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Abstract— Although deep learning has achieved great success
in many computer vision tasks, its performance relies on the
availability of large datasets with densely annotated samples.
Such datasets are difficult and expensive to obtain. In this
article, we focus on the problem of learning representation
from unlabeled data for semantic segmentation. Inspired by two
patch-based methods, we develop a novel self-supervised learning
framework by formulating the jigsaw puzzle problem as a patch-
wise classification problem and solving it with a fully convolu-
tional network. By learning to solve a jigsaw puzzle comprising
25 patches and transferring the learned features to semantic
segmentation task, we achieve a 5.8% point improvement on
the Cityscapes dataset over the baseline model initialized from
random values. It is noted that we use only about 1/6 training
images of Cityscapes in our experiment, which is designed to
imitate the real cases where fully annotated images are usually
limited to a small number. We also show that our self-supervised
learning method can be applied to different datasets and models.
In particular, we achieved competitive performance with the
state-of-the-art methods on the PASCAL VOC2012 dataset using
significantly fewer time costs on pretraining.

Index Terms— Fully convolutional networks (FCNs), represen-
tation learning, self-supervised learning, semantic segmentation.

I. INTRODUCTION

N RECENT years, deep convolutional neural net-
works (CNNs) have been advancing the frontiers of many
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computer vision tasks such as image classification [1], [2]
and semantic segmentation [3]-[8]. However, the performance
of deep CNNs relies heavily on large amounts of labeled
data. Data labeling requires intensive manual effort and is not
even feasible for some applications. As a result, learning deep
representation from unlabeled data has recently attracted great
attention [9]. A promising strategy in this line of research is
self-supervised learning which utilizes automatically generated
labels for supervision. For example, Gidaris et al. [10] learn
image representation by training an image rotation aware net-
work. Such tasks (e.g., rotation prediction) in self-supervised
learning are usually not the target task of interest; however, the
representations learned during the process are still very useful.
Such tasks are generally referred to as proxy or surrogate tasks
in the current literature.

Many proxy tasks for representation learning have been
proposed over the last few years. One such popular task is
to exploit the spatial context within the visual images as the
supervisory signal. For example, Doersch et al. [11] cropped
a pair of neighboring patches and trained a network to pre-
dict their relative locations from the eight possible options.
However, since the sampled patches have small sizes (e.g.,
96 x 96), it is easy for one of the two patches to cover an area
that contains little or no useful information, especially in high-
resolution images. Using more patches could be a better choice
for this problem. For example, the jigsaw puzzle system [12]
used nine 80 x 80 patches. However, to extract features from
multiple patches, that method adopts the Siamese network
architecture where the training time increases significantly
with the increase in the number of patches used.

Another drawback of current patch-based methods is that
most of them use image classification as the main target task.
Hence, they usually perform self-supervised learning on large-
scale image classification datasets, such as the ImageNet [13],
and then transfer the learned weights to other tasks, e.g., object
detection. However, such an approach is suboptimal due to two
reasons. First, training on a large-scale image classification
dataset is time consuming, especially when graphic processing
unit (GPU) memories are limited. In such cases, the batch size
for training is usually limited to a small number, which would
cost significantly more time than training with a large batch
size. For example, it takes four weeks for Doersch et al. [11]
to train their models on ImageNet. Second, features learned
from image classification/dataset may not be suited for other
tasks due to the difference in the data distributions. Given that
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we can easily access massive amounts of unlabeled data for
most applications, we believe that it is better to perform self-
supervised learning on the same scenes of the target task to
avoid the domain gap problem.

To learn feature representations for semantic segmentation
with self-supervised learning, we incorporate the idea of Jig-
saw [12] and relative location prediction [11] into a unified
framework in this article. Highlights and contributions of this
article are as follows.

1) Inspired by the patch-wise discrimination (real/fake)
network adopted in image-to-image translation [14],
we note that fully convolutional networks (FCNs) [15]
can be approximately viewed as patch-wise classification
networks. Based on this, we propose a self-supervised
learning framework by formulating the jigsaw puzzle
problem as a patch-wise index classification problem
and then solve it with the FCN architecture. Our FCN-
based method requires significantly fewer parameters
than the standard Jigsaw method. Instead of predicting
the permutation of nine patches, our patch-wise index
classification aims to directly predict location indices
of all patches at once. This reduces the number of
parameters in the last layer of Jigsaw by 4.5 times.

2) By transferring our self-supervised models to the seman-
tic segmentation task, we achieved a 5.8% point
improvement on the mloU compared with the baseline
initialized with random values on Cityscapes dataset
with only 503 training images. We use only about 1/6
training images of the Cityscapes to imitate practical
scenarios where fully annotated images are usually lim-
ited to a small number.

3) We show that performing self-supervised learning and
semantic segmentation on the same dataset can save
efforts while leading to competitive results compared
with performing these two tasks on different datasets.
In particular, with a significant reduction (about four
days) on the pretraining time, the performance of our
method on PASCAL VOC even increased by 0.5%
mloU by replacing the ImageNet with PASCAL for self-
supervised learning.

The rest of this article is organized as follows. The next
section presents related work in self-supervised learning meth-
ods. Section III describes the theoretical analysis and imple-
mentation of our method in detail. Comprehensive ablation
studies and experimental analysis are conducted in Section IV.
Finally, conclusions are presented in Section V.

II. RELATED WORK

Existing self-supervised learning methods can be roughly
divided into proxy task-based methods and contrastive
learning-based methods. The contrastive learning-based
methods typically learn representation by maximizing fea-
ture similarity between differently augmented views [16]-[18]
or pretext transformations [19] of the same sample via a
contrastive loss such as InfoNCE [20]. It is noted that max-
imizing the mutual information between related represen-
tations [21], [22] is also popular for contrastive learning.
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For example, Hjelm et al. [21] proposed to learn representa-
tion by maximizing the mutual information between global and
local representations. Tiezzi et al. [23] extended the mutual
information maximization to video frames selected with
human-like focus attention. However, Purushwalkam Shiva
Prakash and Gupta [24] demonstrated that existing contrastive
learning methods benefit significantly from access to clean
object-centric images that are difficult to obtain for semantic
segmentation task. Thus, we mainly focus on the proxy task-
based methods that are most relevant to our work when orga-
nizing our survey of the existing literature. Based on the proxy
tasks, current self-supervised learning methods can be roughly
divided into two large categories namely, context prediction
and image generation.

A. Context Prediction

Methods in the context prediction category try to exploit
the internal spatial context within the visual data for supervi-
sory signal. For example, Doersch et al. [11] used the eight
possible relative locations between a pair of neighbor patches
as the label for patch classification. Noroozi and Favaro [12]
extended this idea of relative location prediction to solve a
jigsaw puzzle problem with nine patches. The nine patches
are shuffled randomly and then a network is trained to recover
their order. Since the possible permutations of nine numbers
is 9! = 362880, it is not feasible to cover all permuta-
tion classes for classification with a deep network. Thus,
a set of predefined permutations (such as 100) is used for
the random patch shuffling. Hence, the Jigsaw problem is
transformed into a 100-class classification problem. Later,
Mundhenk Nathan er al. [25] improved these patch-based
methods by incorporating numerous tricks, such as harnessing
the jitters applied to the patches.

Our work also exploits context prediction for designing the
proxy task. The most relevant works to our method are the
relative location prediction [11] and the Jigsaw method [12].
As shown in Fig. 1, the relative location prediction method
considers spatial contexts between only two patches of small
sizes at a time. This has the potential problem that one
of the patches may contain little or no useful information.
In contrast, our method exploits contexts from nine or even
25 patches. The Jigsaw method also considers nine patches.
However, it extracts features separately from each patch and
then concatenates the features of nine patches for permutation
classification. Hence, the number of parameters in the final
layer are enormous. Instead of predicting the permutation of
nine patches, our method directly predicts location indices of
all patches at once.

B. Image Generation

The image generation-based methods can be divided into
two stages. In the first stage, part of an image is removed.
The second stage then tries to recover or generate the removed
part. For example, Pathak er al. [26] manually removed a
region from an image and then trained a network to perform
inpainting to recover the removed region using information
from the remaining pixels. Another example of image gener-
ation is the commonly used automatic colorization task, i.e.,
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Difference between our method and related methods. Current patch-based methods adopt the Siamese network to extract features from each patch

()

independently. This leads to a bloated classification layer. Our method adopts an FCN to extract features from all patches simultaneously. This allows us
to extend the number of patches to 25 without increasing the network complexity for better transfer learning. (a) Relative location prediction. (b) Jigsaw.

(¢) Ours.

recovering the three color channels from the remaining chan-
nel(s). Zhang et al. [27] and Larsson et al. [28] were among
the first to use image colorization as a proxy task for represen-
tation learning. In particular, Zhang et al. [27] generated color
channels from luminance, which was achieved by quantifying
the Lab color space into a number of discrete intervals and
then formulating the image colorization as a classification
problem. Later the same authors [29] extended their idea to
perform cross-channel generation, i.e., the remove/generate
occurs between each pair of channels. Concurrently, Lars-
son et al. [30] replaced the commonly used AlexNet [31] with
VGG [32] and introduced the hypercolumns [33] to improve
the learning capacity of the colorization network. Compared
with patch-based methods, colorization-based methods have
an advantage that they do not change the spatial structure of
the input. However, colorization-based methods may not learn
color-based features which are important for many tasks such
as semantic segmentation.

C. Other Methods

Besides the two categories mentioned above, there are
many other proxy tasks designed for self-supervised learn-
ing. For example, Dosovitskiy et al. [34] defined a series of
exemplar classes for representation learning, where samples
of each class were generated by applying different trans-
formations to an image patch containing an obvious object.
Gidaris et al. [10] defined four angler options (0, 90, 180,
270) for image rotation prediction. Based on this work,
Feng et al. [9] added a nonparametric instance discrimination
task to learn rotation irrelevant features. However, for the
semantic segmentation dataset, it is difficult to meet the prereq-
uisite that the sampled image patch contains an obvious object

since there are usually many objects of different classes in an
image. More recently, Jenni and Favaro [35] suggested that
discriminative features can be learned by distinguishing real
images from images with synthetic artifacts.

Exploiting relations between images for supervision is also
popular. The deep-clustering [36] proposed to cluster deep
features and then used the cluster assignments as pseudo labels
for supervision. Similarly, Sabokrou et al. [37] exploited self-
supervision derived from the fact that neighboring samples
should share similar features.

Whereas the above mentioned methods are designed for
static images, there are also many methods that leverage
videos for self-supervised learning. Typical proxy tasks that
exploit video data include temporal order prediction [38]-[40]
and future frame prediction [41]. For example, Lee et al. [38]
proposed to perform representation learning by sorting shuf-
fled image sequences into the correct order. Then, Xu et al
extended the order prediction from image frames to video
clips, to enable the learned representation for application to
image analysis as well as video-based tasks such as action
recognition [42]. The core idea of future frame prediction is
to learn features by generating a video frame from its previous
frames. However, video-based methods usually need to extract
features from multiple frames during training, which could
lead to huge GPU memory consumption.

II1. METHOD

In this section, we will first briefly review the core idea and
architecture of FCN and then show that FCN can be approx-
imately viewed as a patch-wise classification framework that
can be used to solve the jigsaw puzzle problem.
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Fig. 2. Structures of CNN and FCN. CNN can be easily re-purposed to

FCN by discarding the spatial dimension reduction layer and then performing
classification at each spatial location.

A. Fully Convolutional Network (FCN)

Given an image, typical CNNs convert it to a single fea-
ture vector and then predict its class. This is achieved by
multiple “convolution + pooling” blocks and a separate spa-
tial dimension reduction operation that usually presents as a
fully connected layer (e.g., VGG [32]) or a global pooling
layer (e.g., DenseNet [43]). To produce dense predictions, the
FCN [15] discards the spatial dimension reduction operation
and then makes prediction at each spatial location by applying
a softmax function as

T
oW X))

Pelxjy = S
beC
where x(, jy is the feature vector at spatial location (i, j),
C is the class set considered for the semantic segmentation
task, and w, are the classification parameters of class c¢. The
production of w. and x; ; is also called class score for class ¢
at spatial location (i, j).

(1

PIUETR)

B. Patch-Wise Classification With FCN

It can be easily seen in Fig. 2 that (1) is essentially a
“pixel”-wise classification problem if each spatial unit of the
output feature map of FCN is treated as a special “pixel.”
For convenience, we call these special “pixels” feature pixels.
Next, we show that the FCN can be approximately viewed
as a patch-wise classification framework by proving that the
overlapping areas between input regions (or patches), where
these feature pixels generated from, can be ignored to some
degree.

Consider a FCN with L layers and denote the feature map
of layer [ as f;, feature pixel at spatial coordinate (i, j) of f
can be denoted by f;(i, j). Theoretically, the size of the input
region where the feature pixel f;(i, j) generated from is equal
to the receptive field (RF) size of f;. In general, the RF size
of a FCN can be computed by [44]

L -1
r= Z(Uw —DJ]s)+1 )
=1 i=1

where k; is the kernel size of layer /, s; is the output stride
with respect to its previous layer. To obtain the exact input
region corresponding to f;(i, j), we need to further compute
the coordinate of the RF center. To this end, we define two
auxiliary variables following [44]. The first one is effective
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Fig. 3. Receptive field of FCN. FCN can be approximated as a convolution
layer with kernel size equal to its receptive field r, stride equal to Sp, and
padding number equal to Py.

TABLE I

RECEPTIVE FIELD (RF) AND EFFECTIVE STRIDE
OF COMMONLY USED FCNS. Sy IS THE EFFECTIVE STRIDE
WHEN TREATING FCN AS A CONVOLUTION LAYER

AlexNet VGGI6  ResNetl01
RF 195 212 1027
So 32 32 32

stride: Sp = H,L=1 s;, the stride of output feature map f,
with respect to the input image. The second one is effective
padding: Py = Z,LZI D Hf;i si, the padding added to input
image from the perspective of f;, where p; is the padding
added to /. With these two auxiliary variables, the coordinate

of RF center of f; (i, j) can be computed by
r—1 . r—1 .
(hi,v;) = —Pot ——+i -So,—P0+T+J'So :
(3)

In other words, we can view the entire FCN as a special
convolution layer whose kernel size, stride and padding are
equal to r, Sp, and Py, respectively (see Fig. 3). While most
basic CNNs (e.g., AlexNet, VGG16, ResNet) have five layers
with stride equal to 2, Sy of FCN built from these networks
is typically equal to 32. On the other hand, according to (2),
RFs of FCNs built from these commonly used networks are
usually significantly larger than 25, (see Table I), which
means that RFs of neighbor positions of FCN’s output are
highly overlapped. Nevertheless, Luo et al. [45] have shown
that the distribution of impact within the RF is asymptotically
Gaussian and the effective RF only takes up a small fraction of
the full theoretical RF. Thus, it is reasonable to hypothesize
that the effective region where each feature pixel generated
from is a small patch around the center of the RF. Then,
classification based on the output features of FCN can be
approximately viewed as a patch-wise classification process.

C. Self-Supervised Learning With FCN

Unlike predicting the permutations of patches (as in [12]),
in real life, the jigsaw puzzle problem is typically solved by
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Overview of our self-supervised learning framework. The basic idea of our self-supervised learning is to learn to predict the absolute location of

patches in a jigsaw puzzle problem. Toward this goal, we first divide the training image into nine patches, which are then rearranged to a new image after
a random shuffle operation. Then, a FCN, which we treat approximately as a patch-wise classification framework, is used to extract features for each patch.
Finally, we concatenated features of each patch with features of the central patch, which act as the reference patch, for absolute location prediction.

finding the absolute location of each patch. In particular, when
confronted with a jigsaw puzzle game, a human player tries to
classify each patch into the correct location according to visual
information extracted from all the patches. Thus, the jigsaw
puzzle can be viewed as a patch-wise classification problem
and this is exactly the approach we take in this article. More
formally, denoting the number of patches of a jigsaw puzzle
problem as N, and the feature vector of a patch I, as x,, the
jigsaw puzzle problem depicted in [12] can be written by

p(c|11,12,...,11v)=MLP([X1,)C2,...,XN]) (4)
where MLP represents a function defined by a multilayer
perceptron, [...] refers to the concatenation of feature vectors
of different patches, n represents the index of nth patch after
a shuffle operation is performed over the N patches, and c is a
label corresponding to a specific image order of a predefined
permutation set. It can be concluded that (4) is essentially
a sequence classification problem. While the jigsaw puzzle
problem in practice is solved as

Is,) = MLP(xn, Xsps Xsps v vvs xs,) 5)

where s represents indices of a number of patches that sup-
port human’s decision on the location classification for the
nth patch. For location classification of different patches, the
number of support patches 7 (t < N —1) may also be different.
In this case, the ¢ is a label corresponding to one of the N
absolute positions of these patches. Compared with (4), there
is no feature concatenation in (5) since the feature fusion of
different patches conducted by human is still unclear.

Based on the above analysis on FCN and jigsaw puzzle
problem, we propose to learn representations by solving a
jigsaw puzzle problem with FCN. The overview of our method
is shown in Fig. 4. First, an image is divided into a 3 x 3 grid
which results in nine non-overlapping patches. These nine
patches are then rearranged according to an order generated
from a random shuffle operation. Finally, the rearranged image
is fed into a FCN to predict the original position for each
patch. To reduce the difficulty of the jigsaw puzzle problem,
inspired by the relative location prediction in [11], we fix
the central patch and use it as the reference for absolute

p(cllna Isla MR

location prediction of other patches. Thus, our FCN-based
jigsaw puzzle can be formally written as

p(c|1n,1|-%-|) :MLP([xn,xm]) (6)

where [N /2] represents the central patch. Hence, our method
can be also viewed as a relative location prediction problem.
However, different from [11], which outputs only one relative
location, our method outputs eight relative locations at once.

It can be observed from (4) and (6) that our network for
Jigsaw problem is much more compact than the one used in the
standard Jigsaw method. In particular, for the standard Jigsaw
method, if the feature channel per patch is set to 512, the input
of final convolution layer will contain 512 x 9 = 4608 chan-
nels. Thus, it will require 1 x 1 x 4608 x 512 =~ 2.36M
parameters if the output feature dimension is to be reduced
to 512 for final classification. In contrast, our method requires
about 0.52M parameters using the above settings. On the other
hand, a more compact network usually means fewer time
cost for parameter gradient computation and fewer memory
requirement for gradient storage.

D. Network and Loss

Many state of the art CNN architectures exist (e.g.,
ResNet [1], DenseNet [43]) for representation learning. How-
ever, most CNNs require large batch size for training to
ensure good performance of the batch normalization [46]. This
leads to a huge consumption on GPU memory (especially for
complex models like ResNet). Limited by the GPU resources
at hand, we adopt a well-known lightweight model named
MobileNetV2 [2] as the backbone for feature extraction.
MobileNetV2 has many versions of different widths controlled
by a parameter called “width multiplier.” To use a large batch
size for training, we set the width multiplier to 0.75 and further
reduce the width of the last layer from 1280 to 512.

Similar to most FCN-based methods, we define the training
loss using the cross entropy between prediction and ground
truth. More formally, the training loss of our nine patch jigsaw
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TABLE II

ABLATION STUDY OF OUR SELF-SUPERVISED LEARNING FOR SEMANTIC SEGMENTATION ON THE CITYSCAPES DATASET. THE BLOCKS REPRESENT
THE FIVE CONVOLUTION LAYERS OF CNN AND THE VALUES ARE MIOU. FOR EXAMPLE, “BLOCK45” MEANS PARAMETERS OF BLOCK4 AND
BLOCKS ARE LEARNED FROM RANDOM VALUES (RANDOM COLUMN) OR SELF-SUPERVISED FEATURES (FINETUNE COLUMN), WHILE
PARAMETERS OF OTHER BLOCKS (1.E., 1, 2, 3) ARE FROZEN WITH SELF-SUPERVISED FEATURES

Self-supervised learning

Semantic Segmentation

Steps ACC block12345 block2345 block345 block45 blockS
P random finetune | random finetune | random finetune | random finetune | random finetune
20K 60.6 42.0 43.4 42.1 44.7 41.9 44.0 41.0 41.9 26.8 27.5
30K 85.1 42.0 432 42.0 443 422 44.8 422 43.2 26.8 272
50K 92.8 42.0 42.8 42.6 44.6 42.1 43.4 42.4 43.0 26.5 27.0
puzzle problem is defined as process, which means that we performed the Jigsaw task only
9 . 500 times during testing.
1 e XGi.j)

L=- —log ———— 7
9 Z & 22:1 PIETR) @

i=l1

cross_entropy

where c is the true location of patch (i, j) and x(; j, denotes
the final feature of patch at location (i, j).

E. Datasets

In practical settings, we generally have only a small number
of fully annotated samples for network training. On the other
hand, massive unlabeled images are easily accessible from the
Internet. Thus, we propose to use self-supervised learning to
learn feature representations from the unlabeled data and then
apply the learned representations for the downstream task in
the same scene.

Cityscapes: Cityscapes [47] is an urban scenes dataset
sampled from 50 European cities. It has 2975, 500, and
1525 fully annotated images for training, validation, and
testing, respectively. To imitate real scenarios where fully
annotated images are usually limited to a small number,
we choose only 503 images (taken from Tubingen, Ulm,
Weimar and Ziirich) from the 2975 training images to train
the segmentation network, and use the other 2472 images for
self-supervised learning.

IV. EXPERIMENTS
A. Self-Supervised Learning as Target Task

We first treat our self-supervised learning as the target task
to prove that the jigsaw puzzle problem can be solved by a
FCN. Each sample of the training batch is a 576 x 576 image
patch randomly sampled from an image augmented from the
original Cityscapes dataset. The augmentations include ran-
dom mirroring and random scaling that are commonly used
in deep learning. We set the batch size to 36 and the training
iterations to 50K. The learning rate is set to 0.1 and divided
by 5 at 10K iteration and then decayed by a factor of ten every
10K iterations. We use the stochastic gradient descent (SGD)
with momentum of 0.9 for parameter optimization.

Since our self-supervised learning is designed to solve a
patch-wise classification task, we use the classification accu-
racy to evaluate its performance. Evaluation is performed over
the 500 validation images of Cityscapes dataset. It is noted
that we sampled only one patch for each image during this

Training and evaluation were both implemented in
Pytorch [48] and conducted on a computer equipped with a
Titan X GPU, a CPU of Intel i7-6850k (six cores, 3.6 GHz),
and 32 GB RAM. The experimental results are shown in
Table II. We achieved an accuracy of up to 92.8% on the
Jigsaw task, which supports that FCN is essentially a patch-
wise classification network and can be used to solve the Jigsaw
problem.

B. Self-Supervised Learning as Proxy Task

We also validate the effectiveness of our self-supervised
learning by performing a transfer learning task, i.e., use the
learned features as pretrained weights for semantic segmenta-
tion.

Many works have proved that the self-supervised features
at deeper layers are specific to the proxy tasks, and are hence
not well suited for downstream tasks. To find the best transfer
strategy between our self-supervised learning and semantic
segmentation, we propose to freeze a subset of layers during
the finetune process. In addition, the unfrozen layers were
initialized either by random values or self-supervised features.
Specifically, since most CNNs can be divided into five blocks
according to the resolution of feature maps, we performed
weights freezing using the “block™ as unit (see Table II).
It is noted that the final classification layer of segmentation
was always initialized with random values since its dimension
was different from the one used in self-supervised learning.
To validate how the performance of proxy task influences
the performance of segmentation task, we further performed
transfer learning using parameters saved at different training
steps. For convenience, we call these self-supervised models
by PARAM-AT-N, where “N” is the training steps (iterations).

To train the segmentation network, we set the batch size
to 8 and the training image size to 1024 x 1024. The total
training steps was set to 30K. The learning rate was set to
0.05 and decayed by a factor of 10 at 5, 15, and 25K steps.
Other training policies were similar to those used in the self-
supervised learning.

We used the commonly used mean Intersection over
Union (mloU) metric to evaluate the performance of semantic
segmentation. Results of our ablation experiments are shown in
Table II. Note that we have used only about 1/6 training images
of the Cityscapes in this article and did not use ImageNet
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pretrained weights for initialization in this experiment. Thus,
the semantic segmentation performance is significantly lower
than the one reported in the MobileNetV2 paper. From the
Table II, important observations and conclusions can be drawn
as follows.

1) The baseline method, where the entire feature extrac-
tion network was learned from random values with full
supervision, achieved 42.0% mloU on the Cityscapes
validation set. When only block4 and block5 were
learned from random values, our method, irrespective of
the self-supervised models used, achieved comparable
or better performance than the baseline. In addition,
segmentation models initialized from our self-supervised
features (finetune columns) always performed better than
those initialized from random values (random columns).
These results show that our self-supervised learning can
learn useful feature representations.

2) Using PARAM-AT-30K for transfer learning,
we obtained a 1.2% point improvement over the
baseline when all feature blocks (block12345) were
finetuned. The improvements achieved over the baseline
increased first and then decreased with the increase in
the number of frozen blocks. In particular, we arrived at
the inflection point and obtained the largest improvement
(2.8% point) over the baseline when blockl and block2
were frozen. However, the segmentation performance
decreased significantly to 27.2% mloU when blockl1 to
block4 where all frozen (only block5 was not frozen).
These results indicate that the low-level features learned
by self-supervised learning are generic to downsteam
tasks while high-level features are specific to the proxy
task (Jigsaw in our case). It is noted that this and the
following observations/conclusions are based on the
results listed in the “finetune” columns of the Table II.

3) Compared to using PARAM-AT-30K, the inflection
point of performance on target task came earlier when
using PARAM-AT-50K. This suggests that the low-level
features will also become specific to proxy task with
the increase of training steps of self-supervised learning.
The results obtained with PARAM-AT-20K seemed to
conflict with this observation. In particular, the best
performance achieved on target task with PARAM-AT-
20K also came earlier when compared with results of
PARAM-AT-30K. Nevertheless, since the reduction in
mloU were both larger than 1% point after the inflec-
tion points of PARAM-AT-30K and PARAM-AT-50K,
we believe the inflection point of PARAM-AT-20K was
the same, i.e., when only block345 were finetuned, with
the one of PARAM-AT-30K.

4) While PARAM-AT-50K outperformed PARAM-AT-30K
by 7.7% on the jigsaw puzzle task, it performed worse
than PARAM-AT-30K on semantic segmentation in most
cases. Thus, it can be concluded that the better perfor-
mance of proxy task does not necessarily mean better
performance for target task.

Overall, the above experiments strongly suggest that our

self-supervised learning can learn useful features, especially
at the low-level, for semantic segmentation.

C. Jigsaw Puzzle With More Patches

Following the work of [12], we adopted nine patches for
our Jigsaw-based self-supervised learning in the above exper-
iments. In addition, these nine patches were sampled from an
image of spatial size 576 x 576, which means each patch was
192 x192. In practice, the number of patches of a jigsaw puzzle
can be increased to hundreds or even thousands and the patch
size can also be varied. Thus, to test if our method can learn
better representations by solving a jigsaw puzzle with more
patches, we increase the patches to 25 in this experiment.
We also experimented with different patch sizes to evaluate
how this influences the performance of our self-supervised
learning.

For the self-supervised learning, we first adopted the same
training image size as the one used in nine patches, leading to
25 patches of size 115 x 115. Then, we adopted the same patch
size as the one used in nine patches and the training image
size thus became 960 x 960. Note that each convolution layer
of MobileNetV2 is followed by batch normalization, which
can be formally written by

Xi — Hi

=

y+ B ®)

where i was the index of feature channel, y and S were two
learnable parameters of linear transform, u and ¢ were the
mean and standard deviation of a feature channel computed by

,Ui:%zxk» o, = %Z(xk_#i)z"r‘f

kESl' kESl'

P =

©)

where S; is the set of pixels in which the mean and std are
computed, m is the size of this set, and € was a small constant
used to avoid the emergence of zero in the denominator of
equation (8). It has been proven by many researchers [49]
that the performance of batch normalization relies heavily on
the batch size. We found that the batch size can only affect
the size of pixel set m in (9). In other words, the performance
of batch normalization can be easily affected by the total
number of training pixels. Thus, when the training image size
was 960 x 960, we adjusted the batch size to 13 to ensure
the total training pixels stay approximately the same to those
used in other settings. All other training policies were kept
the same with those depicted in Section IV-A.

When transferred to semantic segmentation, all the training
policies were kept the same as depicted in Section IV-B and the
self-supervised models used for transferring were “PARAM-
AT-30K.” The experimental results are reported in Table III
and Fig. 5.

1) Analysis: As expected, given the same (image size)
jigsaw puzzle task, the patch-wise classification accuracy
decreased from 85.1% to 48.2% when the patch number
increased from 9 to 25 with our FCN-based method. Nev-
ertheless, the performance of segmentation task improved sig-
nificantly in this case. For example, the segmentation accuracy
improved by 4.9% points when block 1, 2, 3, 4 were frozen
and the block5 was initialized from random values. This
suggests that our Jigsaw-based self-supervised learning can
learn better high-level semantic features with 25 patches. One
reasonable explanation is that it becomes more difficult to
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TABLE III

ABLATION STUDY ON PATCH NUMBERS AND SI1ZES WITH THE UNFROZEN BLOCK PARAMETERS
INITIALIZED RANDOMLY OR FINE TUNED FROM OUR SELF-SUPERVISED MODEL

block345

ACC
random

Patches  sizes

finetune

block45
random  finetune

block5
random  finetune

3x3 192 85.1 422 44.8

422 43.2 26.8 27.5

115
192

482 43.0
56.6 -

47.8
46.5

5X5

435 46.2 31.7 32.8
- 44.8 - 33.1

50

45

40

35
<o+ 9p/192/rd

<-4+ 25p/115/rd

30  —A—9p/192/ft
——25p/115/ft
—%— 25 p/192/ft

>

25

BLOCK345 BLOCK45 BLOCKS5S

Fig. 5. Transfer learning accuracy (vertical axis) using our self-supervised
models trained with different patch numbers and sizes. The dotted and solid
lines mean that the parameters of unfrozen blocks (shown on the horizon-
tal axis) are initialized from random values and self-supervised features,
respectively.

exploit shortcut solutions to solve the jigsaw puzzle when
more patches are used. The shortcut solutions may learn
information highly specific to the jigsaw puzzle task but not
the target task, i.e., the semantic segmentation. As mentioned
by Noroozi and Favaro [12], the shortcuts to solve the jigsaw
puzzle task mainly include low-level statistics, such as edge
continuity, the pixel intensity/color distribution, and chromatic
aberration. Among these, the Chromatic aberration, which is
relatively difficult to understand, is the relative spatial shift
between color channels that increases from the images center
to the borders. Noroozi et al. proposed to avoid these three
shortcuts using patch-independent normalization, overlapped
patches, and color jittering, respectively. Instead of introducing
these explicit strategies, our method can avoid these short-
cuts implicitly. For example, note that the FCN was viewed
approximately, but not exactly, as a patch-wise classification
framework in our method. In other words, the patches of
jigsaw puzzle in our method are implicitly overlapped although
the overlapped area is limited. Nevertheless, the overlap area
would increase with the increase of patch numbers given the
same image size.

D. Comparison to Other Methods

We finally evaluated our self-supervised learning on PAS-
CAL VOC2012 to compare it with other methods. The original

PASCAL  VOC2012  training set contains  only
1464 densely annotated images for semantic segmentation.
Hariharan et al. [54] then expanded it to 10582 images.

Following the common practice, we first performed the
self-supervised learning on ImageNet [13], a well-known
large-scale image classification dataset that contains about
1.3M images of 1000 natural classes, and then finetuned
the learned features for semantic segmentation on PASCAL.
Similar to most methods, we also adopt the AlexNet, which
consists of five convolution layers and two fully connected
layers, for feature learning in this experiment. However, it is
better to perform the self-supervised learning and semantic
segmentation on the same scene. To prove this hypothesis,
we also conducted an experiment in which the self-supervised
learning is performed on the 16135 images included in the
“test_JPEGImages” of PASCAL VOC2012.

1) Implementation Details: During self-supervised learning
on ImageNet, we set the batch size to 128 and the training
image size to 255 x 255. We train the model for 300K steps
(about 30 epochs). The initial learning rate was set to 0.01 and
then decayed by a factor of 10 at 100K and 200K steps. During
self-supervised learning on PASCAL, we set the batch size to
64 and the training image size to 450 x450. We train the model
for 50K steps (about 200 epochs). The initial learning rate was
set to 0.01 and then decayed by a factor of 10 at 20K and 40K
steps. In the context of semantic segmentation, we trained the
FCN32 model for S0K steps. The training batch was set to
36 x 500 x 500. The initial learning rate was set to 0.01 and
then decayed by a factor of 10 at 10K, 25K and 40K steps.
Similar to [15], we also changed the padding number of the
first convolution layer of AlexNet to 100 when transferring the
learned features to semantic segmentation. The experimental
results are reported in Table I'V.

Since the methods listed in Table IV conducted training
on different computational platforms, it maybe unfair to use
the training time reported by these methods for comparison.
On the other hand, it is cumbersome to reproduce all these
methods to perform a fair comparison. Thus, we reproduced
three methods, including the Jigsaw! (which is the most
related to ours), RotNet? (backbone of the best-performing
method), and Feng’s method?® (the best-performing method)
using publicly available code and evaluate their training cost
within our experimental environment. The pretraining time of
these reproduced methods were estimated from the time cost
on a l-epoch training process. Note that Sabokrou et al. [37]

Uhttps://github.com/bbrattoli/JigsawPuzzlePytorch
Zhttps://github.com/gidariss/FeatureLearningRotNet
3https://github.com/philiptheother/FeatureDecoupling
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TABLE IV

COMPARING OUR METHOD WITH SOTA METHODS ON PASCAL VOC2012 VALIDATION SET. * INDICATES THE USE OF DATA-DEPENDENT
RE-SCALING METHOD PROPOSED BY KRAHENBUHL ef al. [50]. THE MIOU VALUES WITH CITATIONS MEANS THEY ARE EXCERPTED
FROM THE CORRESPONDING CITED PAPER. ALEXNET + BN REPRESENTS THAT EACH LINEAR LAYER OF ALEXNET IS
FOLLOWED BY A BATCH NORMALIZATION LAYER

Pre-training Setup

Method Backbone . mloU
Dataset epoches  time cost
ImageNet-Labels [31] AlexNet ImageNet(1.28M) - - 48.0
Random Gaussian AlexNet - - - 19.8 [26]
Autoencoder AlexNet - - - 25.2 [26]
Krihenbiihl et al. [50] AlexNet ImageNet - - 32.6 [51]
Inpainting [26] ALexNet+BN ImageNet 10 - 30.0
Counting [52] AlexNet ImageNet - - 36.6
Colorization [27]* AlexNet+BN ImageNet - - 35.6
Split-Brain [29]* AlexNet+BN ImageNet - - 36.0
Jigsaw [12] AlexNet ImageNet 70 12d 37.6
Spot-Artifacts [35]* AlexNet ImageNet - - 38.1
Colorization [30] AlexNet+BN+Hypercolumn  ImageNet(1.28M)+Places(2.4M) [53] 10 - 384
RotNet [10]* AlexNet+BN ImageNet 30 8d 39.1
Mundhenk et al. [25] AlexNet ImageNet 150 - 41.4 9]
DeepCluster [36] AlexNet ImageNet 500 - 45.1
Feng et al. [9] AlexNet ImageNet 200 50d 45.3
Ours (Random Gaussian)  AlexNet - - - 18.4
Ours (ImageNet-Labels) AlexNet - - - 50.0
Ours (Feng et al.) AlexNet ImageNet 4 1d 37.2
Ours (Jigsaw) AlexNet ImageNet 5 1d 32.5
Ours AlexNet ImageNet 30 5d 37.5
Ours AlexNet PASCAL VOC Test(16K) 200 1d 38.0
Ours (Random Gaussian)  ResNet50 - - - 36.5
Ours (ImageNet-Labels) ResNet50 - - - 56.2
Ours ResNet50 PASCAL VOC Test(16K) 200 1d 43.4

reported performance higher than the supervised method.
However, we found a contradiction between the text descrip-
tion and segmentation performance shown in the Table II
of their paper. In particular, Sabokrou e al. stated that “In
all cases (except for the segmentation task) our results are
superior to others by a considerable margin” when analyze the
results shown in Table II. However, the Table II shows that the
performance achieved over segmentation is more impressive
than those achieved over other tasks. Thus, we did not add
this article for comparison for the sake of prudence.

2) Analysis: When all the parameters were initialized from
Random Gaussian values, which acts as the baseline in this
experiment, the AlexNet-FCN32 achieved 18.4% mloU on the
PASCAL VOC2012 validation set under our training policy.
In contrast, when all the parameters were pretrained with
ImageNet classification labels, the AlexNet-FCN32 achieved
the ceiling value 50% mloU. Note that the ImageNet label
pretrained model was downloaded from Internet. Our method
achieved 37.5% mloU on the PASCAL VOC2012 validation
set with ImageNet-based pretraining, which outperformed sig-
nificantly the baseline and the autoencoder method. Com-
pared with state-of-the-art methods, our method outperformed
Inpainting [26], Colorization [27], Split-Brain [29] by a
large margin even without using batch normalization and
data-dependent rescaling. Compared with the standard Jig-
saw method, from which our method developed from, our
method did not obtain an obvious improvement but rather
a similar performance. Nevertheless, as stated in Section II,
our FCN-based method is much easier to implement since it
requires less memory to train. Feng et al. achieved the best
performance (45.3% mloU) among the compared methods.

However, Feng et al. trained the feature extraction model on
ImageNet for 200 epochs, a prohibitive training cost. In par-
ticular, it would cost about 50 days to perform self-supervised
learning on ImageNet under our experimental environment.
In contrast, with only one day cost on PASCAL pretraining,
our method achieved 38.0% mloU on PASCAL VOC2012
validation set. Similarly, with a significant reduction in the
training cost, the performance of our method increased by
0.5% point after replacing the ImageNet with PASCAL for
self-supervised learning, demonstrating that performing self-
supervised learning and semantic segmentation on the same
dataset can save efforts and at the same time lead to similar
or even better results compared with performing these two
tasks on different datasets. To further support this conclusion,
we also trained the best-performing method (Feng’s method)
and the method most related to ours (standard Jigsaw) on the
ImageNet for one day. Compared with our PASCAL-based
pretraining, Feng’s method and the standard Jigsaw lag 0.8%
and 5.5% points behind our method, respectively.

To show that our method can be generalized to the widely
used ResNet model, we applied our feature learning method
to ResNet50 and then transferred it to semantic segmentation
with FCN32 structure. Since the above experiments have
verified that it is better to conduct self-supervised learning
and semantic segmentation on the same dataset, we only
performed self-supervised learning on the PASCAL VOC in
this experiment. During the self-supervised learning stage,
we change the batch size to 16 and the total training steps
to 200K steps. For semantic segmentation, we change the
batch size to 8 and the total training steps to 200K steps.
As shown in the Table IV, our self-supervised learning method
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yielded a performance gain of 6.9% point with respect to
the random initialized model. This experiment and the above
experiments on AlexNet, MobileNetV2 strongly support that
our self-supervised learning method can be applied to different
datasets and models.

V. CONCLUSION

In this article, we presented a novel self-supervised learning
framework for semantic segmentation. We showed that the
classical FCN can be approximately viewed as a patch-wise
classification framework and applied to solve a jigsaw puzzle
problem for representation learning. We achieved 5.8% mloU
improvement over the baseline model that was initialized from
random values on Cityscapes validation set. Moreover, our
method obtained competitive performance with the state-of-
the-art methods on the PASCAL VOC2012 dataset with sig-
nificantly smaller time costs on pretraining, which is achieved
by directly performing self-supervised learning on the same
scene on which semantic segmentation is to be performed.
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