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Abstract

In this paper, we prove that a two-layer transformer with D steps of continuous chain-of-thoughts (CoTs) can
solve the directed graph reachability problem, where D is the diameter of the graph, while the best known result of
constant-depth transformers with discrete CoTs requires O(n?) decoding steps where 7 is the number of vertices
(D < n). In our construction, each continuous thought vector is a superposition state that encodes multiple search
frontiers simultaneously (i.e., parallel breadth-first search (BFS)), while discrete CoTs must choose a single path
sampled from the superposition state, which leads to sequential search that requires many more steps and may be
trapped into local solutions. We also performed extensive experiments to verify that our theoretical construction
aligns well with the empirical solution obtained via training dynamics, and observed that encoding of multiple
search frontiers as a superposition state automatically emerges in training continuous CoTs, without explicit
supervision to guide the model to explore multiple paths simultaneously.

1. Introductions

Large language models (LLMs) have shown strong performance in many reasoning tasks, especially when empowered with
chain-of-thought (CoT) (Wei et al., 2022) (e.g., hard problems like AIME and math proving). However, they also struggle
with tasks that require more sophisticated reasoning capability (Kambhampati, 2024), e.g., reasoning and planning problems
of increasing scales (Zheng et al., 2024; Xie et al., 2024), even with CoTs (Valmeekam et al., 2024; Zhou et al., 2025).

It remains an open problem how to expand existing discrete CoT to solve more complex reasoning problems. Recently, Hao
et al. (2024) proposes COCONUT (chain-of-continuous-thought) that uses continuous latent thoughts for reasoning, showing
empirical performance boost on synthetic tasks such as directed graph reachability (i.e., given a specification of a directed
graph and one starting node, determine which candidate destination node is reachable), as well as strong performance on
real-world math reasoning benchmarks such as GSM8K (Cobbe et al., 2021). Interestingly, COCONUT shows preliminary
results that continuous latent thought may store multiple candidate search frontiers simultaneously, before the final answer is
reached. This is in sharp contrast with discrete CoT, in which each discrete thought token has to be sampled (or “realized”)
before feeding into LLMs in an autoregressive manner. However, the expressive power and the mechanism of continuous
thought still remain elusive and lack deep understanding.

In this work, we explore the mechanism of COCONUT for the problem of graph reachability, i.e., whether there exists a path
from given start and end nodes in a directed graph. The problem setting is general (Ye et al., 2024; Hao et al., 2024; Zhou
et al., 2025) and includes many important theoretical problems (e.g. Turing machine halting problem) and practical use
cases (e.g. knowledge graph). Given this setting, we proved that a two-layer transformer with D steps of continuous thought
can solve graph reachability for graphs of n vertices, where D < n is the graph’s diameter (longest path length between two
nodes). In contrast, for graph reachability, the best existing result on constant-depth transformer with discrete CoT requires
O(n?) steps (Merrill & Sabharwal, 2023a).

Intuitively, in our construction, each latent thought vector is a superposition of multiple valid search traces, and thus can
perform implicit parallel search on the graph in each autoregressive step. Roughly speaking, the continuous thoughts can be
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regarded as “superposition states” in quantum mechanics (B6hm, 2013) at a high level, storing multiple search frontiers
simultaneously, and thus enabling efficient breadth-first search (BFS). In contrast, discrete thought tokens can be viewed as
“collapsed states” from superpositions. This forces the model to choose a branch deterministically, yielding either incorrect
greedy search, or depth-first style search with backtracking, which requires more computation. Unlike many previous
theoretical work that constructs positional encodings specifically for a given problem or even for a given input length, our
construction works for widely-used positional encodings in practice, such as sinusoidal positional encoding (Vaswani et al.,
2017) and rotary position embedding (Su et al., 2024).

Moreover, we show that our theoretical construction can be achieved in gradient-based training. Specifically, a two-layer
transformer with continuous CoTs outperforms a 12-layer one with discrete CoT on graph reachability. An inspection
of attention patterns and its underlying representation demonstrates that the continuous thought indeed encodes multiple
plausible search frontiers in parallel in superposition states. Notably, such a superpositional representation automatically
emerges from training only with the optimal path of graph reachability, without strong supervision that aligns the latent
thought vectors with other plausible search traces.

2. Problem Formulations

Basic notations. For any integer N > 0, we use [N] to denote the set {1,2,..., N}. For any finite set X, let |X|
denote the cardinality of X'. For a fixed positive integer V' > 0, Let Voc = [V] denote a vocabulary of size V. For
each token v € Voc, there is an associated token embedding u,, € R¢ where d > 0 is the embedding dimension. We
assume token embeddings are orthonormal. An L-layer autoregressive transformer receives a sequence of input embeddings

h = hy, 2 (hy, hy, ..., h;) € R™ and outputs TFy(h) € R? where TFy(-) is defined in Algorithm 1. Let Wg € RV >
be the decoding matrix. A traditional decoder will sample the next token v;1 ~ SoftMax(WTFy(h)) and append its
token embedding in position ¢ + 1, i.e., hyy1 = u,,_,, to autoregressively generate subsequent outputs. The definitions of
attention heads and MLPs are in Algorithm 2. See more details in Appendix B.

Graph reachability. Let G = (V,€) be a directed graph, where V = {vy,v,...,v,} is the set of vertices and
E ={e1,ea,...,en,}is the set of edges. Each vertex v; € V corresponds to a token in the vocabulary, and thus we use v; to
represent both a vertex and its corresponding token. Let nmax > 0 denote the maximum possible number of vertices of a
graph. Note that n,,,, < |Voc|. Each edge e; € £ is a tuple, where e¢; = (s;,t;) € V x V denotes there is a directed edge
from the source node s; to the target node t;. Given a graph (i.e., all the edges of the graph), two candidate destination
nodes c; and co, and a root node r, the task is to identify which of the two nodes can be reached by r. Note that we
guarantee one and only one of c¢; and c» is reachable by r, which we denote by c;+.

directed edge special edge token question token reasoning token
—— 1 1 |
<s> s5; t; <e> s; t; <e> e Sm tm <e> <Q> ¢ c; <R> r
start token source node target node candidate nodes root node

Figure 1: Prompt format of the graph reachability problem.

Input structures. The prompt structure is illustrated in Figure 1. The prompt starts with the BOS (beginning of sentence)
token <s>. The subsequent 3m tokens represent m edges, where each edge is represented by the source node s;, target
node t;, and a special edge token <e> that marks the end of an edge. Then there is a special question token <Q> followed
by two candidate destination nodes c; and c». Finally, there is a special reasoning token <R> followed by a root node r.
See Table 2 for the full list of token notations. Let ¢y = 3m + 6 be the length of the prompt, and let (hy, ho, ... hy,) be the
input embedding sequence where h; is the token embedding of the ¢-th token in the prompt.

Chain of continuous thought. We allow transformers to utilize continuous thoughts. Concretely, forc =1,2,. .., the
transformer autoregressively generates hy, . = TFy(hy,...,hs 1+.—1). For notation convenience, we use [t.] = hy, 4.
to represent the continuous thought of step ¢ for ¢ > 0, and thus [ty] = u,. To request the transformer to make the
final prediction after C' steps of thoughts, one simply appends a special answer token <A> at the end of the sequence, i.e.,
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sets hr = uca. where T' =t + C' + 1, and gets the prediction sampled from SoftMax(W o TFg(hjr))) or using greedy

decoding arg max,evoc Wo TFg(hy7}). We denote ﬁ97c7wo (hp,)) = arg max,evoc Wo TFg(hyr)) as the output token
of greedy decoding after generating C' steps of continuous thoughts.

In the following sections, we demonstrate that the chain of continuous thought can efficiently solve the graph reachability
problem both theoretically (Section 3) and empirically (Section 4).

3. Theoretical Results

In this section, we theoretically prove that a two-layer transformer with continuous thought can efficiently solve the graph
reachability problem. We first present the key result that continuous thought maintains a superposition state of multiple
search traces simultaneously in Lemma 1. Then We show our main theorem in Theorem 1.

Recall that h = hy; denotes the input sequence as defined in Section 2. We define V. as the set of vertices that are reachable
from r within c steps. Below we present our key lemma.

Lemma 1 (Continuous thought maintains superposition states). We autoregressively generate [t..;] =
TFo(hy,, (t1] ..., [tc]) for any ¢ > 0. There exists a construction of 6 such that

1
[te] =hjpe= —— >, M

Vv ‘VC‘ vEVe

i.e., the c-th continuous thought is the normalized superposition of all vertices that can be reached from r within c steps.

Lemma 1 precisely characterizes that each continuous thought is a superposition of all reachable vertices. For each edge
token <e>, the first attention layer will copy its corresponding source and target nodes s; and t; to its buffer spaces (see
Appendix B for detailed explanation of embedding spaces). For the second layer attention, we construct the query and key
matrices such that [t.] pays large attention to the :-th edge token <e> if s; € V., and add the target node t; stored in
buffer 2 back to the current thought (see Figure 2). If the current thought [t .] is a superposition of all vertices in V, (which
is an induction assumption of the proof), this is exactly a one-step expansion of the currently explored vertices V. and thus
the continuous thought at the next step (¢ + 1) will correspond to V1.

small attention if s; € 1,

embedding
space large attention

ifs; €V, Superposition of all

buffer 1 S Sj nodes that can be

. add if large attention reached within c steps
ti j |
tl= — @
content <s> <e> <e> e T e [t cl= Uy
¢ val VEV,

Figure 2: Illustration of the second layer attention mechanism for thought generation.

Since the continuous thought [t.] is a superposition of all vertices in V., as long as c;« can be reached by r within C
steps, the superposition state [tc] will contain c;«. At the final prediction step, the answer token <A> will “measure” the
superposition state [tc] using ¢ and co and predict the token with the larger signal in [t ] as the output. We formalize
our result in the following theorem, and defer the proof to Appendix F.4.

Theorem 1 (Chain of continuous thoughts solves graph reachability). Fix Ty .x > 0. Assume the length of the input
sequence (including the continuous thoughts and the special answer token <A>) does not exceed Ti,ax. There exists a
construction of a two-layer transformer parameters 0 and the readout matrix Wo € RIV°¢I*? (where d = O(|Voc|)) that
are independent of graphs, such that for any directed graph G = (V, E) with at most nyax nodes (nmax < |Voc|), a root
node r, two candidate destination nodes c1, co, for any C exceeds the diameter of the graph, it holds that

TNFe,c,wo (hpg)) = cix.
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Remark 1. Note that when the number of vertices ny,.x and the vocabulary size are of the same order, our construction
only requires the embedding dimension d = O(nmax ), which is practical. Also, since the magnitude of the signal is at least

\/%, our construction only requires log-precision.
o

Weights of different nodes in the superposition. In our construction, each superposition state maintains nodes with
uniform weights. In practice, the weights of different nodes can vary due to factors such as training signals or the model’s
internal heuristic on which nodes are more likely to reach the final answer (Cohen et al., 2025). In Section 4, we show that
in practice, the training signal could bias the superposition states towards the frontier nodes that can be reached with exactly
1 steps and the optimal nodes that can lead to the destination node.

4. Experiments

In this section, we conduct extensive experiments to validate our theoretical results that COCONUT outperforms discrete
CoT even with many fewer layers (Section 4.2), which is indeed due to superposition states encoded in continuous thoughts
during reasoning (Section 4.3).

4.1. Training Setup

Model. We adopt a GPT-2 style decoder with two transformer layers,
Ainodel =768, Nheags=8. We train from scratch using AdamW (5;=0.9, 5,=0.95,

weight-decay 1072) and a constant learning rate of 1 x 10—, 1.0 4 SO_T_O”U'E
(o]
CoT*
Dataset. We construct a symbolic version of a subset of ProsQA (Hao et al., 091 No CoT
2024), which is essentially the same as the graph reachiblity problem of the >
same format as introduced in Section 2, with questions whose solutions require €081
3—4 reasoning hops (and therefore, the length of CoT is 3-4). Each node in the $
graph is injected as a dedicated token into the vocabulary. The split statistics are 0.7
summarised in Table 4.
0.6
Method. Following Hao et al. (2024), we adopt a multi-stage training strategy 05

with the supervision from chain-of-thoughts data. Stage ¢ teaches the model to

use ¢ continuous thoughts before predicting the i-th node in the given chain of  Fjgure 3: The overall accuracy of Co-
thought as the next token. If the index of the training stage is larger than the CONUT, CoT, CoT*(12 layers, Nheads =
CoT solution length I, the model is trained to output the final prediction after [ ~ 12) and No CoT.

continuous thoughts and <A>. We train the model for 25 epochs at each stage, and

the whole training lasts 300 epochs in total (the remaining epochs are used to train

the final prediction). At each stage, we mix the data from previous stage randomly with 0.1 probability, which proves to
help improve performance in our early experiments.

4.2. Overall Results

Extending the findings of Hao et al. (2024), we further show that a 2-layer transformer trained from scratch can effectively
solve ProsQA when using COCONUT. As shown in Figure 3, COCONUT achieves near-perfect accuracy, while both CoT
and No CoT baselines solve only about 75% of the tasks (random guessing = 50%). Even with a larger model of 12 layers
and Nheads = 12, marked with * in the figure, CoT improves to 83% accuracy but still cannot solve the tasks reliably.

4.3. Visualising Latent Reasoning

We inspect both the attention pattern and the representation of the continuous thought learned by the model to validate our
theoretical construction. Due to space limit, the results and details are deferred to Appendix D.3. In summary, the analysis
confirms that the intended superpositional search exists in trained models: Layer 1 establishes the query context, Layer
2 expands the frontier, and the latent vectors encode a soft, parallel representation of reachable state sets, realizing the
theoretical construction in Section 3. Below we present the results that continuous thoughts indeed encode superposition of
explored vertices.
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Representation of continuous thoughts. To verify that the continuous thought serves as superposition states for the
search, we compute the inner product between the continuous thought at step ¢, [t; ], and each node embedding u,. Similar
to edge classification above, we classify nodes into Reachable, Not Reachable, Frontier, and Optimal. Figure 4 (top) plots
the distribution segregated by the reasoning step ¢. As predicted, nodes within ¢ hops exhibit markedly higher similarity
scores than distant nodes. Moreover, Frontier nodes are noticeably closer to [t; ] than other reachable nodes, illustrating
that the superposition emphasizes the candidate expansion fronts. Besides, the Optimal nodes are even closer to [t; ], also
likely due to the training data always presenting the optimal path.

Continuous thought 1 Continuous thought 2 Continuous thought 3 Continuous thought 4
Not Reachable (-0.28) Not Reachable (-0.21) 700 Not Reachable (-0.02) Not Reachable (-0.14)
1000 4 Reachable (3.62) 800 4 Reachable (1.50) Reachable (0.68) Reachable (0.51)
Frontier (5.09) Frontier (2.52) 600 - Frontier (1.87) 400 - Frontier (2.06)
Optimal (6.50) Optimal (4.75) Optimal (6.19) Optimal (9.38)
. 800 6004 500 o
2 300
2 600 4007
© 400 1 300 1 200 4
400
200 200
1 ' 100
200 100 4
0 . T T y 0 T T - . 0 T T - v 0 . T T -
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Not Reachable (-0.14) | 1000 Not Reachable (-0.44) Not Reachable (-0.46) 300 4 Not Reachable (-0.44)
1400 1 Reachable (3.32) Reachable (1.55) 600 - Reachable (0.74) Reachable (0.47)
1200 Frontier (5.22) Frontier (3.13) Frontier (2.51) 250 4 Frontier (2.59)
Optimal (5.50) 800 - Optimal (4.15) 500 A Optimal (4.71) Optimal (6.10)
1000
£ 600 400 4 200
£ 800
2 3001 150 4
g °° 4007 100
8 ] J
400 200
200 1 2001 100 50 1
ok - - - - - 0 - - - - - - 0 - - - 0 - - - -
-50 -25 00 25 50 75 -50 -25 00 25 50 75 -5 0 5 -5 0 5 10

Figure 4: The histogram of inner product between the i-th continuous thoughts and the node embeddings. The mean value for each
group is shown in the legend. Note that Frontier is a subset of Reachable nodes, and Optimal is a subset of Frontier nodes.

Exploration Priority. An interesting fact revealed by the visualizations in Figure 4 is that the model allocates dispro-
portionate attention to optimal edges and nodes, reminiscent of a prioritized search strategy. One hypothesis is that this
behavior is an artifact of our multi-stage curriculum, which explicitly guides the model on the CoT solution at every step.
To understand the effect of this multi-stage guidance, we introduce an alternative supervision method COCONUT-BFS: at
stage i, the supervision token is drawn uniformly at random from the frontier nodes exactly ¢ hops from the root, rather
than the ¢-th node in the CoT solution. All other hyperparameters are unchanged. Our experiment results indicate that
CoCONUT-BFS also achieves near-perfect accuracy on ProsQA, matching the original COCONUT. Figure 9 compares the
inner product distributions of the latent thoughts for both models. Remarkably, the two supervision methods converge
to similar exploration strategies, even though there is no explicit guidance towards optimal nodes for COCONUT-BFS.
Conversely, the original COCONUT, although trained exclusively on optimal nodes during intermediate stages, still assigns
elevated weight to non-optimal frontier nodes compared to other non-frontier nodes, implicitly performing a breadth-first
expansion. We leave explaining this behavior from the perspective of training dynamics as future work.

5. Conclusions

In this paper, we study how the chain-of-continuous-thought boosts LLLM’s reasoning capability by focusing on the graph
reachability problem. We provided a theoretical construction of a two-layer transformer that can efficiently solve graph
reachability for an n-vertex D-diameter directed graph by D steps of continuous thoughts, while the best existing result
on constant-depth transformers with discrete CoT requires O(n?) steps. Our construction reveals that the superposition
states that encode multiple search traces simultaneously are the key to the strong reasoning capability of COCONUT, and we
conducted thorough experiments to validate that our theoretical construction matches the solutions obtained by training
dynamics. Several interesting future directions include: (1) Deriving a lower bound on the number of discrete CoT steps in
the graph reachability problem to show a strict separation of expressivity between CoT and COCONUT; (2) Theoretical
understanding of the emergence of exploration behavior with only deterministic search trace demonstration via training
dynamics; (3) Advantages of reasoning in a continuous space in more general settings.
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A. Related works

LLM reasoning in text and latent spaces. LLM’s reasoning capability can be significantly boosted by chain-of-thought
(CoT) (Wei et al., 2022), which allows LLMs to explicitly output intermediate thoughts in text space before predicting the
final answer. CoT includes prompt-only methods (Khot et al., 2022; Zhou et al., 2022) and training with samples containing
intermediate thoughts (Yue et al., 2023; Yu et al., 2023; Wang et al., 2023b; Shao et al., 2024). Besides text-based CoT,
many previous works also study LLM reasoning in the latent space (Goyal et al., 2023; Wang et al., 2023c; Pfau et al., 2024;
Su et al., 2025) where the intermediate thoughts do not necessarily correspond to textual tokens. In particular, Hao et al.
(2024) proposed to train LLMs to reason in a continuous latent space, which outperforms discrete CoTs on graph reasoning
tasks, especially for graphs with high branching factors. Based on empirical case studies in Hao et al. (2024), continuous
thoughts are hypothesized to encode multiple plausible search frontiers simultaneously. In this work, we formally study the
mechanism and theoretically show that transformers equipped with continuous thoughts benefit from superposition states
during reasoning.

Expressivity of transformers. There is a long line of work studying the expressivity of transformers (Yun et al., 2019;
Bhattamishra et al., 2020a;b; Pérez et al., 2021; Likhosherstov et al., 2021; Yao et al., 2021; Edelman et al., 2022; Akyiirek
et al., 2022; Merrill & Sabharwal, 2023b). A more recent line of work shows CoT can improve the expressivity of
transformers (Liu et al., 2022; Feng et al., 2023; Merrill & Sabharwal, 2023a; Li et al., 2024). For example, Liu et al. (2022)
studies low-depth transformer expressivity for semi-automata, of which the setting corresponds to one CoT step. Feng et al.
(2023) shows that constant-depth transformers with CoT can solve certain P-complete problems. Li et al. (2024) further
provides constructions of constant-depth transformer for each problem in P/poly with CoT. Merrill & Sabharwal (2023a)
studies the expressivity with different lengths of CoT, showing that logarithmic steps of CoT in input length can expand the
upper bound of constant-depth transformer expressivity from TC” to L, while a linear number of steps can further expand
the upper bound to NC*-complete. While these expressivity results mainly focus on discrete CoTs, theoretical studies on
continuous CoTs (Hao et al., 2024) are rare, which our work is focused on. Unlike many previous works that construct
problem-specific (or even length-specific) positional encodings (one exception is Merrill & Sabharwal (2023a), whose
construction works with any positional encodings that are start-separable), our construction applies to practical positional
encodings, such as sinusoidal (Vaswani et al., 2017) and RoPE (Su et al., 2024).

Reasoning as graph problems. Graph problems are essential to understand LLM reasoning capability since many
reasoning problems can be abstracted as computational graphs (Ye et al., 2024; Zhou et al., 2025) where relational data fed
into transformers can be modeled as edges (Wang et al., 2024a;b; Guo et al., 2025). Many previous works have shown that
pretrained LLMs can deal with reasoning tasks in graphs, but may still have difficulties with more complicated tasks (Wang
et al., 2023a; Guo et al., 2023; Fatemi et al., 2023; Sanford et al., 2024; Luo et al., 2024; Dai et al., 2024; Cohen et al., 2025).
Other works study how transformers solve classic and fundamental graph problems, such as graph reachability (Merrill &
Sabharwal, 2023a; 2025), shortest path (Cohen et al., 2025), etc. For example, Cohen et al. (2025) shows that a two-layer
transformer can leverage spectral decomposition of the line graph to predict the shortest path on small-scale undirected
graphs. Merrill & Sabharwal (2025) shows that a log-depth transformer can solve directed graph reachability, which
constant-depth transformers can not solve. For a constant-depth transformer, Merrill & Sabharwal (2023a) shows directed
graph reachability can be solved with O(n?) CoT steps where n is the number of vertices, while it remains unclear whether
a smaller number of discrete CoT steps can solve the task. On the contrary, our work shows that a two-layer transformer can
solve graph reachability for a D-diameter graph with D continuous thought steps.

B. Preliminaries

Basic notations. For any integer N > 0, we use [N] to denote the set {1,2, ..., N'}. For any finite set X, let |X'| denote
the cardinality of X'. Let R be the set of real numbers. We use 1{-} to denote the indicator function. Without further
clarification, we use lower-case bold letters (e.g., «, 8) and upper-case bold letters (e.g., W, U) to denote vectors and
matrices, respectively. In particular, we use I; to denote a d x d identity matrix, use 0., x,, (or 0,,) to denote an m X n zero
matrix (or an m-dimensional zero vector), and use e; to denote a one-hot vector of which the ¢-th entry is one and other entries
are all zero, where the dimension of e; can be inferred from the context. We also use || - ||o and || - ||2 to represent L, norm
and L, norm of vectors, respectively. For vectors u € R™ and v € R”, letu®v = uv' € R™*" denote their outer product.
Also, for vectors u,v € R%, let (u,v) = u' v denote their inner product. For any vector = (z1,...,74) € R%, we
define the softmax function SoftMax : R? — R% as SoftMax(x); = exp(xi)/(zgzl exp(z;)), and the layer normalization
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operator LayerNorm(z) = x/||||o. Moreover, for a sequence of vectors (x1, xa, ..., x;) € R4*!, we abuse the notation
LayerNorm(zy, ..., x;) = (LayerNorm(zx;), ..., LayerNorm(zx;)) € RI*t.

Tokens and embeddings. For a fixed positive integer V' > 0, Let Voc = [V] denote a vocabulary of size V. For
each token v € Voc, there is an associated token embedding u, € R? where d > 0 is the embedding dimension.
Assume d = 3dte + dpe. We refer to the first dtg entries of a d-dimensional vector as its content, the subsequent dtg
entries as its first buffer, the following dtg entries as its second buffer, and the final dpg entries as its effective positional

encoding. Formally, for a vector z = (1, 72,...,74)" € R%, we define content(x) = (v1,...,74,.) ", buffer;(x) =
( )T, buffers(w) = ( )T and pos(a) = ( )T Letd, — content(u,)

Tdre+1s---,T2drg) ,DUTTEr2 (T T2dre+1s - - -y L3dre and pos(x T3dre+1s---,2Ld) - Letuy content(u,) €
R for any v € Voc. Assume for each u,,, only the first drg entries are non-zero. Furthermore, let U = [Qi1, U, ..., 0y ] €

R4EXV and we assume that UT U = Iy, i.e., the token embeddings are orthonormal.

Algorithm 1 Transformer (TF)

Input: Parameters § = (Opg, {9/(1;::1) f;of,’filo*% {G,E,llip 21), input embeddings h = (hy, ..., hy)

1: hl(.o) <+ h; + PosEncodey, (i), Vi€ [t] > adding positional encoding
2: fori=0to L —1do

3: h(+0:5) « h(® 4 Zf;gl Attn,a.m (h®) > self attention

Attn
4 h(+D) « LayerNorm (MLPQU) (h(l+0'5))> > MLP and layer normalization
MLP
5: end for

Output: Embedding of the last layer at the last position hEL).

Transformer architectures. An L-layer autoregressive transformer receives a sequence of input embeddings h = hy =
(hy,hy, ..., h;) € R¥? and outputs TFg(h) € R? where TFy(-) is defined in Algorithm 1. Let Wo € RV >4 be the
decoding matrix. A traditional decoder will sample the next token v;11 ~ SoftMax(W o TFy(h)) and append its token
embedding in position ¢ + 1, i.e., hyy1 = u,,_,, to autoregressively generate subsequent outputs. When using the chain of
continuous thought (Hao et al., 2024), one skips the sampling step and directly appends the output of the transformer as the
input embedding of the next position, i.e., h;; = TFg(h). The parameter 6 contains positional encodings fpg, L attention
layers where each layer [ contains H; heads {G,Yt’t? lL:_Ol’,’fi‘O_l and L MLP layers {9&)LP [='. The definitions of attention
heads and MLPs are in Algorithm 2.

Algorithm 2 Causal Self-Attention (Attn) and (position-wise) Multilayer Perceptron (MLP)
Input: Oan = (Q, K, V,0),0up = ({Wi}%°, {o;(-)};" "), input h = (hy,..., hy)

I: q; + Qh;, k; + Kh;, v;+ Vh;, Vi€t > compute queries, keys, values
2: fori =1tot do _

3: S; < SoftMax((qi, k1>7 ey <q1, k7>), hZAttn ~— 0 Z;’:l 8i,iVj

4: h;‘vlLP A WLMLPULMLP*1<' - Waoy (Wlhl) o )

5: end for

Output: Attng, (h) = (hf®" ... h*") or MLPy,, . (h) = (WMP . hMLP)

Positional encodings. Given an input sequence (hy, ..., hy), for each position ¢ € [T, there is a corresponding positional
encoding p; = PosEncodeg,, (i) € R¢. For each p;, we assume that only the last dpg entries are non-zero and thus call
dpe the effective positional encoding dimension. For notation convenience, we denote h; = content(h;) € R%e p; =
pos(p;) € R¥t for any i € [T]. We use the widely used sinusoidal positional encoding for p; = (Pi1,- - -, Di.dee) a5
defined below.

Definition 1 (Positional Encoding). Let dpg be even. We use positional encoding generated by sinusoidal functions Vaswani
et al. (2017). Specifically, for any position i > 1 and any index j € [dpg/2], we have

Piaj—1 = cos(i- M~2/%8) b o = sin(i - M2/ ),

where M > 0 is a large constant integer, e.g., M = 10* as chosen in Vaswani et al. (2017).

10
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Remark 2. We also discuss theoretical construction with RoPE(Su et al., 2024) (Appendix F.6).

Position index. To present the position of each token or continuous thought in the sequence in a clear way, we use ldx(v)
to represent the position of a token in the input sequence (e.g., ldx(<s>) = 1, ldx(s;) = 3i — 1, ldx(<Q>) = 3m + 2), use
ldx(<e>,i) = 3i + 1 to represent the position of the i-th <e> token in the prompt, and use ldx( [t; 1) = to + 4 to represent
the position of the continuous thought of step <. See Table 3 for the complete list of position indices.

C. Full Version of Section 3

In this section, we theoretically prove that a two-layer transformer with continuous thought can efficiently solve the graph
reachability problem. We first introduce a basic building block, the attention chooser, in our transformer constructions in
Appendix C.1. Then we present the key result that continuous thought maintains a superposition state of multiple search
traces simultaneously in Appendix C.2. We show our main theorem in Appendix C.3 and make further discussion in
Appendix C.4. For coherence and readibility, we repeat part of the contents of Section 3 in this section.

C.1. Attention chooser

We use the attention chooser as a building block in our construction, which will choose the appropriate positions to attend
conditioned on the token in the current position. This allows us to use the same parameter constructions for various input
lengths. The proof is deferred to Appendix F.1.

Lemma 2 (Attention chooser, informal version of Lemma 4). Under sinusoidal positional encoding as defined in Definition 1,
for any token <x> € Voc and relative position { > 0 , there exists a construction of K, Q € RZ¥e)Xd sych that for any
input sequence hyr) that satisfying mild assumptions (see Lemma 4 in Appendix F.2), it holds that for any position i € [T, it
will pay almost all attention to position (i — £) if h; = u,s, and pay most attention to position 1 otherwise.

Proof sketch. We define vector Uz, = ZUEVOC\ {<xo} i1, € R as the superposition of all token embeddings in the

vocabulary except for <x>. By the property of sinusoidal positional encoding, there exists a rotation matrix R(*) as in
Lemma 5 in Appendix F.5, s.t. p;4¢ = R®p;, Vi > 1. Then we can construct the query and key matrices as

_ OdPEXdTE OdPE><2dTE IdPE K= OdPE><3dTE nR(Z)
Q - = ~ O 0 I - I )
EP1 ® Uczs Ogppx2dre Odpe xdpe Odpex3dre  MLdpe

where £, > 0 and thus the query and key vectors can be calculated as

Q¢=Q(hi+pi)=[ Pi. ], kiZK(hHrPi):[

UR(Z)pz} _ [UPH@} .
§(U<z>, hi)p1

NPi NPi

Now for any 1 < j < i < T, we have (q;,k;) =17 ((f)i, Pire) + ez, ) (1, f)j>>. Fix any ¢ € [T]. By the property
of sinusoidal positional encoding, (p;, p;) is maximized when ¢ = i as in Lemma 6 in Appendix E.5. If h; = u.,., it

holds that (fi<z>, h;) = 0 and thus (q;, k;) is determined by (p;, pj+¢), which is maximized at j = i — . If h; # u.,.,

one can show that (Q<z>,h;) > 1 and thus (q;, k;) is largely determined by (p1, p;) when £ is large, and thus maximized
atj = 1. O
C.2. Continuous thought maintains superposition states

Recall that h = hy; ) denotes the input sequence as defined in Section 2. We define ), as the set of vertices that are reachable
from r within c steps. Below we present our key lemma.

Lemma 3 (Continuous thought maintains superposition states). We autoregressively generate [t..;] =
TFo(hy, (t1] ..., [tc]) for any ¢ > 0. There exists a construction of 6 such that

1
[te] =hype=—— Y u, 2

\% ‘VC‘ veEV,

i.e., the c-th continuous thought is the normalized superposition of all vertices that can be reached from r within c steps.

11
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Lemma 3 precisely characterizes that each continuous thought is a superposition of all reachable vertices. We provide a
proof sketch below and defer the complete proof to Appendix F.2.

Proof sketch. We prove by induction. For ¢ = 0, by definition, Vo = {r} and [to] = u, Z’UGV{) u,. Now we

_ 1

v Vol
briefly show how to construct the two-layer transformer such that under the induction assumption that (2) holds for 0, .. ., ¢,
we can obtain that (2) also holds for ¢ + 1.

First layer attention. The first attention layer contains five attention heads, and each head is an attention chooser as
constructed in Lemma 2. Let hy, = (<x>, ) denote the k-th attention head that attends to position (i — ¢) when the i-th
token is <x> and attends to the first token otherwise. We construct hg = (<e>,2),h; = (<e>,1),hs = (<R>,2), hg =
(<rR>,1), hy = (<A>, 1), which is illustrated in Figure 5. For each head, the value matrix will read the value in the content
space, and the output matrix will copy the value state to a designated space.

embedding
space
N copy
buffer 1 i [tc]
buffer 2 t; L C,Cp
content | <s> .. s t;  <e> <Q> (=1 () <R> r [t] [tc] <A>
positional P3i-1 P3i D3i+1 - P3m+3 DP3m+s P3m+s Pr-1  Pr
encoding I J
— - -

attend

Figure 5: Illustration of the embedding space and first layer attention mechanism.

Second layer attention. In the second layer, we only need one attention head. Note that after the first layer, for the
i-th edge token <e>, we have buffer; (hjgy(<e> 5)) = U5, and buffers (hge(<e>,4)) = U¢,. By the induction assumption, the
current thought [t.] is a superposition of all vertices in V.. We construct the query and key matrices such that [t.] pays
large attention to the i-th edge token <e> if s; € V.. (roughly speaking, we can view Qay(t.1) = [tc], Kigg(<es,i) = Us;>
and their inner product is positive iff s; € V,), and add the target node t; stored in buffer 2 back to the current thought (see
Figure 6). This is exactly a one-step expansion of the currently explored vertices V. and thus the continuous thought at the
next step (¢ + 1) will correspond to V1.

small attention if s; €V,

embedding
space

large attention

ifs; €V, Superposition of all

buffer 1 S Sj nodes that can be
add if large attention reached within c steps
ti tj |
1 =
content <s> <e> <e> T [tc] [t]= A Z Uy
c

VEV,

Figure 6: Illustration of the second layer attention mechanism for thought generation. We omit the positional encoding space since they
are not used in the second layer.

MLP as filter for signals. Note that after the attention layer, the weight of each node in the current thought is not uniform,
and the current thought might contain noise tokens since the normalized attention score to each position is non-zero. We
use the MLP layer to filter out the noise token and adjust the weight of each node in V., ;. Informally, for a superposition
state h = >\ A1y, We want to eliminate noise tokens v where A\, < ¢, and want to equalize the weights of other
tokens. By setting the first layer parameter as Wy = [uy, ..., uy| ", nonlinearity as o(z) = 1{z > ¢} and second layer

12
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as Wy = W/, we have Wy(o0(W1h)) = > vevoe H{Ay > e}u,, where W rotates the basis {u, } to the standard basis
{ey}, o() serves as a coordinate-wise filter, and W, rotates the basis back. After layer normalization, we can obtain that

(2) also holds for ¢ + 1. O]

C.3. Measuring the superposition state as prediction

Since the continuous thought [t.] is a superposition of all vertices in V., as long as c;~ can be reached by r within C'
steps, the superposition state [tc] will contain c;«. At the final prediction step, the answer token <A> will “measure” the
superposition state [t] using c; and co and predict the token with the larger signal in [tc] as the output (see Figure 10
in Appendix F.2 for a pictorial illustration). We formalize our result in the following theorem, and defer the proof to
Appendix F.4.

Theorem 2 (Chain of continuous thoughts solves graph reachability). Fix Ty,.x > 0. Assume the length of the input
sequence (including the continuous thoughts and the special answer token <A>) does not exceed 1,,x. There exists a
construction of a two-layer transformer parameters 0 and the readout matrix W o € RIVo<IXd (ywhere d = O(|Voc|)) that
are independent of graphs, such that for any directed graph G = (V, E) with at most nuyax nodes (Nmax < |Voc|), a root
node r, two candidate destination nodes c1, ca, for any C' exceeds the diameter of the graph, it holds that

TFo,c:wo (Bji)) = ¢

C.4. Discussions

Role of buffer spaces. The buffer spaces are subspaces of the embedding to store useful information. For clarify, our
construction separates the “content” and the two “buffer” spaces into different dimensions. In practice, they can be jointly
projected into a more compact and lower-dimensional space. For example, we can construct u = Zle R®Wu® ¢ R?
where the column space of each R(?) € R%*? forms a subspace. Different subspaces can be (almost) orthogonal, and for
each subspace, the column vectors of R can also be almost orthonormal.

Weights of different nodes in the superposition. In our construction, each superposition state maintains nodes with
uniform weights. In practice, the weights of different nodes can vary due to factors such as training signals or the model’s
internal heuristic on which nodes are more likely to reach the final answer (Cohen et al., 2025). In Section 4, we show that
in practice, the training signal could bias the superposition states towards the frontier nodes that can be reached with exactly
1 steps and the optimal nodes that can lead to the destination node.

D. Full Version of Section 4

In this section, we conduct extensive experiments to validate our theoretical results that COCONUT outperforms discrete CoT
even with many fewer layers (Appendix D.2), which is indeed due to superposition states encoded in continuous thoughts
during reasoning (Appendix D.3). For coherence and readibility, we repeat part of the contents of Section 4 in this section.

D.1. Training Setup

Model. We adopt a GPT-2 style decoder with two transformer layers,
Ainodel =768, Nheags=8. We train from scratch using AdamW (5,=0.9, 5,=0.95,

weight-decay 10~2) and a constant learning rate of 1 x 10—, 1.0 4 SO_T_O”U'E
(o}
X

Dataset. We construct a subset of ProsQA (Hao et al., 2024), with questions 0.9 EZTCoT
whose solutions require 3—4 reasoning hops. Each node in the graph is injected .
as a dedicated token into the vocabulary. The split statistics are summarised in ® 0.8
Table 4. S

<07+
Method. Following Hao et al. (2024), we adopt a multi-stage training strategy
with the supervision from chain-of-thoughts data. Stage 7 teaches the model to 0.6

use ¢ continuous thoughts before predicting the i-th node in the given chain of
thought as the next token. If the index of the training stage is larger than the 0.5
CoT solution length [, the model is trained to output the final prediction after [

Figure 7: The overall accuracy of Co-
13 CONUT, CoT, CoT*(12 layers, Nheads =
12) and No CoT.
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continuous thoughts and <A>. We train the model for 25 epochs at each stage,
and the whole training lasts 300 epochs in total. At each stage, we mix the data
from previous stage randomly with 0.1 probability, which proves to help improve
performance in our early experiments.

D.2. Overall Results

Extending the findings of Hao et al. (2024), we further show that a 2-layer transformer trained from scratch can effectively
solve ProsQA when using COCONUT. As shown in Figure 7, COCONUT achieves near-perfect accuracy, while both CoT
and No CoT baselines solve only about 75% of the tasks (random guessing = 50%). Even with a larger model of 12 layers
and Npeads = 12, marked with * in the figure, CoT improves to 83% accuracy but still cannot solve the tasks reliably.

D.3. Visualising Latent Reasoning

We inspect both the attention pattern and the representation of the continuous thought learned by the model to validate our
theoretical construction.

Layer 1 attention. According to our theoretical construction, the most important function of LAYER 1 attention heads is
to copy the source and target node tokens of an edge onto the corresponding edge token (e). Figure 8 shows a representative
attention map, confirming that the model has instantiated this copying mechanism in practice.

Layer 2 attention. LAYER 2 is responsible for node expansion: each continuous thought attends to all outgoing edges
from nodes that are currently reachable. To quantify this behavior, we compute, when generating ¢-th continuous thought,
the aggregated attention score received by each edge token triplet (s, t, <e>) across all heads. 4 kinds of edges exist: (1)
Reachable: their source node is in the reachable set at step 7; (2) Not Reachable: source node not in the reachable set; (3)
Frontier: a subset of reachable edges whose source node is on the current search frontier, i.e., exactly ¢ steps away from the
root node; (4) Optimal: a subset of frontier edges that lead to the optimal reasoning chain.

Table 1 reports group-wise means and standard deviations
averaged on the test set. The model sharply concentrates

its attention on Reachable edges, as predicted by our the- <s> °
oretical construction. Interestingly, there is an additional 1:
bias toward the Frontier subset. One possibility is that the s
training signal encourages the model to predict a frontier 1 6
node at each step, coupled with the decaying effects for 16
previously explored nodes. We also find that the opti- <e>
mal edges receive more attention scores, likely due to the 1
supervision of multi-stage training from the CoT solution. <ej
14
Representation of continuous thoughts. To verify that 17
the continuous thought serves as superposition states for <e> 2
the search, we compute the inner product between the 0
continuous thought at step ¢, [t; ], and each node embed- 14
ding u,,. Similar to edge classification above, we classify = 0

nodes into Reachable, Not Reachable, Frontier, and Op- 9 ” - @ SR @ °
timal. Figure 9 (top) plots the distribution segregated by Input Tokens (Key)

the reasoning step 7. As predicted, nodes within ¢ hops ex-

hibit markedly higher similarity scores than distant nodes. Figure 8: A representative example of Layer 1 attention map: the

~

w » w
Attention Weight

Input Tokens (Query)

-

n — ©
— é\).—c.—c é\) : é\,
v v \

Moreover, Frontier nodes are noticeably closer to [t ;] edge token <e> (y-axis) places nearly all its attention mass on its
than other reachable nodes, illustrating that the superposi- source and target nodes (z-axis), in line with the theoretical construc-
i tion.

tion emphasizes the candidate expansion fronts. Besides,
the Optimal nodes are even closer to [t; ], also likely
due to the training data always presenting the optimal
path.

Collectively, these analyses confirm that the intended superpositional search exists in trained models: Layer 1 establishes

14
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the query context, Layer 2 expands the frontier, and the latent vectors encode a soft, parallel representation of reachable
state sets, realizing the theoretical construction in Section 3. We also show in Appendix G.2 this search pattern is consistent
across multiple experiments with random seeds.

Continuous thought 1 Continuous thought 2 Continuous thought 3 Continuous thought 4
Not Reachable (-0.28) Not Reachable (-0.21) 700 4 Not Reachable (-0.02) Not Reachable (-0.14)
1000 4 Reachable (3.62) 800 1 Reachable (1.50) Reachable (0.68) Reachable (0.51)
Frontier (5.09) Frontier (2.52) 600 - Frontier (1.87) 400 A Frontier (2.06)
Optimal (6.50) Optimal (4.75) Optimal (6.19) Optimal (9.38)
800 ] 500
3 600 3004
g 600+ 4001
o 400 1 300 200
400 4
200 2007
] 1 100 A
200 100 4
0 T T r T 0 T T T T 0 T T T T 0 T T T T
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Not Reachable (-0.14) | 1000 4 Not Reachable (-0.44) Not Reachable (-0.46) 300 1 Not Reachable (-0.44)
1400 4 Reachable (3.32) Reachable (1.55) 600 4 Reachable (0.74) Reachable (0.47)
1200 4 Frontier (5.22) Frontier (3.13) Frontier (2.51) 250 4 Frontier (2.59)
Optimal (5.50) 800 4 Optimal (4.15) 500 4 Optimal (4.71) Optimal (6.10)
1000 J
& 400 200
@ 600 -
£ 800 150 4
2 300 50
g 6001 4004
S 200 4 1007
400
200 A 2001 100 - 50
0-r T T T T T 0 T T T T T T 0 T T T 0 T T r T
-50 -25 00 25 50 75 -50 -25 00 25 50 75 -5 0 5 -5 0 5 10

Figure 9: The histogram of inner product between the i-th continuous thoughts and the node embeddings. The mean value for each
group is shown in the legend. Note that Frontier is a subset of Reachable nodes, and Optimal is a subset of Frontier nodes.

D.4. Exploration Priority

An interesting fact revealed by the visual-
izations in Section D.3 is that the model Table 1: Layer 2 attention scores to different edge groups at step 4 (mean =+ standard
allocates disproportionate attention to op-  deviation).

timal edges and nodes, reminiscent of a

prioritized search strategy. One hypothesis Step 1 Step 2 Step 3 Step 4

is th?t this beha.vior is an a.rtifaCt O.f 9ur Not Reachable  0.0440.07  0.03+0.09 0.08+0.17 0.1240.20
multi-stage curriculum, which explicitly Reachable 2124107 0.7140.92 0.3820.72  0.2940.66
guides the model on the CoT solution at —Frontier 2.1241.07 1.00+0.96 0.6740.87 0.61+0.95

every step. To understand the effect of this —Optimal 2.54+1.03 1.7241.13 1.67T+1.20 2.23+1.35

multi-stage guidance, we introduce an al-

ternative supervision method COCONUT-BFS: at stage ¢, the supervision token is drawn uniformly at random from the
frontier nodes exactly ¢ hops from the root, rather than the i-th node in the CoT solution. All other hyperparameters are
unchanged.

Our experiment results indicate that COCONUT-BEFES also achieves near-perfect accuracy on ProsQA, matching the original
CocoNuUT. Figure 9 compares the inner product distributions of the latent thoughts for both models. Remarkably, the
two supervision methods converge to similar exploration strategies, even though there is no explicit guidance towards
optimal nodes for COCONUT-BFS. Conversely, the original COCONUT, although trained exclusively on optimal nodes
during intermediate stages, still assigns elevated weight to non-optimal frontier nodes compared to other non-frontier nodes,
implicitly performing a breadth-first expansion before honing in on the solution. We leave explaining this behavior from the
perspective of training dynamics as future work.

E. Notation Details

We provide detailed descriptions of different tokens in Table 2, and the position index of different tokens or continuous
thoughts in Table 3.
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Tokens Meanings
<s> a special token denoting the beginning of the sentence
Si the source node of edge ¢
ty the target node of edge ¢
<e> a special token marking the end of an edge
<Q> a special token followed by two candidate nodes
Cc1,Co two candidate destination nodes
<R> a special token marking the start of reasoning
r the root node
[t;] the i-th continuous thought (represented by a d-dimensional vector)
<A> a special token driving the model to make the final prediction

Table 2: Meaning of each token.

Notations Position indices

ldx(<s>) 1
ldx(s;) 3i—1
|dX(t7;) 3t

ldx(<e>, 1) 3i+1
ldx(<Q>) 3m+2
ldx(c1) 3m +3
ldx(c2) 3m+4
ldx(<R>) 3m+5
ldx(x) 3m+6=1t
ldx([t:]) to+i

ldx(<a>) o +C+1=T

Table 3: Position indices of different tokens or continuous thoughts in the input sequence.

F. Missing Proofs
F.1. Formal version and proof of Lemma 2

Lemma 4 (Attention chooser, formal version of Lemma 2). Fix any token <x> € Voc, integer £ > 0, and € € (0,1). Under
sinusoidal positional encoding as defined in Definition 1, there exists a construction of K, Q € R@%e)xd sych that for any
input sequence (hy, ... hr) that satisfies

hi = > Ny, where Ny >0 Vo €Voc, N, =1, Vie[T], 3)

veVoc vEVoc

and satisfies (u<y>, h;) € {0,1} (i.e., each input embedding is either equal to the embedding of token <x> or orthogonal to
it) and (U<, h;) = 0 fori < £ (i.e., the first £ tokens are not <x>), it holds that for any i € [T,

if (hj,ucys) =1, then s; ;_; > 1 — ¢, otherwise 5,1 > 1 — ¢,

where s; ; is the attention score from the i-th token to the j-th token as defined in Algorithm 2 with the input sequence
(h1 +p1,...,hr + p7).

Proof. Note that (3) implies that each input embedding is a normalized superposition of token embeddings in the vocabulary.
We aim to construct an attention head such that when the i-th token is <x>, it will pay almost all attention to the position
i — /¢, otherwise it will pay almost all attention to the BOS token <s> (known as the attention sink). Define vector
Uczs = D evoe\ (<xo} Uv € R9Te_ which is the superposition of all token embeddings in the vocabulary except for <x>.
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We define

Q _ OdPEXdTE OdPEXdTE OdPEXdTE IdPE c R(QdPE)Xd
EP1 @ Uczs  Odpexcare  Odpexdre  Odpexdpe ’

)

_ OdPEXdTE OdPEXdTE OdPEXdTE WR(Z) (2dpe) xd
K= eR
OdPEXdTE OdPEXdTE OdPEXdTE 77IdPE

where &, 1 > 0 will be specified later and R is defined as in Lemma 5. Therefore,
pi UR(Z)I_%} |:7713’L'+[:|
i =Qh; +p;) = - = _ |, ki=K(h;+p;)= _ = S I
q Q( pi) [§<u<x>>hi>pl] ( pi) [ nD: nDi

Now forany 1 < j <14 < T, we have
(qi, kj) =1 (<piv Pj+e) + (s, hy) (Pr, f’j>) :

Now we fix ¢ € [T]. We first consider the case where (h;, u.,.) = 1 (which also implies 7 > £). By (3) and the assumption
that token embeddings are orthonormal, we have

(hy,1,) = (h;,u,) =0, Yo € Voc\{<x>} = (h;,ii.5.) = 0.
Therefore, we have (q,, k;) = 7(P;, Pj+¢). By Lemma 6, we have
(diski—e) = n(Pi, P(i—t)+2) = 1{Pi, Pi) = ndpe/2
and
(ai, k;) = n(Pi, Pj+e) < ndpe/2 —mer, Vj #i— L.

where e > 0 is defined in Lemma 6. This implies (q;, k;) is maximized when j = ¢ — ¢ with a non-zero gap ner, and
therefore, we have
- exp({ai ki—e)) o exp(ner)
Yjer exp((ai k;)) — exp(ner) + (i — 1)

“

Now we consider the case where (h;, u.,.) = 0. Again, by (3) and the orthonormal assumption of token embeddings, we

have
(hi i) = > (hpw) = > N> Y A, =1
vEVoc\ {<x>} vEVoc\ {<x>} veVoc\ {<x>}
By Lemma 6, we can define { = max;—s . 7 Ml%, and thus
) 2yPj

£((P1,P1) — (P1,P;)) = 2dpe, Vj€{2,....T}.
Note that for any j € {2,...,T}, we have
(qi, k1) — (qi, k;)
= (&{ce Bs) ((P1, 1) = (B1,D5)) — ((Bis Byse) — (B Prse)))
>n (2dpe — dpe)
=ndpe.

Therefore,
ep(lank) explndee)
> jer exp((ais kj)) — exp(ndpe) + (i — 1)

By choosing a sufficiently large 7, the lower bound of (4) and (5) will both exceed 1 — ¢ and thus the proof is complete. [

&)

Si1 =
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F.2. Proof of Lemma 3

Note that in the proof sketch of Lemma 3, we showed how to prove the lemma by induction. Here, we use an alternative
way that only requires a single forward pass of the transformer. Note that the continuous thoughts are generated in an
autoregressive manner, i.e., for an input sequence hy7} = (hy, ..., hr), we have hEL) = TFy(hy), where hEL) is defined
in Algorithm 1 with the input sequence h(r}. This means for a sequence of length ¢, appending additional vectors at the
end of the sequence does not affect the computation of the first ¢ positions. This means, instead of proving the following
property inductively for eachc¢ =0,1,...,C — 1:

[tes1] :TFG(h[tU]v [t1],..., [tc])

where for each ¢, it holds [t.] = ﬁ Zv ey, W and h[to] is defined as in Section 2, we can instead prove by a single

forward pass by setting the input embedding

hy e = %Zuq,, Ve e [C), 6)
’ vEV

and additionally setting h = hy  ¢+1 = u<a-, and prove the hidden embedding in the last layer with input h7 satisfies

o _ 1

bt = o= D,
oTcC |VC+1‘ vch+1

In Appendix F.3, we construct the parameter for each component of the two-layer transformer. Finally, Proposition F.4
precisely provides the result we desire.

u,, vV0o<ec<C(C.

F.3. Construction of transformer parameters

Proposition F.1 (First layer attention). For any fixed ¢ € (0,1/2), there exists a construction of key and query matrices for
first layer attention heads {Q(") KM}, _  , s.t. for any input embeddings h = (hy, ..., h;) satisfying the format
specified in Appendix F.2, the value of following terms exceed 1 — € for all i € [t]:

(0,0) (0,0

0) app (
Sii—o N = U, and s; |

111

(0,3)

iyi—1

( 1)

otherwise; s ifh; =uc.., and S5, otherwise;

(3)

0,2 , . . .
E o )2 ifh; = ucgs, and s( 2) otherwise; s ifh; = ucgs, and i1 otherwise;

5(0:4)
zz 1

(7)

ifh; =ucas, and s; otherwise;

where s\ SoftMax((q™, k{"), ..., (@™, k")) € Rt and k™ = KOMK® ¢ = Q@M h” = b, + p,.

Proof. Note that each of the attention heads is an attention chooser as defined in Lemma 4. Therefore, the proposition
directly holds by constructing each attention head as described in Lemma 4.

O

By Proposition F.1, each edge token <e> will pay attention to its corresponding source node and target node. Also, the
reasoning token <R> will pay attention to two candidate destination nodes, and the answer token <A> will pay attention to
the last continuous thought. When no token or position needs to be paid attention to for some attention heads, it will dump
attention to the BOS token <s>, a phenomenon known as attention sink. Since the attention after softmax cannot exactly be
zero, there will be undesired tokens with noise-level magnitude copied to each position. The subsequent MLP layer will
filter out the noise. We formalize the above statements rigorously in the following proposition.

Proposition F.2 (First layer MLP). When the input sequence hr satisfies conditions in Appendix F.2, there exists a
construction OfHAttn forh €{0,...,4}, Gls/?zp such that the output of the first layer hV) satisfies:

1 il .
¢ hl(d)2(<e>,i) = %[uje> Si utl Oji—PE] s Vi € [m]
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(1) 1 T T
° hldx(<R>) - ﬁ[ <R> OdTE (ucl + uC2) OdPE]
e B _ 1 ~ T ~T AT T 17
hldx(<A>) - Vol +1 [u<A> Zvevc u, OdTE Odpg]

. h(l) a’ o7 ol ol

|d>(( [t; ]) \/ll\)ﬁ I:Z’UEV dte “dTe dpg} 4 VZ € [C}

. hgl) = h; for other i € [T

Proof. We use the construction in Proposition F.1 for {Q(O h) K(O’h) }h=o.....4. For each position, after attending to the
desired tokens, each attention head will copy the attended tokens to one of the two buffer spaces. Formally, we provide the
construction of value and output matrices for each head below. First, the value matrices are constructed as

V(OJL) = [IdTE — Ucgs> @ Ucss> OdTEx(d—dTE)} € RdTEXda h=0,....4
By construction, we have v( ) = v h)h(o) = content(h;) - 1{i > 1} =h, - 1{i > 1} fori € [T],h € {0,...,4}. This
is due to the input format specified in Appendix F.2, which ensures that only h; contains Gi.s>.

Now we construct output matrices such that the h-th attention head copies the content of the attended token to buffer 1 for
h = 0,4, and to buffer 2 for h = 1, 2, 3. Formally, we construct

O(O’h) :[OdTEXdTE IdTE OdTEXdTE OdTEXdPE]—r € RdXdTE, h = 07 47

O(O’h) :[OdTEXdTE Odrexcdre  Ldre OdTEXdPE]T € RdXdTE7 h=1,2,3.

Therefore, it holds that O (®:M) (") = [0} hl-1{i>1}0} 0, )" forh =0,4and 0OMy = 0.0, hl-1{i>
T TE TE T TE TE
1} 0, ]" for b = 1,2,3, and thus we have

1T
(0,h) y(0,h (h) OMET T 0T _
Attnyom (b)), 2;3 0My 0, Zs h/ o) 0j | . h=04,
J
~ ) - T
Attn E\O ") (h( Z 3(0 h)o © h) (h) O;TE O(ITE Z SE%h)Bj O;erE ’ h = 1’ 2’ 37
j=1 j=2

(,)

where s, is defined as in Proposition F.1. Therefore, the output at position ¢ of the first attention layer is

T

4 3 i
hl(o.5) — hZ(O) + ZAtt”eg‘;j) (h(O))i = hiT Z Z 50 h)hT Z Z ng;,h)h; pos(p;) T

h=0 h=0,4 j=2 h=1 j=2

Next, we construct the parameters of the MLP of the first layer. For notation convenience and by the input format in
Appendix F.2, we can decompose h; = > )\(O) U)\(O) where )\(O) [)\501), )\Z( 2), e AE?‘)/}T € RY. Let

J=17""%7

MLP, ) (h*); = WEs O (W{"n{*?) ¢ r?

MLP

which is a two-layer neural network. Let W( ) = [diag(U", U, UT),0v)xape] € R?V*. Then

UTUA(O) A(O)
0 0.5 0,h 0 (0,h 0
Wg )hg )= UTUZh 0423 =2 (%(),Jh))zé)) = Zh 0423 =2 ((z)]h)))z(())) eR.
UTUZh 12]21] 7 Zh 12]21] A

Let ol (+) be a coordinate-wise non-linearity such that o (x) = 1{x > ¢} for x € R. We choose ¢ = 2\% where 7 is

the (maximum possible) number of vertices in the graph. We denote z( ) = = arg max;<; sgoj’h) ie., zgh) is the position that
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position ¢ pays the most attention within head h. By Proposition F.1, we can construct key and query matrices such that

(Oﬁ(},ﬁ)) > 1 —¢/5 for any 7 and h. Also, by the input format especially by (6), /\ 6 {0,1Y U {1/Vi | i € [n]}, which

implies that any non-zero )\( satisfies )\(. k) € [2¢,1] and all non-zero entries of )\E )

A
HA“” floo "

S,
A

share the same value for any fixed <.

Then by definition of a§0)( -), we have ol ()\(O )=

5(0:h)

i, s SO\ 1)

=25 ] — 1, then we have

Now we analyze 3° A(O). For any k € [V], we consider 5"

(0,1) \(0) on | . o_¢& ,_¢
Zs )\7,67 Zs 221?51)\, <5 1 5

Ifi,(kh’) > 1, we have

0,h) (0 0,h 0 0,h
SOPAD = SO ST A,
=2 =25

When /\(?,?) N 0, we can obtain that

s 7y

g

S X s X ) <
=2, j=2,j#i" e

When )\g),?) . > 0, we can obtain that
T s

0,h 0 0,h 0
STSOOAD 2 SO, > (- efs) 2 e
j=2

Therefore, o' (Zh ()42:] 5 ” 0)) =1 {Uh 0.4 (( RIS 1) ()\(?h)> > 0))}, Vk € [V]. Also, by Proposi-

tion F.1, for any ¢ € [T] and k € [V], there is at most one h € {0,...,4} such that i > 1 and )\((0,3) , > 0hold
simultaneously. Therefore, o’ (Zh 042] — fojh) (0)) > h=04 ]l{z(h > 1}- ]l{)\((h > 0}, Vk € [V], and thus
we can write this compactly

0,h) y (0 h 0
o@D AT = 30 1 > 13 1A, > ov ).

h=0,4 j=2 h=0,4
Similarly, we have
3
a0 Z Zs(o PA) =3 > 13 1) > ov
h=1j=2 h=1 ”

Therefore,
0) 0
A}f) /1A o )
cOWORC) = 13004 1{il" > 1} - R{A((h) >0v}| c RV,
S 16" > 13- 142 o > Ov}

Finally, we set WY = W' = [diag(UT, UT,UT),0(51xape] | € R¥3Y, and thus

Uxh?/nx oo o
U {ex” > 1}-1{X,, >0
MLP ,) (h((] 5)) Zh 0,4 { } { (7) V} Rd.
Pue Uy 1 > 13- ]1{)‘ n = Oy}
OdPE
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Now we derive the output of the MLP for different positions 7.

For i = ldx(<e>, k) = 3k 4+ 1 where k € [m], we have iV =2 = ldx(sy) and M =i—1= ldx(ty). Note that
i = 1for h = 2,3,4. Also, A{Y) AY

ldx(sx) = €5k Mdx(cp) = €tn and )\1(-0) = e..> are all V-dimensional one-hot vectors.
Therefore, we have

MLP(,’EAOL)P(h(oj))ldx(<e>,k) =[al.al o/ 0]

For i = ldx(<R>) = 3m+5, we have iP =i—2= ldx(c1) and P =i-1= Idx(c2). Note thati{" = 1forh = 0,1, 4.
Also, )\E% = e, and Agg)l = ec,, )\Z(.O) = e.r>. Therefore,

MLP o) (DO )ge(rsy = [0l O (B, +1e,) T 04,17

For i = ldx(<A>) = to + C + 1, we have i§4) = 4¢—1and z',(kh) = 1for 0 < h < 3. Note that )\1(-0) = e,
)‘1(8)1 =AY L > ey €v Where Vo is the set of vertices reachable from r within C' steps. Then we have

ldx(1te]) = \/[ve]

T
MLPQIE/I[7_>P(h(O.5))IdX(<A>) = [ﬁjA> Z ﬁ;)r O;erE Oglrpg‘| °

vEVe

For i = ldx([t.]) = to + ¢ for ¢ € [C], we have ™ =1 for all h and A§°> = 1Vc| > ey, €vs and thus

e

T
0.5 _ “TaT aT T
MLPOn(AOL)p (h( ))Idx([tc]) - [; u, 0dTE OdTE 0dPE‘| :

For remaining ¢, we have iih) =1 for all h and )\EO) is one-hot. So

~ T
MLP (0®9); = [T 07 07 07| =hi.

MLP

By applying layer normalization, we can obtain the final result. O

Note that Proposition F.2 shows that after the first layer, each <e> token will copy its corresponding source and target token
embeddings into its two buffer spaces, respectively. For the second layer, since it is the last layer, we only need to focus on
positions for current thoughts ldx( [t.]) = to + ¢ and the position for the final prediction ldx(<A>) = T'. Since we only
need one attention head for the second attention layer, we will omit the index for heads and only keep the index for layers.
Proposition F.3 (Second layer attention). Under the construction of Proposition F.2 and input format specified in Ap-
pendix F2, for any fixed ¢ € (0,1/2), there exists a construction of the second-layer attention parameters Hgltzn =
(Q(l)’K(l),V(l), 0(1)) St

m
j=1,5;€Vc 1t;

1 G (¢)
hl(dlz?t = A 2vey, Mo+ V3|{jlsj€Ve.gelml}| | 4 {UE ] , Vee {0} U[C],
*([te 04—a
Od—dTE TE
and
1 ~ 1 (= ~
L5 \/WU<A> + ﬁ(ucl +1,) Uel©+D)
hl(d.(ZA>) - TS eve W + Odre )
~ VVeTH Sveve o
TE+dpPE

OdTE"I‘dPE

where €(©) € RY and ||€(9)||o < e forall c € {0} U[C + 1].
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Proof. In the second attention layer, we aim to construct key and query matrices such that (1) the current thought [t.] will
pay attention to all edges if the source node of the edge is contained in the superposition (see Figure 6); (2) the answer token
<A> pays large attention to the reasoning token <R> which stores the two candidate destination tokens in its buffer space
(see Figure 10).

embedding
space
buffer 1 [tc]
add
C1,C
content <s> . <e> . <Q> @ cy <R> r [t - [tc] <A>

Figure 10: Illustration of the second layer attention mechanism for final prediction.

First, we construct

Q(l) = [IdTE OdTE X dTE OdTE x dtE OdTE X dPE} € RdTE X d’

1 ~ ~ dtexd
K( ) :[Tu<A> ® Uc<r> TIdTE OdTEXdTE OdTEXdpE} S R e )

where the value of 7 > 0 will be decided later.

We define q; = Q(l)hgl), k;, = K(l)hz(-l) and let

. exp((qi, k;))
,] Zj’gi exp((Qi, kj’)).

Note that we have T' = ldx(<A>) = ty + C + 1. By the construction of the query and key matrices, we have q; =
content(hgl)),w € [T], Kigx(<rs) = 7 bufferl(hl(j)z(<R>)) + 7Tl and k; =7 bufFerl(hZ(l)) for other . Now we consider
attention weights for i = ldx([t.]) = o + ¢, Vc € {0} U [C] and i = ldx(<a>) =T.

For i = ldx([t.]) for any fixed ¢ € {0} U [C], we have q; = ﬁ > vey, Uy By Proposition F.2, we have Kigy(<e> j) =

T3 U, for j € [m], Kiax(<r>) = Tl<a> and k; = 0 for other j < i. Define Z. = {ldx(<e>,j) | s; € V.forj € [m]}.
Therefore,

1{j € Z.}.

i?kj = 4
k)= am
Then we have

exp(T/\/3|V)-]1{j€I} . 1{j ¢ 7.}
|I|exp(7/,/3|v) (i — |Z.)) |I|exp(7/,/3|v) (i — |Z.])

Sij =

Fori = |dx(<A>) =T, note that qp = \/%ﬁ@» Then (g7, k;) is non-zero only when j = ldx(<R>), and the inner

[Vel+1
\/|Vc\ +1°

product is . Then we have

exp (r//Ve[+1) - 1{j = ldx(<&>)} P S
exp (T/\/|Vc|+ ) - exp (T/\/|Vc|+1)—‘r(T—

ST.j =
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By choosing a large enough 7, we have that

1 . .
Sldx([tc]),j :(m - 50,1) . ]l{j € Ic} + Ec,2 " ]l{] ¢ Ic}a Ve e {O} U [C]a

ST,j :(1 — Ec+171) . ]].{_] = |dX(<R>)}} +ecri2 ]].{j 7& |C|X(<R>)}7
where €. 1,e.2 € (0,¢/T),Ve € {0} U[C +1].
Now we construct the value and output matrix where

V(l) :[OdTEXdTE OdTEXdTE IdTE OdTEXdPE] € RdTEXd?

O(l) :[IdTE OdTEX(d*dTE)}T € R e,

Then v; 2 VIOh(Y = buffer, (h{") € R% reads from buffer space 2, and O(Vv; = [buffery(h{"))T  0]_ i) €RY
writes to the content space. Note that

7 1
Attn, 1) (b)), ZS 00y, = ijlsi,jbufferg(hg, ) |
Attn Odfd-rE

" = h{" + Attn, o) (hD);, we have

Attn

Since, h!

~ m ﬁtj (1)
1’1(1 5) - \/ﬁ Z’UEVC Wy + (‘Z]:C‘ - ) Zj:lvsjeva % + 50’2 Zje[t0+c]\l-a bufferg(hj )]

ldx
(e 0d—dre
and
1 o~ e, +c )
T + (1 —€ct1.1) =I5 +€041.2 2 jer)\ {1dx(<z>)} Duffera(hy)
NOJI D e
T VIvel|+1 —veVe Y

Odire+dpe

Combining the fact that bufFerg(hg-l)) is either zero or equal to the superposition of 1, for some v € Voc with norm less
than 1, we can obtain the final result. ]
After the second-layer attention, the current thought hg —EZ now contains all vertices in V. and all vertices that can be reached
within one step from V., which is V.41 by definition. The subsequent MLP layer will then equalize the weights of each
vertex and eliminate the noise in the continuous thought.

Proposition F.4 (Second layer MLP). Under the construction of Proposition F.3 and the input format specified by
Appendix F.2, there exists a construction of 9,(\,} EP such that the output of the second-layer MLP satisfies:

. h®

ldx([te]) — m z:uevr+1 u,, Vee{0}U[C],

e h® _ 1
hldx(<A>) = \/W(uq +ue, + s + Zvevc uy).

Proof. Similar to Proposition F.2, we let

MLP,) (W), = WEoM(W{Vn{") e R

MLP

where € > 0 and the (elementwise) non-linearity agl) (+) will be specified later. We only consider h§1'5) where t =tg + ¢

for 0 < ¢ < C'+ 1. By Proposition F.3, we can decompose

U un®
b)) =| Oue | Vee{O}u[C], B{® =| Un®
OdTE+dPE OdTE+dpE
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: : . 1 1 2 2
where A() = [)\gc), ce A%,C)]T, n) = [775 ). r)g,)]—'—, n®? = [775 ). ng,)]—r € RY. Let

ng) _ UT . OVX(dTE+dPE):| c R(QV)Xd7 Wél) _ |: U U :| c RdX(QV)’
U’ Ovx(dretdee) Od—dre)xv  O(d—dre)xv

and Uél)(x) = 1{x > ¢}. Then

MLPGIEAlL)P (b)) e ZWS)US) (W§”h§§f2)

ux©
U’ 0
S e | ol
V x (dte+dpE) 0
dte+dpe
:{ U U }0(1)({UTUA(C)})
Od—dre)xv  O—dre)xv] °© (%
_ {Uoﬁl)()\(c))}
Od—dTE ’
and similarly,
MLP o (b)) W4 o () (WG
un®
U’ 0
:W(l)Uél) |: VX(dTE+dPE):| Un®
2 ( UT OVX(dTE+dPE) 0 n )
dre+dpe
T
:[ U U ]0(1) [UTUn(;)}
O(ddeE)XV O(ddeE)XV € U UTI()

_ lU (oA (m) + oé”(n@)))] .

0d—dre

Now we choose € = ﬁ where n = |V| is the number of vertices in the graph. By Proposition F.3, we can make sure that

el |0 < & forall ¢ € {0} U[C + 1] where e(®) is defined in Proposition F.3. We define A, = {t; | s; € V., j € [m]}

which is the set of vertices that can be reached within one step from the currently explored vertex set V.. By definition, we
have V.11 = V. U A.. We consider any fixed ¢ € {0} U [C]. Forv € V. U A, it holds that

1 1 1
A > min{1/\/[Ve], 1/(V3|A)} + e > — — — >

o 16n dn o
For other v,
1
(0) « (0 o =
Ay Ly’ < Ton <e.
Therefore, aél)()\gf)) =1{v e V. UA.} = 1{v € Vc41}, and thus we have
MLP oy (W), . = 2iveve, W , Yee{0}u[C].
Olp Od*dTE
M _ 1, e+ @) _ 1, (C+1) (1) _ 1 (C+1) (1 _ 1

Also, we have n¢,” = 7 +ee; e, = 73 +eey N = NOZEE] +éas ,andn, ' < 4~ for other v € Voc.
Moreover, ) = ——L— . 1{v € V¢}, which implies aél)(m(?)) = 1{v € V¢ }. Then

vV Vel|+1

MLP o) (W) = [

MLP

ﬁcl + ﬁcQ + ﬁ<A> + Z’UEVC ﬁv
Od—dTE

Note that by our construction of the input sequence, one and only one of c; is in V¢, and thus ||[MLP o) (h(1'5))T||2 =
MLP

VIVel + 5.

By applying layer normalization, we can obtain the final result. O

24



Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought

F.4. Proof of the main theorem

Proof of Theorem 2. We use the same construction of 6 as in Lemma 3 where the maximum input length is T3,,.x. By
Lemma 3, we have hy, 4. = \/IT ZUGV u,, for 0 < ¢ < C. Then (hy, ..., hr) satisfies the input format specified in

Appendix F.2, and by Proposition F.4, we have

1
TFo(hy,....h7) = b =————(u,, +ue, + U + Y 1)

\% |VC| +5 vEVCe

(211% + Uc, - + uas + Z uv)

o
VIVel +5 ) veVefe

since ¢+ € Vo and c3_;« ¢ Ve by the property the graph reachability problem. We set Wo = [uy,uy, ..., uy]' and
then
1
WoTFy(hy, ..., hy) = ﬁ@eci* ‘e, . teat e
\% | CI + veEVe\{ci* }
- TFQ’C7WO (h[to]) = arg grel\%g(cW()TFe(hh ey hT) = C;j*.
O
F.5. Properties of sinusoidal positional encodings
Lemma 5. For any integer { > 1, there exists a matrix R g Rirexdee gych that
pire=RUp;, Vi>1
Proof. For any j € [dpg/2], we construction a two-dimensional rotation matrix
R — cos(f-w?) —sin(f-w’)
T sin(f-w?)  cos(f-wl)
By definition of the rotation matrix, for any ¢ > 1, we have
R(Z’j) Di2j—1 _ R(é’j) Ccos (7, . w]) _ Ccos ((’L + f) . oﬂ) _ Pite,25—1
i, 25 sin (Z . oﬂ) sin ((’L + () . wJ) Dite,2; ’
Then by setting R(¥) = diag{R(*Y R®2) . . R(Edre/2)} ¢ Rdpexdre we can obtain the desired result. O

Lemma 6. For any integer T' > 1, there exists er > 0, s.t. (Di, P;) < dpe/2 — er for any i,j € [T| where i # j. Also,
<f>z,f)z> = dpE/2f0r alli € [T]

Proof. Forany i,j € [T], we have

dpg
p’L7p] sz kDj,k

dpE/z

= Z (cos(i - w”) cos(j - w”) + sin(i - w¥) sin(j - wk))
k=1
dpe /2

= Z cos((i — j)w").

Note that for ¢ = j, we can dlrectly obtaln that (p;, p;) = dpg/2 since cos((i — j)wk) = cos0 = 1 for i = j and any
k € [dpg/2]. Also, since (i — j)wk = is not a multiplier of 27 for i # j, k € [dpg/2], we have cos((i — j)w*) < 1.
Let

M2k/dpE

err=1— max cos((i—j)w") >0, Vk€[dpe/2],
1,4 €[T],i#]
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and letep = ZZP:E{ 2 er,r > 0. Therefore, for ¢ # j, we have

dpe/2 dpe/2
(i) = Y cos((i —)w") < D7 (1—eri) = dpe/2 — 7.
k=1 k=1

F.6. Implementing attention chooser under rotary position embedding

In this section, we discuss how to extend our constructions under sinusoidal positional encoding, a widely used absolute
positional encoding, to the rotary position embedding (RoPE) (Su et al., 2024), a widely used relative positional encoding,
to solve graph reachability. Since in our construction, the positional encoding only functions in the first attention layer, and
the building blocks of the first attention layers are attention choosers, we mainly focus on how to build the attention chooser
block under RoPE.

Since RoPE is a relative positional encoding, we don’t use p; in computation and thus don’t need the last dpg entries in
the embedding vectors. Also, since the attention chooser only uses the information in the content space, we omit the two
buffer spaces and only keep two dimensions to make our construction clean and assume d = dtg + 2 in this section for the
simplicity of the notation. Therefore, we have u, = [, ,0,0]" € R? for all v € Voc in this section, where {11, } ,cvoc are
orthonormal. Also, assume the input embedding of attention layers satisfies h; = [h;,1,0]" € R?. This can be achieved
easily by adding a bias before the attention layer or modifying the (dtg + 1)-th entry of token embeddings.

Recall the definition of RoPE below:

Definition 2 (Rotary position embedding (Su et al., 2024)). Let d be even. For any integer i and any index k € [d/2], we
define

RO _ cos(i - wk)  —sin(i - wk)
= Isin(i-w®)  cos(i - wh)
Let
R} = diag{R(D RO, ROAre/2)} ¢ Rrexdre
and

R = diag{R"D R RO/} ¢ RiIxd,

where w = M~2/4 and M > 0 is a large constant integer, e.g., M = 10* as chosen in Su et al. (2024). We make one
additional assumption that M > T where T is the maximum length of the input sequence. Then the query vector q; and key
vector k; in Algorithm 2 will be calculated as

q; = R¥Qh;, k; = RVKh,;.

Now we show the counterpart of Lemma 4 under RoPE below.

Lemma 7 (Attention chooser under RoPE). Fix any token <x> € Voc, integer £ > 0, and € € (0,1). Under rotary position
embedding as defined in Definition 2, there exists a construction of K, Q € RCH*4 sych that for any input sequence
(hy,..., hy) that satisfies

hi = > Nyl where Ny >0 Vo €Voc, Y A, =1, VielT], @)

7,V
veVoc vEVoc

and satisfies (U<, h;) € {0, 1} (i.e., each input embedding is either equal to the embedding of token <x> or orthogonal to
it) and (Qcy>,h;) = 0 fori < £ (i.e., the first £ tokens are not <x>), it holds that for any i € [T,

zf<l~17, Ucys) = 1, then s; ;—; > 1 — ¢, otherwise s;1 > 1 — ¢,

where s; ; is the attention score from the i-th token to the j-th token as defined in Algorithm 2 with the modification defined
in Definition 2 with the input sequence (hy, ... hr).
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Proof. Note that (7) implies that each input embedding is a normalized superposition of token embeddings in the vocabulary
(ignoring the last two entries). We aim to construct an attention head such that when the ¢-th token is <x>, it will pay
almost all attention to the position ¢ — £, otherwise it will pay almost all attention to the BOS token <s> (known as the
attention sink). We define vector Uz> = >, cyoe\ (<o} Uv € R9, which is the superposition of all token embeddings

in the vocabulary except for <x>. Moreover, for any integer i, we define p] & = (p;.1,...,Didy) € R, and define
P/E = (pia-1,pi.a)" € R% where for any j € [d/2], we have

Pi,2j—1 = COS (z . wj) . Diz2j =sin (2 . o.)j) ,
and w = M ~2/9%e where M is defined in Definition 2.

Now we construct query and key matrices to be

OdTEXdTE p—OrE ® 12 dxd
Q=|, 7& _ - € R™7Y,
fpr ® Ucz> 02x2

dxd
€ Re*®

4
K= OdTEXdTE nR'(I'I;( gE ® 12)
OQXdTE nng & 12

where £, > 0 will be specified later and R\ € Rirexdre R(-T:4/2) ¢ R2X2 are defined as in Definition 2 and 1,
denotes the all-one vector of dimension m. By Lemma 5, one can calculate that

R(T]E)PZTE = p;r—Ejv R(j7d/2)pl-TE _ pl.Tfj, for any integers 1, j.

Therefore,

TE
qi —R“)th—R(“{ P ﬁ]
€<u<§>a hl>p—T

14
k; =R("Kh, = R" TRYEREE| RO {”P{NE} .
npg° Pg

Then forany 1 < 57 < ¢ < T, we have
(ai:k;) =n ((RYEpIE RYPI®) + €(feso, hi) (ROPTE RVpE) )
= ({pTEPIE) + €l D) - (0T, 7. B0E))
Now we fix i € [T']. We first consider the case where (h;, fi.,.) = 1 (which also implies i > ¢). By (7) and the assumption
that token embeddings are orthonormal, we have
<fli,ﬁv> =0, Yv € VOC\{<X>} — <fli,ﬁ<g>> =0.
Therefore, we have (q;,k;) = 7(p; %, p;,). By Lemma 6, we have

TE
—L

(diski—e) = 1(P{ " P(gyse) = 0(PI5 DI D) = 1dre/2

and
(qi, kj) = 77<PIE,P}—JE£> <ndve/2 —ner, Vj #i—L.

where e > 0. This implies (q;, k;) is maximized when j = ¢ — ¢ with a non-zero gap ner, and therefore, we have

exp((ai ki) exp(ner)

il = > , . 8
Tt > e exp((ai k;)) — exp(ner) + (i — 1) ®)
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Now we consider the case where (fl, , Ucy>) = 0. Again, by (7) and the orthonormal assumption of token embeddings, we
have
<fli7ﬁ<>‘<>> = Z <fliaﬁv> = Z Aiw > Z A?’U =1
vEVoc\ {<x>} vEVoc\ {<x>} vEVoc\ {<x>}
Note that for any j € {2,...,i},

(P15, pg) = cos((i —j — T)w'?)

Ceos (L=G=d)
(=4
con(2)

=(P{"1 1Py )
where the inequality holds due to M > T and the cosine function decreases strictly in [0, 1].

Then, we can define £ = maxi<j<i<r

2dpe
= —-, and thus

(PEl,pPgE)—(Pi,j,TyPo >
3 <<p¢T—E1—TaPoTE> - <PI—E]'—T7PEE>) > 2dpg, V1<j<i<T.
Note that for any j € {2,...,T}, we have
(qi, k1) — (as, k;)

=n (5<ﬁ<>’<>7fli> (<p;|'_El_T,p;)I'E> - <P;r—Ej_T7PgE>) - (<I_)i7f)j+€> - <I_)ia§1+€>))

>1 (2dpe — dpE)

=ndpE.
Therefore,

i K d
61— exp({qi, k1)) > exp(n pE) . ©
> e exp((ai k;)) — exp(ndee) + (i — 1)

By choosing a sufficiently large 7, the lower bound of (8) and (9) will both exceed 1 — ¢ and thus the proof is complete. [

G. Experiment Details
G.1. Dataset

Table 4: ProsQA statistics. Numbers are averaged over problem instances.

#Problems |V| |E| Sol. Len.

Train 14785 22.8 365 3.5
Val 257 2277 363 3.5
Test 419 227 36.0 35

The statistics of the ProsQA dataset is shown in Table 4.

G.2. Stability of the Representation

To test whether COCONUT can always learn the desired superpositional search behavior, we conduct multiple experiments
with 3 random seeds. We report the mean inner products between continuous thoughts and each node group in Table 5,
following the setting in Figure 9. The results are consistent across multiple runs.

G.3. Computing Resources

Each run of COCONUT takes about 24 hours on two Nvidia A100 80GB GPUs.
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Table 5: The inner products between ¢-th continuous thoughts and nodes (3 runs with different random seeds).

Step 1 Step 2 Step 3 Step 4
Not Reachable —0.37,—0.25,—0.33 —0.26,—0.04,—0.14 —0.09,—0.01,0.02 —0.25,—-0.23,—-0.27
Reachable 3.59,3.62,3.71 1.55,1.42,1.37 0.80,0.77,0.62 0.61,0.66,0.53
—Frontier 5.09,5.13,5.38 2.69,2.45,2.63 2.11,1.95,2.01 2.27,2.12,2.29
—Optimal 6.41,6.52,6.84 4.78,4.67,5.11 6.00,5.44,6.43 9.48,8.98,9.58
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