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ABSTRACT

The success of deep neural networks relied heavily on efficient stochastic gradient
descent-like training methods. However, these methods are sensitive to initializa-
tion and hyper-parameters. In this paper, a systematical method for finding mul-
tiple high-quality local optimal deep neural networks from a single training ses-
sion, using the TRUST-TECH (TRansformation Under Stability-reTaining Equi-
libria Characterization) method, is introduced. To realize effective TRUST-TECH
searches to train deep neural networks on large datasets, a dynamic search paths
(DSP) method is proposed to provide an improved search guidance in TRUST-
TECH method. The proposed DSP-TT method is implemented such that the com-
putation graph remains constant during the search process, with only minor GPU
memory overhead and requires just one training session to obtain multiple local
optimal solutions (LOS). To take advantage of these LOSs, we also propose an
improved ensemble method. Experiments on image classification datasets show
that our method improves the testing performance by a substantial margin. Specif-
ically, our fully-trained DSP-TT ResNet ensmeble improves the SGD baseline by
15% (CIFAR10) and 13%(CIFAR100). Furthermore, our method shows several
advantages over other ensembling methods.

1 INTRODUCTION

Due to the high redundancy on parameters of deep neural networks (DNN), the number of local
optima is huge and can grow exponentially with the dimensionality of the parameter space (Auer
et al. (1996); Choromanska et al. (2015); Dauphin et al. (2014b)). It still remains a challenging
task to locate high-quality optimal solutions in the parameter space, where the model performs
satisfying on both training and testing data. A popular metric for the quality of a local solution is
to measure its generalization capability, which is commonly defined as the gap between the training
and testing performances (LeCun et al. (2015)). For deep neural networks with high expressivity,
the training error is near zero, so that it suffices to use the test error to represent the generalization
gap. Generally, local solvers do not have the global vision of the parameter space, so there is no
guarantee that starting from a random initialization can locate a high-quality local optimal solution.
On the other hand, one can apply a non-local solver in the parameter space to find multiple optimal
solutions and select the high-quality ones. Furthermore, one can improve the DNN performance by
ensembling these high-quality solutions with high diversity.

TRUST-TECH plays an important role in achieving the above goal. In general, it computes high-
quality optimal solutions for general nonlinear optimization problems, and the theoretical founda-
tions can be bound in (Chiang & Chu (1996); Lee & Chiang (2004)). It helps local solvers escape
from one local optimal solution (LOS) and search for other LOSs. It has been successfully ap-
plied in guiding the Expectation Maximization method to achieve higher performance (Reddy et al.
(2008)), training ANNs (Chiang & Reddy (2007); Wang & Chiang (2011)), estimating finite mix-
ture models (Reddy et al. (2008)), and solving optimal power flow problems (Chiang et al. (2009);
Zhang & Chiang (2020)). Additionally, it does not interfere with existing local or global solvers, but
cooperates with them. TRUST-TECH efficiently searches the neighboring subspace of the promis-
ing candidates for new LOSs in a tier-by-tier manner. Eventually, a set of high-quality LOSs can
be found. The idea of TRUST-TECH method is the following: for a given loss surface of an op-
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timization problem, each LOS has its own stability region. If one start from one local optimum,
and track the loss values along a given direction, we will find an exit point where loss start to de-
crease steadily, which means another stability region corresponding to a nearby LOS is found. By
following a trajectory in the stability region, another LOS is computed.

We propose an optima exploring algorithm designed for DNNs that is able to find high-quality
local optima in a systematic way, and thereby form optimal and robust ensembles. Normally for
a deep neural network, exit points can hardly be found by original TRUST-TECH due to the huge
dimensionality. So, in this work we introduce the Dynamic Searching Paths (DSP) method instead
of fixed directions. We set the search directions to be trainable parameters. After an exploration step
forward along the current direction, we calibrate the direction using the current gradient. By doing
so, the method can benefit from not only the mature Stochastic Gradient Descent (SGD) training
paradigm with powerful GPU acceleration capability, but also exit points can be easily found.

The overall DSP-TT method consists of four stages. First, we train the network using local solvers
to get a tier-0 local optimal solution. Second, our proposed Dynamic Search Path TRUST-TECH
(DSP-TT) method is called to find nearby solutions in a tier-by-tier manner. Third, a selection
process is performed so that candidates with high quality are chosen. Finally, ensembles are built
with necessary fine-tunings on selected member networks. To the best of our knowledge, this paper
is the first one to search for multiple solutions on deep neural networks in a systematical way.

Our major contributions and highlights are summarized as follows:

• We propose the Dynamic Searching Path (DSP) method that enables exploration on high-
dimensional parameter space efficiently.

• We show that combining TRUST-TECH method with DSP (DSP-TT) is effective in finding
multiple optimal solutions on deep neural networks systematically.

• We design and implement the algorithm efficiently that it obtains multiple local solutions
within one training session with minor GPU memory overhead.

• We develop the DSP-TT Ensembles of solutions found by DSP-TT with high quality and
diversity for further improving the DNN performance.

2 RELATED WORK

The synergy between massive numbers of parameters and nonlinear activations in deep neural net-
works leads to the existence of multiple LOSs trained on a specific dataset. Experiments show that
different initializations lead to different solutions with various qualities (Dauphin et al. (2014a)).
Even with the same initialization, the network can converge to different solutions depending on the
loss function and the solver (Im et al. (2016)). Many regularization techniques are therefore pro-
posed to force the network to converge to a better solution, some of which are proven to be useful
and popular (Kingma & Ba (2015); Srivastava et al. (2014); Ioffe & Szegedy (2015)). However, it is
still mysterious how these regularized solutions are compared to the global optimum.

There are researchers that focus on characterizing different local optima and investigating the inter-
nal relations among them. It is claimed in (Hochreiter & Schmidhuber (1997); Keskar et al. (2016))
that sharp minima prevent deep neural networks from generalizing well on the testing dataset. Later,
Dinh et al. (2017) argued that the definition of flatness in (Keskar et al. (2016)) is problematic and
came up with an example where solutions with different geometries can have similar test time per-
formances. Li et al. (2018) designed a new visualization method that rebuilt the correspondence
between the sharpness of the minimizer and the generalization capability. On the other hand, some
researchers apply meta-heuristic algorithms to obtain a better local minimizer (Gudise & Venayag-
amoorthy (2003); Zhang et al. (2007); Juang (2004); Leung et al. (2003)). However, these methods
were either designed for obsolete toy models or on explicit benchmark objective functions where
there are analytical forms for global optimum, and therefore the effectiveness of these algorithms
on deep architectures and large datasets seems unconvincing. Moreover, the advantage of the global
searching ability seems to be crippled when it comes to deep neural networks, and the minimizers
they found are still local. Recently, Garipov et al. (2018) reveal the relation among local optima by
building pathways, called Mode Connectivities, as simple as polygonal chains or Bezier curves that
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connect any two local optima. Draxler et al. (2018) also found similar results at the same time, al-
though they used the Nudged Elastic Band (Jonsson et al. (1998)) method from quantum chemistry.

To address the issue of converging to suboptimal solutions, a great deal of research efforts were
directed to ensembles. Xie et al. (2013) proposed horizontal and vertical ensembles that combine
the output of networks at different training epochs. Laine & Aila (2016) used a group of models
with different regularization and augmentation conditions to create variety. Moghimi et al. (2016)
borrowed the concept of boosting to create a strong ensemble of CNNs. Izmailov et al. (2018)
found that averaging weights from different iterations leads to flatter solutions than from SGD and
helps in generalization. Huang et al. (2017a) proposed a method that obtains ensembles by col-
lecting several local minima along a single training process using a cyclical learning rate schedule.
Zhang et al. (2020) used similar approach, but with the sampling capability that fully exploits each
mode. Garipov et al. (2018) developed the Fast Geometric Ensembling based on Mode Connectivity.
Although the methods in these papers obtain multiple networks within one training session, these
ensembles are still largely dependent on initialization. While these ensemble methods performs bet-
ter than a single network, naive randomly initialized ensemble is still the best choice when training
budget is unconstrained. Fort et al. (2020) explained this phenomenon as they explore different
modes in function space compared to weight averaging. Shen et al. (2019) improved the ensemble
inference efficiency via a teacher-student paradigm distilling the knowledge of an ensemble into one
single network. Yang et al. (2020) built ensembles by randomly initialize on a subparameter space,
aiming to alleviate the exponentially growing number of local minima on deep networks. Wang &
Chiang (2011) used the TRUST-TECH (Chiang & Chu (1996); Lee & Chiang (2004); Chiang &
Alberto (2015)) method to perform a systematic search for diversified minimizers to obtain their
ensembles. They implemented TRUST-TECH for training and constructing high-quality ensembles
of artificial neural networks and showed that their method consistently outperforms other training
methods. We generalize this method and tailor it for deep architectures and to work efficiently with
popular local solvers in deep learning.

3 TRUST-TECH METHOD FOR MULTIPLE OPTIMAL SOLUTIONS

3.1 TRUST-TECH METHODOLOGY

�0

�init

�1�1

�1�2

�1�3

�2�1

�2�2

�2�3

Tier-0
Tier-1

Tier-1

Tier-1

Tier-2

Tier-2

Tier-2

Figure 1: Given a LOS (i.e. ω0, a
tier-zero LOS), the corresponding tier-
1 LOSs are ω1,1, ω1,2, ω1,3. Similarly,
its tier-2 LOSs are ω2,1, ω2,2, ω2,3.
Note that the corresponding stability
boundaries of tier-2 have a non-empty
intersection with the stability bound-
aries of its tier-1 LOSs.

Another category of methods has been developed in recent
years for systematically computing a set of local optimal so-
lutions in a deterministic manner. This family of methods is
termed TRUST-TECH methodology, standing for Transforma-
tion Under Stability-reTaining Equilibria Characterization. It
is based on the following transformations:

(i) the transformation of a local optimal solution (LOS) of
a nonlinear optimization problem into a stable equilib-
rium point (SEP, Chiang & Chu (1996)) of a continuous
nonlinear dynamical system.

(ii) the transformation of the search space of nonlinear opti-
mization problems into the union of the closure of stabil-
ity regions of SEPs.

Hence, the optimization problem (i.e. the problem of finding
LOSs) is transformed into the problem of finding SEPs, and
therefore we use the terms LOS and SEP interchangeably in
the following discussion. It will become clear that the stability
regions of SEPs play an important role in finding these local
optimal solutions. We note that, given a LOS, its correspond-
ing first-tier LOSs are defined as those optimal solutions whose
corresponding stability boundaries have a non-empty intersec-
tion with the stability boundary of the LOS (Chiang & Chu
(1996); Lee & Chiang (2004)). The definition of the stability
boundary and its characterization can be found in Chiang &
Fekih-Ahmed (1996). Similarly, its second-tier LOSs are defined as those optimal solutions whose
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corresponding stability boundaries have a non-empty intersection with the stability boundary of
first-tier LOSs (Chiang & Chu (1996); Lee & Chiang (2004)). See fig. 1 for an illustration.

We consider a general nonlinear unconstrained optimization problem defined as follows:

min
x

c(x) (1)

where c : D ⊂ Rn → R is assumed to be continuously differentiable and D the set of feasible
points (or search space). A point x∗ ∈ D is called a local minimum if c(x∗) ≤ c(x) for all x ∈ D
with ‖x− x∗‖ < σ for σ > 0.

To systematically search for multiple LOSs, a generalized negative gradient system based on the
objective eq. (1) is constructed and is described by

dx

dt
= −gradR c(x) = −R(x)−1 · ∇c(x) = f(x(t)) (2)

where the state vector x(t) of this dynamic system belongs to the Euclidean space Rn and the
function f : Rn → Rn satisfies the sufficient condition for the existence and the uniqueness of the
solutions. R(x) is a positive definite symmetric matrix (also known as the Riemannian metric) that
generalizes various training algorithms. For example, if R(x) = I (identity), it is a naive gradient
descent algorithm. If R(x) = J (x)>J (x) (J is the Jacobian matrix), then it is the Gauss-Newton
method. If R(x) = J (x)>J (x) + µI , it becomes the Levenberg-Marquardt (LM) algorithm.

The Theorem of the Equilibrium Points and Local Optima (Lee & Chiang (2004)) shows one nice
property of the gradient system (2), which is the critical point of the optimization problem (1) is
a (asymptotically) SEP of the dynamic system (2). i.e. x̄ is a SEP of (2) if and only if x̄ is an
isolated local minimum for (1). Hence, the task of finding the LOSs of (1) can be achieved by
finding the corresponding SEPs of (2). In short, TRUST-TECH is a dynamical method designed to
systematically compute multiple LOSs with the following features:

(i) it is a systematic and deterministic method to escape from a LOS towards another LOS,
(ii) it finds multiple LOSs in a tier-by-tier manner (see fig. 1), and

(iii) has a solid theoretical foundation (Chiang & Chu (1996); Lee & Chiang (2004); Chiang &
Alberto (2015); Zhang & Chiang (2020)).

Another distinguishing feature of TRUST-TECH is its ability to guide a local method and/or a meta-
heuristic method for effective computation of a set of LOSs or even the global optimal solution.

3.2 SYSTEMATIC SEARCH ON DEEP NEURAL NETS

Our method follows the paradigm of the TRUST-TECH. The center idea is to find multiple LOSs
in a tier-by-tier manner. On small scale problems, applying fixed searching directions is proven to
be effective in practice (Chiang et al. (2009); Reddy et al. (2008); Chiang & Reddy (2007); Wang
& Chiang (2011)). In these applications, either random directions or eigen-vectors of the objective
Hessian evaluated at each SEP were used. But in training deep neural networks, finding a proper
direction is challenging. For a deep neural network, when searching along a random and fixed
direction, the loss value will grow indefinitely. Another issue is that the computational cost of the
original TRUST-TECH is high. Specifically, it assumes cheap evaluation of the objective function
at each search step. However, in supervised learning of a large dataset, only the empirical loss is
accessible instead of the ground-truth objective function. This means evaluating the loss function for
the entire training set, which is almost impossible since it is limited by computational restrictions.

To tackle both challenges, we propose the Dynamic Search Path (DSP) method that enables explo-
ration on deep neural networks’ parameter space. Furthermore, we apply the DSP method to serve
as the search paths for TRUST-TECH (DSP-TT). Details are discussed in section 3.2.1. An example
of a one-tier DSP-TT method is shown in Algorithm 1.

3.2.1 OBTAINING DYNAMIC SEARCHING PATHS FOR TRUST-TECH

In this section, we go through the details on how to construct dynamic searching paths during
TRUST-TECH computation and how it helps converge to nearby LOSs. Construction of search-
ing path is inspired by the mode connectivity proposed in Garipov et al. (2018), in which the authors
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Algorithm 1 One-Tier DSP-TT Search
1: procedure T1SEARCH(model, dataset,maxiter, batchsize)
2: Initialize paths, candidates = {model.parameters} . intialize search paths and solution set.
3: for k ← 1 to maxiter do
4: batch← getBatch(dataset, batchsize)
5: ρ1, ρ2 ← Schedule(iter,maxiter, exit found) . update learning rates
6: ∆k ← Select(paths) . Randomly select one path
7: Update(model,∆k, ρ1) . forward search step
8: exit found← CheckExit(model,∆k, batch) . check for exit on kth path
9: if exit found then

10: ωs,k ← LocalSolver(model,∆k, dataset) . converge to tier-1 optimum
11: candidates = candidates

⋃
{ωs,k} . update solution set

12: else
13: Calibrate(model, ρ2,∆k, batch) . calibration step
14: return candidates

found there exists low-loss ”tunnels” between different LOSs. But Mode Connectivity is used to
find a high-accuracy pathway between two local solutions by optimizing the expectation over a uni-
form distribution on the path. Our focus is finding the proper searching directions towards nearby
optima when starting from one LOS. They also claimed that a path φθ cannot be explicitly learned
when given one starting point. However, we find that such a construction is possible. Specifically,
by redesigning the objective and combining the exploration capability of TRUST-TECH and the
exploitation capability of SGD, another local optimum can be found starting from one LOS. More
generally, by using such an optimization-based path-finding technique, one can find multiple tier-one
SEPs (i.e. nearby LOSs) simultaneously.
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Figure 2: (a) Phase portrait of a two-dimensional objective surface, ω0 and ω1 are two SEPs; (b) A demon-
stration of the DSP method on the same objective. Black arrows represent the DSP path, blue vectors represent
forward search steps, and red vectors represent calibration steps.

To do this, we first train the neural network to obtain a LOS ω0 ∈ R|net|. Then we define a trainable
search direction vector di ∈ R|net| (randomly initialized at d0), so that during a TRUST-TECH
search from ω0, instantaneous parameter vector at step i is represented as (ω0 + di).

At each step i, DSP updates the direction di as:

di = ρ1(i) · di−1 + ρ2(i) · f(ω0 + di) (3)

The first term describes ρ1(i) · di−1 the original TRUST-TECH search with no direction calibration,
where ρ1(i) ∈ (0, ρmax] is the step size schedule for exploration phase whose value increases from
0 to ρmax w.r.t. step i. The second term is the DSP calibration term, where ρ2(ti) is the step size
schedule for the calibration, descentd represents a general local descent solvers, such as Gradient
Descent, Newton’s Method, etc. f(·) is the dynamics defined in Equation (2), where various local
solvers can be applied here. The stopping criteria of ρ1(ti) is determined dynamically by either an
exit point is found or ρmax is reaches.
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The above steps repeats until (ω0 + di) converges to another LOS, which we call it a tier-1 solution
associated with ω0. An intuitive demonstration of this process is shown in Figure 2b.

Our proposed scheme is scalable to performing multiple search directions starting from one LOS. To
do this, we initialize multiple directions, and at each step, each search direction is updated via eq. (3).
It is also worth noting that during training, the computation graph size is the same as the original
network, since the algorithm only picks one direction to be included in the computation graph.
Thus, minor memory overhead is introduced in practice. As for the computational efficiency, our
proposed method evaluates objectives on mini-batches instead of the entire dataset, and determines
the stopping criteria by an exponential moving average of past batch evaluations. To further stabilize
the stochastic behavior caused by mini-batch evaluations, buffer variables are used to determine the
state transition between up (loss values are climbing in current stability region) and down (reaches
a nearby stability region and the loss decreases steadily). These resolve the efficiency issue of the
original TRUST-TECH on large scale supervised learning problems.

4 DSP-TT ENSEMBLES OF DEEP NEURAL NETWORKS

When training budget is less constrained, high-quality of each tier-1 solution is emphasized as having
better test accuracy than the tier-0 network. On the other hand, for building ensembles with a limited
budget, high-quality is emphasized more on the diversity among the collection of local optimal
neural networks found to better serve the ensemble, in stead of on a single network.

With the proposed DSP-TT, a set of optimal network parameters with high accuracy can be found
systematically given enough training budget, and with limited budget, the high diversity among tier-
0 and tier-1 solutions still remedies the weaker performance on tier-1 networks when serving the
ensemble. Individual qualities are guaranteed because the starting point of any search is already a
LOS from mature SGD-based solvers with high quality, which is also shown from the experiments,
especially in Table 4. As for diversity, SEPs (i.e. optimal parameter values, or LOS) are separated
by at least two stability regions because each SEP has its own stability region. It is necessary to
initialize parameters in different stability regions in order to find multiple optimal solutions. The
proposed TRUST-TECH based method is systematic in characterizing stability regions while other
heuristic-based algorithms are not. And therefore, the diversity among SEPs found by our method
is also high due to the mutual exclusiveness of stability regions.

The high-quality LOSs with high diversity further motivate us to build ensembles to make a more
robust and accurate model than each single member. First, a list of candidates with high quality and
diversity are selected. After that, a fine-tuning process is executed if necessary to help any under-
fitted candidates toward greater convergence. Since the searching process already integrates the
gradient information, the fine-tuning in our algorithm requires little effort. In fact, as shown in the
experiments, fine-tuning does not show a benefit for the ensembling performance, so this procedure
is ignored by default. Finally, we build the final ensembles by either averaging (regression) or voting
for (classification) the outputs. Sophisticated ensembling methods can be applied here, however it
is out of the scope of this paper.

5 EXPERIMENTS

Exit point verification is run using MLPs on UCI-wine and MNIST datasets. Further experiments are
run using VGG-16 (Simonyan & Zisserman (2014)), DenseNet-100-BC (Huang et al. (2017b)) and
ResNet-164 (He et al. (2016)) on CIFAR datasets. The program is developed on PyTorch framework.
Each configuration is run multiple times and the average performance are shown.

Hyperparameters Training budget: DenseNet has 300 epochs of training budget, and ResNet/VGG
has 200 epochs. Batch size: 128 for VGG and ResNet, and 64 for DenseNet. DSP-TT parameters:
ρ1 increases 0.001 per iteration, ρ2 is 0.1× of the initial tier-0 learning rate. Fine-tuning phase
requires 10 epochs per solution. All others: DenseNet follows Huang et al. (2017b), VGG and
ResNet follows Garipov et al. (2018).

For DSP-TT ensembles, exit points are usually found in negligible time (e.g. around 1min on CIFAR
compared to a full training which takes hours). So 50 epochs are given to one tier of DSP-TT search
with all exit points, while the rest of the budget are given to tier-0 training.
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Figure 3: (a) Loss progress on the training and testing set of MNIST during a DSP-TT(full gradient) search.
(b) Error rate progress on the training and testing set of CIFAR100 during a DSP-TT(batched) search. (c) Exit
Point Verification: Points along the search path near the exit point (top left with ”X” marker) are sampled and
then integrated until convergence. The points before (red) and after (blue) exit converge to different LOSs.

5.1 EXIT POINT VERIFICATION

Exit points play an important role in TRUST-TECH method in finding multiple local optimal so-
lutions. Figures 3a and 3b shows full gradient and batch version of a loss change with respect to
the DSP-TT search iterations along one search path. The loss value first goes up, escaping from the
tier-0 solution. At a certain point, the loss reaches a local maximum and then goes down, suggesting
that the search path hits the stability boundary and enters a nearby stability region.

To further verify that an exit point lies on the stability boundary, we do the following visualization:
Several points along the search path near the exit point are sampled. Then a forward integration
(gradient descent with small step size) is executed starting from each sample. Trajectories are plotted
by projecting the parameter space onto two random orthogonal directions. Due to high computation
cost, this process is only simulated using a 1-layer MLP with 5 neurons (61 parameters) trained on
UCI-wine dataset. Each integration process is executed for 50,000 steps with step size of 0.01. As
shown in fig. 3c, The points before (red) and after (blue) exit converge to two different points on the
2D projection space. We also observe the cosine between the initial and updated search directions
remains close to 1.0 throughout the search process, suggesting that gradients only calibrate extreme
dimensions of the initial direction, but does not interfere with the remaining majority of dimensions.

5.2 TIER-BY-TIER SEARCH

CIFAR10 CIFAR100
err (%) loss err (%) loss

Baseline 5.92∗ / 24.15∗ /
Tier-1 4.65 0.1622 22.29 0.9014
Tier-1-tune 4.64 0.1670 22.29 0.9206
Tier-0-1 4.34 0.1433 20.85 0.8323
Tier-0-1-2 4.36 0.1396 20.56 0.8090

Table 1: Error rate and cross-entropy loss on the test set of
CIFAR10 and CIFAR100 datasets with different tier settings.
(Baseline: the DenseNet-100-BC trained by SGD. ∗: num-
bers from Huang et al. (2017b))

The proposed DSP-TT computes: 5 tier-
one (from tier-zero LOS) and 5 tier-
two (from the best tier-one LOS) LOSs.
Among these, we perform the following
ensembles: Tier-1 (5 tier-one LOSs); Tier-
1-tune (5 tier-one LOSs, each with a fine-
tuning); Tier-0-1 (1 tier-zero and 5 tier-one
LOSs); Tier-0-1-2 (1 tier-zero, 5 tier-one
and 5 tier-two LOSs). We use SGD as the
local solver and DenseNet as the architec-
ture. As shown in table 1, all DSP-TT-
enhanced ensembles outperform the base-
line model. Although Tier-0-1-2 performs
mostly best among all, it is sufficient to
use Tier-0-1 in practice for efficiency, and
therefore we use Tier-0-1 in all the following experiments. From table 1, we also find that although
fine-tuning individuals can improve its own performance, it does not help much on the ensembles
performance. This shows that the diversity introduced by our algorithm dominates the fine-tuning
improvements by individuals. So in later experiments, all fine-tunings are neglected.
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Architecture(Budget) Method(#models) Test Error (%) Output Correlation
C10 C100 C10 C100

VGG16(200)

Individual(1) 6.75∗ 27.4∗ / /
SSE(5) (Huang et al. (2017a)) 6.57∗ 26.4∗ / /

FGE(22) (Garipov et al. (2018)) 6.48∗ 25.70∗ / /
DSP-TT(6) 6.56 25.64 0.976 0.957

ResNet-164(200)

Individual(1) 4.72 21.50 / /
SSE(5) 4.67 20.68 0.917 0.815
FGE(6) 4.67 20.75 0.944 0.902

DSP-TT(6) 4.53 20.20 0.898 0.773

DenseNet-100(300)

Individual(1) 5.92∗∗ 24.15∗∗ / /
SSE(6) 4.48 21.08 0.946 0.901
FGE(6) 4.82 22.82 0.992 0.991

DSP-TT(6) 4.34 20.85 0.903 0.832

Table 2: Performance comparison among ensemble methods on various architectures on CIFAR datasets. (Out-
put Correlation: mean Pearson Correlation Coefficients among all members. ∗: numbers from Garipov et al.
(2018), ∗∗: numbers from Huang et al. (2017b). Source codes for FGE (https://github.com/timgaripov/dnn-
mode-connectivity) and SSE (https://github.com/gaohuang/SnapshotEnsemble) are from the authors, respec-
tively, and we present the best results we could achieve.)

Method(#models; Budget) Test Error (%) Parameter Distance Output Correlation
C10 C100 C10 C100 C10 C100

Individual(1;200) 4.72 21.50 / / / /
Individual-Ens(6;1200) 4.35 19.79 42.19 71.64 0.912 0.756
SSE(6;200) (Huang et al. (2017a)) 4.67 20.68 29.70 44.18 0.917 0.815
FGE(6;200) (Garipov et al. (2018)) 4.67 20.75 12.70 19.06 0.944 0.902
DSP-TT-0-1(6;200) 4.53 20.20 39.41 69.09 0.898 0.773
DSP-TT-0-1-full-train(6;1200) 3.99 18.67 35.82 82.11 0.929 0.810

Table 3: Detailed comparison with ResNet-164 trained on the CIFAR datasets. (Parameter Distance: Euclidean
distance of parameters.)

5.3 COMPARISON WITH OTHER ENSEMBLE ALGORITHMS

In this section, we compare our method with other popular ensemble methods (Huang et al. (2017a);
Garipov et al. (2018)) in deep learning. Results are shown in tables 2 and 3.

Besides accuracy, member diversity is another major quality for ensembles. Ide-
ally, we want all members perform relatively well, while each member learns
some knowledge that differs from that of others. We measure the output corre-
lation (Huang et al. (2017a)) and the parameter distance (Garipov et al. (2018)).
In table 2, the correlation by DSP-TT outperforms other ensemble methods.

Test Error (%)
CIFAR-10 CIFAR-100

Tier-0 5.00 21.98
Tier-1(#1) 4.86 21.58
Tier-1(#2) 4.68 21.30
Tier-1(#3) 4.78 21.72
Tier-1(#4) 4.89 21.98
Tier-1(#5) 4.73 21.72

Table 4: Test error rate of individual networks of
the DSP-TT-0-1-full-train Ensemble from table 3.
All tier-1 networks performs at least as good as
the tier-0 network.

And a more detailed analysis in table 3 shows that
both parameter distance and output correlation by
DSP-TT Ensembles are better than SSE and FGE,
and are at a similar level to those of Individual En-
sembles (multiple networks trained from scratch).
Moreover, our fully trained DSP-TT Ensembles out-
performs Individual Ensembles, and improves the
individual baseline by 15% (CIFAR10) and 13%
(CIFAR100). table 4 shows that fully trained tier-
1 networks performs at least as good as the tier-0
network. This suggests that training from an exit
point found by DSP-TT method is better than from
a random initialization. It is notable that in multiple
cases, FGE members are more correlated, indicat-
ing that these members are not multiple LOSs, but
perturbations near one LOS. From this perspective,
FGE can be regarded as a fine-tuning around one local optimal point.

8
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From the hardware side, DSP-TT search process introduces minor overhead to the GPU memory
usage. Specifically, baseline training of ResNet-164 takes 3819Mb GPU memory, which increases
to 3921Mb during DSP-TT search. This justifies our previous claim that TRUST-TECH does not
increase the size of the computation graph with only a little additional overhead.

5.4 ABLATION TEST ON DSP-TT HYPERPARAMETERS

The key hyperparameters for DSP-TT are ρ1 (pace of search step) and ρ2 (step size of calibration
step) defined in Section 3.2.1. In this part we test the sensitivity of the two. We perform tests on
a grid of (dρ1dt , ρ2) pairs, and record (1) the number of iterations to finish a DSP-TT search for exit
points, (2) average ρ1 of each search path when an exit point is reached, and (3) average distance
between the search origin (tier-0 solution) and each exit point. As shown in Figure 4, DSP-TT is
insensitive to ρ2. And figs. 4b and 4c show (1) ρ1 and the distance between tier-0 and exit points are
highly correlated, and (2) The surface becomes flat after the increment speed of ρ1 passes 5e − 4,
suggesting that other stability regions are reached.
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Figure 4: Sensitivity test on ρ1 an ρ2. X-axis: increment rate of ρ1; Y-axis: ρ2; Z-axis: (a) Running iterations
when all exit points are reached. (b) Average ρ1 when each exit point is reached. (c) Average distance from the
search origin when each exit point is reached.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Dynamic Search Path TRUST-TECH training method for deep
neural nets. Unlike other global solvers, our proposed method efficiently explores the parameter
space in a systematic way. To make the original TRUST-TECH applicable to deep neural networks,
we first develop the Dynamic Searching Path (DSP) method. Second, we adopt the batch evaluation
formula to increase the algorithm efficiency. Additionally, to further improve the model perfor-
mance, we build the DSP-TT Ensembles. Test cases show that our proposed training method helps
individual models obtain a better performance, even when tier-1 search is applied. Our method is
general purposed, so that it can be applied to various architecture with various local solver.

Moreover, it is observed from Table 1 that percentage improvements in error rate is not as significant
as that in loss. This suggests that the cross-entropy loss may be the bottleneck for further improve-
ments in performance for classification tasks. Thus, designing a proper loss function that can be
more sensitive to classification accuracy would be a valuable topic in the future.
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