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Abstract

Math word problem (MWP) solving faces a001
dilemma in number representation learning. In002
order to avoid the number representation issue003
and reduce the search space of feasible solu-004
tions, existing works striving for MWP solving005
usually replace real numbers with symbolic006
placeholders to focus on logic reasoning. How-007
ever, different from common symbolic reason-008
ing tasks like program synthesis and knowl-009
edge graph reasoning, MWP solving has ex-010
tra requirements in numerical reasoning. In011
other words, instead of the number value it-012
self, it is the reusable numerical property that013
matters more in numerical reasoning. There-014
fore, we argue that injecting numerical proper-015
ties into symbolic placeholders with contextu-016
alized representation learning schema can pro-017
vide a way out of the dilemma in the number018
representation issue here. In this work, we in-019
troduce this idea to the popular pre-training020
language model (PLM) techniques and build021
MWP-BERT, an effective contextual number022
representation PLM. We demonstrate the effec-023
tiveness of our MWP-BERT on MWP solving024
and several MWP-specific understanding tasks025
on both English and Chinese benchmarks.026

1 Introduction027

Recent works in math word problem (MWP) solv-028

ing (Wang et al., 2018, 2019; Liu et al., 2019a; Li029

et al., 2019; Xie and Sun, 2019; Zhang et al., 2020b;030

Wu et al., 2021c; Qin et al., 2021a; Huang et al.,031

2021a; Wu et al., 2021a; Yu et al., 2021a; Shen032

et al., 2021) arrange the pipeline into a sequence-033

to-sequence framework. In brief, they use deep034

representation and gradient optimization as well as035

symbolic constraints to discover discrete symbolic036

combinations of operators and variants. Funda-037

mentally, MWP solving system aims to perform038

symbolic reasoning by searching through a combi-039

natorial solution space given the text description040

evidences. Thus, these neurosymbolic methods041

Text: Some workers are producing 660 clothes. It has been 5 days and 75 clothes 
are produced per day. But they have to finish all clothes in 3 more days. How 
many clothes should be processed per day from now?

Equation: (660 − 75×5) ÷ 3

Reasoning Logic:

Text: Some workers are producing 660 clothes. It has been 5 days and 10% of
the total clothes are produced per day. But they have to finish all clothes in 3
more days. How many clothes should be processed per day from now?

Equation: 660× 1 − 10%×5 ÷ 3

Reasoning Logic:

÷
−

660 ×

75 5

3

÷

−

1 ×
10% 5

3×

660

Figure 1: The second question is obtained from the first
one by minor modifications. However, their solution
equation and corresponding equation tree structure are
different from each other. This demonstrates the impor-
tance of considering numerical value information and
reasoning logic (equation tree) in contextual modeling.

mainly focus on getting more effective semantic 042

representations (Li et al., 2019; Zhang et al., 2020b; 043

Wu et al., 2021c,a; Yu et al., 2021a), injecting sym- 044

bolic constraints (Wang et al., 2018, 2019; Liu et al., 045

2019a; Xie and Sun, 2019) and how to align seman- 046

tic space (text descriptions) and huge combinato- 047

rial symbolic space (symbolic solutions) (Qin et al., 048

2021a; Shen et al., 2021; Huang et al., 2021a). This 049

line of methods has achieved great success and 050

is still holding the lead in various MWP solving 051

benchmarks (Wang et al., 2017; Zhao et al., 2020; 052

Koncel-Kedziorski et al., 2016). 053

Despite the great performance achieved by the 054

previous methods, there still exists fundamental 055

challenges in number representation for MWP solv- 056

ing. More exactly, number values are required to be 057

considered as vital evidence in solution exploration 058

but existing works are known to be inefficient in 059

capturing numeracy information (Wallace et al., 060

2019). Intuitively, we could simply treat explicit 061
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numbers in the same way with words, i.e., assign062

position for all numbers in the vocabulary. How-063

ever, there would be an infinite number of candi-064

dates during prediction and it would be impossible065

to learn their deep representations. In other words,066

the solution space will be extremely large and the067

complexity is unacceptable. Therefore, almost all068

existing works follow the number mapping tech-069

nique Wang et al. (2017) to replace all numbers070

with symbolic placeholders (e.g., “x1”, “x2”). The071

core idea here is to get a reasonable solution space072

by restricting neural networks to leave out numer-073

ical characteristics and focus on logic reasoning.074

However, most of the current MWP solvers do not075

consider the background knowledge in the context076

and are usually inefficient in capturing numeracy077

properties. An example is shown in Fig. 1. Small078

perturbations in the problem description actually079

bring large variations in reasoning logic and equa-080

tion. If the model simply regards “75” and “10%”081

as the same placeholder “x3”, and does not notice082

the small variation in the context, a wrong solution083

will be generated.084

To this end, we incorporate several numeracy085

grounded pre-training objectives to inject inductive086

bias about numerical constraints into dynamic rep-087

resentations. Compared with word candidate sets,088

useful points in number candidate space are scat-089

tered sparsely. However, we identify that during090

prediction, what matters is the reusable numerical091

properties of number values. What’s more, these092

properties do not suffer from the sparsity issues093

of specific values in MWPs. Therefore, compared094

with assigning a prototype vector for each single095

number value like (Wu et al., 2021d), it is more rea-096

sonable to inject the reusable numerical properties097

in deep representations, e.g., magnitude and num-098

ber type. In this work, we propose to design numer-099

acy grounded pre-training objectives to implement100

soft constraints between symbolic placeholders and101

numbers in deep representation.102

Contributions. We present a suite of numeracy-103

augmented pre-training tasks with consideration of104

reasoning logic and numerical properties. More105

exactly, we introduce several novel pre-training106

tasks with access to different levels of supervision107

signals to make use of more available MWP data.108

• One basic group of pre-training tasks is de-109

signed for the self-supervised setting. Ex-110

cept for masked language modeling (MLM),111

we give extra consideration to number-related112

context information by designing related ob- 113

jectives. 114

• Another set of pre-training objectives is for 115

the weakly-supervised setting that has only 116

answer annotations but no equation solutions. 117

With access to the answer value, we introduce 118

several tasks to determine the type and the 119

value of the answer. 120

• The final set is for the fully-supervised setting, 121

where both solution equation and answer are 122

available for the MWPs. 123

Besides, a group of numeracy grounded pre- 124

training objectives is designed to leverage the cor- 125

pus of MWP and encourage the contextual repre- 126

sentation to capture numerical information. Ex- 127

periments conducted on both Chinese and English 128

benchmarks show the significant improvement of 129

our proposed approach over all competitors. To our 130

knowledge, this is the first approach that surpasses 131

human performance (Wang et al., 2019) in terms 132

of MWP solving. 133

2 Related Works 134

Math Word Problems Solving. There exist two 135

major types of MWP, equation set MWP (Wang 136

et al., 2017; Zhao et al., 2020) and arithmetic 137

MWP (Qin et al., 2020; Huang et al., 2016). This 138

work focuses on arithmetic MWP, which is usually 139

paired with one unknown variable. Along the path 140

of the MWP solver’s development, the pioneer stud- 141

ies use traditional rule-based methods, machine 142

learning methods and statistical methods (Yuhui 143

et al., 2010; Kushman et al., 2014; Shi et al., 2015; 144

Koncel-Kedziorski et al., 2015). Afterwards, in- 145

spired by the development of sequence-to-sequence 146

(Seq2Seq) models, MWP solving has been for- 147

mulated as a neurosymbolic reasoning pipeline of 148

translating language descriptions to mathematical 149

equations with encoder-decoder framework (Wang 150

et al., 2018, 2019; Li et al., 2019; Zhang et al., 151

2020b; Yu et al., 2021a; Wu et al., 2021a). By 152

fusing hard constraints into decoder (Chiang and 153

Chen, 2018; Liu et al., 2019a; Xie and Sun, 2019; 154

Shen and Jin, 2020; Zhang et al., 2020a), MWP 155

solvers achieve much better performance then. Sev- 156

eral works propose to utilize multi-stage frame- 157

works (Wang et al., 2019; Huang et al., 2021a; 158

Shen et al., 2021) to make more robust solvers. 159

Also, several new works made attempts to improve 160
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MWP solver beyond supervised settings (Hong161

et al., 2021a,b).162

Among all these previous studies, the most rele-163

vant ones to our work can be categorized into two164

groups. First, it has been noted that number val-165

ues and mathematical constraints play a significant166

role in supporting numerical reasoning. Wu et al.167

(2021c) proposed several number value features to168

enhance encoder and Qin et al. (2021a) designed169

new auxiliary tasks to enhance neural MWP solvers.170

Compared with their work, we first introduce pre-171

training language model (PLM) and concentrate172

on representation learning to resolve numerical un-173

derstanding challenges. Second, regarding the us-174

age of pre-training techniques for MWP solving,175

Shen et al. (2021) introduced BART-based (Lewis176

et al., 2020) MWP solver and incorporated special-177

ized multi-task training for obtaining more effec-178

tive pre-training Seq2Seq models for MWP. Com-179

pared with them, our work focuses on the number180

representation learning issue of MWP and achieves181

a more flexible pre-training representation module182

for MWP solving, which can be applied in various183

MWP related tasks other than solution generation.184

Numeracy-aware Pre-training Models. Num-185

ber representation has been recognized as one of186

the main issues in word representation learning.187

Existing methods make use of value, exponent, sub-188

word and character methods (Thawani et al., 2021)189

to obtain number representations for explicit num-190

ber values. These methods are known to be less191

effective in extrapolation cases like testing with192

numbers not appearing in the training corpus.193

Previous related works (Andor et al., 2019; Wal-194

lace et al., 2019; Geva et al., 2020) mainly focus on195

shallow numerical reasoning tasks shown in DROP196

dataset (Dua et al., 2019), which usually serves197

as a benchmark for evaluating numerical machine198

reading comprehension (Num-MRC) performance.199

Compared with MWP solving, Num-MRC’s main200

focus is laid on extracting answer spans from a201

paragraph, which are more fault-tolerant with no202

needs to predict number tokens. Besides, their so-203

lution generation tasks only contain simple compu-204

tations like addition/subtraction and there are only205

integers in DROP. More exactly, several research206

efforts have been made to deal with this kind of207

math-related reading comprehension task by syn-208

thesizing new training examples (Geva et al., 2020),209

incorporating special modules considering the nu-210

merical operation (Andor et al., 2019) and design-211

Some workers are producing x1 clothes ... x2 days and x3 clothes … x4 more …

BERT/RoBERTa

Number Representations

𝑍1 𝑍2 𝑍3 𝑍4

Self-Supervised Weak-Supervised Fully-Supervised

x1 x2 x3 x4
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660 75 5 3
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Figure 2: The overall architecture of our BERT-based
MWP solver. Our method enables the solver to learn
from unlabeled, incompletely labeled and fully labeled
MWPs by different pre-training tasks.

ing specific tokenization strategies (Zhang et al., 212

2020c). Since MWP solving requires further con- 213

sideration of the complex composition of reasoning 214

logics in MWP text, the symbolic placeholder is 215

more effective in MWP solving. Thus, instead of 216

dealing with explicit number values, our work fo- 217

cuses on improving representation for symbolic 218

placeholders by injecting numerical properties in a 219

probabilistic way. 220

3 Methodology 221

3.1 Problem Statement 222

The input to an MWP solver is a textual descrip- 223

tion, we denote it as W with length m, thus 224

W = {w1, w2, ..., wm}. We also define a subset 225

Wq ofW which contains all the quantities appeared 226

in W . The output is an equation showing how to 227

get the final answer. We denote it as A with length 228

n, where A = {a1, a2, ..., an}. The vocabulary 229

of A contains three parts, namely Vop, Vnum and 230

Vcons. Vop is the vocabulary for all operators, i.e. 231

+, −, ×, ÷ and ∧. The vocabulary of quantities 232

Vnum is constructed by number mapping (Wang 233

et al., 2017), which transforms quantities in dif- 234

ferent MWPs into a unified representation. More 235

specifically, Vnum does not contain the actual value 236

of quantities appeared in W , and those quantities 237

are denoted as {n1, n2, ..., nk}, where ni means 238

the i-th number from W and k is the maximum 239

number of quantities in Vnum in order to fix the 240

size of it. Vcons contains necessary constant values 241

e.g., π. 242
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3.2 PLM Encoder243

Our PLM encoder maps the problem description244

W into a representation matrix Z ∈ Rm∗h where245

h is the dimension of the hidden feature.246

Z = encoder(W ). (1)247

The representation vector corresponding to each248

word in Z will be used in the decoding process for249

generating the solution.250

An overview of pre-training objectives and our251

model architecture is shown in Figure 2. In gen-252

eral, pre-training objectives are designed to inject253

contextual priori and numerical properties as soft254

constraints for representation learning. They are255

categorized into three types given provided training256

signals, i.e., self-supervised, weakly-supervised,257

and fully-supervised.258

3.3 Self-supervised Objectives259

In this part, we only consider input text descrip-260

tions for each example. Also, these objectives can261

alleviate the costs of collecting MWP corpus by262

constructing supervision signals without solution263

answers and equations.264

Masked Language Modeling. We follow De-265

vlin et al. (2019) and introduce masked language266

modeling (MLM) for basic contextual representa-267

tion modeling. Specially, we apply masks on 10%268

of tokens, randomly replace 10% of tokens with269

other tokens and keep 80% of tokens unchanged.270

Later, the manipulated sentence is utilized to recon-271

struct the original sentence.272

Number Counting. Another pre-training objec-273

tive is to predict the amount of numbers that ap-274

peared in MWP description. The amount of a num-275

ber corresponds with the cardinality of variable sets.276

This also reflects the basic understanding about the277

difficulty of an MWP and can act as a key contex-278

tual MWP number understanding feature. Here, we279

introduce a regression objective with the following280

formulated loss function:281

LNumCount = MSE(FFN(Z̄), |Wq|), (2)282

where MSE stands for mean-squared-error and283

FFN stands for the feed-forward network which is284

made up of two fully-connected (FC) layers and285

one ReLU activation. We build a two-FC-layer286

block for each pre-training task (except MLM) and287

discard them during fine-tuning. Z̄ ∈ Rh is the288

mean vector of Z and represents the encoder’s over- 289

all understanding of a single MWP text description. 290

|Wq| is the number of quantities shown in the prob- 291

lem description W . 292

Number Type Grounding. This objective aims 293

at linking contextual number representations with 294

corresponding number types to tell the difference 295

between discrete and continuous concepts/entities. 296

For numerical reasoning in MWP solving, we only 297

need to handle whole numbers as well as non- 298

integer numbers (decimal, fraction and percent- 299

age). Ideas here are that whole numbers usually 300

associate with discrete entities (for example, desks, 301

chairs and seats) while non-integer numbers often 302

connect with continuous concepts (for example, 303

proportions, rate, velocity). Besides, comparisons 304

among whole numbers got different issues com- 305

pared with rational numbers. Therefore, we pro- 306

pose a classification objective to predict if a number 307

is a whole number or non-integer number: 308

LNTGround =
∑

i:Wi∈Wq

CE(FFN(Zi), yi), (3) 309

where Wq contains all the numbers that appeared 310

in W , and CE is the cross-entropy loss for binary 311

classification. Here, i is the index when Wi is a 312

quantity, Zi is the corresponding representation 313

vector, and yi is a binary label indicating if Wi is a 314

whole number or non-integer number. 315

3.4 Weakly-supervised Objectives 316

Given both text descriptions of MWPs and cor- 317

responding answers, we can model dependencies 318

among answer number and numbers in text descrip- 319

tions so that contextual representation perceive the 320

existence of the target variable number that does 321

not appear in the text descriptions. In detail, we 322

design 3 novel pre-training objectives specializing 323

in value-annotated MWPs to improve number rep- 324

resentation in our MWP-BERT. 325

Answer Type Prediction. Determining the type 326

of answer number can provide us discrete/continu- 327

ous nature of target entity/concept. Thus, we want 328

to predict type (whole/non-integer) of the answer 329

value given global representations of an MWP (em- 330

bedded in Z): 331

LATPred = CE(FFN(Z̄), ys), (4) 332

where ys is the ground truth label indicating the 333

type of answer number. 334
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Context-Answer Type Comparison. Besides335

the global context feature, an MWP-BERT also336

needs to associate context numbers and answer337

number (the target number does not explicitly ap-338

pear in the text). Thus, another objective is pro-339

posed to predict if the quantities appeared in the340

MWP text fall into the same category as the answer341

(i.e. they are all whole or non-integer):342

LCATComp =
∑

i:Wi∈Wq

CE(FFN(Zi), yi ⊕ ys),

(5)343

where ⊕ stands for the exclusive-or operator be-344

tween two binary labels to check if they are the345

same, the label of a quantity yi and the label of the346

solution value ys.347

Number Magnitude Comparison. Beyond348

type, the magnitude of a number serves as the349

foundation of numerical reasoning. By associating350

magnitudes evaluation with contextual representa-351

tion, the model can get a better perception about352

variance over key reasoning cues like time, size,353

intensity and speed. Let ẏi indicate if the current354

quantity Wi is greater than the solution value or355

not. Moreover, the loss function is formulated as:356

LNumMComp =
∑

i:Wi∈Wq

CE(FFN(Zi), ẏi).

(6)357

3.5 Fully-supervised Objectives358

Given both equations and answers for MWPs, we359

can design fully-supervised training tasks to asso-360

ciate number representation with reasoning flows361

(solution equation). Mathematical equations are362

known to be binary tree structures with operators363

on root nodes and numbers on leaf nodes. The mo-364

tivation is to encourage models to learn structure-365

aware number representations that encode the infor-366

mation on how to make combinations over atomic367

operators and numbers. We incorporate two pre-368

training objectives based on the solution equation369

tree.370

Operation Prediction. The first one is a371

quantity-pair relation prediction task that focuses372

on the local feature of the equation tree. The goal is373

to predict the operator between two quantity nodes374

in the solution tree. This is in fact a classification375

task with 5 potential targets, i.e., +,−,×,÷ and ∧.376

The loss function of this task is:377

LOPred =
∑
i,j

CE(FFN([Zi;Zj ]), op(Wi,Wj)), (7)378

where i, j are two indexes that satisfy Wi,Wj ∈ 379

Wq and [Zi;Zj ] ∈ R2h is the concatenation of Zi 380

and Zj for the quantity Wi and Wj . op(Wi,Wj) 381

returns the operator between Wi and Wj . 382

Tree Distance Prediction. Another pre-training 383

objective is to incorporate the global structure of 384

the equation tree in a quantitative way. Inspired by 385

Hewitt and Manning (2019), we consider the depth 386

of each number and operator on the corresponding 387

binary equation tree to be the key structure priori. 388

Thus, we design another fully-supervised objective 389

to utilize this information. More exactly, given the 390

representation of two number nodes in an equation 391

tree, this is a regression problem that predicts the 392

distance (difference of their depth) between them. 393

The loss is formulated as: 394

LTPred =
∑
i,j

MSE(FFN([Zi;Zj ]), d(Wi,Wj)), (8) 395

where d(Wi,Wj) is the distance between quantity 396

Wi and Wj in the solution tree. 397

The final pre-training objective is the summation 398

of Equation 2~8 and the masked language model. 399

3.6 Fine-Tuning 400

To investigate the mathematical understanding abil- 401

ity of our pre-training MWP-BERT, we evaluate 402

our model of MWP solving, quantity tagging and 403

7 probing tasks. Moreover, we not only use BERT 404

but also RoBERTa (Liu et al., 2019b) as the back- 405

bone of our encoder to show the adaptiveness of 406

proposed method. 407

4 Experiments 408

We present several empirical results with octopus 409

evaluation settings (Bender and Koller, 2020) to 410

prove the superiority of MWP-BERT and MWP- 411

RoBERTa solver. In section 4.1, we illustrate the 412

application of both solvers in the generation sce- 413

nario, MWP solving, by fine-tuning them with 414

a specific decoder (Xie and Sun, 2019). Next, 415

we present MWP probing tasks in section 4.2 to 416

evaluate the capability of MWP-BERT and MWP- 417

RoBERTa on “understanding” or “capturing the 418

meanings” of MWPs. Finally, results and analysis 419

about ablation study are illustrated in section 4.3. 420

Implementation Details. We pre-train our 421

model on 4 NVIDIA TESLA V100 graphic cards 422

and fine-tune on 1 card. The model was pre-trained 423

for 50 epochs (2 days) and fine-tuned for 80 epochs 424
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(1 day) with a batch size of 32. Adam optimizer425

(Kingma and Ba, 2014) is applied with an initial426

learning rate of 5e-5, which would be halved every427

30 epochs. For the Chinese pre-training model,428

we use an upgrade patch of Chinese BERT and429

RoBERTa which are pre-trained with the whole430

word masking (WWM)1 (Cui et al., 2020). For the431

English pre-training models, we use the official432

source on this website2. Due to the limited space,433

more details about implementation are listed in434

A.2 of Appendix. We will release all the code and435

data after this paper is published.436

4.1 MWP Solving437

Experiment Settings and Datasets. Given a tex-438

tual description of a mathematical problem, which439

contains several known variables, MWP solving440

targets at getting the correct answer for the corre-441

sponding question. A solver is expected to be able442

to predict an equation that can exactly reach the443

answer value. We conduct experiment based on444

these benchmarks, Math23k (Wang et al., 2017),445

MathQA (Amini et al., 2019) and Ape-210k (Zhao446

et al., 2020). Since there exist many noisy examples447

in Ape-210k, e.g., examples without equation anno-448

tations or answer values, we re-organize Ape-210k449

to Ape-clean and Ape-unsolvable, where the train-450

ing set of Ape-clean and the whole Ape-unsolvable451

are used for pre-training. For more details about452

this new collection Ape-clean, please refer to A.1453

of the Appendix. For the English MWP, we use454

the training set of MathQA (Amini et al., 2019) to455

perform pre-training. For the implementation of456

our solver, MWP-BERT is adapted as an encoder457

to generate intermediate MWP representation for458

the tree-based decoder in Xie and Sun (2019).459

Model Comparison. We first compare our ap-460

proach with the most recent representative base-461

lines on the benchmark Math23k dataset. The first462

baseline is DNS which is the pioneering work us-463

ing the Seq2Seq model to solve MWPs. Math-464

EN (Wang et al., 2018) proposes an equation-465

normalization method and uses vanilla Seq2Seq466

model to get solutions. GTS (Xie and Sun, 2019)467

proposes a goal-driven tree-based decoder and468

achieves great results. Graph2Tree (Zhang et al.,469

2020b) constructs two graphs during data pre-470

processing to extract extra relationships from text471

1https://github.com/ymcui/Chinese-BERT-wwm
2https://huggingface.co/bert-base-uncased and https://

huggingface.co/roberta-base

Math23kMath23k∗MathQA

DNS − 58.1 −
Math-EN 66.7 − −
GTS 75.6 74.3 71.3
NS-Solver 75.7 − −
Graph2Tree 77.4 75.5 72.0
TSN-MD 77.4 75.1 −
KA-S2T 76.3 − −
NumS2T 78.1 − −
EEH-G2T 78.5 − −
RPKHS 83.9 82.2 −
Encoder pre-train

RoBERTa 83.5 81.7 75.3
BERT 83.8 82.0 75.1
MWP-RoBERTa 84.5 82.0 76.6
MWP-BERT 84.7 82.4 76.2

Seq2Seq pre-train
REAL 82.3 80.0 −
BERT-CL 83.2 − 76.3
Gen&Rank 85.4 84.3 −

Table 1: Comparison of answer accuracy (%) among
our proposed models and different baselines. Math23k
column shows the results on the public test set and
Math23k∗ is 5-fold cross validation on Math23k
dataset. MathQA is adapated from Li et al. (2021);
Tan et al. (2021). “RoBERTa” and “BERT” repre-
sent results without pre-training. “MWP-RoBERTa”
and “MWP-BERT” represent first pre-training with
proposed tasks and then fine-tuning.

descriptions. KA-S2T (Wu et al., 2020) proposes 472

a novel knowledge-aware model that can incor- 473

porate background knowledge. NS-Solver (Qin 474

et al., 2021b) designs several auxiliary tasks to 475

help training. NumS2T (Wu et al., 2021d) uses 476

explicit numerical values instead of symbol place- 477

holder to encode quantities. RPKHS (Yu et al., 478

2021b) builds hierarchical reasoning encoder in 479

parallel with PLM encoder. REAL (Huang et al., 480

2021b) proposes a human-like analogical auxiliary 481

learning strategy. EEH-G2T (Wu et al., 2021b) 482

injects edge label information and the long-range 483

word relationship into graph network. Gen&Rank 484

(Shen et al., 2021) designs a multi-task learning 485

framework for adapting BART in MWP solving. 486

BERT-CL (Li et al., 2021) incorporates contrastive 487

learning strategy with PLM. To avoid the imple- 488

mentation error that may cause unreproducible re- 489

sults of baseline models, we reported the results of 490

these baselines from the papers where they were 491

published, as many previous papers (Zhang et al., 492
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Model
Math23k Ape-clean
Equ Ans Equ Ans

DNS 50.2 50.3 66.2 66.2

GTS 70.1 81.4 60.4 73.2

RoBERTa 75.8 88.8 66.7 80.2

BERT 76.7 89.4 67.0 80.4

MWP-RoBERTa 77.1 90.2 67.1 80.8

MWP-BERT 77.5 91.2 67.5 81.3

Table 2: Comparison of answer accuracy (%) between
our proposed models and baselines when they are all
trained by the combination of the training set from Ape-
clean and Math23k dataset.

2020b; Shen and Jin, 2020) did.493

As shown in Table 1, our MWP-BERT achieves494

competitive results. It is worth noting that we per-495

form strict pre-training paradigm in MWP solving,496

i.e., our results come from pre-training on the differ-497

ent annotated MWP examples that will be applied498

in further fine-tuning. Here, our pre-training only499

uses Ape-clean and Ape-unsolvable and fine-tuning500

only uses Math23k/MathQA.501

RPKHS, REAL and BERT-CL all incorporate502

BERT in their model architecture, which are orthog-503

onal to our work. Our MWP-BERT can be utilized504

as an MWP-specific checkpoint for their encoder505

part to improve their performance. Besides, REAL,506

BERT-CL and Gen & Rank are all trying to make507

Seq2Seq pre-training (Lewis et al., 2020), which508

adapt both pre-training encoder as well as pre-509

training decoder for MWP solving. Compared with510

them, our model focuses on encoder pre-training511

and aims at obtaining better MWP representation512

that can be widely applied across various MWP513

related tasks (like quantity tagging, MWP question514

generation).515

Another interesting observation is that BERT-516

based models perform better on Chinese MWP517

datasets while RoBERTa-based models are good518

at English MWP datasets. Because the Chinese519

RoBERTa used in this paper is actually a BERT520

model that uses BERT tokenization but is trained521

like RoBERTa (drops the Next Sentence Prediction522

task). Similar behaviors can be observed in Cui523

et al. (2020). For English setting, RoBERTa per-524

forms better than BERT, which is consistent with525

conclusions raised in Liu et al. (2019b).526

Evaluation on Ape-clean and Math23k when 527

being trained by a Joint MWP Set. Moreover, 528

we combine the training set of Math23k and Ape- 529

clean to train MWP-BERT, and then measure the 530

accuracy on the testing set of Math23k and Ape- 531

clean separately. Results shown in Table 1 con- 532

vey interesting evaluation observations. Surpris- 533

ingly, the accuracy of our models on Math23k 534

reaches above 90%, which is marvelously high 535

(previous state-of-the-art methods can hardly reach 536

80% (Shen and Jin, 2020)). Compared to the results 537

in Table 1, even GTS has a higher accuracy when 538

trained with the big joint MWP set of Ape-clean 539

and Math23k. 540

By comparing the performance of correspond- 541

ing groups between Table 1 and Table 2, we can 542

learn that our proposed MWP-BERT pre-training 543

paradigm can achieve more significant boosting 544

with more training examples, which proves the ef- 545

fectiveness of our proposed representation learning 546

techniques. We will release Ape-clean with consid- 547

eration of ethical issues soon. 548

4.2 Other MWP Understanding Tasks 549

Standard MWP solving is an equation generation 550

task. To make a sufficient validation of the effec- 551

tiveness of our model on number representations 552

learning, MWP-specific understanding tasks are 553

further considered. Following Hewitt and Man- 554

ning (2019); Wallace et al. (2019), we design sev- 555

eral number probing tasks and incorporate quantity 556

tagging (Zou and Lu, 2019b) to enlarge the MWP 557

understanding evaluation task. 558

Following the motivation mentioned in sec- 559

tion 3.2, we re-run all the pre-training tasks as 560

probing tasks to evaluate our modeling’s under- 561

standing ability and test MWP-BERT in a zero- 562

shot scenario, i.e. without fine-tuning the parame- 563

ters of MWP-BERT and MWP-RoBERTa for the 564

sake of fair comparison. We perform the probing 565

evaluation on both Ape-clean and Ape-unsolvable, 566

except that “OPred” and “TPred” are only evalu- 567

ated on Ape-clean because they require equation 568

solutions as the ground truth. Besides, we borrow 569

an MWP-specific sequence labeling task, quantity 570

tagging (Zou and Lu, 2019b) (“QT”), to further 571

compose MWP understanding evaluation settings. 572

We follow the 3-fold cross-validation and use the 573

same dataset described in (Zou and Lu, 2019a). 574

Table 3 shows the performances of 4 different 575

PLMs on the above mentioned MWP-specific un- 576
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NumCount NTGround ATPred CATComp NumMComp OPred TPred QT

Metric MSE ↓ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ MSE ↓ Acc ↑
BERT 3.08 0.87 0.75 0.77 0.77 0.50 0.97 84.5
RoBERTa 3.20 0.86 0.76 0.78 0.77 0.51 0.99 84.6
MWP-RoBERTa 0.69 0.92 0.86 0.87 0.86 0.86 0.44 91.0
MWP-BERT 0.67 0.92 0.85 0.87 0.86 0.87 0.45 91.5

Table 3: The evaluation results on MWP-specific understanding tasks. All tasks correspond to the tasks mentioned
in section 3. Note that the metric for 2 tasks is mean-squared-error, while others use classification accuracy. “QT”
stands for quantity tagging.

Math23k Ape-clean
Only self-supervised 90.4 80.9

w/o MLM 90.1 80.6

w/o NumCount 89.9 80.5

w/o NTGround 90.1 80.4

Only weakly-supervised 90.1 80.8

w/o ATPred 89.7 80.2

w/o CATComp 89.7 80.4

w/o NumMComp 89.6 80.5

Only fully-supervised 91.0 80.5

w/o OPred 90.5 80.3

w/o TPred 90.6 80.5

MWP-BERT 91.2 81.3

Table 4: The experimental results show the effective-
ness of every pre-trained task. “Only self-supervised”
means we only apply 3 tasks of self-supervised pre-
training on the BERT encoder. We also investigate
the influence of each task. For example, “w/o MLM”
means only performing self-supervised pre-training
and discarding the MLM pre-training task.

derstanding tasks. Significant improvements can577

be observed in all the tasks, and demonstrate the ef-578

fectiveness of our proposed pre-training techniques579

in improving number representation of PLMs. Be-580

sides, this group of MWP-specific understanding581

tasks could also serve as a special evaluation setting582

for future work, we will open-source corresponding583

code after publication.584

4.3 Ablation Study585

We run ablation study over the proposed training586

objectives to investigate the necessity for each of587

them. As Table 4 shows, all the proposed objectives588

can achieve improvements individually. Since the589

difficulty level of MWPs is usually in proportion590

to their solution length, we can easily identify that591

a set of MWPs exhibit a long-tail distribution over592

solution length, as well as the difficulty level, as 593

shown in. Fig 3 of the Appendix. Thus, the 87% 594

accuracy of human-level performance in Math23k 595

(Wang et al., 2019) indicates that 13% of the MWPs 596

are difficult to solve. Any solvers that can improve 597

the accuracy above 87% are making significant con- 598

tribution on solving the extremely difficult cases, 599

such as MWPs whose solutions contain ≥ 4 vari- 600

ables or single variable being used multiple times. 601

As neural models are known to be limited at dealing 602

with these combinational and symbolic reasoning 603

cases (Lee et al., 2020), we exam our model on 604

these specially difficult cases. Due to the space 605

limit, we attach several examples of these difficult 606

cases, statistics about solution length distribution 607

and performance for increasing length of solution 608

equations in A.3 and A.4 of the Appendix. Be- 609

sides, it is worth noting that even without MLM 610

objective, our model is able to promote the PLM 611

competitor. Besides, we can observe that linking 612

equation structure and number during pre-training 613

is certainly beneficial for solving MWPs. 614

5 Conclusion 615

We propose MWP-BERT, an MWP-specific PLM 616

model with 8 pre-training objectives to solve the 617

number representation issue in MWP. Also, a new 618

dataset Ape-clean is curated by filtering out un- 619

solvable problems from Ape210k, and the filtered 620

MWPs are useful for self- and weakly-supervised 621

pre-training. Experimental results show the superi- 622

ority of our proposed MWP-BERT across various 623

downstream tasks on generation and understanding. 624

In terms of the most representative task MWP solv- 625

ing, our approach achieves the highest accuracy, 626

and firstly beats human performance. Better numer- 627

ical understanding ability is also demonstrated in 628

the probing evaluation. We believe that our study 629

can serve as a useful pre-trained pipeline and a 630

strong baseline in the MWP community. 631
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A Appendix841

A.1 The Ape-clean Dataset842

Ape210k is a recently released large MWPs dataset,843

including 210,488 problems. The problems in844

Ape210k are more diverse and difficult than those845

in Math23k as shown in 5. Not only the stronger846

requirement of common-sense knowledge for get-847

ting solutions, but also the missing of ground-truth848

solution equations or answers, will take extra ob-849

stacles for MWP solving. Among all these cases,850

the problems without answers can not be used for851

fully-supervised setting. Besides, the problems852

without annotated equations but only answer val-853

ues can be used in the weakly-supervised learning854

setting. Therefore, we follow the rules below to se-855

lect the usable problems from Ape210k to construct856

an Ape-clean dataset, which can be used for the857

fully-supervised learning setting. (i). We remove858

all MWPs that have no answer values nor equa-859

tions. (ii). We remove all MWPs that only have860

answer values without equations. (iii). We remove861

all MWPs with a problem lengthm > 100 or an an-862

swer equation length n > 20, as they will bring ob-863

stacles for training. (iv). We remove all MWPs re-864

quiring external constants except 1 and π. (v). We865

remove all duplicated problems with the MWPs in866

Math23k, because almost all problems in Math23k867

can be found in Ape-210k. After data filtering,868

the Ape-clean dataset contains 81,225 MWPs, in-869

cluding 79,388 training problems and 1,837 testing870

problems. The remaining 129,263 problems in871

Ape210k are regarded as Ape-unsolvable, which872

can be used in the pre-training tasks in the settings873

of self-supervised and weakly-supervised learning.874

A.2 Implementation Details875

We pre-train our model on 4 NVIDIA TESLA876

V100 graphic cards and fine-tune on 1 card. All877

implementation of training and testing is coded in878

Python with Pytorch framework. The model was879

pre-trained for 50 epochs and fine-tuned for 80880

epochs with a batch size of 32. Adam optimizer881

(Kingma and Ba, 2014) is applied with an initial882

learning rate of 5e-5, which would be halved every883

30 epochs. Dropout rate of 0.5 is set during training884

to prevent over-fitting. During testing, we use 5-885

beam search to get reasonable solutions. The hyper-886

parameters setting of our BERT and RoBERTa is887

12 layers of depth, 12 heads of attention and 768888

dimensions of hidden features.889

Unsolvable
problem 1:

The price of a ball is 6 yuan, and
the price of a basketball is less
than 13 times of the ball’s price.
How much might the price of the
basketball be?

Answer: ?
Unsolvable
problem 2:

x is a single digit and the quotient
of x72/47 is also a single digit,
what is x at most?

Answer: 3
Unsolvable
problem 3:

In the yard there were 25 chick-
ens and rabbits. Together they
had 80 legs. How many rabbits
were in the yard?

Answer: (80-25)*2/(4-2) = 15

Table 5: This table shows three kinds of discarded
MWPs in Ape210k. The first one does not have a cer-
tain answer, and the solution of the second one cannot
be represented by equations. Solving the third problem
requires external constants. Thus we filter those prob-
lems out in our Ape-clean dataset.

Problem 1: There are 20 questions in an
exam. Solving a question cor-
rectly gets 5 points, and 1 point
is deducted if the answer is
wrong. Jack gets 70 points.
How many questions did he get
right?

Answer: 20-(20*5-70)/(5+1)
Problem 2: Peter is reading a book. He

reads 30% of the whole book
on the first day, and 15 pages on
the second day. The ratio of the
number of pages that has been
read to the number of pages not
read is 2:3. How many pages
does this book have?

Answer: 15/(1-((3)/(2+3))-30%)
Problem 3: There are 72% of 50 students

can swim, and (3/5) of 25 girls
can swim, how many percent of
the boys can swim?

Answer: (50*72%-25*(3/5))/(50-25)

Table 6: This table shows three difficult problems in
Math23k.
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Solution Lengths on Ape-clean Solution Lengths on Math23k

Figure 3: The solution length distributions on Math23k
and Ape-clean.

A.3 Accuracy w.r.t. Solution Length890

To better understand the improvement of the MWP891

solving performance of our model, we evaluate892

the problems with different lengths of solutions893

separately. The solution distribution details can894

be found in Figure 3 It is expected that getting895

longer solutions requires more comprehensive un-896

derstanding and complex reasoning, like the three897

difficult examples shown in Table 6. The results898

in Table 7 demonstrate that our proposed MWP-899

BERT overcomes more difficult problems than the900

vanilla BERT model. Although the statistical im-901

provement from BERT to MWP-BERT is marginal,902

our method really enhances the mathematical un-903

derstanding and reasoning ability of PLMs.904

A.4 Case Study905

We perform case study as shown in Table 8. Firstly,906

we choose a difficult problem from Math23k907

dataset and use 3 different solvers to solve it. Both908

GTS (Xie and Sun, 2019) and Graph2Tree (Zhang909

et al., 2020b) fail to generate the right solution for910

it, while our proposed MWP-BERT solves it cor-911

rectly. This example shows that our encoder has a912

stronger capability to understand complex MWPs913

to guide the tree-based decoder generate correct so-914

lutions. Secondly, when solving a pair of 2 similar915

problems (i.e., problem 1 and problem 2 in Table916

8), GTS, Graph2Tree and our MWP-BERT suc-917

cessfully solve the former problem. However, the918

baseline methods GTS and Graph2Tree both fail919

to solve the latter one. Our MWP-BERT generates920

the correct answer. This example proves that our921

probing tasks help the encoder to capture minor922

variations inside the problem description, leading923

to more accurate solutions.924

#op #P BERT MWP-BERT
0 16 100 100
1 331 95.1 96.3
2 485 90.7 90.7
3 124 79.8 82.3
4 31 58.0 67.7
5 7 85.7 85.7

>5 6 33.3 50

Table 7: The answer accuracy of BERT and MWP-
BERT on problems with different lengths in Math23k.
#op denotes the number of operators in the solution. #P
is the number of problems of that kind of MWPs in the
public test set of Math23k.

Difficult
Problem:

There are totally 48 cars and
motorcycles in a parking lot.
Each car has 4 wheels and each
motorcycle has 3 wheels. If
they have 172 wheels in to-
tal. How many motorcycles are
there in the parking lot?

GTS: x = 48 + (172 − 48)/(4 − 3)
(7)

Graph2Tree : x = 48− (48− 172)/3 (7)
MWP-BERT: x = (48∗4−172)/(4−3) (X)

Problem 1: Team A and team B are work-
ing on a project together. Team
A finished (4/15) of the project,
and team B finished (2/15) more
than Team A . How many per-
centage did the two teams finish
in total?

GTS: x = (4/15) + (2/15) + (4/15)
(X)

Graph2Tree : x = (4/15) + (2/15) + (4/15)
(X)

MWP-BERT: x = (4/15) + (2/15) + (4/15)
(X)

Problem 2: Team A and team B are build-
ing a road. Team A builds (4/9),
and team B builds (1/9) more
than team A. How many per-
centage does Team B build?

GTS: x = (4/9) + (1/9) + (4/9) (7)
Graph2Tree : x = (4/9) + (1/9) + (4/9) (7)
MWP-BERT: x = (4/9) + (1/9) (X)

Table 8: Our case study.
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A.5 Quantity Tagging925

Quantity tagging (Zou and Lu, 2019a) is firstly926

proposed to solve MWP examples with only ad-927

dition and subtraction operators in their solutions.928

Briefly speaking, this task requires the model to929

assign “+”, “-” or “None” for every quantity in the930

problem description and can serve as an MWP un-931

derstanding evaluation tool to examine the model’s932

understanding of each variable’s logic role in the933

reasoning flow. More exactly, this is also a clas-934

sification task with 3 possible targets. We extract935

the corresponding vectors of all quantities accord-936

ing to their positions in encoded problem Z from937

Equation 1. Next, a 2-layer feed-forward block is938

connected to output the final prediction.939

Following the setting in baseline method QT940

(Zou and Lu, 2019a), we perform 3-fold cross-941

validation and the results are given in Table 9,942

which shows that PLMs benefits from the pro-943

posed mathematical pre-training and outperforms944

the baselines.945

Model Accuracy
QT(S) 87.3
QT(R) 88.7
QT(fix) 87.7

QT 90.8
BERT 84.5

RoBERTa 84.6
MWP-BERT 91.0

MWP-RoBERTa 91.5

Table 9: Comparison of tagging accuracy (%) between
our proposed models and baselines.

A.6 Limitations and Future Work946

This work enables PLMs learning from MWP cor-947

pus and acquiring numerical understanding ability.948

However, it is not capable to capture the common-949

sense knowledge from MWPs like “1 meter equals950

to 100 centimeters”. How to injected that kind of951

knowledge into an MWP solver is an meaningful952

topic and we leave it to our future work.953

13


