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Abstract

Knowledge distillation is a model compression technique in which a compact "stu-
dent" network is trained to replicate the predictive behavior of a larger "teacher"
network. In logit-based knowledge distillation, it has become the de facto ap-
proach to augment cross-entropy with a distillation term. Typically, this term is
either a KL divergence that matches marginal probabilities or a correlation-based
loss that captures intra- and inter-class relationships. In every case, it acts as an
additional term to cross-entropy. This term has its own weight, which must be
carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast
knowledge distillation under the Plackett—Luce model by interpreting teacher logits
as "worth" scores. We introduce Plackett-Luce Distillation (PLD), a weighted
list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full
ranking of classes, weighting each ranked choice by its own confidence. PLD
directly optimizes a single "teacher-optimal” ranking. The true label is placed first,
followed by the remaining classes in descending teacher confidence. This process
yields a convex and translation-invariant surrogate that subsumes weighted cross-
entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD
achieves consistent gains across diverse architectures and distillation objectives,
including divergence-based, correlation-based, and feature-based methods, in both
homogeneous and heterogeneous teacher—student pairs.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success across a wide array of tasks-from
image classification and object detection to semantic segmentation and beyond [47, |41]]. Accuracy,
generalization, and robustness usually improve as models become deeper and larger [42]]. However,
these gains require more computation and memory, which limits deployment on mobile or embedded
devices.

Knowledge distillation (KD) [12]] addresses this by training a compact "student" network to mimic a
large "teacher" network. Classically, KD minimizes a weighted sum of cross-entropy on hard labels
and a temperature-scaled Kullback-Leibler (KL) divergence between teacher and student logits. This
simple framework enriches the student’s learning signal and has seen widespread adoption for model
compression and robustness enhancement [9} 34]).

Despite its popularity, recent studies reveal a paradox. Distilling from larger or more accurate teachers
can sometimes degrade the student’s performance, especially when there is a capacity mismatch
[24, 133} [13]]. Several methods have been proposed to address this issue. These include teacher-
assistant frameworks [24}33]], selective distillation [3}154], and auxiliary classifiers [18]]. However,
these methods often add extra architectural components or training stages. An alternative line of
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(a) CE-weight sensitivity for KD and DIST. (b) KD, DIST, and PLD after 100 vs. 300 epochs.

Figure 1: (a) Varying the CE mixing weight o reveals that KD and DIST have different sensitivities-
too much CE hurts both, while a sweet spot near a ~ 0.1 maximizes Top-1 accuracy. (b) Under
extended training (100 vs. 300 epochs), PLD consistently outperforms both KD and DIST, demon-
strating its sustained gains.

work, DIST [13], remains within the classical KD pipeline yet replaces the KL-based distillation
term. DIST argues that matching only marginal probabilities via KL divergence fails to preserve the
relational structure encoded in the teacher’s outputs.

Instead, DIST employs a Pearson correlation-based loss to preserve both inter-class correlations within
each prediction and intra-class correlations across examples. Nevertheless, like other distillation
methods, DIST still requires a separate cross-entropy term. As Figure [[a]shows, reducing the weight
on this cross-entropy term can improve accuracy, but removing it entirely leads to performance drop.
Therefore, a unified objective that combines cross-entropy and distillation is desirable. Such an
objective should derive its weights from the teacher’s confidence rather than manual tuning.

To overcome these limitations, we propose a list-wise, choice-theoretic perspective on distillation.
We interpret logits as "worth" scores under the classical Plackett—-Luce model [22, 28]. We then
derive a single teacher-optimal ranking, where the true label comes first and the remaining classes
follow in descending teacher confidence. This ranking is imposed on the student using the unsoftened
Plackett—Luce likelihood. The PL model is based on Luce’s Choice Axiom, which ensures that
choice probabilities are invariant to irrelevant alternatives. Plackett’s extension generalizes this to full
rankings, forming a coherent distribution over permutations through sequential removal. The first
selection term of the PL. model matches the cross-entropy on the true label. Thus, it naturally includes
the standard KD cross-entropy loss. However, similar to [31,[16], we observe that proper weighting
of each subsequent selection is crucial (see Sec. [3). We weight each step k by the teacher’s softmax
mass «y. This leads to the Plackett—Luce Distillation (PLD) Loss, a convex and translation-invariant
surrogate. PLD unifies cross-entropy, ListMLE [43]], and P-ListMLE [16] as special cases. This
choice-theoretic foundation captures the full ranking structure provided by the teacher and enables
efficient, gradient-based optimization, eliminating the need for separate cross-entropy terms or manual
weight adjustments.

Our main contributions are:

* We introduce a novel list-wise distillation objective that enforces the feacher-optimal per-
mutation 7*-the unique ordering that places the ground-truth label first and ranks all other
classes by descending teacher logits-via the Plackett-Luce likelihood, with each selection
step k weighted by the teacher’s softmax mass «y, thereby eliminating the need for ad-hoc
weight tuning.

* We show PLD is convex, smoothly differentiable with closed-form gradients, and subsumes
CE, ListMLE, and P-ListMLE. Like classical KD and DIST, PLD is simple and efficient,
easy to implement (see Appendix [C), and requires no architectural modifications.

* We empirically demonstrate on CIFAR-100, ImageNet-1K, and MS-COCO that PLD
achieves consistent gains across diverse architectures and distillation objectives, including
divergence-based, correlation-based, and feature-based methods, in both homogeneous and
heterogeneous teacher—student pairs.

The rest of the paper is organized as follows. Section [2]reviews prior work on KD and ranking losses.
Section [3| presents necessary preliminaries. Section ] derives the PLD loss and analyzes its properties.
Section [S|reports empirical results. Finally, Section|6|concludes with a discussion of future directions.



2 Related Work

2.1 Knowledge Distillation and Capacity-Mismatch Remedies

Knowledge distillation (KD) [12]], inspired by model-bootstrapping techniques [53], trains a compact
student to mimic a larger teacher. It minimizes a temperature-scaled KL divergence between their
output logits (softened probabilities). This process transfers both accuracy and robustness [9] while
enabling model compression [34]. Over time, this simple yet effective framework has become a
cornerstone for compressing and enhancing deep neural networks. However, a range of studies have
shown that students distilled from very large or highly accurate teachers can underperform, even
under adversarially robust settings [3} 26}, 24, [33} 55,139} 154} 1131130} [18}, 150, 48]]. This counterintuitive
degradation is mainly ascribed to a capacity mismatch between teacher and student. To address this
issue, several architecture-level methods introduce intermediate or auxiliary models. Teacher Assis-
tant KD (TAKD) employs a mid-sized assistant to bridge the gap [24]. Densely Guided KD (DGKD)
aggregates multiple assistants for richer supervision [33]]. Neighbor Self-KD (NSKD) adds auxiliary
classifiers within student layers [18]. Student Customized KD (SCKD) adjusts the distillation loss
based on gradient alignment with the student’s objective [55]]. Teacher-knowledge regularization
techniques also refine the teacher’s signal. Early-stopped teachers often outperform fully converged
ones [3]. CheckpointKD selects intermediate checkpoints to prevent over-specialization [39]]. Some
methods exclude undistillable classes to focus supervision on reliable predictions [54]. Adapter
modules control label smoothness [30], and Student-friendly KD (SKD) simplifies teacher outputs
through a softening-simplifier pipeline [50].

2.2 Logit-Based Distillation Beyond KL Divergence

This trend is reflected in recent logit-based distillation methods that seek alternatives to KL divergence.
Relational KD (RKD) [26] transfers mutual relations among data examples via distance and angle-
wise losses that penalize structural discrepancies. DIST [13] introduced a Pearson correlation
coefficient-based loss to explicitly capture the teacher’s intrinsic inter and intra-class relations.
Correlation Matching KD (CMKD) [25] reinterprets inter-class rankings in terms of the decision
boundary and employs both Pearson and Spearman correlation losses, dynamically weighted by
sample difficulty using a differentiable sorting operation. It was also observed [6] that better teacher
calibration correlates with improved KD performance under standard methods. This finding motivated
calibration-insensitive metrics such as ranking-based losses. These methods are computationally
efficient, require no complex training pipelines or architectural overhead, yet achieve competitive
performance. This observation motivates our search for a similarly efficient, calibration-insensitive
objective grounded in list-wise ranking theory.

2.3 Ranking-Based and List-Wise Losses for Distillation

Early ranking methods focused on pairwise losses. In these methods, each pair of items is classified
as correctly or incorrectly ordered, as in the ranking SVM [11} [14]. Listwise approaches, which
operate over entire item lists, later gained traction in information retrieval and machine learning
[2,145]. Many draw on classical statistical ranking models-most notably Luce’s choice model [22]] and
the Plackett-Luce permutation distribution [28]]. As the number of items increases, even stochastic
top-k extensions such as ListNet [23]] become impractical. Moreover, these losses are designed for
direct supervision and do not naturally extend to knowledge distillation.

More recent work applies ranking losses to classification and distillation. For multiclass tasks, listwise
losses have been proposed [40, [7], while distillation under a position-aware binary ranking loss has
been studied [37, 18]]. The method in [37]] removes items that the teacher ranks low. In contrast,
[L7] adapts ranking-based distillation to collaborative filtering. Similarly, RankDistil [31] preserves
the teacher’s top-k ordering by matching the student’s item order to the teacher’s and penalizing
lower-ranked items.

Building on ListMLE [45], we directly optimize the likelihood of a single teacher-optimal permutation
under the Plackett-Luce model. Inspired by RankDistil [31]] and position-aware ListMLE (P-ListMLE)
[L6], we assign greater weight to top-ranked classes than to those ranked lower. Unlike RankDistil,
which is designed for general ranking tasks and optimizes top-k metrics, our method focuses on
classification tasks. In this setting, top-1 accuracy is most important.



3 Preliminaries

We first review the multiclass classification and classical knowledge-distillation framework, then
introduce the Plackett-Luce permutation model for rankings.

3.1 Multiclass Classification and Knowledge Distillation

Let D = {(x(™,y(™)}N_| be a training set of N examples, where each x(") € R? and y(™) €

{1,...,C}. A neural network fp : R? — R® maps an input z to a logit vector s = fp(z) =
(51, e sc) € R, which we refer to as the network’s logits s € R®. These logits induce a softmax
distribution over classes:
exp(s;
ply=ils)= g —— P ;=10

Zj:l exp(s;)

The standard cross-entropy loss is
c
Lop(s,y) = —logp(y | s) = —s, +log) e,
j=1

which depends only on the target logit s, and is therefore intransitive: any permutation of the other
logits leaves Lcg unchanged.

In knowledge distillation, a pretrained teacher f7 and a student f° produce logits t =
@),  s=f5@).
We soften these via temperature 7 > 0:

r_ _ exp(ti/7) s _ _ exp(si/T)

L ety D exp(si /)]

and measure their divergence via a temperature-scaled KL term:

¢ T
Lxp(s.t) = KL(¢"|¢%) = 2 ¢! log ‘jj—s
i=1 i
The student minimizes the combined loss
L(s,y) = aLcr(s,y) + (1 — @) Lkp(s, 1),
where « € [0, 1] balances fitting the hard labels against matching the teacher’s full output distribution.
Minimizing £ encourages the student both to place the correct class first and to mirror the teacher’s

full distribution. In Section[d} we extend this perspective by imposing a full Plackett-Luce ranking
over the logits.

3.2 Plackett-Luce (PL) Ranking Model

Let s € R be the logit vector produced by the network. We write s; for its ith component and
interpret¢ > j <= s; > s; as "class ¢ preferred to class j." A full ranking is a permutation
7 = (71,...,7¢) € Sc. The Plackett-Luce model assigns each class i a strictly positive worth
w; = ¢(s;) > 0, where ¢ : R — Ry is strictly increasing (we take ¢(s) = e®). It defines a
probability over permutations by

< w C ex ()

PPL(’/T|S):H%: Cp—m
o1 ik Wm s 2ai—g €XP(sm)

At each step k, the class 7, is chosen from the remaining items in proportion to its worth.

A keﬁy property is translation-invariance: adding J to all logits (i.e. s; — s; + ) multiplies every w;
by e°, which cancels in the softmax-style ratios. By contrast, scaling logits by a > 0 (i.e. s; — a s;)
changes the sharpness of the distribution.

The PL model factorizes the full C!-way ranking distribution into a chain of softmax terms. This
factorization provides an efficient likelihood for any fixed permutation [45]. In Section |4} we fix a
"teacher-optimal" permutation 7* and minimize its negative log-likelihood under the student. This
approach enforces both top-1 correctness and richer inter-class ordering information.



4 Method

We derive the PLD objective in two stages. First, we extract a teacher-optimal permutation from the
teacher’s logits using the Plackett—-Luce model (Sec.[4.T)). This step identifies the ranking target for
distillation. Second, we introduce a confidence-weighted likelihood to form the final Plackett—Luce
Distillation (PLD) loss (Sec. @.2)).

4.1 Teacher-Optimal Permutation under Plackett-Luce

From the Plackett-Luce ranking viewpoint, a classifier’s logits define a sequential choice process
among the C classes. In the first selection step, the model chooses one class out of all C' in proportion
to exp(s; ), exactly matching the softmax probability used in standard cross-entropy. Consequently,
minimizing cross-entropy enforces only the first-choice probability, i.e., the probability of selecting
the correct class first. It remains agnostic to the ordering of the remaining C' — 1 classes. In contrast,
the full Plackett—Luce model assigns probabilities to all C'! possible permutations. It does this
by chaining softmax-style selections at each step. Thus, cross-entropy can be seen as a relaxed
Plackett-Luce loss that cares only about the top-1 selection.

If we augment cross-entropy with a knowledge-distillation term, such as KL matching or correlation-
based loss, the objective still focuses mainly on the true class through the cross-entropy component.
The distillation term only adjusts the remaining logits. Viewed through the Plackett—Luce perspective,
this process enforces the first selection to be the ground-truth label, as in cross-entropy. It then
shapes later choices according to the teacher’s preferences instead of matching the entire distri-
bution. Concretely, since Plackett-Luce makes each selection independently-choosing 7, among
the remaining classes in proportion to their worth-we fix the first pick to the true label and let the
teacher’s descending-logit ordering guide all later picks. Denoting the teacher’s logit vector by
t = (t1,...,tc) € R, we refer to the resulting fixed ordering

™ = (y, argsort(t) \ {y})
as the teacher-optimal permutation, and use 7* as our sole ranking target.

As shown in [435]], one can construct surrogate losses on a single Plackett—Luce permutation. Examples
include likelihood-based (ListMLE), cosine-similarity, and cross-entropy variants, all suitable for
gradient-based optimization. Among these, the likelihood (ListMLE) surrogate stands out for
its simplicity and for satisfying desirable properties such as consistency, soundness, continuity,
differentiability, and convexity, while also exhibiting strong empirical performance. We adopt the
ListMLE approach. We place an empirical one-hot target on the teacher-optimal permutation 7* and
define its negative log-likelihood under the student’s logits as the unweighted loss.

= exp(Sxx
—log Ppr(7" | s) = — Zlog Cp<—k>
o ek exp(sn;)
This formulation naturally yields a one-hot target over the C'! Plackett-Luce permutations-assigning
probability one to 7* and zero to all others-and serves as the foundation for our weighted distillation
objective.

Lunweighted (5; ﬂ'*)

4.2 Confidence-Weighted Likelihood Yielding PLD

In the standard PL model, each selection step is weighted equally-i.e., every position contributes
identically to the likelihood. Position-aware ListMLE (P-ListMLE) [16] addresses this by introducing
a fixed, strictly decreasing weight sequence, such as o, = 2°7F — 1.

This scheme penalizes errors at top ranks more than those lower down. However, in multiclass
classification-where only the top-1 decision ultimately matters-fixed, hand-crafted weight schedules
are both hyperparameter-sensitive and fail to reflect the inherently greater importance of the first
selection compared to subsequent ones. Observing that a pretrained teacher naturally assigns far
greater confidence to the correct class than to the others, we therefore parameterize the weight at step
k by the teacher’s softmax probability: aj = q%

This choice ensures the loss automatically emphasizes the top-1 selection when the teacher is confident
yet relaxes its focus when the teacher’s output distribution is more uniform. Furthermore, our data-
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Figure 2: (a) Homogeneous setting: larger teachers and smaller students within the same architecture
family. (b) Heterogeneous setting: a fixed ResNet-50 student distilled from diverse teacher architec-
tures.

driven weights recover several known ranking surrogates as special cases. Setting « = (1,0,...,0)
gives the standard cross-entropy. A uniform o = (%, ey %) produces a ListMLE-like objective,
and any fixed decreasing sequence yields the P-ListMLE surrogate.

The resulting Plackett-Luce Distillation (PLD) Loss is defined as

Lpip(s,tiy) =

M

C
4% [~ sap +log)y e
k=1 =k

thereby providing a unified, confidence-weighted ranking objective for knowledge distillation. Since
PLD can be viewed as a teacher-softmax-weighted variant of ListMLE, it inherits the same favorable
structural properties. In particular, each summand

c
—5pr + logg e’
=k

is convex in the logits s, as it is the sum of an affine function and a log-sum-exp. Because nonnegative
weighting by qf;; and summation over k preserve convexity, the full PLD loss remains convex in s.
This convexity, together with smooth differentiability, ensures efficient, gradient-based optimization.
The gradient derivation is provided in Appendix [A]



5 Experiments

We evaluate PLD on three representative visual recognition datasets: CIFAR-100 [15], ImageNet-
1K [4]], and MS-COCO [20]. These datasets cover small- and large-scale image classification and
general object detection.

We first benchmark PLD on CIFAR-100 using traditional convolutional architectures and a unified
training recipe. We then assess scalability on ImageNet-1K, where we adopt stronger architectures
and optimized training strategies. Finally, we test PLD on MS-COCO for object detection to examine
generalization beyond classification.

5.1 CIFAR-100 Classification

We compare PLD with classical and feature-based knowledge distillation methods on CIFAR-100 [15].
The dataset contains 50,000 training images and 10,000 validation images across 100 categories at
32 x 32 resolution. All models are trained from scratch for 250 epochs. We use the AdamW optimizer
with 81=0.9 and 85=0.999. The learning rate follows a cosine-annealing schedule, starting at 0.001.
We set weight decay to 0.5 and the batch size to 128.

Table 1: Evaluation results on the CIFAR-100 dataset. The upper and lower models denote the
teacher and student, respectively.

Homogeneous setup Heterogeneous setup
Method WRN-40-2 ResNet-56 ResNet-32x4 ResNet-50
WRN-40-1 ResNet-20 ResNet-8x4 MobileNetV?2
Student (CE) | 70.26+0.24 67.57+0.25 71.56+0.16 64.42+0.67
Feature-based methods
AT [51] 71.9940.34 68.42+0.16 72.514+0.37 52.28+0.84
FitNet [32] |70.864+0.33 66.75+0.27 72.5940.30 62.774+0.05
PKT [27] 71.43+0.16 68.66+0.20 72.86+0.17 66.08+0.11
RKD [26] 11.324+1.84 68.53+0.18 71.45+0.41 65.16+0.21
SP [38] 73.49+0.20 69.36+0.27 72.45+0.08 65.30+0.29
VID [1] 70.61+0.39 68.52+0.12 71.70+0.32 64.14+0.82
Logits-based methods
KD [12] 72.4440.36 69.45+0.24 72.114+0.10 66.61+1.16
DIST [13] 72.7440.33 69.66+0.49 73.214+0.10 66.98+0.74
DKD [52]] 73.2240.38 67.80+0.03 73.08+0.27 69.51+0.42
PLD (ours) |73.50+0.30 70.28+0.21 73.9740.05 68.16+0.38

We apply standard data augmentations: random cropping, horizontal flipping, and per-channel
normalization. We report the mean and standard deviation over three independent runs. For DIST [13]],
we set a=1.0 for the cross-entropy term, 5=2.0 for the inter-class relation loss, y=2.0 for the intra-
class relation loss, and use a temperature of 7=4.0. PLD uses the same temperature (7=4.0).

5.2 ImageNet-1K Classification

All experiments on ImageNet-1K [4] are conducted following the recipe [44] with minimal data
augmentation. We train for 100 epochs with an effective batch size of 2048 images (256 per GPU
across eight NVIDIA A100 SXM4 80 GB accelerators) using the LAMB[49]] optimizer, an initial
learning rate of 5 x 1073 decayed by a cosine schedule and linearly warmed up over the first 5
epochs, and weight decay fixed at 0.02. Under this setup, 100 epochs require approximately 6 hours
for convolutional backbones and 8 hours for Vision Transformers. To isolate the effect of our losses,
we use only random resized crops, horizontal flips, and per-channel normalization.

For validation we adopt the "A-recipe" from [44]. Specifically, we set the test resolution = 224 and
test crop ratio p = 0.95, then resize,i, = {r / p“ /2 236, apply a bicubic resize of the shorter side



to resize,in, followed by a center crop of size r x r. We normalize by the same mean and standard
deviation as in training.

Table 2: Top-1 accuracy (%) and student model size across student—teacher pairs on ImageNet-1K.
"Teacher Acc" is the teacher’s standalone Top-1; ApisT and Akp are PLD’s gains over DIST and
KD.

Top-1 % Accuracy

Student Teacher Params(M) \ Teacher KD DIST PLD Apist Akp
ViT-Small ViT-Large(304.33M) 22.05 | 84.80 7533 7491 75.63 0.72 0.30
ResNet-50 ResNet-152(60.19M) 25.56 | 79.61 76.80 76.60 77.30 0.70 0.50
MobileNet-v4

Hybrid-Medium  Large (conv) 11.07 80.83 7547 7598 76.33 0.35 0.86
Medium (conv)  (32.59M) 9.72 80.83 7486 7540 75.72 0.32 0.86
Small (conv) 3.77 80.83 67.38 70.05 70.07 0.02 2.69

Table 3: Top-1 % accuracy of ResNet-50 distilled from diverse teachers on ImageNet-1K. "Params"
is the teacher’s parameter count in millions. AprsT and Akp report PLD’s gains over DIST and KD,
respectively.

| Top-1 % Accuracy | A
Teacher Params (M) | Teacher KD DIST PLD | Apist Akbp
ResNet-152 60.19 ‘ 79.61 76.80 76.60 77.30 ‘ 0.70 0.50
MobileNet-v4 Hybrid Medium 11.07 78.66 76.85 77.00 77.34 0.34 0.49
MobileNet-v4 Conv Large 32.59 80.83 7398 75.05 75.53 0.48 1.55
ViT-Base/16 86.57 82.07 7427 7540 75.80 0.40 1.53
ViT-Large/16 304.33 84.80 7598 7686 77.38 0.52 1.40

Table 4: Top-1 accuracy (%) of the MobileNet-v4 Medium student distilled from a MobileNet-v4
Large teacher after 100 and 300 training epochs. The "A" row shows the improvement from 100 to
300 epochs.

Epochs CE KD DIST PLD Apist Akp

100 epochs 7237 7486 7540 75.72 0.32 0.86
300 epochs 73.04 76.14 76.56 76.94 0.38 0.80

A (300-100)  0.67 1.28 1.16 1.22 - -

5.2.1 Baseline Configuration and Ablation

We evaluate four losses under identical training: CE, KD [12], DIST [13], and PLD. We use a ResNet-
50 student and a ResNet-152 teacher [10]. Each objective replaces only the logit-based term and has
comparable cost. Thus, KD (divergence-based) and DIST (correlation-based) are natural baselines
for our ranking-based PLD. We sweep the key hyperparameters for each method: « for KD, 3, for
DIST, and 77 for PLD. Figure [Ta]shows the effect of the CE mixing weight. Reducing « improves
KD and DIST up to a region near « ~ 0.1. Setting o = 0 (no CE) degrades performance. Table[3]
reports results with and without CE (see Table [§] for the full ablation). Table [¢]lists PLD-specific
sweeps.

5.2.2 Ablation of PLD

stz /1)
Yfiiexp (ffr;f /TT)
to assess sensitivity: lower 7 sharpens the distribution, while higher 71 flattens the distribution.
We also test two special cases: Uniform (ListMLE): o, = 1/C. Position-aware (p-ListMLE):

Qp = Qf;;/zj qf;

As PLD weights each position by o, = , we sweep 71 € {0.5,1.0,1.5,2.0,4.0}



As Table [6] shows, the unsoftened PLD (7 = 1) consistently achieves the highest Top-1/Top-5
accuracies, with uniform ListMLE trailing by 2-3 pp. Overall, the best results occur at 7 = 1.0 (no
softening) or with only slight perturbations (1.0 £ €), demonstrating that PLD is robust to the exact
choice of « distribution and does not require aggressive sharpening or over-softening.

Table 5: Top-1 and Top-5 accuracy for baseline methods (ResNet-50 student, ResNet-152 teacher with
Top-1 Acc. 79.61%). "-" indicates not applicable. CE: standard cross-entropy. LS:[36] cross-entropy
with label smoothing (¢ = 0.1). KD: vanilla distillation with mixing weight o and temperature 7 = 2.
DIST: relational distillation with inter-class weight 3, intra-class weight v, and temperature 7 = 1.

Method «@ B8 y T Top-1 Acc.%  Top-5 Acc.%

Teacher (ResNet-152) - - - - 79.61 -

CE - - - - 71.35 -

LS (e =0.1) - - - - 73.92 -

KD 0.00 - - 2.00 75.92 92.82
0.10 - - 2.00 76.80 93.16

DIST 0.00 0.50 0.50 1.00 76.47 93.19
0.10 045 045 1.00 76.60 93.30

Table 6: Top-1 and Top-5 accuracy for PLD variants (ResNet-50 student, ResNet-152 teacher with
Top-1 Acc.79.61%). "-" indicates not applicable.

Variant T Top-1 Acc.%  Top-5 Acc.%
PLD 0.50 76.06 92.39
1.00 77.30 93.28
1.50 77.17 92.74
2.00 76.46 92.34
4.00 75.22 91.34
PLD-ListMLE - 74.11 90.60
PLD-pListMLE - 76.60 93.23

5.2.3 Distillation Across Homogeneous Architectures

Figure [[a) evaluates three backbone families in a homogeneous setting: ResNet [10], MobileNet-v4
[29], and Vision Transformers [3]. Across convolutional models, PLD outperforms KD by 0.5-2.7 pp
and DIST by 0.2-0.7 pp. On ViT, PLD yields +0.72 pp over DIST and +0.30 pp over KD. Averaged
over all pairs, PLD improves Top-1 accuracy by +0.42 pp versus DIST and +1.04 pp versus KD.
Table 2| reports full Top-1 results for KD, DIST, and PLD.

5.2.4 Distillation Across Diverse Teachers

Logit-based distillation can use teachers from different architectures as long as the logits match
the student’s dimensionality. Figure [2(b) shows the heterogeneous setting. We fix the student to
ResNet-50 (= 25.56M parameters) and distill from a range of convolutional and transformer teachers.
Across all teachers, PLD consistently outperforms KD and DIST. Its ApjsT gains range from +0.34
pp (MobileNet-v4 Hybrid) to +0.70 pp (ResNet-152), averaging +0.48 pp. Its Axp gains range from
+0.49 pp to +1.55 pp, averaging +1.09 pp. As teacher capacity increases, KD’s benefit declines and
DIST shows a modest upward trend. PLD follows this trend and further widens the margin over DIST
for larger teachers. The largest gap between DIST and PLD appears in the ResNet-50+—ResNet-152
pairing. Table 3| reports each teacher’s Top-1 accuracy, parameter count, and the student’s Top-1
under KD, DIST, and PLD, along with Apist and Akp.

5.2.5 Consistency under Extended Training

Our homogeneous experiments (Sec. show that KD sometimes beats DIST and vice versa. We
ask whether PLD consistently surpasses both under longer training. We train a MobileNet-v4 Medium
student from a MobileNet-v4 Large teacher for 100 and 300 epochs with identical hyperparameters.



Table 7: Object detection performance on MS-COCO. We distill Faster R-CNN detectors with
FPN [19] using DKD [52]] and PLD. All models are trained under identical schedules. Results are
reported on val2017.

Teacher — Student Method | AP APs9 AP75 APs AP,, AP;
ResNet-50 — MobileNetV2-FPN | DKD 29.24 50.42 29.87 16.15 31.11 38.07
ResNet-50 — MobileNetV2-FPN | PLD 28.91 49.63 29.88 16.05 30.41 38.59
ResNet-101 — ResNet-18-FPN | DKD 32.11 53.43 33.90 18.46 34.43 41.50
ResNet-101 — ResNet-18-FPN | PLD 32.47 53.83 34.17 18.50 34.97 42.12
ResNet-101 — ResNet-50-FPN | DKD 36.54 58.57 39.46 21.74 39.80 47.31
ResNet-101 — ResNet-50-FPN | PLD 36.60 58.28 39.58 21.37 39.76 47.24

Table [ reports Top-1 on ImageNet-1K, and Figure [Ib|provides a detailed comparison. At 100 epochs,
PLD achieves 75.72%. This is +0.32 pp over DIST and +0.86 pp over KD. At 300 epochs, PLD
reaches 76.94% (+0.38 pp over DIST; +0.80 pp over KD). The PLD gains with longer training are
+1.22 pp, which is nearly twice the standard pretraining gains (+0.67 pp). This scaling is comparable
across KD (+1.28 pp) and DIST (+1.16 pp). Thus, PLD preserves and slightly widens its advantage
under extended training.

5.3 Object Detection on MS-COCO

PLD extends to tasks where the teacher and student share the same output logits, including object
detection and semantic segmentation. We distill Faster R-CNN [19] detectors on MS-COCO [20] with
standard FPNs. We evaluate two convolutional teacher—student pairs: ResNet-50 — MobileNetV2-
FPN and ResNet-101 — {ResNet-18-FPN, ResNet-50-FPN}. All models use identical hyperparame-
ters, and schedules. We compare PLD to the strong DKD baseline [52].

Table[7]shows that PLD achieves comparable or slightly better performance than DKD across multiple
pairs. PLD improves AP and AP35 in most settings while maintaining similar AP, for small objects.
These results indicate that PLD transfers structured knowledge for dense prediction without modifying
the detector.

6 Conclusion and Limitation

In this work, we introduced Plackett—Luce Distillation (PLD), a unified, choice-theoretic frame-
work for logit-based knowledge distillation. Empirically, across CIFAR-100, ImageNet-1K, and
MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives,
including divergence-based, correlation-based, and feature-based methods, in both homogeneous and
heterogeneous teacher—student pairs. These results show that transferring the teacher’s structured
preferences yields stronger and more stable student performance than marginal- or correlation-based
objectives.

PLD applies broadly to any setting where the student and teacher share the same logit dimensionality.
However, it assumes fully aligned class vocabularies and does not yet support mismatched label
sets or incremental class addition. PLD also requires sorting over the C' output logits to extract the
teacher-optimal permutation, which has O(C'log C') complexity per example. Although efficient
in distributed implementations, this cost is higher than the O(C') complexity of standard KD or
DIST. Empirical runtime analysis (Appendix |[) shows that the overhead is negligible for common
architectures. As with other distillation methods, PLD’s benefits depend on teacher confidence and
may diminish when the teacher’s softmax distribution is nearly uniform, as illustrated in the loss
landscape analysis (Appendix [J).

PLD’s choice-theoretic foundation opens several directions for future work. First, adaptive or
curriculum-driven weighting schemes could adjust the ranking loss based on sample difficulty.
Second, extending PLD to other domains, such as sequence modeling, reinforcement learning, or
multitask learning, may offer similar gains. We hope this work encourages further exploration of
ranking-based objectives for principled and effective model compression.
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A Gradient Derivation for PLD Loss

A.1 Definitions
Let s = (s1,...,5c) € RE be the student’s logits. Let 7* = (7}, ..., 7% ) be a given permutation

of class indices, referred to as the teacher-optimal permutation. Let oy, for k =1,..., C be scalar
weights, constant with respect to s.

The PLD loss function is defined as:

c c
s) = Z Qg | =Sqr + logz exp(s
k=1 =k

We can write £(s) = 25:1 Li(s), where
Li(s) = ag [—Sﬂz + qbk(s)] ,

c
SO

Our goal is to compute the gradient V£(s), whose t-th component is d£ Due to the linearity of

differentiation,
0Ly,
351 Z 0s;

and

We will first compute % 6L’“ .

A.2 Derivative of Lj(s):

We have Lj(s) = —QgSar + ar¢r(s). Let’s differentiate each term with respect to s;.

1. Derivative of the affine term: The first term is —QSrr -
0 asﬂ';
0s; 0Os; .
Since sz is the component of s at index 7, its derivative with respect to s; is 1 if ¢ = 7} and 0
otherwise. This can be written using the indicator function 1{i = 7} }.

0 .
D5 (—anszr) = —opl{i = m;}.

(—O&ksﬂ;) = — Ok

2. Derivative of the log-sum-exp term: The second term is aj¢r(s), where ¢r(s) =

c
log > ,_; exp(say)-

0 0
Ds; (ror(s)) = au 8?

7
To compute 3 90k et Xp(s) = Zf 1 €Xp(sxr). Then ¢ (s) = log Xi(s). Using the chain rule,

9¢r _ _ 1 an( 5) BXk()
aSi - Xk(s) E)si ‘

. Now, we compute




The term 1{¢ = 7 } is non-zero (equal to 1) only if ¢ = 7. This occurs if the index ¢ is part of the
set of indices {7, 7}, ..., 75} If i is in this set, then exactly one £ in the sum (from & to C') will
satisfy 7; = 14, and for that specific ¢, the term becomes exp(s;). If 7 is not in this set, all terms are

zero. Thus,
0Xi(s)  [exp(s;) ifie{m},...,n5}
ds; |0 otherwise.

So, ‘” becomes:

O, 1 Aexp(s;) ifie{m,..., w5}
ds; Zec 4 XD (872 ) 0 otherwise |
_ ¢
Let us define oy, (4) as:
. G T
ok (1) = 2opp ©XP(5r;)
0 otherwise.

Then, %% = 0(4). And the derivative of the second term of Ly (s) is

zi (ki (s)) = arok(i).

3. Combining derivatives for L /(s
oL, 0 0
8781' = 8781 (—aksrr;;) + 8731 (Oék¢k($))
= 70%1{2' = WZ} —+ akak(i)
= o [on(i) — 1{i = 75}].

Now, we combine the derivatives of the two parts of L(s):

A.3 Final Gradient V L(s):

The i-th component of the gradient of the total loss £(s) is:

831 Z 631;5 = ay[ow(i) — 1{i = 7}}].

k=1

Q

We can separate this sum into two partS'

88 Zakak Zakl{l—ﬂ'k}

For the first part of this expression, Zk 1 00 (1), the term o (¢) is non-zero if and only if i €

exp(s:)
{m%,...,m&}. Therefore, this sum can be written as Zk:ie{w;, ) akm For the

second part, Zle a1{i = 7} }, the indicator function 1{i = 7} } is equal to 1 if and only if 7} = .

Since 7* is a permutation, for any given i, there is precisely one value of k for which this condition

is met. Consequently, this sum simplifies to ), ._._, ax, which effectively selects the single o,
o

corresponding to the position of ¢ in the permutation 7*.
Combining these, the i-th component of the gradient is:

(gsﬁz _ Z o exp(s;) Z .

krie{m},..., 75} EZ kexp( k:myi=i

In vector form, let erx denote the standard basis vector that is 1 at index 7;; and O elsewhere. Let o,

be a vector whose j-th component is o, (j). Then the gradient of Ly (s) is Vs Ly (s) = (oK — exy).
The total gradient is:

C
VSE(S) = Zak(ak — eﬂ—z).
k=1
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A.4 Convexity and Smoothness:

Each term L (s) = o [—sﬂ; + log ZZC:,C exp(sﬂz )} is a sum of an affine function (—aysr:) and a

non-negatively weighted log-sum-exp function (¢ (s)). Affine functions are convex. The log-sum-
exp function ¢ (s) is known to be convex. Assuming oy, > 0 (which is true if they are derived from
softmax probabilities, as in q% ), the term av; ¢ (s) is also convex. The sum of convex functions is

convex, so each Ly(s) is convex. The total loss L(s) = chzl Ly(s) is a sum of convex functions,

and therefore, £(s) is convex in s.

Furthermore, affine functions are smooth (infinitely differentiable). The log-sum-exp function is
also smooth. Since differentiation, non-negative weighting, and summation preserve smoothness
(specifically, Lipschitz continuity of the gradient on any bounded domain), the full PLD loss £(s)
has a Lipschitz-continuous gradient on any bounded domain, which is beneficial for gradient-based

optimization methods.

B Full Baseline Ablation

Table 8: Hyperparameter grid search on ImageNet-1K. Each configuration uses a ResNet-50
student distilled from a ResNet-152 teacher (Top-1 Acc.79.61%). "-" indicates not applicable. The

best setting in each group is highlighted.

Method

Hyperparameters

Accuracy (%)

(%

B

2

T

Top-1

Top-5

Teacher
CE
LS (e=0.1)

79.61
71.35
73.92

KD hyperparameter sweep

KD

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00

(1=2)
75.92
76.80
76.65
76.30
76.33
76.12
75.94
75.85
75.21
74.28

92.82
93.16
93.11
93.02
93.10
93.12
92.79
92.71
92.39
91.59

DIS

DIST

1.00
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

2.00
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

2.00
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

T hyperparameter sweep (T=1)

75.77
76.47
76.60
75.69
74.88
73.90
72.94
72.71
71.85
71.89

71.40

92.67
93.19
93.30
92.63
92.18
91.35
90.95
90.58
90.16
90.16
89.88
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T L - Y. T SO U R R

C Implementation of the PLD Loss

import torch
import torch.nn.functional as F

def create_adjusted_ranking(flat_logits: torch.Tensor,
flat_labels: torch.LongTensor
) -> torch.LongTensor:
nnn
For each example, sort logits ascending, remove the true label,
and append it at the end so it occupies the last (top-1) position.

mwmnn

_, sorted_idx = torch.sort(flat_logits, dim=-1, descending=False) # [N, V]

mask = sorted_idx != flat_labels.unsqueeze(-1) # [N, V]
V = flat_logits.size(-1)
assert torch.all(mask.sum(dim=-1) ==V - 1),

"Must remove exactly one true label per row."
sorted_excl = sorted_idx[mask].view(-1, V - 1) # [N, V-1]
return torch.cat([sorted_excl, flat_labels.unsqueeze(-1)], dim=-1) # [N, V]

def plackett_luce_loss(student_logits: torch.Tensor,

teacher_logits: torch.Tensor,
labels: torch.LongTensor,
temperature: float = 1.0
) -> torch.Tensor:

nmnn

Computes the PLD loss:

L = sum_k alpha_k [ logsumezp_k - s_k ], alpha_k = softmaz_teacher[pi*_k].
nmnn
flat_s, flat_t, flat_1lbl = prepare_for_classification(
student_logits, labels, teacher_logits

)

ranking = create_adjusted_ranking(flat_t, flat_1bl) # [N, V]
s_perm = torch.gather(flat_s, dim=-1, index=ranking) # [N, V]
t_perm = torch.gather(flat_t, dim=-1, index=ranking) # [N, V]
log_cumsum = torch.logcumsumexp(s_perm, dim=-1) # [N, V]
per_pos_loss = log_cumsum - S_perm # [N, V]
teacher_prob = F.softmax(t_perm / temperature, dim=-1) # [N, V]
weighted = per_pos_loss * teacher_prob # [N, V]
return weighted.sum(dim=-1) .mean() # scalar

D Additional Experimental Setup

For these supplementary experiments, we adopt a homogeneous teacher-student configuration drawn
from the MobileNetV4 [29] family. Specifically, the student network is MobileNetV4 Convolutional
Small, and the teacher network is MobileNetV4 Hybrid Large. To ensure that any observed differences
arise solely from the choice of loss function, we use exactly the same training hyperparameters as
in our main experiments, including learning-rate schedules, batch size, weight decay, and the data-
augmentation pipeline.

To comprehensively evaluate the relative merits of Plackett-Luce Distillation (PLD) compared to
DIST and KD, we conduct experiments across multiple optimizers, various divergence weightings,
runtime and several logit-standardization schemes. We further quantify distributional alignment
by measuring the KL divergence between student and teacher softmax outputs throughout training.
Finally, to gain geometric insight into each loss, we visualize the loss landscapes of PLD, KD, and
DIST.
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E Optimizer Ablation Study

In our main experiments, we adopt the Lamb [49] optimizer as prescribed by the Timm [43] li-
brary. To evaluate the robustness of the Plackett-Luce Distillation (PLD) loss under different
optimization schemes, we perform an ablation study in which we replace Lamb with three alter-
natives: AdamW [21]], Adan [46], and AdaBelief [56]. Table E]reports the Top-1 accuracy of the
MobileNetV4-Small student on ImageNet-1K for each optimizer, under the KD, DIST, and PLD
losses. PLD consistently outperforms both KD and DIST, achieving an average Top-1 gain of 0.825%
over DIST and 2.21% over KD, with maximum improvements of 0.91% and 2.70%, respectively.

Table 9: Top-1 accuracy (%) of the MobileNetV4-Small student under different optimizers, comparing
DIST, KD, and PLD. ADIST = PLD — DIST, AKD = PLD — KD.

Optimizer DIST KD PLD ADIST AKD

AdaBelief 6991 68.92 70.80 0.89 1.88
AdamW 69.94 68.89 70.85 0.91 1.96
Adan 70.07 68.52 70.82 0.75 2.30

Lamb (base) 7041 68.46 71.16 0.75 2.70

F Logit Standardization Analysis

Logit standardization-centering or normalizing the teacher and student logits before applying the
distillation loss-has been proposed [35] to improve optimization stability and distribution alignment.
We evaluate four variants on the MobileNetV4-Small student (distilled from MobileNetV4-Hybrid-
Large) using the Lamb optimizer. Specifically, we consider:

DIST + std. logits: standardize both teacher and student logits before computing the DIST loss; KD
+ std. logits: standardize both teacher and student logits before the KL-based KD loss; PLD + std.
logits: standardize both teacher and student logits before the PLD loss; PLD + std. teacher logits:
standardize only the teacher logits for the PLD softmax weighting.

Table [T0] reports Top-1 accuracy on ImageNet-1K for each standardization variant, using the un-
standardized PLD baseline of 71.16%. While standardizing logits yields modest gains for both DIST
and KD, it does not benefit PLD: applying standardization to either both teacher and student logits or
to the teacher logits alone leads to a slight degradation in PLD’s performance.

Table 10: Effect of logit standardization on Top-1 accuracy (%). PLD baseline (no standardization):
71.16%. A = 71.16 — Acc.

Method Top-1 Acc. (%) A

DIST + std. logits 71.12 0.04
KD + std. logits 69.14 2.02
PLD + std. logits 70.66 0.50
PLD + std. teacher logits 70.81 0.35

G Classification Accuracy Across Divergences

In the main text we adopt the standard knowledge-distillation loss based on the forward Kullback-
Leibler divergence:

Lxp = aLcr(zs,y) + (1 — ) Dk, (softmax(zt/T) I softmr:mx(zk.;/T))7
with o = 0.1 and T' = 2. In addition to this forward KL term, we evaluate two alternatives:
the reverse Kullback-Leibler divergence Dy, (softmax(z,/T) || softmax(z,/T)) and the Jensen-

Shannon divergence D s (softmax(z;/T), softmax(z,/T)). Table reports Top-1 accuracy (%)
using each divergence measure. Jensen-Shannon yields a modest gain over forward KL, while reverse
KL performs comparably.
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Table 11: Top-1 accuracy (%) of vanilla KD under different divergence measures. The PLD baseline
(fixed across rows) is 71.16%. Axp = PLD — KD.

Divergence KD Top-1 Axkp
Forward KL 68.46 2.70
Reverse KL 67.44 3.72
Jensen-Shannon 69.83 1.33

H Distribution Matching Analysis

We evaluate how well each distillation loss aligns the student’s output distribution with the teacher’s
by measuring the KL divergence between their softmax outputs at the end of training. Table[I2]reports
these KL values for both homogeneous teacher-student pairs (same model family) and heterogeneous
pairs (cross-architecture). Lower KL indicates tighter alignment. Although the PLD loss trains the
student to respect the teacher’s preference ordering, in the homogeneous setups PLD achieves better
alignment than DIST. However, since the KD loss explicitly minimizes a KL term, it yields the lowest
divergence overall, outperforming both DIST and PLD.

Table 12: KL divergence of student vs. teacher softmax outputs under DIST, KD, and PLD. Lower is
better.

Teacher Student DIST KD PLD
Homogeneous

MobileNetV4-Large MobileNetV4-Medium 0.67 055 0.60
MobileNetV4-Large MobileNetV4-Small 095 085 0.83
MobileNetV4-Large MobileNetV4-Hybrid-Medium  0.64  0.52  0.60
ViT-Large/16 ViT-Base/16 047 042 072
ViT-Large/16 ViT-Small/16 055 053 0.69
Heterogeneous

MobileNetV4-Large ResNet50 0.71  0.60 0.65
MobileNetV4-Hybrid-Medium  ResNet50 1.27 027 1.50
ViT-Base/16 ResNet50 043 039 0.66
ViT-Large/16 ResNet50 046 044 0.59

I Runtime Analysis

We evaluate the computational efficiency of PLD compared with other distillation methods discussed
in Section [5] PLD involves a single sorting operation to obtain the teacher-optimal permutation,
similar to ListMLE [45]]; therefore, its complexity is only O(C'log C) far lower than the O(C!)
enumeration of all possible rankings. In practice, this adds negligible overhead: PLD trains at nearly
the same speed as logit-based methods such as KD, DIST, and DKD. Table [13] reports the total
training time (in minutes) for all CIFAR-100 experiments in Table[I]} Despite its list-wise formulation,
PLD’s runtime remains comparable to KD and DIST, and substantially faster than other methods
such as RKD or VID.

J Loss Landscape Visualization

To gain geometric insight into the optimization landscapes induced by our three distillation losses
(DIST, KD, PLD), we plot 3D surfaces and 2D contours over a two-dimensional slice of the student-
logit space.

Setup: Lett € RY be a random teacher-logit vector normalized to unit norm, and let d;, dy € RV
be two random orthonormal directions. For a grid of («, 8) € [—5||t]|, 5/|t]|]?, we define student
logits s(e, ) = t + ady + B do and compute each loss L(s(a, ), t) at every grid point. Figure[4]
plots the loss landscapes for DIST [13]], KD [[12]], and PLD (ours). While KD and PLD both induce
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Table 13: Total training time (minutes) for all CIFAR-100 experiments. PLD achieves comparable
efficiency to KD, DIST, and DKD despite its list-wise formulation.

Model (Teacher | . b gy pIST DKD AT FitNet PKT RKD SP  VID
Student)

ResNet32x4 13 06 62.84 62.18 6224 6246 6539 6396 6253 6836 6273 78.40
ResNet8 x4

ResNet50

MobiloNegya  |23:62 10259 10223 102.49 102.54 108.17 113.18 10228 128.65 102.78 132.06
ResNet56 2297 3342 33.57 3381 3346 3455 3330 33.89 3621 33.67 3657
ResNet20

WideResNet-40-2

Wid-RaiNet40.1|27:67 33.10 37.56 3673 3427 3677 3805 36.84 37.62 3701 37.35
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Figure 3: PLD loss surfaces at different teacher temperatures. (Top row) 1" = 2.0 and T' = 1.0;
(Bottom row) 7" = 0.5 and 7" = 0.1. Lowering 7" below 1.0 flattens convexity.

convex surfaces, DIST dips sharply yet remains effectively planar in the («, 3) slice. Moreover, the
contour for PLD is more tightly centered around the origin than that of KD.

J.1 Temperature Sensitivity of the PLD Loss Surface

To investigate the effect of the teacher-softmax temperature 1" on the geometry of the PLD loss
landscape, we fix the same two-dimensional («, 3) slice and compute the PLD surface at four
representative temperatures: 7' € {2.0,1.0,0.5,0.1}. Figure shows both the 3D surface and 2D
contour plots for each 7. We observe that reducing 7" from 2.0 down to 1.0 produces only minor
changes, whereas further lowering T" below 1.0 flattens the curvature.
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Figure 4: Loss landscapes of three distillation methods: (a) DIST exhibits a sharp dip yet remains
effectively planar; (b) KD shows moderate convexity; (c) PLD (ours) exhibits better convexity with
contours mostly centered at the origin.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean Top-1 accuracies on CIFAR-100 along with their correspond-
ing standard errors computed over three independent runs with different random seeds.
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Question: For each experiment, does the paper provide sufficient information on the com-
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Justification: This work is foundational on model compression and does not present a direct
application or risk. Indirectly, more efficient models may reduce energy and hardware costs,
but we do not see specific societal harms arising from the method itself.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No high-risk or dual-use data/models are released in this work
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new datasets or large models with this submission.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human-subject data or crowdsourcing is involved.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No large language models are used in our core methodology.
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