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Abstract
Model selection and hyper-parameter optimization sometimes prove to be complex and costly pro-
cesses with unfinished outcomes. In fact, a so-called optimized model can still suffer from patterns
of failure when predicting on new data, affecting the generalization error. In this paper, we focus on
regression tasks and introduce an additional stage to the model optimization process in order to ren-
der it more reliable. This new step aims to correct error patterns when the model makes predictions
on unlabeled data. To that end, our method includes two techniques. AutoCorrect Rules leverage
the model under/overestimation bias and applies simple rules to adjust predictions. AutoCorrect
Model is a supervised approach which exploits different representations to predict residuals in or-
der to revise model predictions. We empirically prove the relevance of our method on the outcome
of an AutoML tool using different time budgets, and on a specific optimization case leveraging a
pre-trained model for an image regression task.

1. Introduction

As the learner selection and hyper-parameter tuning process can prove to be complex, various Au-
tomated Machine Learning (AutoML) libraries have been proposed to address this task for a given
training dataset and optimization metric. Those tools have specificities with different search strate-
gies, such as Bayesian optimization with meta-learning and model ensembles [12], combining the
strengths of Bayesian optimization and Hyperband [11], or ECI-based (Estimated Cost for Im-
provement) learner choice and cost-effective hyper-parameter tuning [29]. Still, Machine Learning
(ML) models are inclined to failure modes when error patterns surface during inference [28]. Even
though a model displays good overall performance, some regions of the feature space may be prone
to higher error rates. For example, a regression model could be subject to an overestimation bias
in a given area of the feature space. These failure patterns turn out to be harmful in regression
applications such as price prediction in finance or dysmorphic facial sign detection in the medical
field.

Scope and contribution In this paper, the focus is on regression tasks. We consider the out-
put of an optimization process, i.e. an ML model M∗, based on an initial configuration χ =
(M,H, Dt, T,m, e), whereM and H denote the algorithm space and the hyper-parameter space,
respectively. Dt is the training dataset. T is the time budget. m denotes an objective metric to be
minimized (e.g. mean squared error MSE) and e is an evaluation method (e.g. cross-validation).
M∗ has been trained on Dt(X, Y ), with the features X and target variable Y , and is ready to
be deployed in order to make predictions on new (unlabeled) data. We aim to extend the model
optimization process with an additional stage in order to give unbiased and reliable generalization
properties to M∗. This new step is intended for correcting potential patterns of failure surfacing
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during inference. We do not alter the parameters of M∗, but we adjust its predictions based on
error patterns detected by our method. To that end, we propose two techniques. In order to assess
the ML model under/overestimation bias, AutoCorrect Rules first calibrates rules based on the
model prediction values on a dataset with residuals (Y − Ŷ ). The prediction is then adjusted during
inference to counteract any potential error bias. AutoCorrect Model leverages X and prediction
Ŷ = M∗(X) as features, and the residuals as target variable. When the ML model predicts based
on new data, AutoCorrect Model then estimates the residual values in order to adjust the original
ML model predictions. We experimentally show the relevance of those techniques on two types of
use cases: (i) On tabular data where the ML model has been optimized via an AutoML tool with
various time budgets. (ii) On image data where the ML model includes a frozen pre-trained model
and additional top layers tuned on new data. This second application is thus a specific optimization
use case based on transfer learning.

2. AutoCorrect method

Notations and assumptions We consider a training dataset Dt with xi, yi ∈ X × Y for i =
1, ..., N of i.i.d. realizations of random variables X, Y ∼ P, where the joint distribution P is
unknown. The ML model is a predictor M∗ : X → Y with X ⊆ Rd and Y ⊆ R. M∗ is the
outcome of an optimization process (e.g. AutoML): argminMh,h(m(Mh, D

t)), subject to budget
T and evaluation method e, and where algorithm Mh ∈M and hyper-parameters h ∈ H, as defined
in the previous section. At the time of inference, the evaluation set {xi}i>N is unlabeled.

Prerequisite AutoCorrect Rules and Model both require a calibration dataset including instances
xi, yi, the corresponding ML model predictions ŷi, and thus the residuals ri = yi− ŷi. These should
be computed on data which has not been not used to train M∗. Similarly to cross-validation, we
randomly partition Dt into k mutually exclusive folds Dt

1, ..., D
t
k of equal size. M∗ is repeatedly

trained k times on Dt\Dt
j , with j ∈ 1, ..., k. The model predictions, and thus the residuals, are

computed based on Dt
j . We thus obtain Dt+, the whole dataset with residuals. Lastly, we train M∗

on the whole dataset Dt. We note that this process can be naturally included in a model selection
and hyper-parameter optimization process (i.e. AutoML tool). According to Kohavi [18], if the ML
model remains stable under the perturbations created by removing each fold, the cross-validation
estimate of the generalization error will remain unbiased. Better stability should be observed with
a large number of subsets. Further, for most models, the variance of the estimate of the error rate
will either be constant or decreasing with k. We follow the author’s suggestion to use ten folds as a
reasonable trade-off between stability and computational cost.

2.1. AutoCorrect Rules

The residual plot, showing the residuals ri against the fitted values ŷi, is a diagnostic graph em-
ployed to check whether the variance of residuals is constant in linear regression models [1]. We
exploit this representation and apply it to ML models, in order to assess any potential bias in the
residuals, based on the ML model prediction values. ri > 0 amounts to a model underestima-
tion bias as yi > ŷi. To this end, we use the dataset with residuals Dt+ and define P ∗ interval
bins Bp. Each Bp is the set of samples whose prediction values ŷ fall into the interval Ip. Ip
are equally-spaced intervals of ŷ: Ip = [m− + (m+ − m−) × p−1

P ∗ ,m− + (m+ − m−) × p
P ∗ ),

where m− = min(ŷi) and m+ = max(ŷi), with 1 ≤ p ≤ P ∗ and 1 ≤ i ≤ N . We com-
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Figure 1: Residual plots y − ŷ against ŷ, with slight (left: use case 1 from experiments) and severe
(right: use case 3) residual patterns. The residual plot (blue dots) shows patterns based
on the ML model predicted value. The mean bias error (MBE) is displayed on equally-
spaced intervals of ŷ on the dataset with residuals (red line). Right plot: there is a clear
underestimation bias for small values of ŷ and an overestimation bias for large values.

pute the mean bias error MBE(Bp) = 1
Np

∑Np

j=1 rj for each Bp, where Np denotes the number
of samples in Bp. Figure 1 shows two types of residual plots with different degrees of error pat-
tern. During inference on a new sample x′, the prediction is adjusted based on M∗(x′) value:
ŷ′adj = M∗(x′) + MBE(Bp)M∗(x′)∈Ip (with potential boundaries on ŷ′adj depending on the use
case, e.g. positive amounts). If M∗(x′) < min(ŷi) or M∗(x′) > max(ŷi), then the applied cor-
rection is MBE(B1) or MBE(BP ∗), respectively. Lastly, the optimal number of bins is computed
with Dt+ using cross-validation.

2.2. AutoCorrect Model

While rules can be relevant for some use cases, predicting residual values with a regression model
may prove to be more effective. Dt+ is thus used to train a new regression model A∗ : X ×Y → Z ,
with X ⊆ Rd, Y ⊆ R and Z ⊆ R: A∗ = argminA(

1
N

∑N
i=1 L(ri, A(xi, ŷi))). A is chosen in

M, and L is a loss function consistent with the objective metric m: for example, if m is the mean
squared error, L will be the squared loss. A∗(X, Ŷ ) is an estimate of E(R|X, Ŷ ), with R = Y − Ŷ .
During inference on a new sample x′, the prediction is adjusted: ŷ′adj = M∗(x′)+A∗(x′, ŷ′) (with
potential boundaries on ŷ′adj depending on the use case), with ŷ′ = M∗(x′). A∗ can leverage
various representations as features, such as X and/or Ŷ . When X is sparse or if d >> N , more
parsimonious representations can be adequate. For instance, in a multi-target regression setting
where Y ⊆ Rk with k > 1, any dependency between the targets could be exploited. A∗(Ŷ ) may
then be helpful to learn error patterns and correct the predictions at inference time. In the multi-
target case, A∗ could be either a specialized model correcting predictions related to one target Y j

(i.e. rj is the target used to train A∗) or a general model with several targets Y . Algorithm 1 gives
an outline of the whole AutoCorrect learning approach.
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Algorithm 1: AutoCorrect
Input: Training data Dt; ML model M∗;

Number of folds: K;
for j = 1, ...,K do

Train M∗ on Dt\Dt
j ;

Predict ŷi with M∗ on Dt
j ;

Compute ri = yi − ŷi on Dt
j ;

Dt+
j = Dt

j ∪ {ŷi, ri}i∈Dt
j
;

end
Dt+ =

⋃
(Dt+

j )1≤j≤K ;

Algorithm 1 (continued): AutoCorrect
Train M∗ on full Dt;
Optimize number of bins P ∗ using Dt+;
Compute interval bins Bp (1 ≤ p ≤ P ∗);
/* AutoCorrect Rules and Model */;
for j = 1, ..., P ∗ do

MBE(Bp) =
1
Np

∑Np

j=1 rj ;
end
A∗ = argminA(

1
N

∑N
i=1 L(ri, A(xi, ŷi)));

Output: MBE(Bp)1≤p≤P∗ ;A∗

3. Experiments

3.1. Assessing the outcome of an AutoML tool

Datasets With the Ames Housing Dataset (use case 1), we aim to predict the sale price of residen-
tial properties in Iowa, with 80 explanatory variables [6, 7]. We use the 1,460 instances for which
the target is available. The Seoul Bike Sharing Demand Dataset (use case 2) is a tabular dataset with
8,760 instances. The target is the count of public bikes rented every hour in Seoul [9, 10, 24]. In
each case, 20% of the original dataset is kept for testing and the rest is used as Dt.

Modeling settings The dataset with residuals is constructed with a 10-fold strategy. The number
of bins in AutoCorrect Rules is optimized using 5-fold cross-validation with values in [2, 10]. Ex-
periments are run over 4 seeds (distinct dataset splits). M∗ and A∗ are both selected and optimized
using Fast Lightweight AutoML (FLAML) [22, 29] with various time budgets, and with the MSE
optimization metric. Time budget includes learner selection and hyper-parameter tuning. A∗ budget
is set to min(M∗ budget, 300s). Experiments are run on an Intel i7-7500U CPU with 12 GB RAM.
Learners are selected among Random Forest [3], LGBM [16], XGBoost [5], CatBoost [23], and
Extra Trees [13].

FLAML includes a specific cost-related algorithm for tuning hyper-parameters [30], called Cost-
Frugal Optimization (CFO) method. This randomized search algorithm starts in a low-cost region,
moves gradually towards a low-loss area, and runs until the end of the budget. h denotes the hyper-
parameter configuration, f and g are the respective loss and cost function, and δ refers to the step
size. The initial point h0 has a small g(h0). At each iteration, a vector u is sampled uniformly at
random from the unit sphere:

– if f(h+ δu) < f(h), then h← h+ δu,

– else if f(h− δu) < f(h), then h← h− δu.

If no progress is being made or in order to avoid getting confined in a local optimum, δ can be
dynamically adjusted or the process can restart from a randomized starting point. This approach
provides guarantees for a convergence rate of O(

√
d/
√
K), with d denoting the search space di-

mensionality and K the number of iterations, and for an upper bounded cost.
Lastly, we also use A∗

RF , a simple Autocorrect model based on a random forest with 100 trees,
without optimizing its hyper-parameters.
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Table 1: RMSE between true values y and predictions on an independent test dataset (20% of initial
dataset), before and after applying AutoCorrect, averaged over 4 seeds. When AutoCorrect
Rules and Models (A∗(x, ŷ), and A∗

RF (x, ŷ)) are used, we also display the relative change
(%) versus M∗ RMSE. RMSE increase is in red, best results are in bold.

Use case M∗ budget (s) M∗ AutoCorrect Rules With A∗(x, ŷ) With A∗
RF (x, ŷ)

1

60 30,369.3 29,218.0 (-3.8) 27,502.1 (-9.4) 25,789.7 (-15.1)
120 30,264.7 28,780.4 (-4.9) 26,464.5 (-12.6) 26,458.5 (-12.6)
360 29,605.5 28,836.2 (-2.6) 27,408.5 (-7.4) 25,715.0 (-13.1)

1,200 25,208.2 25,175.4 (-0.1) 24,633.8 (-2.3) 24,282.7 (-3.7)
1,500 25,121.8 25,093.5 (-0.1) 24,074.2 (-4.2) 23,722.5 (-5.6)

2

60 200.9 199.6 (-0.6) 188.9 (-6.0) 183.6 (-8.6)
120 185.1 184.9 (-0.1) 178.4 (-3.7) 179.8 (-2.9)
360 171.0 170.7 (-0.2) 168.1 (-1.7) 169.7 (-0.7)

1,200 168.3 168.3 (0.0) 168.0 (-0.2) 169.0 (0.4)
1,500 168.3 168.3 (0.0) 167.9 (-0.2) 168.6 (0.2)

Results M∗ is considered as the baseline. Table 1 shows the evolution of the test root mean
squared error (RMSE) after applying AutoCorrect Rules and 2 different AutoCorrect Models:
A∗(x, ŷ) and A∗

RF (x, ŷ). The relative change in error is, on average, almost always negative (a
few minor exceptions in red), which demonstrates a reliable behavior. In use case 1, although M∗

RMSE tends to converge with increasing time budget, AutoCorrect Models reveal that there is still
potential for further optimization. On the other hand, in use case 2, with budgets greater than 360s,
this potential proves to be thinner. In that case, the AutoML tool seems to have produced an ade-
quate outcome. Lastly, A∗

RF (x, ŷ) mean training time is 4.8s (case 1) and 8.3s (case 2). This simple
model proves to be a useful low-cost alternative.

3.2. Optimizing a pre-trained model for image regression

Dataset The Facial Key Points Detection (use case 3) is a face image dataset based on 96 × 96
pixels [2]. The objective is to predict the (x,y) coordinates for 15 key points (e.g. nose tip), for
applications such as dysmorphic facial sign detection. There are thus 30 target variables. We retain
2,140 entries, i.e. images without missing target values. 20% of the original dataset is kept for
testing and the rest is used as Dt.

Table 2: RMSE results on an independent test dataset, before and after applying AutoCorrect, av-
eraged over 4 seeds. A∗ budget is set to 60s. For AutoCorrect Rules and Model A∗(ŷ),
we display the relative change (%) versus M∗ RMSE. Best results are in bold.

Target variable M∗ AutoCorrect Rules With A∗(ŷ) With A∗
RF (ŷ)

left eye center x 5.21 2.26 (-56.5) 1.92 (-62.9) 1.94 (-62.8)
left eye center y 3.36 2.29 (-31.8 ) 2.05 (-39.3) 2.06 (-38.6)
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Figure 2: Each of these 3 examples from the test dataset shows: the true coordinates for the 15 key
points (left), M∗ predictions with an orange marker for the left eye center (middle), and
the predictions for the left eye center coordinates adjusted by A∗ (right). True residuals
are indicated for each coordinate related to the left eye center: rx and ry.

Modeling settings M∗ is trained on all the key points. It has the following architecture: pre-
trained MobileNet v2 [26] with non-trainable weights, completed with global max pooling, a dense
layer (128 units), batch normalization, ReLu activation, and a final layer for the 30 outputs. The
MSE is minimized with Adam [17]. The number of epochs is tuned with an early stopping strategy
(patience of 5) based on validation loss. We use AutoCorrect to optimize predictions on two target
values: (x,y) for the left eye center. A∗(ŷ) leverages the dependencies between the 30 coordinates to
predict the residuals. We use one specific AutoCorrect Model (Y → Z with Y ⊆ R30 and Z ⊆ R)
for each coordinate of the left eye center in order to predict the corresponding residuals. Each A∗ is
optimized using FLAML, with T = 60s and m = MSE.

Lastly, we also use A∗
RF (ŷ), a simple Autocorrect model using a random forest with 100 trees,

without hyper-parameter optimization.

Results Table 2 demonstrates the efficacy of AutoCorrect Rules and especially AutoCorrect
Model. There are significant patterns in the residuals that are well exploited by both approaches.
Figure 2 exhibits the effect of correcting with A∗ on 3 test instances. Lastly, A∗

RF mean training
time is 2.9s (left eye center x) and 3.0s (left eye center y). This model turns out to be a valuable
low-cost alternative to A∗.

4. Conclusion and future work

In this paper, we presented AutoCorrect which aims to complete the optimization process and render
it more reliable for a moderate additional time budget. On average, AutoCorrect in fact improves
the generalization properties of a model by detecting patterns in the residuals. AutoCorrect could
also be used in validation during the optimization process to assess whether an ML model requires
further optimization. Moreover, additional AutoML tools could be tested and compared for given
time budgets. More runs could be performed to better assess the reliability of the methodology.
The practicality of AutoCorrect should also be assessed when the data size is large. Extending the
optimization pipeline obviously adds complexity and computational costs. On the other hand, Au-
toCorrect is also a promise for potential improvement in performance and additional transparency.
In fact, AutoCorrect can reveal patterns in the residuals whose explainability could be performed
with methods such as Shapley values [21, 27]. Lastly, we could study the efficacy of AutoCorrect
when distribution shifts occur.
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6649, 2018.

8

https://github.com/microsoft/FLAML


COMPLETING THE MODEL OPTIMIZATION PROCESS IN REGRESSION TASKS

[24] UCI ML Repository. Seoul bike sharing demand data set. https://archive.ics.uci.
edu/ml/datasets/Seoul+Bike+Sharing+Demand, 2020. Accessed: 2022-07-01.

[25] Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
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Appendix A. Related work

The focus of research related to error detection and error rate estimation has mainly been on neural
networks and classification tasks. Singla et al. [28] adapted the Fault Tree Analysis [20] to deep
neural networks by representing the model failure modes with interpretable features in classification
tasks.

Leveraging the model confidence, such as the maximum softmax probability in classification
tasks, is a first step to detecting incorrect predictions during inference [15]. However, modern
neural networks have proved to be poorly calibrated [14]. Kuleshov et al. [19] extend calibration
to regression in order to produce uncertainty estimates. According to them, a forecaster M is
calibrated if the empirical cumulative function (CDF), based on the target values yt, matches the
predicted CDF, based on the outputs of M , when the dataset size goes to infinity.

The problem of accuracy estimation with unlabeled data has received more attention on clas-
sification than on regression tasks. For instance, Chen et al. [4] employ an ensemble of models
to detect errors and estimate a classifier’s accuracy. With regard to regression, Donmez et al. [8]
estimate the error rate assuming that the target distribution p(y) is known, in order to evaluate the
maximum likelihood of the predictor outputs.

With regard to model uncertainty in regression tasks, Romano et al. suggest combining the
strengths of conformal prediction and quantile regression [25]. This method, called conformalized
quantile regression, produces valid and shorter prediction intervals, with lengths varying according
to heteroskedasticity in the data.

Appendix B. Facial key point detection: local explainability of A∗ outputs

Figure 3: Test example for which we want to explain A∗ outputs. True residuals are indicated for
each coordinate related to the left eye center: rx and ry.
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Table 3: True coordinate, M∗ prediction and A∗ (residual) prediction on a specific instance of the
test dataset.

Target variable True coordinate M∗ prediction A∗(ŷ) residual prediction

left eye center x 66.94 61.96 4.37
left eye center y 39.35 33.51 3.81

Figure 4: Top 10 Shapley values when AutoCorrect Model A∗(ŷ) predicts the residuals for the left
eye center x coordinate (left) and the left eye center y coordinate (right), respectively. The
features (y-axis) correspond to M∗ coordinate predictions leveraged by A∗(ŷ).
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