Motivated mod- 140

els have attempted to improve KD by introducing 141

reinforcement learning-based knowledge selection, 142

adaptive teacher-student interaction, and structured 143

representation learning. Despite these advance- 144

ments, existing approaches remain limited in han- 145

dling noisy knowledge, often leading to inefficient 146

student model training(Song et al., 2022; Xu et al., 147

2020). 148

2.2 Ensemble-Based Knowledge Distillation 149

To enhance the quality of knowledge transfer, a 150

knowledge distillation based on ensembles has 151

been proposed, where multiple teacher models are 152

used instead of a single teacher. The key motivation 153

behind this approach is to improve generalization 154

by exposing the student model to diverse knowl- 155

edge representations from different teachers (Yuan 156

et al., 2021; Wu et al., 2022; Gou et al., 2021). 157

One common strategy is to average the logits from 158

multiple teachers, thereby creating a more robust 159

probability distribution for the student model to 160

learn from. 161

Several studies have explored adaptive weight- 162

ing mechanisms to balance the influence of each 163

teacher, optimizing the relevance of transferred 164

knowledge(Du et al., 2020). Motivated models, 165

such as RL-KD ensembles, employ reinforcement 166

2



learning to dynamically select teachers based on167

reward mechanisms, improving the effectiveness168

of knowledge transfer (Qiu et al., 2022; Hong et al.,169

2021). However, while ensemble-based KD im-170

proves robustness, a major challenge is that direct171

aggregation of multiple teacher outputs can intro-172

duce conflicting information, making student train-173

ing inefficient(Shao and Chen, 2023).174

Recent research has attempted to refine teacher175

selection through reinforcement learning and adap-176

tive weighting, but these methods do not fully ad-177

dress the problem of noisy, particularly in scenar-178

ios where the student model has limited capacity to179

process overly complex teacher outputs(Fan et al.,180

2021; Yuan et al., 2021). This limitation highlights181

the need for a more structured approach to selecting182

and distilling knowledge from multiple teachers.183

2.3 Limitations of Existing Approaches184

Although KD has been instrumental in compress-185

ing large-scale NLP models, existing methods still186

have notable limitations. Single-teacher KD re-187

stricts the diversity of knowledge transfer, whereas188

ensemble KD methods often suffer from com-189

putational inefficiencies(Wu et al., 2021; Wang190

et al., 2022). Motivated models using reinforce-191

ment learning for teacher selection have improved192

knowledge transfer, but they still fail to efficiently193

filter out irrelevant knowledge, leading to subop-194

timal student model learning.195

Additionally, most KD approaches overlook196

the importance of structured representations,197

leading to inefficient training of student models.198

Clustering-based sentence selection methods of-199

fer a promising solution to address these issues by200

refining knowledge representations before distilla-201

tion(Sadeghi et al., 2024).202

To overcome these challenges, our work com-203

bines ensemble knowledge distillation with sen-204

tence clustering-based pruning using cosine sim-205

ilarity measurement to transfer structured and206

diverse knowledge while filtering out irrelevant207

content. By leveraging multiple teacher models208

and clustering-based pruning, which applies dy-209

namic thresholds to reflect TF-IDF-based sen-210

tence importance, our approach enhances the effi-211

ciency of student model training while preserving212

essential information. Our experimental results213

demonstrate that integrating sentence clustering-214

based pruning using cosine similarity measure-215

ment with ensemble KD leads to superior perfor-216

mance compared to previous models, achieving a217

better trade-off between efficiency and accuracy. 218

3 Method 219

To address the limitations of conventional knowl- 220

edge distillation, we propose an Clustering-Based 221

Knowledge Distillation with Sentence Pruning 222

Processing framework. This approach enhances 223

knowledge transfer efficiency by integrating mul- 224

tiple teacher models and refining knowledge rep- 225

resentations through a clustering-based sentence 226

pruning mechanism. As illustrated in Figure 2, the 227

framework consists of key component: The frame- 228

work consists of Clustering-Based Knowledge 229

Distillation with Sentence Pruning Processing, 230

which aggregates knowledge from multiple teacher 231

models to enhance diversity and robustness while 232

removing irrelevant information through clustering- 233

based sentence pruning to optimize the student 234

model’s learning process. 235

3.1 Ensemble Knowledge Distillation 236

Traditional knowledge distillation methods primar- 237

ily rely on a single teacher model, limiting the 238

diversity of knowledge transferred to the student 239

model(Amirkhani et al., 2021). To mitigate this 240

issue, our approach employs an Clustering-Based 241

Knowledge Distillation with Sentence Pruning 242

Processing strategy that integrates multiple teacher 243

models. By combining the outputs of multiple 244

teachers, the student model benefits from a more 245

comprehensive and diverse set of representations, 246

thereby enhancing generalization performance and 247

reducing the risk of overfitting to a specific teacher 248

model. 249

As shown in Figure 2, each teacher model 250

produces sentence embeddings, which are aggre- 251

gated to form a unified representation computed as 252

Eensemble =
1
N

∑N
i=1ETi , where ETi denotes the 253

embedding from the i-th teacher model and N is 254

the total number of teacher models. 255

To refine the knowledge transfer, the student 256

model is trained to minimize the discrepancy be- 257

tween its output distribution and the ensemble 258

teacher distribution using Kullback-Leibler Di- 259

vergence(KL) loss: 260

LKL =
1

M

M∑
j=1

∑
i

Pj
ensemble,i log

Pj
ensemble,i

Pj
student,i

(1) 261

where Pj
student and Pj

ensemble denote the proba- 262

bility distributions of the student model and the en- 263

semble teacher for the j-th sentence, respectively. 264
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Figure 2: Overview of the Ensemble Knowledge Distillation Framework with Sentence clustering Processing

3.2 Clustering-based sentence pruning265

Ensemble distillation provides a more comprehen-266

sive and nuanced knowledge representation; how-267

ever, directly utilizing multiple teacher outputs of-268

ten introduces redundancy, leading to increased269

computational overhead and decreased training effi-270

ciency for the student model. To address this issue,271

we propose a clustering-based sentence pruning272

mechanism that systematically filters out less in-273

formative sentences while preserving key semantic274

information, thereby improving both efficiency and275

effectiveness in knowledge transfer.276

As illustrated in Figure 2, the pruning process277

begins by constructing a clustering representation278

of inter-sentence relationships(Li et al., 2019; Onan279

et al., 2017). Each sentence is treated as a node in280

a graph, with edges established based on seman-281

tic similarity measures. The weight of the edge282

between two sentences, wij , is computed using283

cosine similarity, formulated as:284

wij = cos(Evi ,Evj ) =
Evi ·Evj

∥Evi∥∥Evj∥
(2)285

where Evi and Evj denote the embeddings of286

sentences vi and vj , respectively.287

The proposed pruning mechanism follows a288

structured multi-step approach. First, sentences289

are clustered based on their semantic similarities,290

where central nodes in the clustering graph rep-291

resent the most contextually significant sentences.292

Next, a clustering-based pruning strategy is ap-293

plied to remove less informative sentences. Specif-294

ically, a dynamic thresholding mechanism lever-295

aging TF-IDF scores is used to quantify sentence296

importance. The importance score of each sentence297

is defined as:298

I(vi) =
TF (vi)−min(TF )

max(TF )−min(TF )
(3) 299

To determine the pruning threshold τ , we adopt a 300

two-stage filtering strategy. Initially, percentile- 301

based filtering is applied, where sentences with 302

importance scores below the 80th percentile are 303

removed. Subsequently, an adaptive thresholding 304

method refines the selection process by computing 305

τ as: 306

τ = µ+ 0.5σ (4) 307

where µ and σ represent the mean and standard 308

deviation of the remaining sentence scores, respec- 309

tively. Sentences with importance scores below this 310

threshold are further pruned: 311

Vpruned = {vi ∈ V | I(vi) ≥ τ} (5) 312

This combined percentile-based and adaptive 313

thresholding approach ensures that only semanti- 314

cally meaningful and contextually significant sen- 315

tences are retained while filtering out less informa- 316

tive ones. 317

we employ an ensemble method that combines 318

the predictive probabilities of multiple teacher mod- 319

els (Teacher1, Teacher2) by averaging their outputs. 320

This approach provides a more generalized super- 321

visory signal to the student model by merging the 322

probability distributions predicted by individual 323

teacher models for the same input x. 324

Each teacher model generates a softmax out- 325

put for the input x, denoted as Pteacher1(y|x) and 326

Pteacher2(y|x). These distributions are averaged to 327

create a new probability distribution: 328

Pensemble(y|x) =
Pteacher1(y|x) + Pteacher2(y|x)

2
(6) 329
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Following the pruning process, sentence repre-330

sentation learning is performed to enhance the331

structural coherence of the remaining sentences.332

The preserved sentences are optimized to main-333

tain their contextual integrity while maximizing334

the efficiency of knowledge transfer to the student335

model. By leveraging inter-sentence relationships336

within clusters, the proposed method refines sen-337

tence embeddings to facilitate effective knowledge338

distillation. Through this approach, the student339

model benefits from a more compact yet informa-340

tive representation, significantly improving both341

training efficiency and model performance.342

3.3 Student Model Training343

Averaging reduces individual model bias, enabling344

the student model to learn from a more stable prob-345

ability distribution.346

The student model is trained using both soft la-347

bels from the teacher ensemble and hard labels348

from ground truth. The training objective combines349

Cross-Entropy (CE) Loss for accurate classifica-350

tion and Kullback-Leibler (KL) Divergence Loss351

to align the student’s predictions with the teacher352

ensemble. A weighting parameter λ balances these353

losses to optimize knowledge transfer.354

By integrating multi-teacher ensemble learning355

with clustering-based sentence pruning, our frame-356

work enhances knowledge transfer efficiency while357

maintaining computational efficiency and model358

accuracy.359

4 Experiments360

4.1 Experimental Setup and Data Statistics361

We evaluate the proposed approach on six NLP362

tasks from the GLUE benchmark(Wang et al.,363

2018), covering a diverse range of language un-364

derstanding challenges. RTE involves textual en-365

tailment, determining whether a premise entails a366

hypothesis. QQP(Wang et al., 2018) assesses para-367

phrase detection, identifying whether two Quora368

questions are semantically equivalent. QNLI, re-369

formulated from SQuAD(Rajpurkar et al., 2016),370

evaluates whether a context passage contains the371

answer to a given question. SST-2(Socher et al.,372

2013), from the Stanford Sentiment Treebank, is373

a binary sentiment classification task. MNLI-374

m(Williams et al., 2017) is a subset of MNLI that375

evaluates textual entailment across multiple gen-376

res, where test samples match the domain of the377

training data. MRPC(Dolan and Brockett, 2005)378

is a paraphrase detection task assessing whether 379

two sentences express the same meaning despite 380

wording differences. These datasets encompass 381

textual entailment, paraphrase detection, sentiment 382

classification, and question-answering inference, 383

providing a robust framework for evaluating the 384

generalization of the proposed method. The dataset 385

statistics are summarized in Table 1. 386

Dataset #Train #Dev #Test
RTE 2,490 277 3,000
QQP 363,849 40,430 390,965
QNLI 104,743 5,463 5,463
SST-2 67,349 872 1,821
MNLI-m 392,702 9,815 9,796
MRPC 3,668 408 1,725

Table 1: Statistics of the datasets used in the experi-
ments.

4.2 Baseline Models and Implementation 387

Details 388

For evaluating our approach, we compared it 389

against multiple baseline methods. Vanilla Knowl- 390

edge Distillation (V-KD) (Hao et al., 2023) 391

trains student models using a single teacher, 392

such as BERT12 or RoBERTa12. U-Ensemble 393

Teacher(Yang et al., 2020), averages the outputs 394

of all teacher models by assigning them equal 395

weights. Rand-Single-Ensemble Teacher(Fukuda 396

et al., 2017), randomly selects a teacher model for 397

each mini-batch to generate soft targets for student 398

training. W-Ensemble Teacher(Chebotar and Wa- 399

ters, 2016), applies pre-determined, fixed weights 400

to each teacher model. In addition to these base- 401

lines, we proposed two improved ensemble strate- 402

gies. LR-Ensemble Teacher employs a Logistic 403

Regression-based approach to adaptively compute 404

the optimal weights for teacher models. Depend- 405

ing on whether the weights are learned from the 406

training set or the development set, the method 407

is referred to as LR-Train-Ensemble and LR-Dev- 408

Ensemble, respectively. For the teacher models, 409

we fine-tuned widely-used transformer architec- 410

tures, including BERT12 and RoBERTa12, where 411

the subscript 12 denotes that each model consists 412

of 12 transformer layers. To construct student mod- 413

els, we utilized simplified versions of BERT, in- 414

corporating 4 and 6 transformer layers, denoted 415

as BERT4 and BERT6, respectively. This aligns 416

with the methodology presented in Patient KD (Sun 417

et al., 2019). 418
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4.3 Experimental Setup419

Our experiments followed the Patient KD frame-420

work (Sun et al., 2019). The student models,421

BERT4 and BERT6, were initialized using the bot-422

tom 4 and 6 layers of BERT-Base. Their distil-423

lation process involved tuning hyperparameters424

such as temperature T values {5, 10, 20}, loss bal-425

ance coefficients α {0.2, 0.5, 0.7}, and γ values426

{0.3, 0.5, 0.7, 0.9}, optimized based on the devel-427

opment set.428

For fine-tuning the teacher models, we uti-429

lized publicly available pre-trained weights from430

BERT12 and RoBERTa. The training setup in-431

cluded learning rates of {1e− 5, 2e− 5, 5e− 5},432

a batch size of 32, a sequence length of 128, and 4433

training epochs. The best-performing model was434

selected based on accuracy on the development set.435

To enhance the distillation process, a logistic436

regression-based policy function was employed for437

teacher selection, optimized using Monte Carlo pol-438

icy gradients (Williams, 1992). During knowledge439

distillation pretraining, the student model was ini-440

tialized with pre-trained BERT weights and trained441

further using an average ensemble of teacher out-442

puts.443

4.4 Main Results444

Following pretraining, Knowledge Distillation445

(KD) and Teacher Selection (TS) models (Ye et al.,446

2020; Amara et al., 2022; Lee et al., 2023) were447

trained iteratively in an alternating manner.448

Table 2 provides general performance metrics for449

various natural language processing (NLP) models450

and is included to facilitate the understanding of451

Table 3. Table 2 presents a comparison of different452

models in terms of the number of parameters, com-453

putational cost (FLOPs), speedup, and task-specific454

performance.455

Table 3 evaluates the impact of different teacher456

configurations on student model performance.457

Multi-teacher distillation with Sentence clustering458

processor generally improves accuracy across tasks.459

For RTE, using both BERT-Base and RoBERTa460

achieves the highest accuracy (0.69), indicating461

that diverse pre-trained models enhance general-462

ization. SST-2 reaches 0.95 accuracy with BERT-463

Base and BERT-Large, highlighting the effective-464

ness of multi-teacher distillation for sentiment clas-465

sification. QNLI shows mixed results: accuracy466

improves from 0.83 to 0.84 with RoBERTa as a467

teacher but drops to 0.59 when using a smaller468

DistilBERT-4 student, suggesting that relational 469

reasoning tasks may require more structured knowl- 470

edge transfer. 471

Table 4 compares various knowledge distillation 472

methods, showing that Our Method achieves 87.17 473

accuracy on MNLI-m and 95.4 on SST-2, surpass- 474

ing conventional approaches and demonstrating 475

strong generalization in sentiment analysis tasks. 476

However, performance on MRPC (70.9) and RTE 477

(60.7) is slightly lower than RL-KD-based meth- 478

ods, indicating that additional optimization may 479

be needed for low-resource datasets due to lim- 480

ited reward signals. Overall, Our Method excels in 481

large-scale NLU tasks, highlighting the effective- 482

ness of reinforcement learning-based distillation. 483

Teacher Sentence Representation Learning, the fi- 484

nal stage of the Sentence clustering Processor, en- 485

hances knowledge transfer by capturing contextual 486

relationships, though improvements in structural 487

representation may be required for tasks like RTE. 488

The inference time was measured both before 489

and after applying sentence pruning to evaluate its 490

impact on computational efficiency. the model pro- 491

cessed all input sentences, and the inference time 492

(Tbase) was measured. After pruning, a sentence 493

selection mechanism was applied, where less im- 494

portant sentences were removed based on similarity 495

and saliency scores. The remaining sentences were 496

then passed through the model and the pruned infer- 497

ence time (Tpruned) was measured using the same 498

method. The speed-up factor (S) was calculated as 499

the ratio of the baseline to the pruned inference time 500

(S = Tbase/Tpruned), quantifying the reduction in 501

computational cost achieved through pruning. 502

Table 5 presents the impact of sentence pruning 503

on accuracy and F1 score across three GLUE tasks: 504

SST-2, RTE, and QNLI. The pruning process led to 505

varying effects on model performance, with accu- 506

racy retention differing across tasks. In the SST-2 507

dataset, the pruning rate was 5.7%, resulting in a 508

marginal decrease of 0. 50% in precision and 0. 509

34% in the F1 score, indicating that the model re- 510

mained relatively robust to pruning. Conversely, 511

in the RTE dataset, pruning led to a significant im- 512

provement in accuracy, increasing from 64.29% to 513

68.75% (+4.5%), with a corresponding F1 score 514

increase of +2.6%. This suggests that pruning effec- 515

tively removed non-informative sentences, thereby 516

enhancing model performance. In contrast, for 517

QNLI, which had a pruning rate of 31.7%, the accu- 518

racy decreased slightly by 0.62%, and the F1 score 519

was reduced by 0.35%. These results indicate that 520
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System #Params #FLOPs Speedup RTE QQP QNLI SST-2 Avg
BERT_BASE (Teacher) 109M 22.5B 1.0x 67.0 71.1 90.9 93.4 80.6
DistilBERT_6 (Student) 67.0M 11.3B 2.0x 58.4 70.1 88.9 92.5 77.5
DistilBERT_4 (Student) 52.2M 7.6B 3.0x 54.1 68.5 85.2 91.4 74.8
BERT_LARGE (Teacher) 340M 110B - 70.4 70.4 92.3 93.2 81.6
RoBERTa (Teacher) 125M 40B - 86.6 86.6 94.7 96.4 91.1

Table 2: Comparison of different models in terms of parameter count, FLOPs, speedup, and performance across
NLP tasks. The best accuracy for each task is highlighted in bold.

Task Teacher1 Teacher2 Student Accuracy Trend
RTE bert-base-uncased bert-large-uncased bert-base-uncased 0.68 ↑
QQP bert-base-uncased bert-large-uncased bert-base-uncased 0.85 ↑
QNLI bert-base-uncased bert-large-uncased bert-base-uncased 0.83 ↓
SST-2 bert-base-uncased bert-large-uncased bert-base-uncased 0.94 ↑
Avg - - - 0.82 ↑
RTE bert-base-uncased roberta-base distilbert-base-uncased_6 0.69 ↑
QQP bert-base-uncased roberta-base distilbert-base-uncased_6 0.86 ↑
QNLI bert-base-uncased roberta-base distilbert-base-uncased_6 0.84 ↓
SST-2 bert-base-uncased roberta-base distilbert-base-uncased_6 0.93 ↑
Avg - - - 0.83 ↑
RTE bert-base-uncased bert-large-uncased distilbert-base-uncased_4 0.61 ↑
QQP bert-base-uncased bert-large-uncased distilbert-base-uncased_4 0.72 ↑
QNLI bert-base-uncased bert-large-uncased distilbert-base-uncased_4 0.59 ↓
SST-2 bert-base-uncased bert-large-uncased distilbert-base-uncased_4 0.95 ↑
Avg - - - 0.72 ↓

Table 3: Performance comparison of different student models trained with various teacher configurations. The best
accuracy per task is highlighted in bold, and performance changes are indicated with arrows.

while pruning improves computational efficiency,521

its impact on accuracy is task-dependent.522

Table 6 evaluates the inference time and compu-523

tational speed-up achieved through pruning. The524

inference time was measured by starting a timer525

immediately before passing the input data to the526

model. For the Baseline model, the full input527

text was provided without any pruning, while the528

Pruned model first applied a clustering-based sen-529

tence pruning mechanism, retaining only the most530

informative sentences before feeding them into the531

model. The timer was stopped as soon as the model532

produced the output, ensuring that only the forward533

pass execution time was recorded.534

All experiments were conducted using NVIDIA535

RTX 6000 Ada GPUs (0 to 7), leveraging multi-536

GPU parallelism to optimize inference efficiency.537

The SST-2 task, despite a relatively low pruning538

rate (5.7%), exhibited a substantial speed-up of539

23×, with inference time reducing from 1.15s to540

0.05s. Similarly, RTE achieved a 2.5× reduction541

in inference time, dropping from 0.05s to 0.02s,542

demonstrating that pruning significantly reduces543

computational overhead while maintaining or even544

improving accuracy. For QNLI, the inference time545

improved from 0.37s to 0.23s, corresponding to a546

1.6× speed-up. While the absolute speed gains vary547

by task, the results highlight the efficiency gains548

Figure 3: Clustering Method Performance: Comparison
of Accuracy and Silhouette Score across different clus-
tering methods.(Using MNLI-m Dataset)

achievable through pruning, particularly in tasks 549

where less important information can be effectively 550

removed without degrading performance. 551

These findings collectively indicate that sentence 552

pruning can enhance inference efficiency with min- 553

imal impact on accuracy, and in some cases, even 554

improve performance by reducing noise. How- 555

ever, the extent of performance retention is highly 556

task-dependent, suggesting that pruning strategies 557

should be carefully designed based on task charac- 558

teristics. 559

Figure 3 compares the performance of various 560
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Teacher Student Strategy MNLI-m (Acc.) MRPC (Acc.) RTE (Acc.) SST-2 (Acc.)
Rand-Single-Ensemble BERT6 V-KD 80.7 77.7 61.7 90.6
W-Ensemble BERT6 V-KD 77.2 81.1 62.1 90.6
LR-Dev-Ensemble BERT6 V-KD 81.1 80.6 64.6 90.8
Best-Single-Ensemble BERT6 V-KD 80.5 80.4 66.1 90.3
MT-BERT-Ensemble BERT6 RL-KD - - 75.7 94.6
RL-KD (reward1) BERT6 RL-KD 82.0 82.8 67.1 91.7
RL-KD (reward2) BERT6 RL-KD 82.1 82.1 67.2 91.4
RL-KD (reward3) BERT6 RL-KD 81.6 83.3 68.2 92.3
Our Method BERT6 RL-KD 87.17 70.9 60.7 95.4

Table 4: Performance comparison of different knowledge distillation methods using BERT6 as the student model.
Rand-Single-Ensemble selects a single teacher randomly, while W-Ensemble applies weighted averaging of
multiple teachers. LR-Dev-Ensemble employs logistic regression for teacher selection, and Best-Single-Ensemble
chooses the best-performing teacher. RL-KD (reward1, reward2, reward3) uses reinforcement learning with
different reward settings for knowledge transfer. MT-BERT utilizes multi-teacher co-finetuning with shared pooling
and multi-teacher losses.

Task Prune Acc ∆Acc. F1 ∆F1
Rate (%) Base Pruned (%) Base Pruned (%)

SST-2 5.7 51.72 51.22 -0.50 39.27 38.93 -0.34
RTE 32.8 64.29 68.75 +4.5 53.46 56.02 +2.6
QNLI 31.7 44.32 43.70 -0.62 39.09 38.74 -0.35

Table 5: Impact of Sentence Pruning on Accuracy and
F1 Score.

Task Inf. Time (s) Inf. Time (s) Speed-up (×)
Base Pruned

SST-2 1.15 0.05 23×
RTE 0.05 0.02 2.5×
QNLI 0.37 0.23 1.6×

Table 6: Impact of Sentence Pruning on Inference Time
and Speed-up.

clustering methods: Sentence Clustering Processor561

(Ours), KMeans, Spectral, Agglomerative, Mean562

Shift, and GMM. The blue bars represent accu-563

racy, and the red bars indicate silhouette scores.564

Sentence Clustering Processor (Ours) achieves the565

highest accuracy (0.82) and a competitive silhou-566

ette score (0.65), demonstrating its effectiveness.567

KMeans, a centroid-based method, partitions568

data into K clusters by minimizing the distance569

between points and cluster centers, showing high570

accuracy (0.78) but a lower silhouette score (0.58).571

Spectral Clustering, which utilizes graph theory572

and eigenvectors of similarity matrices, performs573

moderately due to its reliance on pairwise sim-574

ilarities. Agglomerative Clustering, a hierarchi-575

cal method merging clusters based on proximity,576

shows stable but average performance. Mean Shift,577

which iteratively shifts points to high-density re-578

gions, exhibits moderate scores. GMM (Gaussian579

Mixture Model), a probabilistic method model-580

ing data as a mixture of Gaussian distributions,581

achieves a balance between accuracy (0.77) and582

silhouette score (0.57). Overall, our Sentence Clus- 583

tering Processor outperforms traditional techniques 584

in both accuracy and cluster quality. 585

5 Conclusion 586

In this study, we propose a Clustering-Based 587

Knowledge Distillation with Sentence Pruning 588

framework to enhance student model training effi- 589

ciency. Our approach integrates multiple teacher 590

models for improved knowledge diversity and em- 591

ploys a clustering-based sentence pruning mech- 592

anism to remove less important content from in- 593

put representations. Experiments on SST-2, RTE, 594

and QNLI benchmarks show that our method re- 595

tains high accuracy while significantly reducing 596

inference time and computational cost. Notably, 597

pruning improved RTE accuracy by 4.5% and 598

achieved up to 23× inference speedup on SST- 599

2, demonstrating its effectiveness for resource- 600

constrained environments. Furthermore, multi- 601

teacher knowledge distillation combined with 602

task-aware sentence pruning enhances student 603

model performance by filtering irrelevant informa- 604

tion, addressing the redundancy often found in tra- 605

ditional knowledge distillation methods. 606

6 Limitations 607

Sentence pruning significantly enhances inference 608

speed, achieving up to 23× acceleration, but in- 609

troduces a trade-off between efficiency and accu- 610

racy. Tasks relying on rich contextual information 611

may suffer from accuracy degradation, necessitat- 612

ing adaptive pruning strategies that adjust based on 613

task complexity. 614
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