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Abstract

Existing estimators for the average causal ef-
fect that are based on the front-door criterion
are largely parametric or semiparametric, rely-
ing on restrictive assumptions that may not hold
in practice. To address this gap, we propose
three nonparametric methods, Frontdoor-CDE,
Frontdoor-Odds and Frontdoor-S, the lat-
ter of which is applicable to continuous treatments.
Specifically, when unobservable confounders pre-
vent the identification of the causal effect of X
on Y through the backdoor criterion, the front-
door criterion allows identification through me-
diators, W. Our approach estimates either condi-
tional densities, conditional odds ratios, or con-
ditional density ratios, using these quantities to
re-weight instances and identify the causal effect.
We establish that under mild nonparametric as-
sumptions, all proposed estimators converge to the
true causal effect. In the binary treatment case,
simulation studies reveal that Frontdoor-CDE
and Frontdoor-Odds outperform parametric
methods when model assumptions are violated,
while remaining competitive when assumptions
hold. For continuous treatments, Frontdoor-S
demonstrates consistency and the ability to capture
complex data structures.

1 INTRODUCTION

1.1 RELATED WORK

Causal inference has seen significant advancements in both
theory and applications over the past few decades. The in-
creasing need to quantify and understand causal relation-
ships has emerged in various disciplines, including statistics,
machine learning, epidemiology, and economics.

Building on the seminal works of scholars such as Judea
Pearl [Pearl, 2009], Donald Rubin [Imbens and Rubin,
2015], and others, causal inference provides solid method-
ologies for estimating various causal quantities. Among
these, the Average Causal Effect (ACE), also referred to as
the Average Treatment Effect (ATE), is of central interest.

In the context of structured causal models (SCMs) [Glymour
et al., 2016], when X is a binary, the ACE of X on Y is

ACEX,Y = E[Y | do(X = 1)]− E[Y | do(X = 0)], (1)

where E[Y | do(X = x)] is the average value of Y when
X is set to x through an intervention.

In order to estimate ACEX,Y , a common strategy is to con-
trol for the effect of confounders, that is, variables that are
common causes of both X and Y . If Z satisfies the backdoor
criterion [Pearl, 2009], then

E[Y | do(X = x)] = E
[
Y · I(X = x)

f(x|Z)

]
. (2)

Equation 2 motivates inverse probability weighting esti-
mators (IPW) [Rosenbaum and Rubin, 1983]. Specifically,
consider that f̂(x|Z) is an estimator for f(x|Z). IPW es-
timates E[Y | do(X = x)] by starting from Equation 2,
plugging in f̂ in the place of f and, finally, substituting the
expectation by an empirical average, that is,

ÊIPW [Y | do(X = x)] =

n∑
i=1

Yi · I(Xi = x)

nf̂(x|Zi)
. (3)

However, due to unobserved variables, it might not be pos-
sible to control for the effect of confounders. In such a
case, it is not possible to use common estimators such as
IPW, the adjustment formula [Greenland and Robins, 1986],
and matching [Cochran and Rubin, 1973]. An alternative
approach consists of controlling the effect of mediator vari-
ables, that are affected by X and affect Y .

The front-door criterion [Pearl, 1995] ensures causal identi-
fication based on mediator variables, even in the presence
of unobserved confounders:
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Definition 1.1. A set of variables W satisfies the front-door
criterion for estimating the causal effect of X on Y if

1. W intercepts all directed paths from X to Y ,

2. There is no back-door path from X to W , and

3. All back-door paths from W to Y are blocked by X .

Theorem 1.1. [Front-door identification] If W satisfies
the front-door criterion, Definition 1.1, for estimating the
causal effect of X on Y , then

E[Y | do(X = x)] = E
[
Y · f(W | x)

f(W | X)

]
= E

[
Y · f(x | W )f(X)

f(X | W )f(x)

]
.

Variations of Theorem 1.1 have been used for causal es-
timation. For instance, Bellemare et al. [2024] proposes
an estimator that assumes a linear model. Also, Fulcher
et al. [2020] proposes both parametric and semiparamet-
ric estimators, including a doubly robust semiparametric
locally efficient estimator. A modified version of the latter
is proposed by Gupta et al. [2021]. Another extension, in-
corporating nonparametric methods, is introduced by Guo
et al. [2023]. Also, within the nonparametric framework,
Chernozhukov et al. [2022] proposes to circumvent the need
for explicit estimation of conditional densities, and Singh
et al. [2024] addresses continuous treatments.

Despite these recent advances, to the best of our knowledge,
the number of nonparametric estimators based on the front-
door criterion remains limited, especially when compared
to the broad array of methods developed under the more
widely studied back-door criterion.

1.2 NOVELTY

We propose three new nonparametric estimators for the av-
erage causal effect based on the front-door criterion. The
first two, Frontdoor-CDE and Frontdoor-Odds es-
timate, respectively, the conditional density and the condi-
tional odds ratio of X given W , using these quantities to
re-weight instances according to Theorem 1.1 and estimate
the causal effect. The third method, Frontdoor-S, esti-
mates the interventional expectation E[Y | do(X = x)] in
settings with a continuous treatment, X .

We establish that under mild nonparametric assump-
tions, Frontdoor-CDE, Frontdoor-Odds and
Frontdoor-S converge to the true causal effect. For the
binary treatment setting, simulation studies demonstrate that
Frontdoor-CDE and Frontdoor-Odds outperform
parametric estimators when their assumptions are violated,
while remaining competitive when the assumptions hold.
In the continuous treatment setting, simulation results

demonstrate that Frontdoor-S is consistent and effective
in capturing complex relationships in the data.

The remainder of this paper is organized as fol-
lows. Section 2 describes the implementation and intu-
ition behind Frontdoor-CDE, Frontdoor-Odds and
Frontdoor-S. Section 3 proves that all methods are con-
sistent under mild nonparametric assumptions. Section 4
presents simulation studies comparing Frontdoor-CDE
and Frontdoor-Odds to other parametric and semipara-
metric approaches, both when parametric assumptions are
satisfied and when they are not, focusing on binary treat-
ments. Additionally, Section 4 presents simulation results
for Frontdoor-S in the continuous treatment setting.

2 METHODOLOGY

In the following, consider that W is an observable set of
variables that satisfies the front-door criterion for the causal
effect of X on Y . In particular, Theorem 1.1 holds and
provides causal identification for E[Y | do(X = x)]. Next,
we use this identification and introduce three new estimators
for E[Y | do(X = x)].

2.1 CONDITIONAL DENSITY APPROACH

The IPW estimator in Equation 3 can be obtained from
Equation 2 following two steps. First, let f̂(x|Z) be a condi-
tional density estimator (CDE) for f(x|Z) and approximate
E
[
Y ·I(X=x)
f(x|Z)

]
by E

[
Y ·I(X=x)

f̂(x|Z)

]
. Second, approximate the

latter expectation by an empirical average, thus obtaining
the IPW estimator,

∑n
i=1

YiI(Xi=x)

nf̂(x|Zi)
.

Using Theorem 1.1, one obtains the estimator

1

n

n∑
i=1

Yi ·
f̂(Wi | x)
f̂(Wi | Xi)

. (4)

However, since Equation 4 involves a ratio of random vari-
ables, it can have a high variance. In order to reduce this
variance, it is useful to note that

E
[
f(W |x)
f(W |X)

]
= 1. (5)

Nonetheless, 1
n

∑n
i=1

f̂(Wi|x)
f̂(Wi|Xi)

can often be distant from
1. Hence, a way to control the variance in Equation 4 is
to normalize the weights f̂(Wi|x)

f̂(Wi|Xi)
so that they sum to 1.

Drawing inspiration from the Hájek estimator [Dorfman



and Valliant, 1997], we propose the Frontdoor-CDE:

Êf [Y | do(X = x)] :=

(
n∑

i=1

f̂(Wi | x)
f̂(Wi | Xi)

)−1

×
n∑

i=1

Yi ·
f̂(Wi | x)
f̂(Wi | Xi)

.

(6)

Any conditional density estimator can be used within Equa-
tions 4 and 6. Several methods are available in the litera-
ture, including kernel-based approaches [Hyndman et al.,
1996, Ichimura and Fukuda, 2010], mixture density net-
works [Bishop, 1994], normalizing flows [Papamakarios
et al., 2021], and quantile-based methods [Takeuchi et al.,
2009, Dey et al., 2024]. Each estimator has strengths suited
to different applications [Dalmasso et al., 2020]. We use
the Flexible Conditional Density Estimator (FlexCoDE)
[Izbicki and Lee, 2017], a nonparametric method that con-
verts regression models into conditional density estimators.
Its adaptability allows for choosing regression techniques
that best fit the data structure.

2.2 ODDS APPROACH

Another possible source for the variance of the estimator in
Equation 6 is that it involves a ratio of random variables,
f̂(Wi|x)
f̂(Wi|Xi)

, which is sensible when the denominator is close
to 0. Frontdoor-Odds avoids this issue by focusing on
the second line of Theorem 1.1 when X is a binary variable.
In this case, f(x|w)

f(x′|w) can be written as:

O1(w, x
′, x) :=

f(x | w)
f(x′ | w)

=

{
1 , if x′ = x,
P(X=x|w)

1−P(X=x|w) , otherwise.

That is, whenever O1(w, x
′, x) is not 1, it is a conditional

odds ratio. A similar result applies to f(x′)
f(x) :

O2(x
′, x) :=

f(x′)

f(x)
=

{
1 , if x′ = x,
1−P(X=x)
P(X=x) , otherwise.

.

Using the above notation, it follows from Theorem 1.1 that

E[Y | do(X = x)] = E [Y ·O1(W,X, x) ·O2(X,x)]
(7)

We propose a similar plugin estimator as the one in Equa-
tion 6. Letting Ô1 and Ô2 be estimators for O1 and O2, the
Frontdoor-Odds estimator is defined as:

Êo[Y | do(X = x)] :=

(
n∑

i=1

Ô(Wi, Xi, x)

)−1

×
n∑

i=1

Yi · Ô(Wi, Xi, x).

(8)

Any conditional odds ratio estimator can be used. In this
work, we use the method described in Dalmasso et al. [2021].
For convenience, let O1(w) := O1(w, 0, 1). Since

P(X = 1 | W ) =
O1(W )

1 +O1(W )
,

the cross-entropy loss is

L(O1) =

n∑
i=1

(−Xi ·O1(Wi) + log(1 +O1(Wi)) . (9)

That is, O1(w) can be estimated using an arbitrary neural
network that has (X,W ) as input, outputs O1(W ), and
minimizes L(O1). More details about the neural network
that was tested can be found in Section 4.

2.3 CONTINUOUS TREATMENT

When X is a continuous random variable, using the previous
approaches is challenging. To overcome this barrier, we
propose Frontdoor-S. Define λ(w, x′, x) := f(w|x)

f(w|x′) .

Letting λ̂ be an estimator of λ, the Frontdoor-S is:

Ês[Y | do(X = x)] :=

(
n∑

i=1

λ̂(Wi, Xi, x)

)−1

×
n∑

i=1

Yi · λ̂(Wi, Xi, x).

(10)

We propose an estimator for λ based on data augmentation.
Let {(Wi, Xi)}ni=1 be the original dataset. Consider the
augmented datasets,

D1 = {(Wi, Xi, X
′
i, Si = 1)}ni=1 ,

D2 = {(Wi, X
′
i, Xi, Si = 0)}ni=1 ,

where X ′ = (X ′
1, . . . , X

′
n) is a random permutation of

X . The full augmented dataset is D = D1 ∪ D2, and
(W̃ , X̃, X̃ ′, S̃) is a randomly sampled observation from D.

(X̃, X̃ ′) =

{
(Xi, X

′
i), if S̃ = 1,

(X ′
i, Xi), if S̃ = 0,

for some i ∈ {1, . . . , n}. Hence,

P(S̃ = 1|w̃, x̃, x̃′)

P(S̃ = 0|w̃, x̃, x̃′)
=

f(w̃|x̃, x̃′, S̃ = 1)P(S̃ = 1|x̃, x̃′)

f(w̃|x̃, x̃′, S̃ = 0)P(S̃ = 0|x̃, x̃′)

= λ(w̃, x̃′, x̃).

We propose estimating λ through an estimator for the condi-
tional odds of S̃ in the full augmented dataset. Here, we use
the method described in Dalmasso et al. [2021] and in the
end of Subsection 2.2.

Next, we show that under mild nonparametric con-
ditions Frontdoor-CDE, Frontdoor-Odds and
Frontdoor-S converge to E[Y | do(X = x)].



3 THEORETICAL RESULTS

Let f̂ , Ô1, Ô2 and λ̂ be estimators for f , O1, O2 and λ
respectively. Subsection 3.1 discusses the assumptions that
are required for obtaining consistency of the proposed esti-
mators. Subsection 3.2 presents the convergence results.

3.1 ASSUMPTIONS

As a starting assumption, we consider that the data are i.i.d.

Assumption 1 (i.i.d. data). (Xi,Wi, Yi)
n
i=1 are i.i.d.

Also, all estimators use an empirical weighted average of
Yi values as an estimate for a weighted expectation of Y .
The convergence of such an estimate relies on the law of
large numbers. Such a uniform convergence is obtained by
assuming that the conditional expectation of Y is uniformly
bounded:

Assumption 2 (Bounded conditional expectation for Y ).
There exists M > 0 such that

sup
x,w

E[|Y | | X = x,W = w] < M.

Besides Assumption 2, Frontdoor-CDE,
Frontdoor-Odds and Frontdoor-S require ad-
ditional properties of the conditional density and odds
ratio estimators. For simplicity, similar assumptions are
presented side-by-side for each type of estimator.

Since instances are i.i.d. (Assumption 1), the order in which
they are obtained brings no information about the ACE.
Hence, this order should not be used by the estimator. That
is, no matter the order in which the instances are inserted, the
estimator should be the same. This condition is formalized
in Assumption 3.

Assumption 3 (Invariance to permutation of instances).

(a) f̂ is invariant to permutations of instances.

(b) Ô1 and Ô2 are invariant to permutations of instances.

(c) λ̂ is invariant to permutations of instances.

We also require for f̂ , Ô1, Ô2 and λ̂ to converge their re-
spective target functions. The type of convergence that is
required varies slightly according to the method:

Assumption 4 (Convergence of estimator).

(a) E[(f̂(W |x) − f(W |x))2] = o(1) and also
E[(f̂(W |X)− f(W |X))2] = o(1).

(b) E[(Ô1(W,X, x) − O1(W,X, x))2] = o(1) and also
E[(Ô2(X,x)−O2(X,x))2] = o(1).

(c) E[|λ̂(W,X, x)− λ(W,X, x)|] = o(1).

That is, we assume that f̂ , Ô1 and Ô2 converge to their
respective target functions in quadratic mean, whereas λ̂
converges to its target functions in absolute mean.

In addition to convergence, we also require some of the esti-
mators and target functions to be smooth functions. Specifi-
cally, we assume that they have finite second moment:

Assumption 5 (Smoothness of estimators).

(a) There exists K > 0 such that

max
(
E
[
f̂2(W |x)

]
,E
[
f̂2(W |X)

])
< K,

(b) There exists K > 0 such that

max
(
E
[
Ô2

1(W,X, x)
]
,E
[
O2

2(X,x)
])

< K.

Note that Frontdoor-S does not require an assumption
analogous to Assumption 5.

Finally, since the weights in Frontdoor-CDE are a ratio
of random variables, it might be unstable if the denominator
is close to 0. In order to avoid this behavior, we require the
denominator to be uniformly far from 0:

Assumption 6 (Denominator uniformly far from 0). There
exists δ > 0 such that

inf
x,w

min{f̂(w | x), f(w | x)} > δ.

Since both Frontdoor-Odds and Frontdoor-S do
not use a ratio estimator, they do not require an assumption
analogous to Assumption 6.

3.2 MAIN RESULT

Using the above assumptions, we establish the consis-
tency of Frontdoor-CDE, Frontdoor-Odds and
Frontdoor-S:

Theorem 3.1. Let W satisfy the frontdoor criterion for
the causal effect of X on Y . Also, let Assumption 1 and
Assumption 2 be valid:

(a) If the part (a) of Assumption 3, Assumption 4, and
Assumption 5 hold and also Assumption 6 holds, then

Êf [Y | do(X = x)]
P−−→ E[Y | do(X = x)].

(b) If the part (b) of Assumption 3, Assumption 4, and
Assumption 5 hold, then

Êo[Y | do(X = x)]
P−−→ E[Y | do(X = x)]



(c) If the part (c) of Assumption 3 and Assumption 4 hold,
then

Ês[Y | do(X = x)]
P−−→ E[Y | do(X = x)]

The proof of Theorem 3.1 can be found in Appendix B.

Next, we complement the theoretical properties of the pro-
posed methods with their empirical performance in simu-
lated data.

4 SIMULATION STUDY

4.1 BINARY TREATMENT

We use simulations to compare the performance of
Frontdoor-CDE and Frontdoor-Odds to previously
proposed estimators. In all of the datasets, we generate vari-
ables, W , that satisfy the front-door criterion. For each
dataset, we estimate the ACE with the following estimators:

1. Frontdoor-CDE(Equation 6): FlexCoDE [Izbicki
and Lee, 2017] together with Random Forest regression
[Breiman, 2001] was used for estimating f̂(w|x). The
Fourier series truncation size was set to 50.

2. Frontdoor-Odds(Equation 8): O2 was estimated
using the empirical odds ratio. O1 was estimated using
a neural network with input (X,W ) and the loss in
Equation 9. We employed a fully connected neural net-
work with three layers. The first layer consisted of 64
units, followed by a second layer with 32 units, and a
final output layer with a single unit. A ReLU activation
function was applied after each of the hidden layers,
and a dropout layer with a probability of 0.5 was used
after the first hidden layer to prevent overfitting. For
optimization, the model was trained for a maximum
of 20 epochs using the Adam optimizer, with an initial
learning rate controlled by a one-cycle learning rate
scheduler, reaching a maximum of 0.1. Early stopping
was applied with a patience of 3 epochs.

3. Logistic: A parametric version of the estimator in
Equation 8. The conditional odds ratio is estimated
plugging in P̂ (X = 1|W ), obtained from the maxi-
mum likelihood estimate in a logistic regression.

4. Linear: The ordinary least squares estimate obtained
assuming a linear model. Let E[Wi|X] = αi + βiX

and E[Y |Wi, X] = µi + δiX + γiWi. Let β̂i and
γ̂i be the ordinary least square estimators obtained
from linear regression. The estimator for the ACE is∑d

i=1 βi · γi, where d is dimension of W .

Next, we describe the data generating procedures that were
employed for comparing the above estimators.

X W1

W2 Y

Z

Figure 1: Causal graph that was used in all simulations with
binary treatment. We aim to establish the causal effect of
X on Y . Z is an unobserved confounder. W1 and W2 are
mediators which, together, satisfy the front-door criterion.

4.1.1 Data-generating procedure

We compare the previous methods in various simulation
scenarios. In all of the scenarios, the relevant random vari-
ables were generated according to the directed acyclic
graph (DAG) in Figure 1. All variables were treated as
observable, except for the sole confounder, Z. As a re-
sult, it is not possible to estimate the causal effect by con-
trolling for confounders [Pearl, 1995]. As an alternative,
(W1,W2) satisfy the front-door criterion. Hence, it is possi-
ble to estimate the causal effect using Frontdoor-CDE,
Frontdoor-Odds, Logistic, or Linear.

While the validity of Logistic and Linear relies on
parametric assumptions, the validity of Frontdoor-CDE
and Frontdoor-Odds is nonparametric. Hence, we com-
pare these methods when the parametric assumptions are
satisfied and also when they are not.

None of these assumptions depend on the form in which
Z and X are generated. Hence, in all scenarios, they were
generated in the same way:

Z ∼ N (0, 1), and

X | Z ∼

{
Ber(0.8), if Z ≥ 0,

Ber(0.2), if Z < 0.

Also, Logistic requires that X follows a logistic regres-
sion given W = (W1,W2). This condition is satisfied by
generating W from a normal distribution with a mean that
depends on X . This condition is not satisfied when, for in-
stance, conditional on X , W follows a mixture of normals.
Hence, we consider two methods for generating W:

1. Normal distribution

W1 | X ∼

{
N (0, 1) , when X = 0,

N (0, 1) , when X = 1.

W2 | X ∼

{
N (0, 1) , when X = 0,

N (10, 1) , when X = 1, and



2. Normal-mixture distribution

Wi | X ∼

{
1
8N (0, 0.72) + 7

8N (4, 0.72) , when X = 1,

N (2, 0.72) , when X = 0.

Similarly, Linear requires a linear link between W and Y ,
that is, E[Y |W, Z] = α+β ·W+g(Z). Hence, we consider
scenarios in which this relation is satisfied and also others
in which there exists a nonlinear link between Y and W:

(a) Linear link

Y | W1,W2, Z ∼ N (W1 +W2 + Z, 1), and

(b) Squared- difference link

Y | W1,W2, Z ∼ N ((W1 −W2)
2 + Z, 1).

Using the above considerations, we considered 4 scenar-
ios: 1a, 1b, 2a, and 2b. In 1a all methods have valid as-
sumption, in 1b all except for Linear, in 2a all except
for Logistic, and in 2b all except for Linear and
Logistic. Each scenario was generated 100 times, with
sample sizes of 100, 500, and 1,000.

4.1.2 Results

For each scenario, each method was evaluated according to
the mean squared error (MSE) between the ACE estimates
and the true ACE value.

• 1a. Normal distribution with linear link: This is the
only scenario in which all methods have valid assump-
tions. The simulation results are summarized in Fig-
ure 2. All methods obtain estimates that are close to
the true ACE value, as the sample size increases. How-
ever, both Figure 2 and Table 1 show that, given its
parametric nature, Linear converges the fastest.

• 1b. Normal distribution with squared-difference
link: In this scenario all methods except for
Linear have valid assumptions. The simulation
results are summarized in Figure 3. As expected,
while Frontdoor-CDE, Frontdoor-Odds, and
Logistic approach the true ACE value as the sam-
ple size increases, Linear is still relatively far,
even for a sample of size 1,000. Table 2 shows that,
Frontdoor-Odds and Logistic obtain similar
rates, slightly outperforming Frontdoor-CDE.

• 2a. Normal-mixture distribution with linear link: In
this scenario, all methods except for Logistic have
valid assumptions. The simulation results are summa-
rized in Figure 4. As expected, all methods approach
the true ACE value except for Logistic, which re-
mains distant, even for a sample of size 1,000. Table 3
shows that, due to the parametric nature of Linear,
it converges faster than Frontdoor-Odds, which
slightly outperforms Frontdoor-CDE.

Figure 2: Boxplots for the absolute error obtained for each
method in scenario 1a, in which W follows a normal distri-
bution and Y has a linear link with W.

Table 1: Mean squared error (MSE) for each method across
sample sizes in scenario 1a, in which W follows a normal
distribution and Y has a linear link with W.

Sample Size
Method 100 500 1,000
Frontdoor-CDE 1.08 0.820 0.808
Frontdoor-Odds 1.19 0.950 0.998
Linear 3.11 0.571 0.290
Logistic 1.20 0.950 0.998

• 2b. Normal-mixture with squared-difference link:
The results are summarized in Figure 5. The esti-
mates for Logistic and Linear are far from the
true ACE value, even for large sample sizes. Also,
Frontdoor-CDE and Frontdoor-Odds obtain
estimates that are much closer to the true ACE value.
As the sample size increases, Frontdoor-CDE and
Frontdoor-Odds perform similarly.

To sum up, the proposed nonparametric estimators,
Frontdoor-CDE and Frontdoor-Odds, outper-
formed parametric methods when their assumptions were
invalid and remained competitive otherwise. When all
methods were valid (Scenario 1a), Linear converged
faster, but Frontdoor-CDE and Frontdoor-Odds
performed well. In scenarios with nonlinear relationships
(1b, 2b) or misspecified density assumptions (2a), para-
metric estimators failed, while Frontdoor-CDE and
Frontdoor-Odds provided accurate estimates. Notably,
Frontdoor-Odds performed best in fully nonparametric
settings, demonstrating its robustness.



Figure 3: Boxplots for the absolute error obtained for each
method in scenario 1b, in which W follows a normal distri-
bution and Y has a squared-difference link with W.

Table 2: Mean squared error (MSE) for each method across
sample sizes in scenario 1b, in which W follows a normal
distribution and Y has a squared-difference link with W.

Sample Size
Method 100 500 1,000
Frontdoor-CDE 45.5 12.2 6.24
Frontdoor-Odds 16.4 4.41 2.97
Linear 674. 117. 61.1
Logistic 16.5 4.41 2.98

Figure 4: Boxplots for the absolute error obtained for each
method in scenario 2a, in which W follows a normal-
mixture distribution and Y has a linear link with W.

Table 3: MSE for each method across sample sizes in sce-
nario 2a, in which W follows a normal-mixture distribution
and Y has a linear link with W.

Sample Size
Method 100 500 1,000
Frontdoor-CDE 1.17 0.660 0.414
Frontdoor-Odds 2.08 0.678 0.262
Linear 0.230 0.0452 0.0341
Logistic 3.50 5.35 5.30

Figure 5: Boxplots for the absolute error obtained for each
method in scenario 2b, in which W follows a normal-
mixture distribution and Y has a squared-difference link
with W.

Table 4: MSE for each method across sample sizes in sce-
nario 2c, in which W follows a normal-mixture distribution
and Y has a squared-difference link with W.

Sample Size
Method 100 500 1,000
Frontdoor-CDE 2.84 2.21 2.11
Frontdoor-Odds 18.1 1.34 2.00
Linear 78.5 85.3 83.7
Logistic 81.8 30.8 23.3



From the simulations presented in this section and the as-
sumptions discussed in Subsection 3.1, the choice between
the proposed estimators depends on the underlying char-
acteristics of the data and the available sample size. Both
estimators are highly flexible, however, their practical suit-
ability often varies with the structure of the problem.

Frontdoor-CDE relies on conditional density estimation
and is thus particularly well suited for situations where the
distribution of W given X is sufficiently smooth to allow
accurate nonparametric estimation, and also when W is low-
dimensional. We emphasize that careful selection of the
conditional density estimator is crucial in this context, and
refer the reader to Dalmasso et al. [2020] for a discussion
of estimators suited to different data scenarios.

In contrast, Frontdoor-Odds relies on estimating con-
ditional odds of X given W, which can be more stable
and computationally tractable, especially when W is high-
dimensional. In our study, we used the same neural network
architecture for Frontdoor-Odds across all scenarios
and sample sizes to maintain comparability. This sometimes
led to a higher incidence of outliers in smaller samples,
highlighting the importance of tuning architectures and hy-
perparameters to the specific data complexity and sample
size. For further practical guidance on selecting classifica-
tion models and their tuning procedures, we refer to James
et al. [2021], Goodfellow et al. [2016].

From a computational perspective, Frontdoor-CDE gen-
erally requires substantially more resources due to the ex-
plicit density estimation step, whereas Frontdoor-Odds
is typically faster and works well with modern neural net-
work frameworks. Taken together, our findings suggest that
practitioners might prefer Frontdoor-CDE when accu-
rate conditional density estimation is feasible, the data di-
mensionality is not excessively high, and computational
resources allow. In contrast, Frontdoor-Odds emerges
as a compelling choice for higher-dimensional problems, or
when the use of flexible classifiers is particularly advanta-
geous.

4.2 CONTINUOUS TREATMENT

We conducted a simulation study to evaluate the perfor-
mance of Frontdoor-S in estimating E[Y | do(X = x)]
in a setting where X is a continuous treatment and W satis-
fies the front-door criterion.

The conditional density ratio was estimated using a neural
network with input (W̃ , X̃, X̃ ′, S̃), output λ(W̃ , X̃ ′, X̃),
and that minimizes the loss specified in Equation 9. The
network architecture consisted of three fully connected lay-
ers. The first with 64 units, the second with 32 units, and a
final output layer with a single unit. Each hidden layer was
followed by a ReLU activation function and a dropout layer
with a dropout rate of 0.2 to prevent overfitting. The model

X W1

W2

W3

Y

Z

Figure 6: Causal graph that was used in the continuous
treatment simulation. We aim to establish the causal effect
of X on Y . Z is an unobserved confounder. W1, W2 and
W3 are mediators which, together, satisfy the front-door
criterion.

was trained using the Adam optimizer for up to 30 epochs,
with early stopping based on validation performance and a
patience of 3 epochs.

The data was generated according to Figure 6, as follows:

Z ∼ N (0, 1)

X | Z ∼

{
N (2, 1), if Z ≥ 0

N (0, 1), if Z < 0

Wi | X ∼ N (X2, 0.52), with i = 1, 2, 3

Y | W,Z ∼ Bernoulli(p),
where logit(p) = 2(W1 +W2 +W3) + 2I(Z ≥ 0)

X and Wi are nonlinearly related. All variables were taken
as observable, except for the latent confounder, Z.

The results displayed in Figure 7 demonstrate that the esti-
mates of Frontdoor-S become increasingly consistent
with the true causal effect as the sample size increases, while
effectively capturing complex relationships in the data.

The simulations presented and the assumptions discussed
in Subsection 3.1 indicate that Frontdoor-S is a consis-
tent and reliable estimator for continuous treatments, and
can be particularly advantageous in scenarios with high-
dimensional W, given its reliance on estimating conditional
odds of S given X,X ′ and W. This framework naturally
accommodates flexible classification approaches, similar
to those employed for Frontdoor-Odds. For practical
considerations on model choice and tuning strategies in this
context, see James et al. [2021], Goodfellow et al. [2016].

5 CONCLUSION

We introduce three nonparametric estimators for the causal
effect based on the front-door criterion: Frontdoor-CDE,
Frontdoor-Odds and Frontdoor-S. These estima-



Figure 7: Estimated causal effect curves for different sample
sizes. The black solid line represents the true interventional
expectation. The dashed, dot-dashed, and long-dashed lines
correspond to estimates obtained with n = 1,000, n =
10,000, and n = 100,000 samples, respectively.

tors offer flexibility, as they are obtained by plugging in arbi-
trary conditional density estimators or conditional odds ratio
estimators into a weighted sample average. All estimators
are consistent under mild nonparametric assumptions. In
the binary treatment setting, simulation studies demonstrate
that both Frontdoor-CDE and Frontdoor-Odds out-
perform parametric estimators when model assumptions are
violated while remaining competitive when assumptions
hold. In the continuous treatment setting, simulation results
demonstrate that Frontdoor-S is consistent and effec-
tively captures complex relationships in the data.

Additionally, initial studies suggest that the performance of
the proposed estimators could be further improved. For ex-
ample, in the current implementation, Frontdoor-Odds
and Frontdoor-S estimate the conditional odds ra-
tio through likelihood maximization. Refining this esti-
mation method specifically for Frontdoor-Odds and
Frontdoor-S may enhance their performance.

As part of future research, these nonparametric propos-
als might be generalized. For instance, one might also
study whether Frontdoor-CDE, Frontdoor-Odds or
Frontdoor-S can be applied to relaxations of the front-
door criterion, particularly in cases where some mediators
have confounders. These methods might also prove useful
for estimating other causal quantities, such as the average
treatment effect on the treated (ATT) and the complier aver-
age causal effect (CACE).
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A THE FRONT-DOOR CRITERION

The following theorem can be found in Glymour et al. [2016].

Theorem A.1. If W satisfies the front-door criterion relative to (X,Y ) and if P(x,w) > 0, then the causal effect of X on
Y is identifiable and given by:

P(y | do(x)) =
∑
w

P(w | x)
∑
x′

P(y | x′, w)P(x′)

A.1 PROOF OF THEOREM 1.1

Proof of Theorem 1.1. If W satisfies the front-door criterion (Definition 1.1) for estimating the causal effect of X on Y , then,
using Theorem A.1, we have

E[Y | do(X = x)] =
∑
y

y · f(y | do(x))

=
∑
y

∑
w

∑
x′

y · f(w | x)f(y | x′, w)f(x′)

=
∑
y

∑
w

∑
x′

y
f(w | x)
f(w | x′)

f(y, w, x′)

= E
[
Y

f(W | x)
f(W | X)

]

The continuous and discrete case are analogous.

B PROOF OF THEORETICAL PROPERTIES

Lemma B.1. If (Wn)n∈N is a sequence of random variables such that E[|Wn|] = o(1), then Wn
P−−→ 0.

Proof of Lemma B.1.

P(|Wn| > ϵ) ≤ E[|Wn|]
ϵ

Markov’s inequality

= o(1)
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B.1 PROOF OF THEOREM 3.1.A

Proof of Theorem 3.1.a. By the Law of Large Numbers, 1
n

∑n
i=1

Yif(Wi|x)
f(Wi|Xi)

P−−→ E
[
Y ·f(W |x)
f(W |X)

]
. Under the conditions of

Theorem 1.1, E
[
Y ·f(W |x)
f(W |X)

]
= E[Y | do(X = x)]. Therefore, using Lemma B.1, it is sufficient to prove that

E

[∣∣∣∣∣ 1n
n∑

i=1

Yif̂(Wi | x)
f̂(Wi | Xi)

− 1

n

n∑
i=1

Yif(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]
= o(1).

Consider that Assumption 1 is valid.

E

[∣∣∣∣∣ 1n
n∑

i=1

Yif̂(Wi | x)
f̂(Wi | Xi)

− 1

n

n∑
i=1

Yif(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]

≤ 1

n

n∑
i=1

E

[∣∣∣∣∣Yif̂(Wi | x)
f̂(Wi | Xi)

− Yif(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]

= E

[∣∣∣∣∣Y1f̂(W1 | x)
f̂(W1 | X1)

− Y1f(W1 | x)
f(W1 | X1)

∣∣∣∣∣
]

Assumption 3.a

= E

[∣∣∣∣∣Y1 ·
f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

f̂(W1 | X1)f(W1 | X1)

∣∣∣∣∣
]

≤ δ−2E

[∣∣∣∣∣Y1 ·
(
f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

) ∣∣∣∣∣
]

Assumption 6

= δ−2E

[∣∣∣∣∣f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

∣∣∣∣∣ · E [|Y1|
∣∣∣W1, X1

]]

≤ Mδ−2E

[∣∣∣∣∣f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

∣∣∣∣∣
]

Assumption 2

≤ Mδ−2

(
E

[∣∣∣∣∣f̂(W1 | x)
(
f(W1 | X1)− f̂(W1 | X1)

) ∣∣∣∣∣
]
+ E

[∣∣∣∣∣f̂(W1 | X1)
(
f(W1 | x)− f̂(W1 | x)

) ∣∣∣∣∣
])

≤ Mδ−2

(
E
[
f̂2(W1|x)

] 1
2 E
[(

f(W1 | X1)− f̂(W1 | X1)
)2] 1

2

+ E
[
f̂2(W1|X1)

] 1
2 E
[(

f(W1 | x)− f̂(W1 | x)
)2] 1

2

)

≤ MKδ−2

(
E
[(

f(W1 | X1)− f̂(W1 | X1)
)2] 1

2

+ E
[(

f(W1 | x)− f̂(W1 | x)
)2] 1

2

)
Assumption 5.a

= o(1) Assumption 4.a

This proves that 1
n

∑n
i=1

Yif̂(Wi|x)
f̂(Wi|Xi)

P−−→ E
[
Y ·f(W |x)
f(W |X)

]
.

Again using the Law of Large Numbers, 1
n

∑n
i=1

f(Wi|x)
f(Wi|Xi)

P−−→ E
[

f(W |x)
f(W |X)

]
= 1. Using Lemma B, we will now prove that

E

[∣∣∣∣∣ 1n
n∑

i=1

f̂(Wi | x)
f̂(Wi | Xi)

− 1

n

n∑
i=1

f(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]
= o(1).

E

[∣∣∣∣∣ 1n
n∑

i=1

f̂(Wi | x)
f̂(Wi | Xi)

− 1

n

n∑
i=1

f(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]



≤ 1

n

n∑
i=1

E

[∣∣∣∣∣ f̂(Wi | x)
f̂(Wi | Xi)

− f(Wi | x)
f(Wi | Xi)

∣∣∣∣∣
]

= E

[∣∣∣∣∣ f̂(W1 | x)
f̂(W1 | X1)

− f(W1 | x)
f(W1 | X1)

∣∣∣∣∣
]

Assumption 3.a

= E

[∣∣∣∣∣ f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

f̂(W1 | X1)f(W1 | X1)

∣∣∣∣∣
]

≤ δ−2E

[∣∣∣∣∣f̂(W1 | x)f(W1 | X1)− f(W1 | x)f̂(W1 | X1)

∣∣∣∣∣
]

Assumption 6

≤ δ−2

(
E

[∣∣∣∣∣f̂(W1 | x)
(
f(W1 | X1)− f̂(W1 | X1)

) ∣∣∣∣∣
]
+ E

[∣∣∣∣∣f̂(W1 | X1)
(
f(W1 | x)− f̂(W1 | x)

) ∣∣∣∣∣
])

≤ δ−2

(
E
[
f̂2(W1|x)

] 1
2 E
[(

f(W1 | X1)− f̂(W1 | X1)
)2] 1

2

+ E
[
f̂2(W1|X1)

] 1
2 E
[(

f(W1 | x)− f̂(W1 | x)
)2] 1

2

)

≤ Kδ−2

(
E
[(

f(W1 | X1)− f̂(W1 | X1)
)2] 1

2

+ E
[(

f(W1 | x)− f̂(W1 | x)
)2] 1

2

)
Assumption 5.a

= o(1) Assumption 4.a

As 1
n

∑n
i=1

f̂(Wi|x)
f̂(Wi|Xi)

P−−→ 1 and 1
n

∑n
i=1

Yif̂(Wi|x)
f̂(Wi|Xi)

P−−→ E[Y | do(X = x)], by using Slutsky’s theorem, we prove that

Êf [Y | do(X = x)]
P−−→ E[Y | do(X = x)].

B.2 PROOF OF THEOREM 3.1.B

Proof of Theorem 3.1.b. By the Law of Large Numbers, 1
n

∑n
i=1 YiO(Wi, Xi, x)

P−−→ E [Y ·O(X,W, x)]. Under the

conditions of Theorem 1.1, E [Y ·O(W,X, x)] = E[Y | do(X = x)]. Therefore, using Lemma B.1, it is sufficient to prove
that

E

[∣∣∣∣∣ 1n
n∑

i=1

YiÔ(Wi, Xi, x)−
1

n

n∑
i=1

YiO(Wi, Xi, x)

∣∣∣∣∣
]
= o(1).

Consider that Assumption 1 is valid.

E

[∣∣∣∣∣ 1n
n∑

i=1

YiÔ(Wi, Xi, x)−
1

n

n∑
i=1

YiO(Wi, Xi, x)

∣∣∣∣∣
]

≤ 1

n

n∑
i=1

E

[∣∣∣∣∣YiÔ(Wi, Xi, x)− YiO(Wi, Xi, x)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣Y1 ·
(
Ô(W1, X1, x)−O(W1, X1, x)

) ∣∣∣∣∣
]

Assumption 3.b

= E

[∣∣∣∣∣Ô(W1, X1, x)−O(W1, X1, x)

∣∣∣∣∣ · E [|Y1|
∣∣∣W1, X1

]]

≤ ME

[∣∣∣∣∣Ô(W1, X1, x)−O(W1, X1, x)

∣∣∣∣∣
]

Assumption 2



≤ ME

[∣∣∣∣∣Ô1(W1, X1, x)Ô2(X1, x)−O1(W1, X1, x)O2(X1, x)

∣∣∣∣∣
]

≤ M

(
E

[∣∣∣∣∣Ô1(W1, X1, x)
(
Ô2(X1, x)−O2(X1, x)

) ∣∣∣∣∣
]
+ E

[∣∣∣∣∣O2(X1, x)
(
Ô1(W1, X1, x)−O1(W1, X1, x)

) ∣∣∣∣∣
])

≤ M

(
E
[
Ô2

1(W1, X1, x)
] 1

2 E
[(

Ô2(X1, x)−O2(X1, x)
)2] 1

2

+ E
[
O2

2(X1, x)
] 1

2 E
[(

Ô1(W1, X1, x)−O1(W1, X1, x)
)2] 1

2

)

≤ MK

(
E
[(

Ô2(X1, x)−O2(X1, x)
)2] 1

2

+ E
[(

Ô1(W1, X1, x)−O1(W1, X1, x)
)2] 1

2

)
Assumption 5.b

= o(1) Assumption 4.b

This proves that 1
n

∑n
i=1 YiÔ(Wi, Xi, x)

P−−→ E [Y ·O(W,X, x)].

Again using the Law of Large Numbers, 1
n

∑n
i=1 O(Wi, Xi, x)

P−−→ E [O(W,X, x)] = 1. Using Lemma B, we will now
prove that

E

[∣∣∣∣∣ 1n
n∑

i=1

Ô(Wi, Xi, x)−
1

n

n∑
i=1

O(Wi, Xi, x)

∣∣∣∣∣
]
= o(1).

E

[∣∣∣∣∣ 1n
n∑

i=1

Ô(Wi, Xi, x)−
1

n

n∑
i=1

O(Wi, Xi, x)

∣∣∣∣∣
]

≤ 1

n

n∑
i=1

E

[∣∣∣∣∣Ô(Wi, Xi, x)−O(Wi, Xi, x)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣Ô(W1, X1, x)−O(W1, X1, x)

∣∣∣∣∣
]

Assumption 3.b

= E

[∣∣∣∣∣Ô1(W1, X1, x)Ô2(X1, x)−O1(W1, X1, x)O2(X1, x)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣Ô1(W1, X1, x)
(
Ô2(X1, x)−O2(X1, x)

) ∣∣∣∣∣
]
+ E

[∣∣∣∣∣O2(X1, x)
(
Ô1(W1, X1, x)−O1(W1, X1, x)

) ∣∣∣∣∣
]

≤

(
E
[
Ô2

1(W1, X1, x)
] 1

2 E
[(

Ô2(X1, x)−O2(X1, x)
)2] 1

2

+ E
[
O2

2(X1, x)
] 1

2 E
[(

Ô1(W1, X1, x)−O1(W1, X1, x)
)2] 1

2

)

≤ K

(
E
[(

Ô2(X1, x)−O2(X1, x)
)2] 1

2

+ E
[(

Ô1(W1, X1, x)−O1(W1, X1, x)
)2] 1

2

)
Assumption 5.b

= o(1) Assumption 4.b

As 1
n

∑n
i=1 Ô(Wi, Xi, x)

P−−→ 1 and 1
n

∑n
i=1 YiÔ(Wi, Xi, x)

P−−→ E[Y | do(X = x)], by using Slutsky’s theorem, we

prove that Êo[Y | do(X = x)]
P−−→ E[Y | do(X = x)].

B.3 PROOF OF THEOREM 3.1.C

Proof of Theorem 3.1.c. By the Law of Large Numbers, 1
n

∑n
i=1 Yiλ(Wi, Xi, x)

P−−→ E [Y · λ(X,W, x)]. Under the

conditions of Theorem 1.1, E [Y · λ(W,X, x)] = E[Y | do(X = x)]. Therefore, using Lemma B.1, it is sufficient to prove



that

E

[∣∣∣∣∣ 1n
n∑

i=1

Yiλ̂(Wi, Xi, x)−
1

n

n∑
i=1

Yiλ(Wi, Xi, x)

∣∣∣∣∣
]
= o(1).

Consider that Assumption 1 is valid.

E

[∣∣∣∣∣ 1n
n∑

i=1

Yiλ̂(Wi, Xi, x)−
1

n

n∑
i=1

Yiλ(Wi, Xi, x)

∣∣∣∣∣
]

≤ 1

n

n∑
i=1

E

[∣∣∣∣∣Yiλ̂(Wi, Xi, x)− Yiλ(Wi, Xi, x)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣Y1 ·
(
λ̂(W1, X1, x)− λ(W1, X1, x)

) ∣∣∣∣∣
]

Assumption 3.c

= E

[∣∣∣∣∣λ̂(W1, X1, x)− λ(W1, X1, x)

∣∣∣∣∣ · E [|Y1|
∣∣∣W1, X1

]]

≤ ME

[∣∣∣∣∣λ̂(W1, X1, x)− λ(W1, X1, x)

∣∣∣∣∣
]

Assumption 2

= o(1) Assumption 4.c

This proves that 1
n

∑n
i=1 Yiλ̂(Wi, Xi, x)

P−−→ E [Y · λ(W,X, x)].

Again using the Law of Large Numbers, 1
n

∑n
i=1 λ(Wi, Xi, x)

P−−→ E [λ(W,X, x)] = 1. Using Lemma B, we will now
prove that

E

[∣∣∣∣∣ 1n
n∑

i=1

λ̂(Wi, Xi, x)−
1

n

n∑
i=1

λ(Wi, Xi, x)

∣∣∣∣∣
]
= o(1).

E

[∣∣∣∣∣ 1n
n∑

i=1

λ̂(Wi, Xi, x)−
1

n

n∑
i=1

λ(Wi, Xi, x)

∣∣∣∣∣
]

≤ 1

n

n∑
i=1

E

[∣∣∣∣∣λ̂(Wi, Xi, x)− λ(Wi, Xi, x)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣λ̂(W1, X1, x)− λ(W1, X1, x)

∣∣∣∣∣
]

Assumption 3.c

= o(1) Assumption 4.c

As 1
n

∑n
i=1 λ̂(Wi, Xi, x)

P−−→ 1 and 1
n

∑n
i=1 Yiλ̂(Wi, Xi, x)

P−−→ E[Y | do(X = x)], by using Slutsky’s theorem, we

prove that Ês[Y | do(X = x)]
P−−→ E[Y | do(X = x)].
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