

# FLOCK: A KNOWLEDGE GRAPH FOUNDATION MODEL VIA LEARNING ON RANDOM WALKS

## Anonymous authors

Paper under double-blind review

## ABSTRACT

We study the problem of zero-shot link prediction on knowledge graphs (KGs), which requires models to generalize over *novel entities* and *novel relations*. Knowledge graph foundation models (KGFMs) address this task by enforcing equivariance over *both* nodes and relations, learning from structural properties of nodes and relations, which are then transferable to novel graphs with similar structural properties. However, the conventional notion of deterministic equivariance imposes inherent limits on the expressive power of KGFM, preventing them from distinguishing structurally similar but semantically distinct relations. To overcome this limitation, we introduce *probabilistic node-relation equivariance*, which preserves equivariance *in distribution* while incorporating a principled randomization to break symmetries during inference. Building on this principle, we present FLOCK, a KGFM that iteratively samples random walks, encodes them into sequences via a recording protocol, embeds them with a sequence model, and aggregates representations of nodes and relations via learned pooling. Crucially, FLOCK respects probabilistic node-relation equivariance and is a *universal approximator* for isomorphism-invariant link-level functions over KGs. Empirically, FLOCK perfectly solves our new diagnostic dataset PETALS where current KGFM fail, and achieves state-of-the-art performances on entity- and relation prediction tasks on 54 KGs from diverse domains.

## 1 INTRODUCTION

Knowledge graph foundation models (KGFMs) (Lee et al., 2023; Geng et al., 2023; Galkin et al., 2024; Zhang et al., 2024; Cui et al., 2024; Huang et al., 2025) aim to infer missing links over novel knowledge graphs (KGs) that are not part of the training graphs or domains. This task requires generalization to *both* unseen nodes and unseen relation types. To achieve this, KGFM<sub>s</sub> rely on learning *node and relation invariants*: structural properties of nodes and relations that are transferable across KGs even when their relational vocabularies differ. This inductive bias is formalized by Gao et al. (2023) as double-equivariance — equivariance under permutations of both entities and relations — and used as a core principle in the design of KGFM<sub>s</sub> in the literature.

**Problem statement.** In this work, we challenge the fundamental assumption of existing KGFMs dictated by strict equivariance: *structural isomorphism of relations implies semantic equivalence*. Consider, for example the KG from Figure 1, where the relations *like* and *dislike* are structurally isomorphic, and yet they represent semantically opposite relations. In this motivating example, any KGFMs that computes relation invariants is forced to assign the same representation to both *like* and *dislike* — losing the ability to distinguish between two entities with opposite relationships. This expressiveness limitation is an architectural one and *cannot* be resolved through finetuning, which further limits the downstream use of existing KGFMs. This raises a central question: How can we design KGFMs that are both *expressive* and have the right *inductive bias* for generalization?

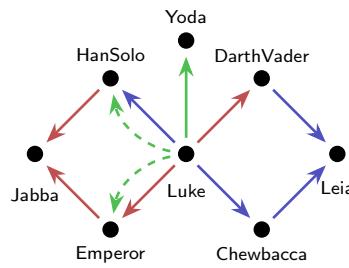


Figure 1: A KG representing characters’ relationships in Star Wars movies. Blue arrows indicate *like*, red arrows – *dislike*, and green arrows indicate relation (*friendWith*).

054 **Our approach.** We propose a new approach for KGFMs, which relies on *probabilistic* node-  
 055 relation equivariance as inductive bias. Instead of enforcing *deterministic* equivariance over nodes  
 056 and relations, these KGFMs respect *probabilistic* node-relation equivariance. This relaxes the hard  
 057 constraint that “structurally isomorphic relations *must have* identical representations”, and requires  
 058 only that “the representations of structurally isomorphic relations need to be equivalent in distribution”  
 059 over a model’s stochastic processes. This way, the model retains crucial inductive bias needed  
 060 for generalizing across different KGs, while the stochasticity of each forward pass ensures that struc-  
 061 turally identical but semantically distinct relations are assigned different representations, allowing  
 062 the model to distinguish between them (Srinivasan & Ribeiro, 2020; Abboud et al., 2021).

063 Inspired by the success of models that learn probabilistic invariants via random walks (Perozzi et al.,  
 064 2014; Grover & Leskovec, 2016; Nikolentzos & Vazirgiannis, 2020; Kim et al., 2025), we introduce  
 065 FLOCK, a KGM that inherently computes probabilistic node-relation invariants. Given a (poten-  
 066 tially unseen) KG, and a query, in each iteration, FLOCK first samples a set of random walks over  
 067 KG based on the query, noting down both encountered nodes and relations with a recording pro-  
 068 tocol. To ensure the model can generalize to unseen entities and relation types, we *anonymize* all  
 069 nodes and relations, enforcing that FLOCK only learn from their structural roles. These anonymized  
 070 sequences are then fed into a sequence processor, and the representations for each node and relation  
 071 are aggregated via a consensus protocol. Finally, we construct per-query (triple) features from the  
 072 aggregated entity and relation embeddings and input them into a binary classifier for link prediction.

073 **Key findings and contributions.** The design of FLOCK offers several key advantages over existing  
 074 KGFMs. First, it entirely abandons the conventional two-stage process of encoding relations and  
 075 node representations via two separate networks, and does not rely on message-passing at all, thereby  
 076 avoiding the well-known expressivity limitations of MPNNs on KGs (Barceló et al., 2022; Huang  
 077 et al., 2023; 2025). Second, FLOCK is a universal approximator (see Proposition 4.1), and thus can  
 078 approximate every link-level function defined on KGs of any bounded size. Finally, FLOCK archi-  
 079 tecture inherently respects the principle of probabilistic node-relation equivariance, which enables a  
 080 strong generalization capacity. Our experimental results over both entity prediction and relation pre-  
 081 diction validate the strength of this approach, demonstrating that FLOCK consistently outperforms  
 082 state-of-the-art KGFMs on existing benchmarks. Our contributions can be summarized as follows:

- 083 • We highlight a limitation in existing KGFMs: their over-reliance on deterministic node-relation  
 084 equivariance prevents them from distinguishing between structurally similar but semantically  
 085 different relations, limiting their expressivity.
- 086 • We propose to leverage *probabilistic node-relation equivariance*, a property for KGFMs that  
 087 ensures invariance only in distribution, as an effective solution balancing the model expressivity  
 088 and generalization.
- 089 • We propose FLOCK, a KGM that respects probabilistic node-relation equivariance. FLOCK re-  
 090 places the conventional two-stage, message-passing paradigm with a direct sequence encoding  
 091 approach based on random walks, and acts as a universal approximator of link-level functions.
- 092 • We validate our approach on both entity and relation prediction tasks across 54 diverse KGs,  
 093 where FLOCK consistently achieves state-of-the-art performance over existing KGFMs. We  
 094 further design a synthetic dataset PETALS to confirm our theoretical results empirically.

095 The codebase is available at <https://anonymous.4open.science/r/flock/>.

## 098 2 RELATED WORK

100 **Link prediction and KGFMs.** Early methods for inferring missing links in KGs (Bordes et al.,  
 101 2013; Sun et al., 2019; Balazevic et al., 2019; Abboud et al., 2020; Schlichtkrull et al., 2018;  
 102 Vashishth et al., 2020) rely on learned embeddings, hence operating in the *transductive* setting,  
 103 incapable of generalizing to unseen entities or relation types. Later GNN-based approaches based  
 104 on the labeling trick (Teru et al., 2020; Zhang et al., 2021) or conditional message passing (Zhu  
 105 et al., 2021; 2023; Zhang & Yao, 2022; Zhang et al., 2023b; Huang et al., 2023), unlocked the *node*  
 106 *inductive* scenario, while remaining restricted to a fixed relational vocabulary. KGFMs eliminate  
 107 this restriction and enable *node-relation inductive* link prediction over both unseen nodes and relation  
 108 types through the use of a two-stage process by first encoding relations and then nodes. The

108 first examples of this paradigm are InGram (Lee et al., 2023) and ULTRA (Galkin et al., 2024).  
 109 Their ideas were extended by TRIX (Zhang et al., 2024) to build a more expressive framework. KG-  
 110 ICL (Cui et al., 2024) achieved full inductivity by combining in-context learning with node-relation  
 111 tokenization. ISDEA (Gao et al., 2023) and MTDEA (Zhou et al., 2023) highlighted the benefits of  
 112 equivariance over both nodes and relations. MOTIF (Huang et al., 2025) was proposed as a general  
 113 KGF framework, supported by a theoretical analysis of the expressive power of KGFMs. Our  
 114 work further advances the field with a **stochastic KGF**, which is invariant in probability and prov-  
 115 ably more expressive than all the existing methods. Notably, FLOCK achieves universality without  
 116 any form of message passing, instead relying on random walks and sequence models to encode both  
 117 nodes and relations anonymously to ensure generalization. **This is distinct from previous stochastic**  
 118 **KGFMs that rely on random initialization to message passing** (Lee et al., 2023; Gao et al., 2023).

120 **Random walks for graph representations.** Random walks have attracted a lot of attention in  
 121 graph learning, due to their simplicity and ability to gather context from neighborhoods. DeepWalk  
 122 (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) were among the first to explore  
 123 the potential of random walks for producing graph embeddings, treating walks as analogues of  
 124 sentences in natural language and processing them using skip-gram models. Nikolentzos & Vazir-  
 125 giannis (2020) generated graph-level task predictions by executing joint random walks on direct  
 126 products of graphs with their extracted subgraphs. CRAWL (Tönshoff et al., 2021) represents the  
 127 input graph as a collection of random walks and processes them with a 1-dimensional convolutional  
 128 NN. WalkLM (Tan et al., 2023) samples random walks from graphs with textual features, passing  
 129 them to a language model for embedding generation. RWNN (Kim et al., 2025) and RUM (Wang  
 130 & Cho, 2024) anonymize the extracted walks and process them with sequence models and RNNs,  
 131 respectively. NeuralWalker (Chen et al., 2025) aggregates embeddings derived by encoding random  
 132 walks into message passing layers.

133 **Probabilistic invariance.** Neural architectures that enforce invariance to specific transformations  
 134 often exhibit more stable training and improved performance (Bronstein et al., 2021), but this induct-  
 135 ive bias can reduce their expressivity by preventing the model from distinguishing non-equivalent  
 136 inputs. In graph learning, this trade-off is exemplified by MPNNs, whose power is limited by the  
 137 1-WL test (Xu et al., 2019; Morris et al., 2019). Randomization has emerged as a solution, en-  
 138 hancing expressivity through techniques such as noise injection (Abboud et al., 2021), vertex drop-  
 139 ping (Papp et al., 2021), subgraph sampling (Bevilacqua et al., 2022; Zhang et al., 2023a), dynamic  
 140 rewiring (Finkelshtein et al., 2024), and random walks (Kim et al., 2025; Wang & Cho, 2024).  
 141 Despite their stochasticity, such methods can remain probabilistically invariant, ensuring that equi-  
 142 valent inputs yield identical expected outputs, or even identical output distributions. **In line with a**  
 143 **prior work (Gao et al., 2023), we extend the notion of probabilistic invariance to KGs and prove that**  
 144 **FLOCK satisfies invariance in distribution, and further clarify its usefulness in KG learning.**

### 3 PRELIMINARY

148 **Knowledge graphs.** A *knowledge graph* (KG) is a tuple  $G = (V, E, R)$ , where  $V$  denotes the set  
 149 of entities (nodes),  $R$  the set of relation types, and  $E \subseteq V \times R \times V$  the set of labeled edges (*facts*).  
 150 A fact is written as  $(h, r, t)$  (or  $h \xrightarrow{r} t$  interchangeably) with  $r \in R$  and  $h, t \in V$ . A (potential) *link*  
 151 in  $G$  is any triple  $(h, r, t)$  in  $V \times R \times V$ , regardless of whether it is present in  $E$ . We denote by  $R^{-1}$   
 152 the set of inverses of relations  $R$ , defined as  $\{r^{-1} \mid r \in R\}$ , and mean  $r$  when writing  $(r^{-1})^{-1}$ .  
 153 **Further, let  $\mathbb{K}_{n,m}$  be the space of knowledge graphs with  $n$  vertices and  $m$  relation types.**

154 **Isomorphism.** An *isomorphism* between two knowledge graphs  $G = (V, E, R)$  and  $G' =$   
 155  $(V', E', R')$  is a pair of bijections  $\mu = (\pi, \phi)$ , where  $\pi : V \rightarrow V'$  and  $\phi : R \rightarrow R'$ , such that  
 156 a fact  $(h, r, t)$  belongs to  $E$  if and only if the fact  $\mu((h, r, t)) = (\pi(h), \phi(r), \pi(t))$  belongs to  $E'$ .  
 157 Two KGs are *isomorphic* if such a mapping exists, in which case we write  $G \simeq G'$ .

158 **Link invariance.** In this work, we focus on link-invariant functions. Let  $\omega$  be a function assigning  
 159 to each KG  $G = (V, E, R) \in \mathbb{K}_{n,m}$  a map  $\omega(G) : V \times R \times V \rightarrow \mathbb{R}^d$ . We say that  $\omega$  is *link invariant*  
 160 if for every pair of isomorphic KGs  $G, G' \in \mathbb{K}_{n,m}$ , every isomorphism  $(\pi, \phi)$  from  $G$  to  $G'$ , and  
 161 every link  $(h, r, t)$  in  $G$ , we have  $\omega(G)((h, r, t)) = \omega(G')((\pi(h), \phi(r), \pi(t)))$ .

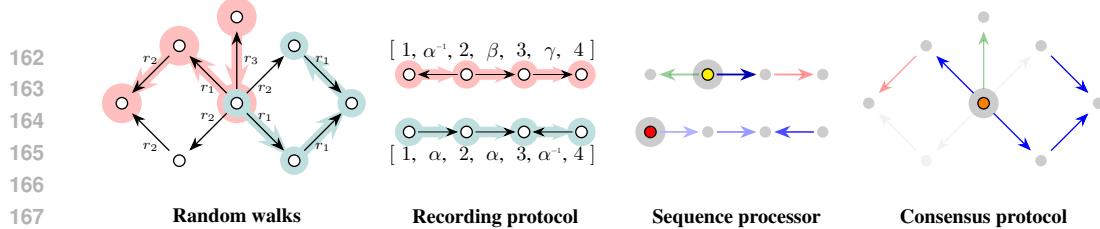


Figure 2: Overall pipeline of FLOCK. In each updating step, FLOCK 1) samples random walks on the KG (two walks indicated by red and teal, respectively), 2) anonymizes the encountered nodes and relations via a recording protocol (for each walk, nodes are anonymized as 1, 2, ... and relations as  $\alpha, \beta, \dots$ ), and 3) feeds the sequences in a sequence processor to compute node and relation representations. 4) A consensus protocol then pools them back to the original KG’s nodes and relations.

**Probabilistic invariance.** A stochastic KG model  $\varphi$  can be viewed as a function that takes a KG and returns a random variable  $\varphi(G)$ . Following Kim et al. (2025), we call  $\varphi$  *invariant in probability* if

$$\forall G, G' \in \mathbb{K}_{n,m} : \quad G \simeq G' \implies \varphi(G) \stackrel{d}{=} \varphi(G')$$

i.e. the distributions of  $\varphi(G)$  and  $\varphi(G')$  are equal. In particular, this implies  $\mathbb{E}[\varphi(G)] = \mathbb{E}[\varphi(G')]$ .

## 4 METHODOLOGY

We present FLOCK, a KGFN respecting probabilistic node-relation invariance. FLOCK is a randomized function  $X_\theta(\cdot)$  which takes as input a KG  $G = (V, E, R)$  and a link prediction query  $q$ . We consider two types of queries: *entity prediction*  $q = (h, r, ?)$  and *relation prediction*  $q = (h, ?, t)$ . FLOCK outputs a random variable  $\hat{y} \sim X_\theta(G, q)$  which is suited for the task at hand. For entity prediction, it outputs  $\hat{y} : V \rightarrow [0, 1]$  such that a potential link  $(h, r, t)$  can be evaluated by  $\hat{y}(t) \in [0, 1]$ . For relation prediction, it outputs  $\hat{y} : R \rightarrow [0, 1]$  such that a link  $(h, r, t)$  can be evaluated by  $\hat{y}(r)$ .

At test time, we average multiple ( $P$ ) independent stochastic predictions to produce the final output. This improves performance and reduces variance through an ensembling effect.

We describe the architecture of FLOCK in Section 4.1 focused on four main components, and then analyze its theoretical properties in Section 4.2, showing universality and probabilistic equivariance. An expansion on the model details can be found in Appendix A.

### 4.1 FLOCK

Internally, FLOCK has two lookup tables of hidden states,  $\mathbf{v} : V \rightarrow \mathbb{R}^d$  for entities and  $\mathbf{r} : R \rightarrow \mathbb{R}^d$  for relations, respectively. At each forward pass, it starts from trained initializations of these states  $\mathbf{v}^{(0)}(\cdot) := \mathbf{v}_0$  and  $\mathbf{r}^{(0)}(\cdot) := \mathbf{r}_0$ , and updates them iteratively  $\mathbf{v}^{(i)}, \mathbf{r}^{(i)}$  for  $i \leq I$ . Each update is done residually using a randomized function  $U_{\theta_i}$ :

$$\mathbf{v}^{(i+1)} := \mathbf{v}^{(i)} + \Delta\mathbf{v}, \quad \mathbf{r}^{(i+1)} := \mathbf{r}^{(i)} + \Delta\mathbf{r}, \quad (\Delta\mathbf{v}, \Delta\mathbf{r}) \sim \text{update}_{\theta_i}(\mathbf{v}^{(i)}, \mathbf{r}^{(i)}). \quad (1)$$

The final hidden states  $\mathbf{v}^{(I)} : V \rightarrow \mathbb{R}^d$  and  $\mathbf{r}^{(I)} : R \rightarrow \mathbb{R}^d$  are then processed by a binary classifier head :  $\mathbb{R}^d \rightarrow [0, 1]$  to produce the output  $\hat{y}$  which is  $V \rightarrow [0, 1]$  or  $R \rightarrow [0, 1]$  depending on task.

We now describe the randomized update $_{\theta_i}$ . We drop  $i$  for brevity. It consists of four components:

1. **Random walk algorithm** produces  $n$  random walks  $\eta_1, \dots, \eta_n$  of length  $\ell$  on the input KG.
2. **Recording protocol**  $w : \eta_j \mapsto \mathbf{z}_j$  transforms each walk into a graph-agnostic sequence.
3. **Sequence processor**  $f_\theta : \mathbf{z}_j \mapsto \mathbf{h}_j$  processes each sequence independently, outputting features.
4. **Consensus protocol**  $c : (\mathbf{h}_{1:N}, \eta_{1:N}) \mapsto (\Delta\mathbf{v}, \Delta\mathbf{r})$  collects features of all walks and decides state updates for each entity and relation type.

An overview is presented in Figure 2. We note that  $w, f_\theta$ , and  $c$  are all deterministic, and the random walk is the only source of stochasticity. We now discuss the design choice for each. For the ease of exposition, we explain for entity prediction tasks  $q = (h, r, ?)$ , but relation prediction is similar.

216 **Random walks.** In FLOCK, random walks are central in two ways: they rewrite the connectivity  
 217 of nodes and relations as sequences, and support generalization via probabilistic equivariance.  
 218

219 Formally, the random walk algorithm produces  $n$  random walks  $\eta_1, \dots, \eta_n$  of length  $\ell$  on KG  $G$ .  
 220 Each random walk  $\eta$  is a chain of random variables, written as:  
 221

$$\eta = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell, \quad v_s \in V, r_s \in R, (v_{s-1}, r_s, v_s) \in E, \quad (2)$$

223 where the underlying transition mechanism and  $\ell$  are hyperparameters.

224 To support probabilistic equivariance, we ask the walk algorithm to be invariant in probability. We  
 225 say  $\eta$  is invariant in probability if for any  $G \simeq H$  in  $\mathbb{K}_{n,m}$  with isomorphism  $(\pi, \phi)$  from  $G$  to  $H$ :

$$\pi(v_0) \xrightarrow{\phi(r_1)} \pi(v_1) \xrightarrow{\phi(r_2)} \dots \xrightarrow{\phi(r_\ell)} \pi(v_\ell) \stackrel{d}{=} u_0 \xrightarrow{s_1} u_1 \xrightarrow{s_2} \dots \xrightarrow{s_\ell} u_\ell \quad (3)$$

226 where  $v_0 \xrightarrow{r_1} \dots \xrightarrow{r_\ell} v_\ell$  and  $u_0 \xrightarrow{s_1} \dots \xrightarrow{s_\ell} u_\ell$  follow the distributions of  $\eta(G, \ell)$  and  $\eta(H, \ell)$ ,  
 227 respectively. In such case, the isomorphism  $(\pi, \phi)$  yields a natural translation from walks in  $G$  to  $H$ .  
 228

229 In FLOCK, we use a simple random walk algorithm which we show to be invariant in probability.  
 230 Specifically, we use uniform walks with non-backtracking, with minor modifications to handle di-  
 231 rected multi-edges of KGs. Despite the simplicity, we find that this choice works well in practice,  
 232 consistent with findings of prior works (Tönshoff et al., 2021; Kim et al., 2025).  
 233

234 Under this choice, we diversify the starting locations of walks such that local context around the  
 235 query  $q$  and broad regions of the nodes and relations in a KG are both well-captured. Our *diver-  
 236 sification strategy* is as follows: given a base walk count  $n$ , for entity prediction queries  $(h, r, ?)$ , we  
 237 use  $3n$  walks with three types of start locations. The first  $n$  walks start at query node  $h$ , capturing  
 238 local context around the query; the second  $n$  walks start by traversing a random edge  $(v, s, u)$  where  
 239  $s$  is a uniformly chosen relation, broadly capturing the relations of the KG including  $r$ ; the last  $n$   
 240 walks start at random nodes, broadly capturing various regions of the KG. For relation prediction  
 241 queries  $(h, ?, t)$ , we additionally start  $n$  walks at the tail node  $t$ , sampling a total of  $4n$  walks.  
 242

243 We lastly discuss how to choose the base walk count  $n$ . While this is a fixed hyperparameter  $n_{\text{train}}$   
 244 at pretraining, we find that scaling it adaptively to input KG at test-time benefits size generalization.  
 245 We thus propose *test-time adaptation of walk counts*, and use:

$$n = n_{\text{train}} \times \text{harmonic mean} \left( \frac{|V|}{|V|_{\text{train}}}, \frac{|E|}{|E|_{\text{train}}} \right) \quad (4)$$

246 where  $|V|_{\text{train}}, |E|_{\text{train}}$  are average numbers of nodes and edges in pretraining KGs, respectively.  
 247 Intuitively, this scales  $n$  proportionally to the sizes of test KGs relative to pretraining. In practice,  
 248 we clamp  $n$  to the nearest power of 2 and limit its value in an interval to avoid out-of-memory errors.  
 249

250 **Recording protocol.** While random walks provide a basis for invariant sequence representations  
 251 of KGs, two issues remain: (1) They reveal nodes  $v_s$  and relations  $r_s$  specific to each KG which  
 252 obstructs transferability to unseen KGs. (2) They do not offer a way to condition on current states  
 253 of entities  $\mathbf{v}$ , relations  $\mathbf{r}$ , and the query  $q = (h, r, ?)$  as often done in KGFM via the labeling trick.  
 254

255 The recording protocol  $w : \eta_j \mapsto \mathbf{z}_j$  resolves this by transforming each walk into a *graph-agnostic*  
 256 sequence that only leaves structural information. Motivated by prior works on node anonymization  
 257 for invariance (Kim et al., 2025; Wang & Cho, 2024), we propose an extension called node-relation  
 258 anonymization: reserve separate namespaces for nodes and relations, respectively, and assign unique  
 259 names in the order of discovery. For example, with 1, 2, 3, ... for nodes and  $\alpha, \beta, \dots$  for relations:  
 260

$$\eta = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} v_2 \xrightarrow{r_1^{-1}} v_0 \quad \mapsto \quad 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\alpha^{-1}} 1, \quad (5)$$

261 where  $(\cdot)^{-1}$  marks direction of a relation. The protocol additionally employs a simple conditioning  
 262 on current states  $(\mathbf{v}, \mathbf{r})$  and query  $q = (h, r, ?)$ , completing the record  $\mathbf{z}$  as follows:  
 263

$$w : \eta \mapsto \mathbf{z} = (1, \mathbf{v}(v_0), \mathbf{1}_h(v_0)) \xrightarrow{\alpha, \mathbf{r}(r_1), \mathbf{1}_r(r_1)} (2, \mathbf{v}(v_1), \mathbf{1}_h(v_1)) \xrightarrow{\beta, \mathbf{r}(r_2), \mathbf{1}_r(r_2)} \dots, \quad (6)$$

264 with indicator functions  $\mathbf{1}_h(\cdot), \mathbf{1}_r(\cdot)$  at  $h$  and  $r$ , respectively. As we will show, the recording protocol  
 265 keeps node-relation invariance by hiding nodes and relations while leaving their structural roles.  
 266

270 **Sequence processor.** Now that the recordings  $\mathbf{z}$  only encode structural information of KG, we  
 271 can safely process them with an arbitrary neural network  $f_\theta : \mathbf{z} \mapsto \mathbf{h}$  without the risk of losing  
 272 invariance. Since  $\mathbf{z}$  are sequences, we choose sequence networks to leverage their inductive bias.  
 273 Specifically, we use bidirectional GRU (Cho et al., 2014) equipped with RMSNorm (Zhang & Sen-  
 274 nrich, 2019) and SwiGLU feedforward network (Shazeer, 2020), which provided robust results. **To**  
 275 **convert anonymizations into input feature vectors to the GRU, we use trainable embedding tables.**

276 Given that  $f_\theta$  is a sequence network, it is convenient to interpret its output  $\mathbf{h}$  as positionally aligned  
 277 with each step of the walk  $\eta$  or record  $\mathbf{z}$ . Specifically, for the example in Equation 6, we obtain:  
 278

$$279 \quad f_\theta : \mathbf{z} \mapsto \mathbf{h} = (\Delta \mathbf{v}_0, a_0) \xrightarrow{\Delta \mathbf{r}_1, b_1} (\Delta \mathbf{v}_1, a_1) \xrightarrow{\Delta \mathbf{r}_2, b_2} \dots \quad (7)$$

280 where  $\Delta \mathbf{v}_s, \Delta \mathbf{r}_s \in \mathbb{R}^{h \times d_h}$  and  $a_s, b_s \in \mathbb{R}^h$  are the decoded outputs at each position using linear  
 281 projections. Intuitively,  $\Delta \mathbf{v}_s, \Delta \mathbf{r}_s$  encode proposals of state updates for entities and relations by  $f_\theta$ ,  
 282 and  $a_s, b_s$  encode respective confidences of  $f_\theta$  for the proposed updates. This separation is useful  
 283 due to the localized, pure-structure nature of the recordings  $\mathbf{z}$ . If a random walk  $\eta$  densely visited a  
 284 cycle-like region and then terminated in a dangling manner, it is natural to assign more confidence  
 285 to the cycle-like region of the structural encodings  $\mathbf{h}$ , and less confidence to the dangling region.  
 286

287 **Consensus protocol.** After sequence processing, we are left with a handful of state update pro-  
 288 posals  $\mathbf{h}_{1:N}$  from  $f_\theta$ , that are positionally aligned with random walks  $\eta_{1:N}$  on KG. The consensus  
 289 protocol  $c$  uses the information to decide final state updates  $\Delta \mathbf{v} : V \rightarrow \mathbb{R}^d$  and  $\Delta \mathbf{r} : R \rightarrow \mathbb{R}^d$ .

290 Since  $c$  can access how each  $\Delta \mathbf{v}_s$  within  $\mathbf{h}_j$  is associated to a node  $v_s \in V$  (and how each  $\Delta \mathbf{r}_s$  is  
 291 associated to a relation  $r_s \in R$ ) through the random walk  $\eta_j$ , a simple way to form a consensus is  
 292 by finding all proposals  $\{\Delta \mathbf{v}_s\}$  associated to each node  $v$ , and all  $\{\Delta \mathbf{r}_s\}$  associated to each relation  
 293  $r$ , and take averages of these proposals. The drawback is that uninformative proposals from e.g.,  
 294 dangling regions of walks are not directly suppressed, and can affect the state updates.

295 We can leverage the confidences  $a_s, b_s$  from  $f_\theta$  to alleviate this issue. For each node  $v \in V$  or  
 296 relation  $r \in R$ , we first find all respective associated pairs  $\{(\Delta \mathbf{v}_s, a_s)\}$  or  $\{(\Delta \mathbf{r}_s, b_s)\}$  of proposals  
 297 and confidences, and compute a multi-head softmax-normalized weighted average:

$$298 \quad \Delta \mathbf{v}(v) := \left[ \sum \exp(a_s) \odot \Delta \mathbf{v}_s \right] \oslash \sum \exp(a_s) \quad \Delta \mathbf{r}(r) := \left[ \sum \exp(b_s) \odot \Delta \mathbf{r}_s \right] \oslash \sum \exp(b_s),$$

300 where  $\odot$  and  $\oslash$  are row-wise multiplication and division, respectively. Intuitively, this normalization  
 301 induces competition between state update proposals, naturally leading to uninformative proposals  
 302 being suppressed. Similar ideas are presented by Locatello et al. (2020).

303 Again, we can show that the consensus protocol does not operate in a way specific to particular KGs,  
 304 and hence retains node-relation equivariance.  
 305

## 306 4.2 THEORETICAL ANALYSIS

308 **Expressivity.** Following the notion of probabilistic expressivity introduced by Abboud et al. (2021),  
 309 we say that a FLOCK model  $X_\theta$  is a universal approximator of link invariant functions over  $\mathbb{K}_{n,m}$  if  
 310 for any link invariant  $\varphi : \mathbb{K}_{n,m} \rightarrow (V \times R \times V \rightarrow [0, 1])$  and any  $\epsilon, \delta > 0$ , there exists a choice of  
 311 the network parameters  $\theta$  and the length of the sampled random walks  $\ell$ , such that:

$$312 \quad \mathbb{P}(|\varphi(G)((h, r, t)) - X_\theta(G, (h, r, ?))(t)| < \epsilon) > 1 - \delta$$

313 for all graphs  $G = (V, E, R) \in \mathbb{K}_{n,m}$  and all links  $(h, r, t) \in V \times R \times V$ .  
 314

315 **Proposition 4.1.** *With a powerful enough sequence processor  $f_\theta$ , the FLOCK framework described  
 316 above is a universal approximator of link invariant functions over  $\mathbb{K}_{n,m}$  for all pairs  $(n, m)$ .*

317 All proofs are in Appendix B. To offer an intuition behind the result, we provide a proof sketch.  
 318

319 *Proof sketch.* A sufficiently long random walk will cover all edges of the graph with high proba-  
 320 bility. Then, from its anonymized version, assigning unique positional identifiers to every node and  
 321 relation, one can reconstruct the input graph, up to isomorphism. Thus, with a sufficiently expressive  
 322 sequence processor, FLOCK can approximate any link-invariant function.

323 **Invariance.** Despite the stochastic nature of our framework, beyond randomized node embeddings  
 (Abboud et al., 2021), FLOCK can be provably guaranteed to satisfy probabilistic invariance:

324 **Proposition 4.2.** Suppose that the walk sampling protocol  $\eta$  is invariant in probability and both the  
 325 recording protocol  $w$  and the consensus protocol  $c$  are invariant. Then, regardless of the choice of  
 326 the deterministic sequence processor  $f_\theta$ , the corresponding FLOCK model is invariant in probability.  
 327

328 *Proof sketch.* Since each of these components is invariant (in probability), and invariance of individual  
 329 component is preserved under composition, we have that FLOCK is invariant.

330 Moreover, the designs of FLOCK’s components provided earlier in this section satisfy the conditions  
 331 of Proposition 4.2. Therefore, the suggested pipeline is indeed invariant in probability:

332 **Proposition 4.3.** Any FLOCK model with components as outlined in this section, and detailed in  
 333 Appendix A is invariant in probability.  
 334

## 335 5 EXPERIMENTS

336 We test FLOCK over a wide range of KGs for both entity and relation predictions, aiming to answer:

339 **Q1.** Can FLOCK approximate functions that existing KGFMs cannot?

340 **Q2.** How does FLOCK generalize to unseen entities and relations compared to existing KGFMs?

341 **Q3.** How does performance scale with the sizes of pretraining graph mix and test-time ensemble?

342 **Q4.** What is the impact of choices of each component on the behavior and performance of FLOCK?

343 In addition to the experiments herein, we provide detailed scalability analysis in Appendix D and E,  
 344 and provide comparisons against current KGFMs augmented with noise injection in Appendix F.  
 345 Further experimental details and hyperparameter settings can be found in Appendix I.

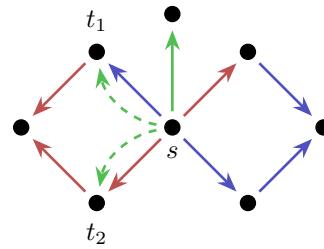
### 346 5.1 SYNTHETIC DATASET

347 **Setup.** To validate the limitations of KGFMs with node-  
 348 relation equivariance (**Q1**), we construct a synthetic benchmark PETALS. It contains 220 instances, each including:  
 349 (1) a KG  $G = (V, E, R)$  consisting of a ‘central’ node  $s$ , a  
 350 ‘stem’  $T \subset V$  with query relation  $r_0$ , and multiple cyclic  
 351 ‘petals’, each ‘colored’ with a different pair of relations  
 352 in  $R \setminus \{r_0\}$ , (2) an entity prediction query  $(h, r_0, ?)$  with  
 353  $h \in \{s\} \cup T$ , and (3) two candidate targets  $t_1$  and  $t_2$  from  
 354 the same ‘petal’, located at the same distance from  $s$ . An  
 355 example is in Figure 3. See Appendix C for more details.

356 PETALS is designed such that each instance always admits  
 357 non-trivial automorphisms, meaning that swapping rela-  
 358 tions occurring in the same ‘petal’ results in an isomorphic  
 359 KG. Consequently, any model computing relation invari-  
 360 ants will not be able to distinguish between potential links  
 361  $(s, r_0, t_1)$  and  $(s, r_0, t_2)$ . However, the samples are constructed so that these links are not isomor-  
 362 phic from the graph perspective, making them distinguishable for general link-invariant functions.  
 363 We say a model *solves* an instance if it can classify  $(s, r_0, t_1)$  as TRUE and  $(s, r_0, t_2)$  as FALSE.

364 We train ULTRA (Galkin et al., 2024), MOTIF( $\mathcal{F}_{\text{Path}}^3$ ) (Huang  
 365 et al., 2025), TRIX (Zhang et al., 2024), and FLOCK from scratch  
 366 and validate them on the training instances.

367 **Results.** The results are in Table 1. As expected, all exist-  
 368 ing KGFMs relying on learning deterministic relational invari-  
 369 ants fail to distinguish between the candidate target triplets com-  
 370 pletely, achieving 50% accuracy due to random guesses. In  
 371 contrast, FLOCK succeeds on *all* considered instances, displaying  
 372 that, while remaining invariant in probability, it can differentiate  
 373 between non-isomorphic links, even with isomorphic relations.



374 Figure 3: Example KG from PETALS.  
 375 KGFMs with relational invariants  
 376 must equate blue  $r_1$  and red  $r_2$ , thus  
 377 predicting the same scores for both  
 378 dashed queries with  $r_0$ .

379 Table 1: Accuracies of KGFMs  
 380 on the PETALS benchmark.

| Model                                  | PETALS      |
|----------------------------------------|-------------|
| ULTRA                                  | 50%         |
| MOTIF( $\mathcal{F}_{\text{Path}}^3$ ) | 50%         |
| TRIX                                   | 50%         |
| <b>FLOCK</b>                           | <b>100%</b> |

Table 2: Average entity prediction MRR and Hits@10 over 54 KGs from distinct domains.

| Model             | Inductive $e, r$<br>(23 graphs) |              | Inductive $e$<br>(18 graphs) |              | Transductive<br>(13 graphs) |              | Total Avg<br>(54 graphs) |              | Pretrained<br>(3 graphs) |              |
|-------------------|---------------------------------|--------------|------------------------------|--------------|-----------------------------|--------------|--------------------------|--------------|--------------------------|--------------|
|                   | MRR                             |              | H@10                         |              | MRR                         |              | H@10                     |              | MRR                      |              |
|                   | MRR                             | H@10         | MRR                          | H@10         | MRR                         | H@10         | MRR                      | H@10         | MRR                      | H@10         |
| ULTRA (zero-shot) | 0.345                           | 0.513        | 0.431                        | 0.566        | 0.312                       | 0.458        | 0.366                    | 0.518        | -                        | -            |
| TRIX (zero-shot)  | 0.368                           | 0.540        | 0.455                        | 0.592        | 0.339                       | 0.500        | 0.390                    | 0.548        | -                        | -            |
| FLOCK (zero-shot) | <b>0.369</b>                    | <b>0.554</b> | <b>0.456</b>                 | <b>0.604</b> | <b>0.340</b>                | <b>0.509</b> | <b>0.391</b>             | <b>0.560</b> | -                        | -            |
| ULTRA (finetuned) | 0.397                           | 0.556        | 0.440                        | 0.582        | 0.379                       | 0.543        | 0.408                    | 0.562        | 0.407                    | <b>0.568</b> |
| TRIX (finetuned)  | 0.401                           | 0.556        | 0.459                        | 0.595        | <b>0.390</b>                | <b>0.558</b> | 0.418                    | 0.569        | <b>0.415</b>             | 0.564        |
| FLOCK (finetuned) | <b>0.417</b>                    | <b>0.576</b> | <b>0.473</b>                 | <b>0.619</b> | 0.383                       | 0.544        | <b>0.427</b>             | <b>0.582</b> | <b>0.415</b>             | 0.561        |

Table 3: Average relation prediction MRR and Hits@1 over 54 KGs from distinct domains.

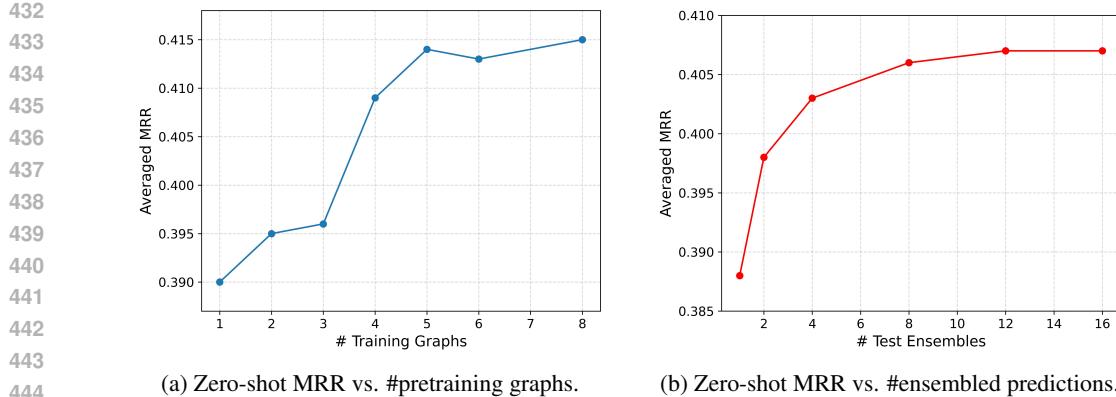
| Model             | Inductive $e, r$<br>(23 graphs) |              | Inductive $e$<br>(18 graphs) |              | Transductive<br>(13 graphs) |              | Total Avg<br>(54 graphs) |              | Pretrained<br>(3 graphs) |              |
|-------------------|---------------------------------|--------------|------------------------------|--------------|-----------------------------|--------------|--------------------------|--------------|--------------------------|--------------|
|                   | MRR                             |              | H@1                          |              | MRR                         |              | H@1                      |              | MRR                      |              |
|                   | MRR                             | H@1          | MRR                          | H@1          | MRR                         | H@1          | MRR                      | H@1          | MRR                      | H@1          |
| ULTRA (zero-shot) | 0.785                           | 0.691        | 0.714                        | 0.590        | 0.629                       | 0.507        | 0.724                    | 0.613        | -                        | -            |
| TRIX (zero-shot)  | 0.842                           | 0.770        | 0.756                        | 0.611        | 0.752                       | 0.647        | 0.792                    | 0.687        | -                        | -            |
| FLOCK (zero-shot) | <b>0.898</b>                    | <b>0.846</b> | <b>0.864</b>                 | <b>0.782</b> | <b>0.873</b>                | <b>0.813</b> | <b>0.881</b>             | <b>0.817</b> | -                        | -            |
| ULTRA (finetuned) | 0.823                           | 0.741        | 0.716                        | 0.591        | 0.707                       | 0.608        | 0.759                    | 0.659        | 0.876                    | 0.817        |
| TRIX (finetuned)  | 0.850                           | 0.785        | 0.759                        | 0.615        | 0.785                       | 0.693        | 0.804                    | 0.706        | 0.879                    | 0.797        |
| FLOCK (finetuned) | <b>0.929</b>                    | <b>0.889</b> | <b>0.887</b>                 | <b>0.808</b> | <b>0.897</b>                | <b>0.844</b> | <b>0.907</b>             | <b>0.851</b> | <b>0.977</b>             | <b>0.959</b> |

## 5.2 ENTITY AND RELATION PREDICTION OVER KNOWLEDGE GRAPHS

**Setup.** To answer **Q2**, we follow the protocol of Galkin et al. (2024); Zhang et al. (2024) and pretrain FLOCK on FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), and CoDEx Medium (Safavi & Koutra, 2020). We then evaluate its zero-shot and finetuned inference performance with the test set of 54 KGs (see Appendix I for details). These KGs are extracted from diverse domains across three settings: inductive on nodes and relations (**Inductive  $e, r$** ), inductive on nodes (**Inductive  $e$** ), and **transductive**. Note that these settings differ only during finetuning setup; in zero-shot setup, all entities and relations are unseen. We choose state-of-the-art KGFMs ULTRA (Galkin et al., 2024) and TRIX (Zhang et al., 2024) as baselines, as they are pretrained on the same KGs, to ensure a fair comparison. For evaluation, we use the filtered ranking protocol (Bordes et al., 2013), reporting mean reciprocal rank (MRR) and Hits@10 for entity prediction, and Hits@1 for relation prediction, as some KGs have fewer than 10 relations. Per-dataset results are in Appendix I.

**Entity prediction results.** We present the entity prediction results in Table 2. In the zero-shot setting, FLOCK consistently outperforms ULTRA and TRIX on all metrics, demonstrating its strong generalization on KGs over diverse domains. Notably, on *Metafam* (Zhou et al., 2023), a dataset designed to challenge models with conflicting and compositional relational patterns, FLOCK roughly doubles MRR over ULTRA and achieves about a 40% MRR gain over TRIX in zero-shot setting. **We find that FLOCK distinguishes structurally similar but semantically conflicting relations while ULTRA fails, which explains the gain (Appendix G).** These findings align with our hypothesis that probabilistic node–relation equivariance improves expressivity without sacrificing generalization. In the finetuning setting, we observe a similar pattern: FLOCK maintains a consistent improvement over all datasets except transductive ones, where the underlying KGs are generally larger. We hypothesize that this gap stems from random walk coverages. Unlike ULTRA and TRIX whose message passing guarantees a full  $k$ -hop neighborhood coverage over the queried node, FLOCK relies on sampled walks, which may not fully cover the target nodes of interest. **We find that FLOCK favors sparse KGs (Appendix H), which agrees with this hypothesis as random walks cover sparse graphs faster.**

**Relation prediction results.** Table 3 presents the relation prediction results. FLOCK substantially outperforms all existing KGFMs across all categories in the zero-shot setting, achieving an 11.2% relative improvement in MRR compared to the best baseline TRIX. FLOCK shows a further performance boost of 12.8% in the finetuned setting. We attribute this huge gain to FLOCK’s joint encoding of entities and relations during the updating step via the sequence encoder, while existing KGFMs, ULTRA and TRIX, have separate update steps for entities and relations. This joint update mechanism yields more holistic representations of both entities and relations with minimal information loss.



(a) Zero-shot MRR vs. #pretraining graphs. (b) Zero-shot MRR vs. #ensembled predictions.

Figure 4: Pretraining and test-time scaling of FLOCK on 41 inductive KG datasets.

Table 4: Ablation study of adaptive test-time walks with zero-shot entity prediction task. We show the average number of entities  $|V|$ , triples  $|E|$ , base walks  $n$ , MRR, and Hits@10.

| Dataset split    | Statistics |         | FLOCK  |              |              | FLOCK w/o Adap. |       |         |
|------------------|------------|---------|--------|--------------|--------------|-----------------|-------|---------|
|                  | $ V $      | $ E $   | $n$    | MRR          | Hits@10      | $n$             | MRR   | Hits@10 |
| Inductive $e, r$ | 5,303      | 10,838  | 28.40  | <b>0.369</b> | <b>0.554</b> | 128             | 0.357 | 0.551   |
| Inductive $e$    | 7,578      | 29,090  | 18.08  | <b>0.456</b> | <b>0.604</b> | 128             | 0.441 | 0.596   |
| Transductive     | 47,810     | 387,491 | 214.15 | <b>0.340</b> | <b>0.509</b> | 128             | 0.334 | 0.493   |

### 5.3 SCALING ANALYSIS

**Size of pretraining graph mix.** To assess whether FLOCK benefits from more pretraining graph and data (**Q3**), we follow the setup of Galkin et al. (2024), and pretrain FLOCK on an increasing number of KGs. We then evaluate them on all 41 inductive benchmarks for a fair comparison. We present the detailed pretraining graph mix in Table 16. As shown in Figure 4a, FLOCK’s generalization improves consistently as the number of pretraining KGs increases, exhibiting clear scaling behavior, which is a core characteristic of being a foundation model.

**Number of ensembled predictions.** To assess how test-time ensemble size  $P$  affects performance (**Q3**), we take the pretrained FLOCK and run zero-shot entity prediction on 41 inductive KGs by increasing the number of ensembled passes. As shown in Figure 4b, performance improves from 1 to 8 passes and then begins to plateau beyond 12. This indicates a clear scaling behavior: larger ensembles provide a more accurate estimate of the underlying node and relation distributions.

### 5.4 ABLATION STUDIES

**Setup.** To understand the impact of design choices on the performance and behavior of FLOCK (**Q4**), we conduct a series of ablation studies spanning random walks, sequence processor and the consensus protocol, in the entity prediction task in the zero-shot setting.

**Adaptive test-time walks.** Recall that we employ *test-time adaptation of walk counts*, which adaptively selects the base walk count  $n$  based on the graph size, computed via the harmonic-mean rule shown in Equation (4) during inference. Table 4 compares this adaptive setting with a fixed setting that uses 128 base walks per sample for all datasets, matching the pretraining setup ( $n_{\text{train}} = 128$ ). As expected, the average selected base count  $n$  is smaller on both inductive splits and larger on the transductive split, yet the adaptive mechanism improves performance across all settings. This is consistent with the intuition that adaptive  $n$  scales up walks on larger KGs to improve coverage while allocating fewer walks on smaller KGs to reduce redundant visits; FLOCK maintains comparable *visiting rates* and *coverage* to those seen during pretraining, thereby producing representations closer to the pretraining distribution and resulting in consistent performance gains.

Table 5: Detailed ablation study with zero-shot entity prediction task. For the transductive split, considering resource limits, we test NELL995, NELL23k, WDsinger, ConceptNet100k, and YAGO310.

| Model                  | Inductive $e, r$<br>(23 graphs) |         | Inductive $e$<br>(18 graphs) |         | Transductive<br>(5 graphs) |         | Total Avg<br>(46 graphs) |              |
|------------------------|---------------------------------|---------|------------------------------|---------|----------------------------|---------|--------------------------|--------------|
|                        | MRR                             | Hits@10 | MRR                          | Hits@10 | MRR                        | Hits@10 | MRR                      | Hits@10      |
| FLOCK ( $\ell = 128$ ) | 0.369                           | 0.554   | 0.456                        | 0.604   | 0.360                      | 0.542   | <b>0.395</b>             | <b>0.567</b> |
| w/o non-backtracking   | 0.370                           | 0.549   | 0.456                        | 0.605   | 0.334                      | 0.499   | 0.386                    | 0.551        |
| $\ell = 64$            | 0.372                           | 0.556   | 0.459                        | 0.606   | 0.351                      | 0.534   | 0.394                    | 0.565        |
| $\ell = 256$           | 0.360                           | 0.548   | 0.458                        | 0.605   | 0.338                      | 0.508   | 0.385                    | 0.553        |
| w/o diverse starts     | 0.360                           | 0.539   | 0.448                        | 0.596   | 0.319                      | 0.488   | 0.385                    | 0.553        |
| transformer $f_\theta$ | 0.356                           | 0.542   | 0.410                        | 0.591   | 0.312                      | 0.477   | 0.359                    | 0.537        |
| w/o weighted consensus | 0.351                           | 0.526   | 0.448                        | 0.593   | 0.361                      | 0.515   | 0.387                    | 0.545        |

**Non-backtracking walks.** FLOCK employs *non-backtracking* uniform random walk, which has an effect of faster exploration and coverage of distant regions (Alon et al., 2007). In Table 5, we compare this with uniform walk that may backtrack and hence is slower in global exploration. While non-backtracking does not alter results much on inductive splits, it significantly improves performance on the transductive split. This is consistent with the idea that improving coverage especially benefits performances on large KGs, which FLOCK achieves via non-backtracking.

**Walk lengths.** FLOCK uses random walks of length  $\ell = 128$ , a choice made by finding the lowest  $\ell$  reliably visiting target node and relation on various KGs. Table 5 compares this with shorter and longer walks by a factor of two. As expected from coverage, shorter walks show degraded results on the transductive split with large KGs. Longer walks are overall worse, which is explained by higher learning complexity of the sequence processor that has a small hidden dimension (64) for scalability. FLOCK finds a balance of coverage and learnability, achieving robust results on diverse KGs.

**Diverse starting locations of walks.** We recall that FLOCK uses a *diversification* strategy of starting locations of walks, with  $n$  walks from the query node,  $n$  walks from random relation, and  $n$  walks from random node, adding up to  $3n$  walks capturing both local context near query and global information of KG. Table 5 compares this against all  $3n$  walks starting at the query node. As expected, this causes degradations on all splits, showing the benefit of using both local and global information.

**Sequence processor.** FLOCK uses a sequence processor  $f_\theta$  with bidirectional GRU. In Table 5, we compare this against a transformer  $f_\theta$  with a similar SwiGLU-RMSNorm architecture (Dubey et al., 2024) and parameter count. This alternative does not deliver good results, which is explained by the restrictions on model scales that are enforced to scale to large KGs. FLOCK benefits from reasoning efficiency of GRU in limited parameter regime, gaining good performance and scalability together.

**Consensus protocol.** FLOCK uses softmax-weighted averaging to pool sequence processor outputs into state updates for nodes and relations, under the intuition that this can suppress uninformative proposals from the sequence processor better than simple, unweighted averaging. Table 5 provides a comparison, showing that weighted consensus outperforms the unweighted counterpart. This verifies our intuition on how the design of the consensus protocol strengthens FLOCK.

## 6 CONCLUSIONS

We introduced FLOCK, as a knowledge graph foundation model that respects probabilistic node-relation equivariance. FLOCK iteratively samples query-conditioned random walks from the input KG, records encountered nodes and relations via a recording protocol, and relies on a sequence processor and consensus protocol to obtain node and relation representations. We empirically evaluate FLOCK over 54 KGs across different domains for both entity and relation prediction tasks, demonstrating its superior zero-shot and finetuned performances. We further construct a synthetic dataset PETALS to validate our theoretical findings. One limitation is scalability (discussed in Appendix E): ensuring coverage of the sampled random walk in a large KG requires an extensive number of longer walks, which can quickly become computationally infeasible. A future direction is to develop approximation strategies (Chamberlain et al., 2023; Łącki et al., 2020) that reduce the cost of random walk sampling while retaining FLOCK’s downstream performance. Another avenue for future work is studying the families of approximable functions when the walk lengths are restricted, for example based on connections to subgraph-based reconstructions (Cotta et al., 2021).

540 ETHICS STATEMENT  
541

542 This work introduces a probabilistic framework for knowledge graph foundation models, aiming to  
543 improve the generalization in zero-shot link prediction. Our contributions are methodological and  
544 theoretical, with evaluations performed on publicly available benchmarks and a synthetic dataset  
545 designed to validate our theoretical results. We do not anticipate any direct ethical risks associated  
546 with this approach. We acknowledge and adhere to the ICLR Code of Ethics.

548 REPRODUCIBILITY STATEMENT  
549

550 We make every effort to ensure the reproducibility of the experiments in our paper. We release an  
551 anonymized codebase with training and evaluation scripts for *FLOCK*, including pretraining scripts  
552 and checkpoints on FB15k-237, WN18RR, and CoDEx Medium, evaluation over 54 KGs, and the  
553 synthetic dataset *PETALS* generator in our anonymous codebase. All architectural details needed to  
554 re-implement the method, including the random-walk sampler, recording protocol, sequence proces-  
555 sor, and consensus protocol, are specified in Appendix A, and our theoretical claims are supported  
556 with complete proofs in Appendix B. We additionally include further experimental details in Ap-  
557 pendix I.

559 REFERENCES  
560

561 Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box  
562 embedding model for knowledge base completion. In *NeurIPS*, 2020. (page 2)

563 Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power  
564 of graph neural networks with random node initialization. In *IJCAI*, 2021. (pages 2, 3, 6)

565 Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random walks mix  
566 faster. *Communications in Contemporary Mathematics*, 9(04):585–603, 2007. (page 10)

567 Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge  
568 graph completion. In *EMNLP-IJCNLP*, 2019. (page 2)

569 Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel Romero. Weisfeiler and leman go  
570 relational. In *LoG*, 2022. (page 2)

571 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath  
572 Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-  
573 works. In *ICLR*, 2022. (page 3)

574 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.  
575 Translating embeddings for modeling multi-relational data. In *NIPS*, 2013. (pages 2, 8)

576 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:  
577 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021. (page 3)

578 Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas  
579 Markovich, Nils Yannick Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural  
580 networks for link prediction with subgraph sketching. In *ICLR*, 2023. (page 10)

581 Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on  
582 graphs via random walks. In *ICLR*, 2025. (page 3)

583 Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction  
584 as an auxiliary training objective for improving multi-relational graph representations. In *3rd  
585 Conference on Automated Knowledge Base Construction*, 2021. (page 32)

586 Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties  
587 of neural machine translation: Encoder-decoder approaches. *arXiv preprint arXiv:1409.1259*,  
588 2014. (pages 6, 16)

594 Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph rep-  
 595 resentations. *Advances in Neural Information Processing Systems*, 34:1713–1726, 2021. (page  
 596 10)

597

598 Yuanning Cui, Zequn Sun, and Wei Hu. A prompt-based knowledge graph foundation model for  
 599 universal in-context reasoning. In *NeurIPS*, 2024. (pages 1, 3)

600 Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D  
 601 knowledge graph embeddings. In *AAAI*, 2018. (pages 8, 32)

602

603 Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embedding using  
 604 simple constraints. In *ACL*, 2018. (page 32)

605

606 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 607 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony  
 608 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,  
 609 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roz-  
 610 rière, Bethany Biron, Binh Tang, Bobbie Chern, and et al. The llama 3 herd of models. *arXiv*,  
 611 abs/2407.21783, 2024. (page 10)

612 Ben Finkelshtein, Xingyue Huang, Michael M Bronstein, and Ismail İlkan Ceylan. Cooperative  
 613 graph neural networks. In *ICML*, 2024. (page 3)

614 Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: Association  
 615 rule mining under incomplete evidence in ontological knowledge bases. In *WWW*, 2013. (page  
 616 32)

617

618 Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compositional  
 619 and parameter-efficient representations of large knowledge graphs. In *ICLR*, 2022. (page 32)

620

621 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation  
 622 models for knowledge graph reasoning. In *ICLR*, 2024. (pages 1, 3, 7, 8, 9, 32)

623

624 Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive  
 625 link prediction for both new nodes and new relation types. In *arXiv*, 2023. (pages 1, 3, 30)

626

627 Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun  
 628 Chen. Relational message passing for fully inductive knowledge graph completion. In *ICDE*,  
 2023. (page 1)

629

630 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *KDD*, 2016.  
 631 (pages 2, 3)

632

633 Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,  
 634 Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration  
 635 of biomedical knowledge prioritizes drugs for repurposing. *Elife*, 2017. (page 32)

636

637 Xingyue Huang, Miguel Romero Orth, İsmail İlkan Ceylan, and Pablo Barceló. A theory of link  
 638 prediction via relational weisfeiler-leman on knowledge graphs. In *NeurIPS*, 2023. (pages 2, 32)

639

640 Xingyue Huang, Pablo Barcelo, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L  
 641 Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models? In  
 642 *ICML*, 2025. (pages 1, 2, 3, 7)

643

644 Jinwoo Kim, Olga Zagheni, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong. Revisit-  
 645 ing random walks for learning on graphs. In *ICLR*, 2025. (pages 2, 3, 4, 5, 32)

646

647 Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph  
 648 embedding via relation graphs. In *ICML*, 2023. (pages 1, 3, 30, 32)

649

650 Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive knowl-  
 651 edge graph completion using pair-wise encoding. In *NeurIPS*, 2021. (page 32)

648 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,  
 649 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.  
 650 In *NeurIPS*, 2020. (page 6)

651

652 Xin Lv, Lei Hou Xu Han, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, and Suhui  
 653 Wu. Dynamic anticipation and completion for multi-hop reasoning over sparse knowledge graph.  
 654 In *EMNLP*, 2020. (page 32)

655

656 Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge base  
 657 from multilingual wikipedias. In *CIDR*, 2015. (page 32)

658

659 Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, and Yejin Choi. Commonsense  
 660 knowledge base completion with structural and semantic context. In *AAAI*, 2020. (page 32)

661

662 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav  
 663 Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.  
 664 In *AAAI*, 2019. (page 3)

665

666 Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In *NeurIPS*,  
 667 2020. (pages 2, 3)

668

669 Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random  
 670 dropouts increase the expressiveness of graph neural networks. In *NeurIPS*, 2021. (page 3)

671

672 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-  
 673 tions. In *KDD*, 2014. (pages 2, 3)

674

675 Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Bench-  
 676 mark. In *EMNLP*, 2020. (pages 8, 32)

677

678 Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and  
 679 Max Welling. Modeling relational data with graph convolutional networks. In *ESWC*, 2018.  
 680 (page 2)

681

682 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020. (pages  
 683 6, 16)

684

685 Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-  
 686 beddings and structural graph representations. In *ICLR*, 2020. (page 2)

687

688 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding  
 689 by relational rotation in complex space. In *ICLR*, 2019. (pages 2, 33)

690

691 Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: a uniform language  
 692 model fine-tuning framework for attributed graph embedding. In *NeurIPS*, 2023. (page 3)

693

694 Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-  
 695 graph reasoning. In *ICML*, 2020. (pages 2, 32)

696

697 Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman  
 698 hierarchy: Graph learning beyond message passing. *TMLR*, 2021. (pages 3, 5)

699

700 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text  
 701 inference. In *Workshop on Continuous Vector Space Models and their Compositionality*, 2015.  
 702 (pages 8, 32)

703

704 Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-  
 705 relational graph convolutional networks. In *ICLR*, 2020. (page 2)

706

707 Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. *NeurIPS*, 2024.  
 708 (pages 3, 5, 32)

709

710 Wenhao Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method  
 711 for knowledge graph reasoning. In *EMNLP*, 2017. (page 32)

702 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural  
 703 networks? In *ICLR*, 2019. (page 3)

704

705 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in neural infor-*  
 706 *mation processing systems*, 32, 2019. (pages 6, 16)

707

708 Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness  
 709 hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In *ICML*, 2023a. (page 3)

710

711 Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using  
 712 graph neural networks for multi-node representation learning. In *NeurIPS*, 2021. (page 2)

713

714 Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In *WebConf*,  
 715 2022. (page 2)

716

717 Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han. Adaprop: Learning  
 718 adaptive propagation for graph neural network based knowledge graph reasoning. In *KDD*, 2023b.  
 719 (page 2)

720

721 Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A more expressive  
 722 model for zero-shot domain transfer in knowledge graphs. In *LoG*, 2024. (pages 1, 3, 7, 8)

723

724 Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link prediction  
 725 with new relation types and nodes. In *NeurIPS GLFrontiers*, 2023. (pages 3, 8, 30, 32)

726

727 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-  
 728 works: A general graph neural network framework for link prediction. In *NeurIPS*, 2021. (pages  
 729 2, 29, 32)

730

731 Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,  
 732 and Jian Tang. A\*net: A scalable path-based reasoning approach for knowledge graphs. In  
 733 *NeurIPS*, 2023. (page 2)

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A METHODOLOGY - DETAILS**  
 757

758 In this section, we expand on the descriptions of individual components of FLOCK summarized  
 759 in Section 4: the random walk algorithm, the recording protocol, the sequence processor, and the  
 760 consensus protocol.

761 **A.1 UNIFORM RANDOM WALK**  
 762

763 Let  $G = (V, E, R)$  be a knowledge graph, and let  $\ell$  be the length of random walks. For each node  
 764  $v \in V$ , we will denote by  $\mathcal{N}(v)$  the set of neighbors of  $v$ :

$$765 \mathcal{N}(v) = \{w \in V : \exists r \in R. (v, r, w) \in E \vee (w, r, v) \in E\}$$

766 and by  $E(v, w)$ , the set of relational edges from  $v$  to  $w$  (allowing for the inverse direction):

$$767 E(v, w) = \{(v, r, w) \in R \times \{v\} \times \{w\} : (v, r, w) \in E\} \\ 768 \cup \{(v, r^{-1}, w) \in R^{-1} \times \{v\} \times \{w\} : (w, r, v) \in E\}$$

769 where  $R^{-1}$  is the set symbolizing the inverses of relation types in  $R$ . The uniform random walk  
 770 with no backtracking  $\eta(G, \ell)$  of length  $\ell$  over  $G$ , represented as:

$$771 V_0 \xrightarrow{R_1} V_1 \xrightarrow{R_2} \dots \xrightarrow{R_\ell} V_\ell$$

772 is a second-order Markov process that follows the rules:

$$773 \mathbb{P}(V_{i+2} = v \mid V_{i+1} = w, V_i = u) = \begin{cases} 0 & \text{if } v = u \text{ and } |\mathcal{N}_w| > 1 \\ 1 & \text{if } v = u \text{ and } \mathcal{N}_w = \{u\} \\ \frac{1}{|\mathcal{N}_w|-1} & \text{if } v \neq u \text{ and } v \in \mathcal{N}_w \\ 0 & \text{if } v \notin \mathcal{N}_w \end{cases} \quad (8)$$

$$774 \mathbb{P}(R_{j+1} = r \mid V_{j+1} = w, V_j = u) = \begin{cases} \frac{1}{|E_{(w,u)}|} & \text{if } r(w, u) \in E_{(w,u)} \\ 0 & \text{otherwise} \end{cases}$$

775 for all  $i \geq 0, j \geq 1$ . Intuitively, at each step of the walk, we first select a neighbor (except for the  
 776 vertex chosen one step ago) of the current node uniformly at random (disregarding multi-edges and  
 777 edge directions), and then sample an edge between these two nodes uniformly at random. If the  
 778 current node has only one neighbor, we are forced to return to it.

779 The initial conditions depend on the selected scenario. Given a query  $q = (h, r, ?)$  over  $G$ , we can  
 780 describe the process of selecting the first step  $V_0 \xrightarrow{R_1} V_1$  as setting either (each with probability  $\frac{1}{3}$ ):

781 •  $V_0 = h$  and selecting the first step uniformly at random as described above, meaning:

$$782 \mathbb{P}(V_1 = v \mid V_0 = h) = \begin{cases} \frac{1}{|\mathcal{N}_h|} & \text{if } v \in \mathcal{N}_h \\ 0 & \text{if } v \notin \mathcal{N}_h \end{cases}$$

$$783 \mathbb{P}(R_1 = r \mid V_1 = w) = \begin{cases} \frac{1}{|E_{(w,h)}|} & \text{if } r(w, h) \in E_{(w,h)} \\ 0 & \text{otherwise} \end{cases}$$

784 • setting  $R_1 = r$  and selecting  $V_0 \xrightarrow{R_1} V_1$  uniformly at random from edges with type  $r$ .  
 785 • choosing  $V_0$  uniformly at random, and then sampling the first step at random as well:

$$786 \mathbb{P}(V_0 = w) = \frac{1}{|V|}$$

$$787 \mathbb{P}(V_1 = w \mid V_0 = v) = \begin{cases} \frac{1}{|\mathcal{N}_w|} & \text{if } v \in \mathcal{N}_w \\ 0 & \text{if } v \notin \mathcal{N}_w \end{cases}$$

$$788 \mathbb{P}(R_1 = r \mid V_1 = w, V_0 = v) = \begin{cases} \frac{1}{|E_{(w,v)}|} & \text{if } r(w, v) \in E_{(w,v)} \\ 0 & \text{otherwise} \end{cases}$$

789 For the relation prediction objective, we add one more scenario, similar to the first one described  
 790 above, but substituting  $V_0 = t$  instead. For that problem, each scenario is chosen with probability  $\frac{1}{4}$ .

810 A.2 RECORDING FUNCTION  
811

812 Given a KG  $G = (V, E, R)$ , a query  $q = (h_q, r_q, ?)$ , a walk  $\bar{\eta} = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell$  of length  
813  $\ell$  over  $G$ , and a set of embeddings  $\mathbf{v}$  of nodes  $V$  and  $\mathbf{r}$  of relations  $R$ , our recording function  $w$  first  
814 splits the walk into a sequence of  $\ell + 1$  steps:

$$815 \quad (r_0, v_0), (r_1, v_1), \dots (r_\ell, v_\ell)$$

816 with  $r_0 = r_\emptyset$  being a special marker for no relation. Each step  $(r_i, v_i)$  is transformed into a 7-tuple:  
817

$$818 \quad S_i = (\text{id}_V(v_i; \bar{\eta}), \text{id}_R(r_i; \bar{\eta}), \text{dir}_i, \delta_{v_i=h_q}, \delta_{r_i=r_q}, \mathbf{v}(v_i), \mathbf{r}(r_i))$$

819 where:

820 •  $\text{id}_V(v_i; \bar{\eta})$  and  $\text{id}_R(r_i; \bar{\eta})$  are the anonymized id's of the node  $v_i$  and relation  $r_i$ , evaluated as:

$$821 \quad \text{id}_V(v_i; \bar{\eta}) = \arg \min_t [v_t = v_i]$$

$$822 \quad \text{id}_R(r_i; \bar{\eta}) = \arg \min_t [r_t = r_i \vee r_t = r_i^{-1}]$$

823 •  $\text{dir}_i$  denotes the direction in which we follow the edge. We set  $\text{dir}_i = 0$  if  $r_i \in R$  (the edge is  
824 traversed from head to tail) and  $\text{dir}_i = 1$  if  $r_i \in R^{-1}$  (the edge is taken in the reverse direction).  
825 •  $\delta_{v_i=h_q}$  and  $\delta_{r_i=r_q}$  are binary flags representing whether the current node  $v_i$  is the query head  
826  $v_q$  and if the relation  $r_i$  is either the queried relation  $r_q$  or its inverse  $r_q^{-1}$ .  
827 •  $\mathbf{v}(v_i), \mathbf{r}(r_i)$  are the embeddings of  $v_i$  and  $r_i$ , respectively.

828 The output of  $w$  for  $\bar{\eta}$  given  $G, q, \mathbf{v}, \mathbf{r}$  is then:

$$829 \quad w(\bar{\eta}; G, q, \mathbf{v}, \mathbf{r}) = (S_0, S_1, \dots, S_\ell)$$

830 A.3 SEQUENCE PROCESSOR  
831

832 Once the sampled walks are anonymized by the recording protocol  $w$ , the output for each walk  $\bar{\eta}_i$ :

$$833 \quad w(\bar{\eta}_i; G, q, \mathbf{v}, \mathbf{r}) = (S_0, S_1, \dots, S_\ell)$$

834 is passed through the sequence processor  $f_\theta$ , parametrized by the following modules:  
835

836 •  $\mathbf{A}_v, \mathbf{A}_r \in \mathbb{R}^{(\ell+1) \times d}$ : embedding tables for anonymized vertices and relations, respectively,  
837 •  $\mathbf{D} \in \mathbb{R}^{2 \times d}$ : look-up table for the direction embedding,  
838 •  $\mathbf{Q}_h, \mathbf{Q}_r \in \mathbb{R}^{2 \times d}$ : embedding tables for the binary query labels,  
839 •  $\mathbf{V}, \mathbf{R} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ : linear maps applied to the passed embeddings of vertices and relations,  
840 •  $\Omega$ : a bi-directional GRU (Cho et al., 2014) cell equipped with RMSNorm (Zhang & Sennrich,  
841 2019) and SwiGLU (Shazeer, 2020) activation function.

842 For each step, encoding  $S_i$  of the form:  
843

$$844 \quad S_i = (\text{id}_V(v_i; \bar{\eta}_i), \text{id}_R(r_i; \bar{\eta}_i), \text{dir}_i, \delta_{v_i=h_q}, \delta_{r_i=r_q}, \mathbf{v}(v_i), \mathbf{r}(r_i))$$

845 we evaluate the processed embedding  $\mathbf{c}_i$  of  $S_i$  as a sum of the corresponding encoded components:  
846

$$847 \quad \mathbf{c}_i = \mathbf{A}_v(\text{id}_V(v_i; \bar{\eta}_i)) + \mathbf{A}_r(\text{id}_R(r_i; \bar{\eta}_i)) + \mathbf{D}(\text{dir}_i) \\ 848 \quad + \mathbf{Q}_h(\delta_{v_i=h_q}) + \mathbf{Q}_r(\delta_{r_i=r_q}) + \mathbf{V}(\mathbf{v}(v_i)) + \mathbf{R}(\mathbf{r}(r_i))$$

849 These are then passed to the GRU cell  $\Omega$ , which fuses the features across the whole walk and  
850 produces multi-head embeddings of vertices and relations, as well as the associated weights:  
851

$$852 \quad \left( \mathbf{s}_i^{(V)}, \mathbf{s}_i^{(R)}, \mathbf{a}_i^{(V)}, \mathbf{a}_i^{(R)} \right) = \Omega([\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_\ell])$$

853 where  $\mathbf{s}_i^{(V)}, \mathbf{s}_i^{(R)} \in \mathbb{R}^{(\ell+1) \times h \times d_h}$  and  $\mathbf{a}_i^{(V)}, \mathbf{a}_i^{(R)} \in \mathbb{R}^{(\ell+1) \times h}$ . Stacking all  $N$  of them gives us the  
854 final output of the sequence processor.

864  
865

## A.4 CONSENSUS PROTOCOL

866 Given walks  $\bar{\eta}_{1:N}$  over  $G = (V, E, R)$  and the outputs  $\mathbf{s}^{(V)}, \mathbf{s}^{(R)}, \mathbf{a}^{(V)}, \mathbf{a}^{(R)}$  of the sequence  
 867 processor, the consensus protocol  $c$  aggregates the signal for each node by evaluating a weighted sum  
 868 over the appearances of this node across the walks. More precisely, for each node  $v \in V$ , we find all  
 869 pairs of indices  $(i, j)$ , such that the  $j^{\text{th}}$  node visited in  $\bar{\eta}_i$  was  $v$ , and concatenate the weighted sums  
 870 of embeddings produced by each head, with weights exponentially proportional to the scores  $\mathbf{a}^{(V)}$ :

$$\Delta \mathbf{v}(v) = \bigoplus_{k=1}^h \frac{\sum_{i,j} \exp \left( \mathbf{a}_{i,j,k}^{(V)} \right) \cdot \mathbf{s}_{i,j,k}^{(V)}}{\sum_{i,j} \exp \left( \mathbf{a}_{i,j,k}^{(V)} \right)}$$

871 Similarly, we aggregate the encodings for relations, considering their occurrences in both directions:  
 872

$$\Delta \mathbf{r}(r) = \bigoplus_{k=1}^h \frac{\sum_{i,j} \exp \left( \mathbf{a}_{i,j,k}^{(R)} \right) \cdot \mathbf{s}_{i,j,k}^{(R)}}{\sum_{i,j} \exp \left( \mathbf{a}_{i,j,k}^{(R)} \right)}$$

873 In both formulas above,  $\bigoplus$  denotes concatenation.  
 874

875 Additionally, we say that a consensus protocol  $c$  is *invariant* if for any pair of isomorphic KGs  
 876  $G = (V, E, R)$  and  $H = (V', E', R')$ , any isomorphism  $\mu = (\pi, \phi)$  from  $G$  to  $H$ , any list of  
 877 embeddings  $\mathbf{h}_{1:N}$  with  $\mathbf{h}_i \in \mathbb{R}^d$ , and any sequence of sampled walks  $\bar{\eta}_{1:N}$  over  $G$ , the outputs  
 878

$$\begin{aligned} (\Delta \mathbf{v}, \Delta \mathbf{r}) &= c(\mathbf{h}_{1:N}, \bar{\eta}_{1:N}) \\ (\Delta \mathbf{v}', \Delta \mathbf{r}') &= c(\mathbf{h}_{1:N}, \mu(\bar{\eta}_{1:N})) \end{aligned}$$

879 satisfy:  
 880

$$\begin{aligned} \Delta \mathbf{v}(v) &= \Delta \mathbf{v}'(\pi(v)) & \forall v \in V \\ \Delta \mathbf{r}(r) &= \Delta \mathbf{r}'(\phi(r)) & \forall r \in R \end{aligned}$$

881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

918 **B PROOFS**919 **B.1 EXPRESSIVITY**

920 The main proposition of this section formalizes the fact that FLOCK can approximate any link-  
 921 invariant function over fixed-size knowledge graphs in probability. Intuitively, when the length of  
 922 the sampled walks  $\ell$  becomes higher, the probability of a single walk witnessing all the edges grows  
 923 to 1. Once a walk visits all the edges, a sufficiently powerful sequence processor can derive the  
 924 whole graph structure from its anonymized representation, recreating the graph in its entirety, up to  
 925 isomorphism. Then, the processor can return the value of the approximated function for that graph.  
 926

927 We start by showing that the edge cover time  $C_E(\cdot)$  of graphs in  $K_{n,m}$  is bounded:  
 928

929 **Lemma B.1.** *Let  $G \in \mathbb{K}_{n,m}$  for some  $n, m$ . The edge cover time  $C_E(G)$  of  $G$ , using the algorithm  
 930 from Appendix A.1, is finite.*

931 *Proof.* Let  $G = (V, E, R) \in \mathbb{K}_{n,m}$  be a graph. For any edge  $e \in E$  and any vertex  $v \in V$ , let  $H_v(e)$   
 932 denote the expected number of steps of the random walk algorithm  $\eta$  described in Appendix A.1.  
 933 Then, the edge cover time  $C_E(G)$  of  $G$  with  $\eta$ , i.e. the expected number of steps that  $\eta$  needs to take  
 934 before visiting every edge in  $G$ , is bounded above by:  
 935

$$936 \quad C_E(G) \leq \sum_{e \in E} \max_{v \in V} H_v(e) \leq m \cdot \max_{\substack{e \in E \\ v \in V}} H_v(e)$$

937 Indeed, consider the event of visiting all these edges in order  $e_1, \dots, e_m$ :  
 938

$$\begin{aligned} 939 \quad C_E(G) &= \mathbb{E}[\#\text{steps to visit all } e_1, \dots, e_m] \\ 940 &\leq \mathbb{E}[\#\text{steps to visit } e_1, \text{ then } e_2, \dots, \text{ then } e_m] \\ 941 &\leq \mathbb{E}[\#\text{steps to visit } e_1] + \sum_{i=1}^{m-1} \mathbb{E}[\#\text{steps to visit } e_{i+1} \text{ starting from } h_i \text{ or } t_i] \\ 942 &\leq \max_{v \in V} H_v(e_1) + \sum_{i=1}^{m-1} \max(H_{h_i}(e_{i+1}), H_{t_i}(e_{i+1})) \\ 943 &\leq \max_{v \in V} H_v(e_1) + \sum_{i=1}^{m-1} \max_{v \in V} H_v(e_{i+1}) \\ 944 &= \sum_{i=1}^m \max_{v \in V} H_v(e_i) \end{aligned}$$

945 where  $h_i$  and  $t_i$  are the head and tail of the edge  $e_i$ , respectively. Therefore, to show that  $C_E(G)$  is  
 946 finite, it suffices to prove that  $H_v(e)$  is bounded for all  $v \in V, e \in E$ .  
 947

948 Fix  $v \in V$  and  $e \in E$ . Consider an infinite random walk generated with  $\eta$  over  $G$ , starting at  $v$ :  
 949

$$950 \quad v = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} v_2 \xrightarrow{r_3} \dots$$

951 We want to bound the expected first index  $t$ , such that  $e$  is the edge traversed in step  $v_{t-1} \xrightarrow{r_t} v_t$ .  
 952 Denote by  $\Delta$  a maximum degree of a vertex in  $G$  (counted as the number of connected vertices  
 953  $\mathcal{N}(v)$ ), by  $\rho$  the maximum number of edges between any single pair of nodes and by  $d$  – the diameter  
 954 of the graph, i.e. the length of the longest shortest path between two vertices (in the undirected  
 955 version of  $G$ ). Consider the series of events  $A_0, A_1, \dots$  where  $A_i$  is characterized as:  
 956

$$\begin{aligned} 957 \quad A_i &:= \text{the event that starting from } v_{i(d+2)} \text{ the walk will follow a shortest path} \\ 958 &\quad \text{to one of the endpoints of } e \text{ and then go through } e \end{aligned}$$

959 Let  $e = (h_e, r_e, t_e)$ . For all values of  $i$ , by definition, the length of the shortest path from  $v_{i(d+2)}$  to  
 960  $h_e$  or  $t_e$  is at most  $d$ . Therefore, the whole part of the walk described in  $A_i$  is at most  $d + 1$  steps  
 961 long. By the definition of the used random walk algorithm, which only looks at the previously taken  
 962 edge, we can deduce that the events  $A_i$  are all mutually independent.  
 963

Moreover, let  $v_{i(d+2)} = u_0 \xrightarrow{s_1} u_1 \xrightarrow{s_2} \dots \xrightarrow{s_\ell} u_\ell \in \{h_e, t_e\}$  be a shortest path from  $v_{i(d+2)}$  to one of  $h_e, t_e$ . Note that by minimality, there cannot be any backtracking while following this path. Therefore, the probability of the next visited node is dependent only on the value of the previous one, and we can bound the probability  $P(A_i)$  of  $A_i$  from below by:

$$\mathbb{P}(A_i) \geq \mathbb{P}(\text{pass through } e \text{ after reaching } h_e \text{ or } t_e) \cdot \prod_{j=0}^{\ell-1} \mathbb{P}(v_{i(d+2)+j+1} = u_{j+1} \mid v_{i(d+2)+j} = u_j)$$

The first term on the right hand side is the probability of selecting  $e$  while being at  $h_e$  or  $t_e$ , which is the probability of first selecting the other endpoint (out of at most  $\Delta$  neighbors) and then picking  $e$  over other edges between  $h_e$  and  $t_e$  (of which there is at most  $\rho$ ). Hence:

$$\mathbb{P}(\text{pass through } e \text{ after reaching } h_e \text{ or } t_e) \geq \frac{1}{\Delta} \cdot \frac{1}{\rho} = \frac{1}{\Delta \cdot \rho}$$

As we never reach a backtracking situation by minimality of the shortest path, we can also write:

$$\mathbb{P}(v_{i(d+2)+j+1} = u_{j+1} \mid v_{i(d+2)+j} = u_j) = \frac{1}{|\mathcal{N}(v_{i(d+2)+j})|} \geq \frac{1}{\Delta}$$

Combining these observations, we can derive a bound for  $\mathbb{P}(A_i)$  in terms of  $\Delta, \rho$  and  $d$ :

$$\begin{aligned} \mathbb{P}(A_i) &\geq \mathbb{P}(\text{pass through } e \text{ after reaching } h_e \text{ or } t_e) \cdot \prod_{j=0}^{\ell-1} \mathbb{P}(v_{i(d+2)+j+1} = u_{j+1} \mid v_{i(d+2)+j} = u_j) \\ &\geq \frac{1}{\Delta \cdot \rho} \cdot \prod_{j=0}^{\ell-1} \frac{1}{\Delta} \geq \frac{1}{\Delta \cdot \rho} \left(\frac{1}{\Delta}\right)^\ell \geq \frac{1}{\Delta \cdot \rho} \left(\frac{1}{\Delta}\right)^d = \frac{1}{\rho \Delta^{d+1}} \end{aligned}$$

Finally, note that if  $A_i$  is true, then the first index  $t$  such that  $v_{t-1} \xrightarrow{r_t} v_t$  traverses  $e$  is at most  $(i+1)(d+2)$ . We can therefore bound the expectation of such  $t$ , being  $H_v(e) = H_{v_0}(e)$  by:

$$\begin{aligned} H_v(e) &\leq (d+2) \cdot \mathbb{P}(A_0) + 2(d+2) \cdot \mathbb{P}(\neg A_0 \wedge A_1) + 3(d+2) \cdot \mathbb{P}(\neg A_0 \wedge \neg A_1 \wedge A_2) + \dots \\ &= (d+2) \cdot \mathbb{P}(A_0) + 2(d+2) \cdot \mathbb{P}(\neg A_0) \cdot P(A_1) + 3(d+2) \cdot \mathbb{P}(\neg A_0) \cdot \mathbb{P}(\neg A_1) \cdot \mathbb{P}(\wedge A_2) + \dots \\ &= (d+2) + \mathbb{P}(\neg A_0) \cdot (d+2 + \mathbb{P}(\neg A_1) \cdot (d+2 + \mathbb{P}(\neg A_2) \cdot (\dots))) \\ &\leq (d+2) + \left(1 - \frac{1}{\rho \Delta^{d+1}}\right) \cdot \left(d+2 + \left(1 - \frac{1}{\rho \Delta^{d+1}}\right) \cdot \left(d+2 + \left(1 - \frac{1}{\rho \Delta^{d+1}}\right) \cdot (\dots)\right)\right) \\ &= \rho(d+2)\Delta^{d+1} \end{aligned}$$

Since  $\rho \leq m, d+2 \leq n$  and  $\Delta \leq n$ , we have  $H_v(e) \leq m(n+2)n^n$ , which completes the proof.  $\square$

**Remark B.2.** The bound obtained in the proof of Lemma B.1 is very crude. In fact, we could transform the given knowledge graph into a simple graph (undirected, with no multi-edges) by substituting each edge  $u \xrightarrow{r} v$  with two undirected edges  $u \leftrightarrow v_{(u,r,v)} \leftrightarrow v$ . The augmented graph will then have  $n+m$  vertices, and our random walk algorithm naturally translates to a weighted random walk on the transformed graph. This hints at an assumption that in practice, the edge cover time of the used random walk algorithm is of the magnitude  $O((n+m)^3) = O(n^3 + m^3)$ .

Let us now prove a fact about the number of distinct, up to isomorphism, graphs in  $\mathbb{K}_{n,m}$ .

**Lemma B.3.** For any  $n, m$ , the number of isomorphism classes in  $\mathbb{K}_{n,m}$  is finite.

*Proof.* Since the number of distinct relation types that a graph in  $\mathbb{K}_{n,m}$  is at most  $m$ , it suffices to show that the number of isomorphism classes of graphs in  $\mathbb{K}_{n,m}$  with exactly  $k$  relation types is bounded, for all  $k \in \{1, 2, \dots, m\}$ .

Fix the number  $k \in \{1, 2, \dots, m\}$  and consider  $G = (V, E, R) \in \mathbb{K}_{n,m}$  with  $|R| = k$ . We will show that, up to isomorphism, there are finitely many such choices of  $G$ . Firstly, as renaming does not change the graph structure, without loss of generality, we can assume that:

$$V = \{v_1, v_2, \dots, v_n\} \quad \text{and} \quad R = \{r_1, r_2, \dots, r_k\}$$

Then, there are exactly  $n^2k$  possible relational edges  $e \in (V \times R \times V)$ , and  $E \subseteq V \times R \times V$  is a set of  $m$  elements. Hence, there are  $\binom{n^2k}{m}$  possible choices of  $E$ , and hence, at most  $\binom{n^2k}{m}$  non-isomorphic choices of  $G$ . Since  $k$  was chosen arbitrarily, this completes the proof.  $\square$

1026 **Lemma B.4.** *For each pair  $(n, m)$ , there exists a number  $C_{n,m}$  such that the edge cover time, using  
1027 the algorithm from Appendix A.1, of any knowledge graph in  $\mathbb{K}_{n,m}$  is at most  $C_{n,m}$ .*  
1028

1029 *Proof.* The result follows from Lemmas B.1 and B.3. As two isomorphic graphs have identical  
1030 cover time, we can set  $C_{n,m}$  to be the maximum of cover times of representatives of all isomorphic  
1031 classes, which, by finiteness of both, is well-defined.  $\square$   
1032

1033 **Lemma B.5.** *Let  $G \in \mathbb{K}_{n,m}$  be a graph,  $q = (h_q, r_q, ?)$  be a link query over  $G$ , and  $\bar{\eta}$  be a walk  
1034 over  $G$ . If  $\bar{\eta}$  traverses all edges of  $G$ , then using only the output  $w(\bar{\eta}; G, q, \cdot, \cdot)$  of the recording func-  
1035 tion  $w$  detailed in Appendix A.2, we can construct a graph-query pair  $(H, q')$  isomorphic to  $(G, q)$ .*  
1036

1037 *Proof.* Suppose that  $\bar{\eta} = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell$  visits all edges of  $G = (V, E, R)$  and let  $\ell$  be  
1038 its length. Recall the anonymization functions  $\text{id}_V(\cdot; \bar{\eta})$  and  $\text{id}_R(\cdot; \bar{\eta})$  as defined in Appendix A.2.  
1039 The output  $w(\bar{\eta}; G, q, \cdot, \cdot)$  (the embedding functions provided as the last two arguments are irrele-  
1040 vant) is a sequence of tuples  $S_0, S_1, \dots, S_\ell$  with each  $S_i$  equal to:  
1041

$$S_i = (\text{id}_V(v_i; \bar{\eta}), \text{id}_R(r_i; \bar{\eta}), \text{dir}_i, \delta_{v_i=h_q}, \delta_{r_i=r_q}, \cdot, \cdot)$$

1042 Consider a graph  $H = (V', E', R')$  constructed as follows:  
1043

- 1044 • the vertices  $V'$  correspond to the anonymized node ids  $\text{id}_V(v_i; \bar{\eta})$ :

$$V' = \{\text{id}_V(v; \bar{\eta}) \mid v \in V\}$$

1045 Since each vertex must have been visited by  $\bar{\eta}$ , this is well-defined.  
1046

- 1047 • the relation types  $R'$  are the anonymized relation ids  $\text{id}_R(r_i; \bar{\eta})$ :

$$R' = \{\text{id}_R(r; \bar{\eta}) \mid r \in R\}$$

1048 Again, this is well-defined, as each relation must have been noticed by  $\bar{\eta}$ .  
1049

- 1050 • the edges  $E'$  are reconstructed from the consecutive step encodings using the anonymized  
1051 vertex and relation indices and the direction  $\text{dir}_i$ :

$$E' = \{(\text{id}_V(v_{i-1}), \text{id}_R(r_i), \text{id}_V(v_i)) \mid \text{dir}_i = 0, 1 \leq i \leq l\} \\ \cup \{(\text{id}_V(v_i), \text{id}_R(r_i), \text{id}_V(v_{i-1})) \mid \text{dir}_i = 1, 1 \leq i \leq l\}$$

1052 and a query  $q' = (\text{id}_V(v_i; \bar{\eta}), \text{id}_R(r_j; \bar{\eta}), ?)$  for  $i, j$  such that  $\delta_{v_i=h_q} = 1$  and  $\delta_{r_j=r_q} = 1$ .  
1053

1054 Then by the definition of  $w$  (Appendix A.2), it is straightforward to check that the pair  
1055  $(\text{id}_V(\cdot; \bar{\eta}), \text{id}_R(\cdot; \bar{\eta}))$  defines an isomorphism from  $(G, q)$  to  $(H, q')$ . Indeed, both these functions are  
1056 injective by construction, and as  $\bar{\eta}$  witnesses all nodes and relations, they are well-defined bijections.  
1057 For each unique edge traversed by  $\bar{\eta}$ , there exists a unique edge in  $E'$  translated to the anonymized  
1058 space, which implies an isomorphism between  $E$  and  $E'$ . Finally, by utilizing the flags  $\delta_{v_i=h_q}$  and  
1059  $\delta_{r_j=r_q}$ , we can identify the query head node and relation in the new graph. All things considered,  
1060 we can reconstruct the pair  $(G, q)$ , up to isomorphism, from the output of  $w(\bar{\eta}; G, q, \cdot, \cdot)$ .  $\square$   
1061

1062 We are now ready to prove the main result regarding the universality of FLOCK as an approximation  
1063 of link invariant functions. The outline of the proof is as follows: 1) Using the upper-bound on the  
1064 edge cover time of graphs in  $\mathbb{K}_{n,m}$  derived in Lemma B.4, we can bound the probability of sampling  
1065 a walk that visits all edges, 2) Once such a walk is sampled, we can recover the graph and query, up  
1066 to isomorphism, from its anonymized form (Lemma B.5), 3) Lastly, we can return the value of the  
1067 approximated function for the derived isomorphic instance. Since the approximated function is link  
1068 invariant, if the reconstructed graph matches the original one, we return precisely the correct value.  
1069

1070 **Proposition 4.1.** *With a powerful enough sequence processor  $f_\theta$ , the FLOCK framework described  
1071 in Section 4 is a universal approximator of link invariant functions over  $\mathbb{K}_{n,m}$  for all pairs  $(n, m)$ .*  
1072

1073 *Proof.* Let  $\varphi : \mathbb{K}_{n,m} \rightarrow (V \times R \times V \rightarrow [0, 1])$  be a link invariant function over  $\mathbb{K}_{n,m}$  returning  
1074 values from the interval  $[0, 1]$ . Let  $G = (V, E, R) \in \mathbb{K}_{n,m}$ ,  $q = (h, r, ?)$  be a link prediction query  
1075 over  $G$  and  $t \in V$  be a target node. Pick some  $\epsilon, \delta > 0$ . Our goal is to show that:  
1076

$$\mathbb{P}(|\varphi(G)((h, r, t)) - X_\theta(G, (h, r, ?))(t)| < \epsilon) > 1 - \delta \quad (9)$$

1080 For simplicity, let us consider a situation where only a single walk  $\bar{\eta}$  of length  $\ell$  is sampled by  
 1081 the model (otherwise, omit additional walks). We will also restrict the argument to a single refine-  
 1082 ment case – the result can be extended to multiple refinement steps by returning  $\Delta\mathbf{v}, \Delta\mathbf{r} = 0$  during  
 1083 all additional iterations. Consider a sequence processor  $f_\theta$  that given the output  $w(\bar{\eta}; G, q, \cdot, \cdot)$  of  
 1084 the recording protocol, creates a graph-query pair  $(H, q')$  with  $q' = (h_{q'}, r_{q'}, ?)$  using the strat-  
 1085 egic described in the proof of Lemma B.5, and returns a vector  $\mathbf{h} \in \mathbb{R}^{l+1}$  whose  $i^{\text{th}}$  entry is equal  
 1086 to  $\mathbf{h}_i = \varphi(H)((h_{q'}, r_{q'}, \text{id}_V(v_i; \bar{\eta}))$  where  $v_i$  is the  $i^{\text{th}}$  node visited by  $\bar{\eta}$ . The consensus protocol  $c$ ,  
 1087 provided  $t$  was visited by  $\bar{\eta}$ , can then identify  $t$  as one of the  $v_j$  and pull the corresponding em-  
 1088 bedding  $\mathbf{h}_j = \varphi(H)((h_{q'}, r_{q'}, \text{id}_V(t; \bar{\eta})))$ , returning it as the output  $\mathbf{v}(t) = \mathbf{h}_j$  (note that no matter  
 1089 which specific value of  $j$  is chosen, this value will be the same). Finally, the classification head can  
 1090 work as an identity operation, returning  $X_\theta(G, q)(t) = \mathbf{v}(t) = \varphi(H)((h_{q'}, r_{q'}, \text{id}_V(t; \bar{\eta})))$ .

1091 We claim that if the sampled walk  $\bar{\eta}$  traverses all edges of  $G$ , then the output of the FLOCK model  
 1092 described above satisfies:

$$\varphi(G)((h, r, t)) = X_\theta(G, (h, r, ?))(t)$$

1093 By Lemma B.5, in such case, the reconstructed pair  $(H, q')$  is isomorphic to  $(G, q)$  by the isomor-  
 1094 phism  $\text{id} = (\text{id}_V(\cdot; \bar{\eta}), \text{id}_R(\cdot; \bar{\eta}))$ . Since  $\varphi$  is link invariant, we can write:

$$\begin{aligned} \varphi(G)((h, r, t)) &= \varphi(\text{id}(G))((\text{id}_V(h; \bar{\eta}), \text{id}_R(r; \bar{\eta}), \text{id}_V(t; \bar{\eta}))) \\ &= \varphi(H)((h_{q'}, r_{q'}, \text{id}_V(t; \bar{\eta}))) \\ &= X_\theta(G, (h, r, ?))(t) \end{aligned}$$

1100 Therefore, whenever the walk  $\bar{\eta}$  witnesses all edges of  $G$ , the output of the FLOCK model satisfies:

$$\varphi(G)((h, r, t)) = X_\theta(G, (h, r, ?))(t)$$

1104 Hence, to show (9), it suffices to prove that we can uniformly choose the length  $\ell$  of the random  
 1105 walk so that the probability of  $\bar{\eta}$  covering all the edges is greater than  $1 - \delta$ . By Markov's inequality:

$$\begin{aligned} \mathbb{P}(\bar{\eta} \text{ does not cover all edges}) &= \mathbb{P}(\text{it takes } > \ell \text{ steps for } \eta \text{ to cover edges of } G) \\ &\leq \frac{\mathbb{E}[\#\text{steps such that } \eta \text{ covers all edges of } G]}{\ell} \\ &= \frac{C_E(G)}{\ell} \end{aligned}$$

1112 But by Lemma B.4,  $C_E(G) \leq C_{n,m}$  for some constant  $C_{n,m}$ . Hence, taking  $\ell > \frac{C_{n,m}}{\delta}$ , we get:

$$\mathbb{P}(\bar{\eta} \text{ does not cover all edges}) \leq \frac{C_E(G)}{\ell} \leq \frac{C_{n,m}}{\ell} < \delta$$

1116 This means that for such a choice of  $\ell$ :

$$\mathbb{P}(\bar{\eta} \text{ witnesses all edges of } G) > 1 - \delta$$

1119 which leads to the conclusion that for  $\ell > \frac{C_{n,m}}{\delta}$ , the proposed FLOCK framework satisfies:

$$\mathbb{P}(|\varphi(G)((h, r, t)) - X_\theta(G, (h, r, ?))(t)| < \epsilon) > 1 - \delta$$

1122 for any choice of  $G = (V, E, R) \in \mathbb{K}_{n,m}$  and  $(h, r, t) \in V \times R \times V$ .  $\square$

## 1124 B.2 INVARIANCE

1126 First, let us recall the definition of invariance for the context of knowledge graphs and the associated  
 1127 notion of invariance in probability. We say that a function  $\varphi$  taking KGs as input is invariant if for  
 1128 any pair of isomorphic KGs  $G \simeq H$  it produces the same input, i.e.  $G \simeq H \implies \varphi(G) = \varphi(H)$ .

1129 We extend the notion of invariance for further types of inputs, not limited to full knowledge graphs,  
 1130 particularly to random walks and link prediction queries. Let  $G = (V, E, R) \in \mathbb{K}_{n,m}$  and let  
 1131  $H = (V', E', R') \simeq G$  be a KG isomorphic to  $G$  via the isomorphism  $\mu = (\pi, \phi)$ . For any  $h \in V$   
 1132 and  $r \in R$ , we identify the link prediction query  $q = (h, r, ?)$  in  $H$  using the isomorphism  $\mu$  as:

$$\mu(q) = \mu((h, r, ?)) = (\pi(h), \phi(r), ?)$$

1134 Similarly, let  $\eta = v_0 \xrightarrow{r_1} \dots \xrightarrow{r_\ell} v_\ell$  be a walk of length  $\ell$  in  $G$ . The view of  $\eta$  with  $\mu$  is defined as:  
 1135

$$1136 \mu \left( v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell \right) = \pi(v_0) \xrightarrow{\phi(r_1)} \pi(v_1) \xrightarrow{\phi(r_2)} \dots \xrightarrow{\phi(r_\ell)} \pi(v_\ell)$$

1138 Let  $f$  be a function taking inputs drawn from KGs. We call  $f$  invariant if for any pair of isomorphic  
 1139 graphs  $G \xrightarrow{\mu} H$  and an associated isomorphism  $\mu = (\pi, \phi)$ ,  $f$  satisfies  
 1140

$$1141 f(x) = f(\mu(x))$$

1142 where  $x$  can be, e.g., a walk or link prediction query. In words, invariance means that the function  
 1143 preserves output under the re-identifications of the input graph and the induced transformations of  
 1144 queries and walks.

1145 This notion extends to functions with multiple inputs, where we enforce the transformation on each  
 1146 graph-related input. For example, a function  $\varphi$  taking a KG, query and a  $d$ -dimensional vector is  
 1147 invariant if it satisfies:

$$1148 \forall G \xrightarrow{\mu} H, q, \mathbf{v} \in \mathbb{R}^d : \quad \varphi(G, q, \mathbf{v}) = \varphi(\mu(G), \mu(q), \mathbf{v})$$

1150 Following the definition of *invariance in probability*, provided in Section 3, we extend all the defi-  
 1151 nitions above to the stochastic case, replacing equality ( $=$ ) with equality in distribution ( $\stackrel{d}{=}$ ).  
 1152

1153 We can now prove the main propositions stated in Section 4.2. Let's begin with the more general:

1154 **Proposition 4.2.** *Suppose that the walk sampling protocol  $\eta$  is invariant in probability and both the  
 1155 recording protocol  $w$  and the consensus protocol  $c$  are invariant. Then, regardless of the choice of  
 1156 the deterministic sequence processor  $f_\theta$ , the corresponding FLOCK model is invariant in probability.*

1158 *Proof.* Let  $(V, E, R) = G \simeq H = (V', E', R')$  be isomorphic knowledge graphs with isomorphism  
 1159  $\mu = (\pi, \phi)$  transforming  $G$  into  $H$ . Our goal is to show that when the statement conditions are met  
 1160 for a FLOCK model  $X_\theta$  with  $I$  refinement steps, then for any link prediction query  $q = (h, r, ?)$  and  
 1161 any target node  $t \in V$ , the prediction of FLOCK for  $t$  over  $(G, q)$  is an identical random variable to  
 1162 the prediction for  $\pi(t)$  over  $(H, \mu(q))$ , i.e.

$$1163 X_\theta(G, q)(t) \stackrel{d}{=} X_\theta(H, \mu(q))(\pi(t))$$

1164 where  $\mu(q) = (\pi(h), \phi(r), ?)$ . Recall that these predictions are defined as:

$$1166 X_\theta(G, q)(t) := \text{head}(\mathbf{v}^{(I)}(t) + \mathbf{r}^{(I)}(r))$$

$$1168 X_\theta(H, \mu(q))(\pi(t)) := \text{head}(\mathbf{v}'^{(I)}(\pi(t)) + \mathbf{r}'^{(I)}(\phi(r)))$$

1169 As  $\text{head}$  is a deterministic map, it suffices to show that the final embeddings  $\mathbf{v}^{(I)}, \mathbf{r}^{(I)}$  for  $(G, q)$   
 1170 and  $\mathbf{v}'^{(I)}, \mathbf{r}'^{(I)}$  for  $(H, \mu(q))$  satisfy:

$$1172 \mathbf{v}^{(I)}(v) \stackrel{d}{=} \mathbf{v}'^{(I)}(\pi(v)) \quad \text{and} \quad \mathbf{r}^{(I)}(r) \stackrel{d}{=} \mathbf{r}'^{(I)}(\phi(r)) \quad \forall v \in V, r \in R$$

1173 We will prove this result by induction on the number of layers  $i$ . The base case  $i = 0$  is trivial, as  
 1174 we initialize the embeddings of all nodes with a pretrained vector  $\mathbf{v}_0$ , and all relations with  $\mathbf{r}_0$ .  
 1175

1176 For the induction step, suppose the claim holds for  $i$ . We drop the superscript  $(i)$  for readability.  
 1177 The result for  $i + 1$  becomes apparent by unfolding the definitions of invariance of the considered  
 1178 components. Since  $\eta$  is invariant in probability, we have

$$1179 \mu(\eta(G)) \stackrel{d}{=} \eta(H) \tag{10}$$

1180 Let  $\eta_1, \dots, \eta_n$  be the random walks over  $G$  using  $\eta$  and  $\eta'_1, \dots, \eta'_n$  be random walks over  $H$ . Now,  
 1181  $\eta_1, \dots, \eta_n$  are independent and identically distributed random variables, each following the distri-  
 1182 bution  $\eta_j \sim \eta(G)$ . Similarly, using (10):  
 1183

$$1184 \eta'_j \sim \eta(H) \stackrel{d}{=} \mu(\eta(G)) \implies \eta'_j \stackrel{d}{=} \mu(\eta_j) \tag{11}$$

1186 As the recording protocol  $w$  is invariant,  $w(\eta_j) = w(\mu(\eta_j))$  for all  $j$ , which with (11) yields:  
 1187

$$1188 \mathbf{z}_j := w(\eta_j) = w(\mu(\eta_j)) \stackrel{d}{=} w(\eta'_j) := \mathbf{z}'_j \tag{12}$$

1188 Then,  $f_\theta$  is a deterministic map, so (12) implies:  
 1189

$$\mathbf{h}_j := f_\theta(\mathbf{z}_j) \stackrel{d}{=} f_\theta(\mathbf{z}'_j) := \mathbf{h}'_j$$

1190 Let  $(\Delta\mathbf{v}, \Delta\mathbf{r}) = c(\mathbf{h}_{1:N}, \eta_{1:N})$ ,  $(\Delta\mathbf{v}', \Delta\mathbf{r}') = c(\mathbf{h}'_{1:N}, \eta'_{1:N})$  be the outputs of the consensus protocol.  
 1191 We will denote by  $c_{\mathbf{v}}$  and  $c_{\mathbf{r}}$ , the restrictions to the first and second output, e.g.  
 1192  $\Delta\mathbf{v} = c_{\mathbf{v}}(\mathbf{h}_{1:N}, \eta_{1:N})$ . Let  $\mathbf{x} \in \mathbb{R}^d$  be a vector, and denote by  $\mathcal{W}(G)$  the space of walks over  $G$ .  
 1193 For any vertex  $v \in V$ , the probability that  $\Delta\mathbf{v}(v) = \mathbf{x}$  equals:  
 1194

$$\begin{aligned} \mathbb{P}(\Delta\mathbf{v}(v) = \mathbf{x}) &= \sum_{\bar{\eta} \in \mathcal{W}(G)^n} \mathbb{P}(\Delta\mathbf{v}(v) = \mathbf{x} | \eta_{1:N} = \bar{\eta}) \cdot \mathbb{P}(\eta_{1:N} = \bar{\eta}) \\ &= \sum_{\bar{\eta} \in \mathcal{W}(G)^n} \mathbb{P}(c_{\mathbf{v}}(\mathbf{h}_{1:N}, \eta_{1:N}) = \mathbf{x} | \eta_{1:N} = \bar{\eta}) \cdot \mathbb{P}(\eta_{1:N} = \bar{\eta}) \\ &= \sum_{\bar{\eta} \in \mathcal{W}(G)^n} \mathbb{P}(c_{\mathbf{v}}(f_\theta(w(\eta_{1:N})), \eta_{1:N}) = \mathbf{x} | \eta_{1:N} = \bar{\eta}) \cdot \mathbb{P}(\eta_{1:N} = \bar{\eta}) \\ &= \sum_{\bar{\eta} \in \mathcal{W}(G)^n} \mathbb{P}(c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta}) = \mathbf{x} | \eta_{1:N} = \bar{\eta}) \cdot \mathbb{P}(\eta_{1:N} = \bar{\eta}) \\ &= \sum_{\substack{\bar{\eta} \in \mathcal{W}(G)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta})(v) = \mathbf{x}}} \mathbb{P}(\eta_{1:N} = \bar{\eta}) \end{aligned}$$

1211 Similarly, we can derive:  
 1212

$$\mathbb{P}(\Delta\mathbf{v}'(\pi(v)) = \mathbf{x}) = \sum_{\substack{\bar{\eta}' \in \mathcal{W}(H)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta}')), \bar{\eta}')(v) = \mathbf{x}}} \mathbb{P}(\eta'_{1:N} = \bar{\eta}')$$

1216 Using the invariance of the consensus protocol and the invariance of  $f_\theta \circ w$ , we can write:  
 1217

$$\begin{aligned} c_{\mathbf{v}}(f_\theta(w(\bar{\eta}')), \bar{\eta}')(v) &= c_{\mathbf{v}}(f_\theta(w(\mu(\bar{\eta}))), \mu(\bar{\eta}))(v) \\ &= c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \mu(\bar{\eta}))(v) \\ &= c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta})(v) \end{aligned}$$

1222 The graph isomorphism  $\mu$  defines a bijection between walks  $\mathcal{W}(G)$  in  $G$  and walks  $\mathcal{W}(H)$  in  $H$ , so  
 1223 we can use this correspondence to deduce:  
 1224

$$\begin{aligned} \mathbb{P}(\Delta\mathbf{v}'(\pi(v)) = \mathbf{x}) &= \sum_{\substack{\bar{\eta}' \in \mathcal{W}(H)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta}')), \bar{\eta}')(v) = \mathbf{x}}} \mathbb{P}(\eta'_{1:N} = \bar{\eta}') \\ &= \sum_{\substack{\mu(\bar{\eta}) \in \mathcal{W}(H)^n \\ c_{\mathbf{v}}(f_\theta(w(\mu(\bar{\eta}))), \mu(\bar{\eta}))(v) = \mathbf{x}}} \mathbb{P}(\eta'_{1:N} = \mu(\bar{\eta})) \\ &= \sum_{\substack{\bar{\eta} \in \mathcal{W}(G)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta})(v) = \mathbf{x}}} \mathbb{P}(\eta'_{1:N} = \mu(\bar{\eta})) \end{aligned} \tag{13}$$

1235 Since  $\eta$  is invariant in probability,  $\mathbb{P}(\eta_{1:N} = \bar{\eta}) = \mathbb{P}(\eta'_{1:N} = \mu(\bar{\eta}))$ . Applying this to (13) yields:  
 1236

$$\begin{aligned} \mathbb{P}(\Delta\mathbf{v}'(\pi(v)) = \mathbf{x}) &= \sum_{\substack{\bar{\eta} \in \mathcal{W}(G)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta})(v) = \mathbf{x}}} \mathbb{P}(\eta'_{1:N} = \mu(\bar{\eta})) \\ &= \sum_{\substack{\bar{\eta} \in \mathcal{W}(G)^n \\ c_{\mathbf{v}}(f_\theta(w(\bar{\eta})), \bar{\eta})(v) = \mathbf{x}}} \mathbb{P}(\eta_{1:N} = \bar{\eta}) = \mathbb{P}(\Delta\mathbf{v}(v) = \mathbf{x}) \end{aligned}$$

As  $\mathbf{x}$  was chosen arbitrarily, we can conclude that  $\Delta\mathbf{v}(v) \stackrel{d}{=} \Delta\mathbf{v}'(\pi(v))$ . The proof for relations follows analogously, considering  $c_{\mathbf{r}}$  instead of  $c_{\mathbf{v}}$ . This allows us to write:

$$\begin{aligned}\Delta\mathbf{v}(v) &\stackrel{d}{=} \Delta\mathbf{v}'(\pi(v)) \quad \forall v \in V \\ \Delta\mathbf{r}(r) &\stackrel{d}{=} \Delta\mathbf{r}'(\phi(r)) \quad \forall r \in R\end{aligned}\tag{14}$$

By the induction hypothesis,  $\mathbf{v}^{(i)}(v) \stackrel{d}{=} \mathbf{v}'^{(i)}(\pi(v))$  for all  $v \in V$  and  $\mathbf{r}^{(i)}(r) \stackrel{d}{=} \mathbf{r}'^{(i)}(\phi(r))$  for all  $r \in R$ . Therefore, by (14), combined with properties of sums of random variables:

$$\begin{aligned}\mathbf{v}^{(i+1)}(v) &:= \mathbf{v}^{(i)}(v) + \Delta\mathbf{v}(v) \stackrel{d}{=} \mathbf{v}'^{(i)}(\pi(v)) + \Delta\mathbf{v}'(\pi(v)) := \mathbf{v}'^{(i+1)}(\pi(v)) \quad \forall v \in V \\ \mathbf{r}^{(i+1)}(r) &:= \mathbf{r}^{(i)}(r) + \Delta\mathbf{r}(r) \stackrel{d}{=} \mathbf{r}'^{(i)}(\phi(r)) + \Delta\mathbf{r}'(\phi(r)) := \mathbf{r}'^{(i+1)}(\phi(r)) \quad \forall r \in R\end{aligned}$$

which completes the induction step, and hence the proof.  $\square$

We can use the conclusion from Proposition 4.2 to prove the probabilistic invariance of the architecture proposed in Section 4. To be able to apply it, we first need to verify the invariance of all used components, which we formalize in the following lemmas.

**Lemma B.6.** *The choice of the first step  $v_0 \xrightarrow{r_1} v_1$  of the uniform random walk algorithm described in Appendix A.1 is invariant.*

*Proof.* Let  $G = (V, E, R)$  be a graph and let  $H \simeq G$  be an isomorphic graph, with the isomorphism  $\mu = (\pi, \phi)$  taking  $G$  to  $H$ . Consider a link prediction query  $q = (h, r, ?)$  over  $G$ , and its identification  $q' = \mu(q) = (\pi(h), \phi(r), ?)$ . The goal is to show that when using  $\eta$  described in Appendix A.1 for  $(G, q)$  and  $(H, q')$ , the first steps:

$$V_0 \xrightarrow{R_1} V_1 \quad \text{and} \quad U_0 \xrightarrow{S_1} U_1$$

of the execution of  $\eta$  over  $G$  and  $H$ , respectively, satisfy the following property:

$$\pi(V_0) \xrightarrow{\phi(R_1)} \pi(V_1) \stackrel{d}{=} U_0 \xrightarrow{S_1} U_1$$

By definition of  $\eta$ , there are three scenarios of choosing the first step, each with probability  $\frac{1}{3}$ . Hence, it suffices to show that within each scenario, the selection process is invariant in probability:

- **Scenario 1:** selecting the query head as the first node, then proceeding by random. First,  $\pi$  takes the head node of  $q$  to the head node of  $q'$ . Secondly, as isomorphisms preserve the number of neighboring nodes and number of edges between a pair of nodes, we have:

$$\begin{aligned}\mathbb{P}(V_1 = v \mid V_0 = h) &= \begin{cases} \frac{1}{|\mathcal{N}_h|} & \text{if } v \in \mathcal{N}_h \\ 0 & \text{if } v \notin \mathcal{N}_h \end{cases} \\ &= \begin{cases} \frac{1}{|\mathcal{N}_{\pi(h)}|} & \text{if } \pi(v) \in \mathcal{N}_{\pi(h)} \\ 0 & \text{if } \pi(v) \notin \mathcal{N}_{\pi(h)} \end{cases} = \mathbb{P}(U_1 = \pi(v) \mid U_0 = \pi(h))\end{aligned}$$

and

$$\begin{aligned}\mathbb{P}(R_1 = r \mid V_1 = w) &= \begin{cases} \frac{1}{|E_{(w,h)}|} & \text{if } r(w, h) \in E_{(w,h)} \\ 0 & \text{otherwise} \end{cases} \\ &= \begin{cases} \frac{1}{|E_{(\pi(w),\pi(h))}|} & \text{if } \phi(r)(\pi(w), \pi(h)) \in E_{(\pi(w),\pi(h))} \\ 0 & \text{otherwise} \end{cases} \\ &= \mathbb{P}(S_1 = \phi(r) \mid U_1 = \pi(w))\end{aligned}$$

- **Scenario 2:** selecting an edge with query relation type at random. Here, we use the fact that isomorphisms preserve the number of edges of a given type. Hence,  $\mu$  defines a bijection between the sets of edges with type  $r$  in  $G$  and type  $\phi(r)$  in  $H$ , which allows us to conclude that this scenario is also invariant in probability.
- **Scenario 3:** selecting the first step completely at random. This case is similar to Scenario 1 – using the invariance of the number of neighboring nodes under isomorphism, we can repeat similar calculations in a straightforward manner to show probabilistic invariance.

1296 Either way, we find that the selection process of the first step of  $\eta$  over  $G$  translates naturally via  $\mu$   
1297 to the choice of the first step over  $H$ , proving the desired statement.  $\square$   
1298

1299 **Lemma B.7.** *Suppose that the first step  $v_0 \xrightarrow{r_1} v_1$  is chosen in an invariant manner. Then, the*  
1300 *uniform random walk with no backtracking algorithm  $\eta$  is invariant in probability.*

1301 *Proof.* Let  $G = (V, E, R)$  be a knowledge graph, and let  $\ell$  be the length of random walks. Let  $H$   
1302 be a KG isomorphic to  $G$  via the isomorphism  $\mu = (\pi, \phi)$ . We aim to show that:  
1303

$$1304 \mu(\eta(G, \ell)) = \pi(V_0) \xrightarrow{\phi(R_1)} \pi(V_1) \xrightarrow{\phi(R_2)} \dots \xrightarrow{\phi(R_\ell)} \pi(V_\ell) \stackrel{d}{=} U_0 \xrightarrow{S_1} U_1 \xrightarrow{S_2} \dots \xrightarrow{S_\ell} U_\ell = \eta(H, \ell)$$

1306 Let  $\bar{\eta} = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell \in \mathcal{W}(G)$  be a walk of length  $\ell$  over  $G$ . It suffices to show that the  
1307 probability of sampling  $\bar{\eta}$  from  $G$  is identical to the probability of sampling  $\mu(\bar{\eta})$  from  $H$ :

$$1308 \mathbb{P}(\eta(G, \ell) = \bar{\eta}) = \mathbb{P}(\eta(H, \ell) = \mu(\bar{\eta}))$$

1309 To see this, let us expand the definitions of  $\mathbb{P}(\eta(G, \ell) = \bar{\eta})$ :

$$1311 \mathbb{P}(\eta(G, \ell) = \bar{\eta}) = \mathbb{P}(V_0 = v_0) \\ 1312 \quad \cdot \mathbb{P}(V_1 = v_1 \mid V_0 = v_0) \\ 1313 \quad \cdot \prod_{i=0}^{\ell-2} \mathbb{P}(V_{i+2} = v_{i+2} \mid V_{i+1} = v_{i+1}, V_i = v_i) \\ 1314 \quad \cdot \prod_{i=0}^{\ell-1} \mathbb{P}(R_{i+1} = r_{i+1} \mid V_{i+1} = v_{i+1}, V_i = v_i) \quad (15) \\ 1315 \\ 1316 \\ 1317 \\ 1318$$

1319 and  $P(\eta(H, \ell) = \mu(\bar{\eta}))$ :

$$1321 \mathbb{P}(\eta(H, \ell) = \mu(\bar{\eta})) = \mathbb{P}(U_0 = \pi(v_0)) \\ 1322 \quad \cdot \mathbb{P}(U_1 = \pi(v_1) \mid U_0 = \pi(v_0)) \\ 1323 \quad \cdot \prod_{i=0}^{\ell-2} \mathbb{P}(U_{i+2} = \pi(v_{i+2}) \mid U_{i+1} = \pi(v_{i+1}), U_i = \pi(v_i)) \\ 1324 \quad \cdot \prod_{i=0}^{\ell-1} \mathbb{P}(S_{i+1} = \phi(r_{i+1}) \mid U_{i+1} = \pi(v_{i+1}), U_i = \pi(v_i)) \quad (16) \\ 1325 \\ 1326 \\ 1327 \\ 1328$$

1329 Given that the graph isomorphism preserves the number of neighbors for each node and is a bijection,  
1330 we can easily verify using the definitions from (8) that the following indeed hold:

$$1331 \mathbb{P}(V_{i+2} = v_{i+2} \mid V_{i+1} = v_{i+1}, V_i = v_i) = \mathbb{P}(U_{i+2} = \pi(v_{i+2}) \mid U_{i+1} = \pi(v_{i+1}), U_i = \pi(v_i)) \\ 1332 \mathbb{P}(R_{j+1} = r_{j+1} \mid V_{j+1} = v_{j+1}, V_j = v_j) = \mathbb{P}(S_{j+1} = \phi(r_{j+1}) \mid U_{j+1} = \pi(v_{j+1}), U_j = \pi(v_j)) \quad (17)$$

1333 for all  $i \in \{0, 1, \dots, \ell - 2\}$ ,  $j \in \{1, \dots, \ell - 1\}$ . Moreover, by the assumption that the first step  
1334  $V_0 \xrightarrow{R_1} V_1$  is invariant, we have:

$$1336 \mathbb{P}((V_0, R_1, V_1) = (v_0, r_1, v_1)) = \mathbb{P}((U_0, S_1, U_1) = (\pi(v_0), \phi(r_1), \pi(v_1))) \quad (18)$$

1337 But by the laws of conditional probability:

$$1339 \mathbb{P}((V_0, R_1, V_1) = (v_0, r_1, v_1)) = \mathbb{P}(R_1 = r_1 \mid V_0 = v_0, V_1 = v_1) \cdot \mathbb{P}(V_0 = v_0, V_1 = v_1) \\ 1340 \quad = \mathbb{P}(R_1 = r_1 \mid V_0 = v_0, V_1 = v_1) \cdot \mathbb{P}(V_1 = v_0 \mid V_0 = v_0) \cdot \mathbb{P}(V_0 = v_0)$$

1341 and analogously:

$$1342 \mathbb{P}((U_0, S_1, U_1) = (\pi(v_0), \phi(r_1), \pi(v_1))) \\ 1343 \quad = \mathbb{P}(S_1 = \phi(r_1) \mid U_0 = \pi(v_0), U_1 = \pi(v_1)) \cdot \mathbb{P}(U_1 = \pi(v_0) \mid U_0 = \pi(v_0)) \cdot \mathbb{P}(U_0 = \pi(v_0))$$

1345 Substituting these equalities into (18) and multiplying both sides by the equalities from (17) for all  
1346 choices of  $i \in \{0, 1, \dots, \ell - 2\}$ ,  $j \in \{1, \dots, \ell - 1\}$ , we get precisely the equality of the right sides  
1347 of equations (15) and (16). Hence,

$$1348 \mathbb{P}(\eta(G, \ell) = \bar{\eta}) = \mathbb{P}(\eta(H, \ell) = \mu(\bar{\eta}))$$

1349 and we can conclude that  $\mu(\eta(G, \ell)) \stackrel{d}{=} \eta(H, \ell)$ , and the algorithm  $\eta$  is invariant in probability.  $\square$

1350 **Corollary B.8.** *The random walk algorithm presented in Appendix A.1 is invariant in probability.*

1351 **Lemma B.9.** *The recording protocol  $w$ , as described in Appendix A.2, is invariant, provided that*

1352 *the embedding functions  $\mathbf{v}$  and  $\mathbf{r}$  are invariant.*

1353 *Proof.* Let  $G = (V, E, R)$  and  $H = (V', E', R')$  be isomorphic knowledge graphs with the iso-  
 1354 morphism  $\mu = (\pi, \phi)$  taking  $G$  to  $H$ . Let  $q = (h_q, r_q, ?)$  be a link prediction query over  $G$ , and  
 1355  $\mu(q) = (\pi(h_q), \phi(r_q), ?)$  be its identification in  $H$ . Let  $\bar{\eta} = v_0 \xrightarrow{r_1} v_1 \xrightarrow{r_2} \dots \xrightarrow{r_\ell} v_\ell \in \mathcal{W}(G)$  be  
 1356 a walk over  $G$ , and  $\bar{\eta}' = \mu(\bar{\eta}) = \pi(v_0) \xrightarrow{\phi(r_1)} \pi(v_1) \xrightarrow{\phi(r_2)} \dots \xrightarrow{\phi(r_\ell)} \pi(v_\ell)$  be the analogous walk  
 1357 over  $H$ . To prove that the recording protocol  $w$  outlined in Appendix A.2 is invariant, it suffices to  
 1358 show that the encoding of each step:  
 1359

$$1360 S_i = (\text{id}_V(v_i; \bar{\eta}), \text{id}_R(r_i; \bar{\eta}), \text{dir}_i, \delta_{v_i=h_q}, \delta_{r_i=r_q}, \mathbf{v}(v_i), \mathbf{r}(r_i))$$

1361 is identical for  $\bar{\eta}$  and  $\bar{\eta}'$ . We will show this for each component:

1362 • since  $\pi$  defines a bijection between nodes in  $G$  and  $H$ , for any  $i$ , we have:

$$1363 \text{id}_V(v_i; \bar{\eta}) = \arg \min_t [v_t = v_i] = \arg \min_t [\pi(v_t) = \pi(v_i)] = \text{id}_V(\pi(v_i); \bar{\eta}')$$

1364 • similarly to the point above,  $\phi$  is a bijection between relations of  $G$  and  $H$ , so we can write:

$$1365 \begin{aligned} \text{id}_R(r_i; \bar{\eta}) &= \arg \min_t [r_t = r_i \vee r_t = r_i^{-1}] \\ 1366 &= \arg \min_t [\phi(r_t) = \phi(r_i) \vee \phi(r_t) = \phi(r_i)^{-1}] \\ 1367 &= \text{id}_R(\phi(r_i); \bar{\eta}') \end{aligned}$$

1368 •  $\text{dir}_i$  is clearly preserved, as the isomorphism  $\mu$  preserves the directions of edges,

1369 • as  $\pi, \phi$  are bijections the masks  $\delta_{v_i=h_q}, \delta_{r_i=r_q}$ , representing whether the  $i$ 'th node and relation  
 1370 match the types in the query, satisfy:

$$1371 \begin{aligned} v_i = h_q &\iff \pi(v_i) = \pi(h_q) &\implies \delta_{v_i=h_q} = \delta_{\pi(v_i)=\pi(h_q)} \\ 1372 r_i = r_q &\iff \phi(r_i) = \phi(r_q) &\implies \delta_{r_i=r_q} = \delta_{\phi(r_i)=\phi(r_q)} \end{aligned}$$

1373 •  $\mathbf{v}$  and  $\mathbf{r}$  are invariant by assumption, so:

$$1374 \mathbf{v}(v_i) = \mathbf{v}(\pi(v_i)) \quad \text{and} \quad \mathbf{r}(r_i) = \mathbf{r}(\phi(r_i))$$

1375 Combining all these observations, we can conclude that  $w(\bar{\eta}; G, q, \mathbf{v}, \mathbf{r}) = w(\mu(\bar{\eta}); H, \mu(q), \mathbf{v}, \mathbf{r})$   
 1376 and  $w$  is indeed invariant.  $\square$

1377 **Lemma B.10.** *The consensus protocol  $c$ , as described in Appendix A.4, is invariant.*

1378 *Proof.* Let  $G = (V, E, R)$  be a knowledge graph and  $H$  be isomorphic to  $G$  via an isomorphism  
 1379  $\mu = (\pi, \phi)$ . Let  $\bar{\eta}_{1:N} \in \mathcal{W}(G)$  be a sequence of walks in  $G$ . To show that the output of the  
 1380 consensus protocol is invariant, we need to prove that for each  $v \in V$  and  $r \in R$ , the following  
 1381 holds:

$$1382 \Delta \mathbf{v}(v) = \mathbf{v}'(\pi(v)) \quad \text{and} \quad \Delta \mathbf{r}(r) = \Delta \mathbf{r}'(\phi(r)) \quad (19)$$

1383 where  $(\Delta \mathbf{v}, \Delta \mathbf{r}) = c(\mathbf{h}, \bar{\eta}_{1:N})$  and  $(\Delta \mathbf{v}', \Delta \mathbf{r}') = c(\mathbf{h}, \mu(\bar{\eta}_{1:N}))$  for  $\mathbf{h} = (\mathbf{s}^{(V)}, \mathbf{s}^{(R)}, \mathbf{a}^{(V)}, \mathbf{a}^{(R)})$ .

1384 The result follows from the fact that  $\pi$  and  $\phi$  are bijections – whenever  $v$  is the  $j$ <sup>th</sup> vertex visited  
 1385 in the walk  $\bar{\eta}_i$ , the  $j$ <sup>th</sup> node of  $\mu(\bar{\eta}_i)$  must be  $\pi(v)$  (and vice versa). An analogous result holds for  
 1386 the relations. Hence, the aggregation performed by  $c$  for  $v$  (resp.  $r$ ) over  $\bar{\eta}_{1:N}$  is equivalent to the  
 1387 aggregation for  $\pi(v)$  (resp.  $\phi(r)$ ) over  $\mu(\bar{\eta}_{1:N})$ , and (19) is indeed satisfied.  $\square$

1388 **Proposition 4.3.** *FLOCK with components as described in Section 4 is invariant in probability.*

1389 *Proof.* The result follows naturally from aggregating the results of Corollary B.8 and Lemmas B.9  
 1390 and B.10, followed by applying Proposition 4.2.  $\square$

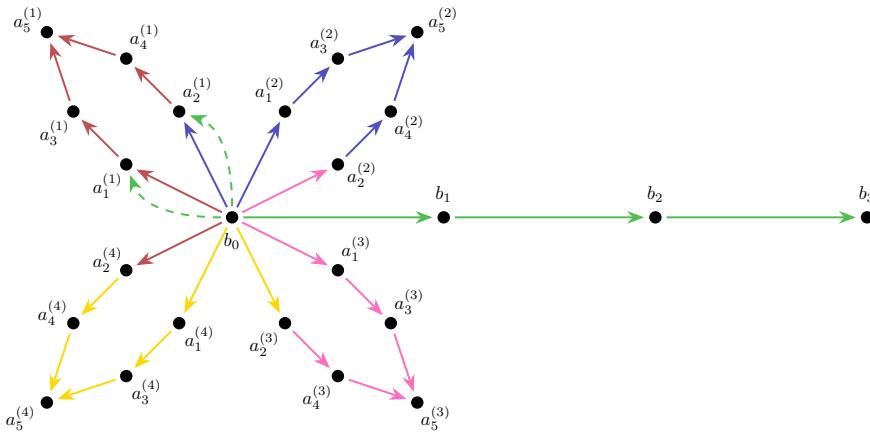


Figure 5: An example of a graph from PETALS with  $c = 4$ ,  $l = 2$  and  $t = 3$ , and the associated link prediction instances (dashed). The relation types ‘red’, ‘blue’, ‘pink’ and ‘yellow’ are structurally isomorphic, hence become equated in the eyes of the existing KGFMs.

### C DETAILS OF THE PETALS BENCHMARK

State-of-the-art knowledge graph foundation models (KGFMs) typically impose relational invariance. Formally, given two knowledge graphs  $G = (V, E, R)$  and  $H = (V', E', R')$ , if there exists an isomorphism  $(\pi, \phi)$  from  $G$  to  $H$ , then for any  $r \in R$ , the model enforces identical representations for  $r$  and its image  $\phi(r) \in R'$ . This design promotes generalization across different graphs, as it aligns analogous relations, but reduces expressivity within a single graph ( $G = H$ ), where relations related by automorphisms are forced to be indistinguishable. Concretely, if an automorphism  $(\pi, \phi)$  of  $G$  maps  $r_1$  to  $r_2$ , then the model must treat  $r_1$  and  $r_2$  as identical during inference. While some approaches mitigate this limitation via the labeling trick, assigning distinct embeddings to query-specific nodes and relations, this only isolates the queried relation type and does not resolve the underlying issue in general.

Motivated by this limitation, we introduce the PETALS benchmark. PETALS comprises 220 graphs, each paired with a link prediction query  $(h, r, ?)$  and a target set  $\{t_1, t_2\}$ . While  $t_1$  and  $t_2$  are non-isomorphic, KGFMs enforcing relational invariance are unable to distinguish them, producing identical predictions. We empirically validate this property by evaluating the classification accuracy of marking  $t_1$  as TRUE and  $t_2$  as FALSE, reported in Table 1.

#### C.1 STRUCTURE OF THE STUDIED KGs

Knowledge graphs in PETALS follow a flower-like structure, parametrized by the number  $c$  of ‘petals’, their length  $l$  and the length  $t$  of the ‘stem’ (see Figure 5 for visualization).

**Vertices.** Each ‘petal’ is a set  $A^{(i)}$  of  $2l + 1$  vertices  $A^{(i)} = \{a_1^{(i)}, a_2^{(i)}, \dots, a_{2l+1}^{(i)}\}$ , while the stem  $B$  consists of  $t + 1$  nodes  $B = \{b_0, b_1, \dots, b_t\}$ . The full set of entities is then:

$$V = B \cup \bigcup_{i=1}^c A(i) = \{b_0, b_1, \dots, b_t\} \cup \{a_j^{(i)} \mid 1 \leq i \leq c, 1 \leq j \leq 2l + 1\}$$

We call  $b_0$  the ‘central’ node, as it is connected to every petal, as described below.

**Edges.** The nodes of the stem are connected in a consecutive manner by the same relation type  $r_0$ . Precisely, for each  $i \in 1, \dots, t$ , there exists an edge  $(b_{i-1}, r_0, b_i)$ . Each petal  $A^{(i)}$  is associated with two edge types  $r_1^{(i)}, r_2^{(i)}$ , and is connected to the central node  $b_0$  with links  $(b_0, r_1^{(i)}, a_1^{(i)})$  and  $(b_0, r_2^{(i)}, a_2^{(i)})$ . The rest of the petal is connected with edges of type  $r_1^{(i)}$  only, going from  $a_{2j-1}^{(i)}$  to  $a_{2j+1}^{(i)}$ , and from  $a_{2j}^{(i)}$  to  $a_{2j+2}^{(i)}$ . Finally, there are also edges linking  $a_{2l-1}^{(i)}$  and  $a_{2l}^{(i)}$  to  $a_{2l+1}^{(i)}$ .

1458 Therefore, the full set of edges can be characterized as:  
 1459

$$\begin{aligned}
 1460 \quad E = & (\{(b_{i-1}, r_0, b_i) \mid 1 \leq i \leq t\}) \cup \left( \bigcup_{i=1}^c \left\{ (b_0, r_1^{(i)}, a_1^{(i)}), (b_0, r_2^{(i)}, a_2^{(i)}) \right\} \right) \\
 1461 & \cup \left( \bigcup_{i=1}^c \bigcup_{j=1}^{\ell-1} \left\{ (a_{2j-1}^{(i)}, r_1^{(i)}, a_{2j+1}^{(i)}), (a_{2j}^{(i)}, r_1^{(i)}, a_{2j+2}^{(i)}) \right\} \right) \\
 1462 & \cup \left( \bigcup_{i=1}^c \left\{ (a_{2\ell-1}^{(i)}, r_1^{(i)}, a_{2l+1}^{(i)}), (a_{2l}^{(i)}, r_1^{(i)}, a_{2l+1}^{(i)}) \right\} \right)
 \end{aligned}$$

1463 We select each of the types  $r_1^{(i)}$  and  $r_2^{(i)}$  from the set of considered relations  $R = \{r_1, \dots, r_{|R|}\}$  so  
 1464 that any relation-invariant model will equate all petals (i.e. so that for each pair of petals, there is  
 1465 an automorphism taking one to another). For instance, Figure 5 displays a cyclic pattern, in which  
 1466  $r_2^{(i)} = r_1^{(i+1)}$ . Such symmetry causes all petals to be isomorphic, and leads to the inability of  
 1467 KGFMs to distinguish between the relations inside them.  
 1468

1469 **Link prediction instances.** Although the petals are isomorphic to each other, given the asymmetry  
 1470 of edge types from  $b_0$  to  $a_1^{(i)}$  and  $a_2^{(i)}$ , the nodes within a single petal generally can be distinguished.  
 1471 Therefore, for each graph with the structure as described above, we randomly sample one of the  
 1472 stem nodes  $b_s$ , and ask the link prediction query  $(b_s, r_0, ?)$ . For the target nodes, we randomly select  
 1473 petal index  $i$  and distance  $j$  from the central node  $b_0$ , and consider the predictions for  $a_{2j-1}^{(i)}$  and  $a_{2j}^{(i)}$ .  
 1474 For example, Figure 5 shows the case when  $b_s = b_0$ ,  $i = 1$  and  $j = 1$ , where the query is  $(b_0, r_0, ?)$   
 1475 and we are interested in the scores for  $a_1^{(1)}$  and  $a_2^{(1)}$ .  
 1476

## 1477 C.2 PARAMETERS AND GENERATION

1478 We construct PETALS by manually designing 11 relation-assignment schemes that guarantee isomor-  
 1479 phism across all petals. For each such selection, which already determines the number  $c$  of petals,  
 1480 we generate 20 graphs corresponding to all combinations of  $t \in \{1, 2, 3, 4\}$  and  $\ell \in \{1, 2, 3, 4, 5\}$ .  
 1481 Each graph is paired with a link prediction query and two target nodes, sampled as described above.  
 1482 This yields  $11 \cdot 20 = 220$  instances that constitute the PETALS benchmark.  
 1483

1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511

1512 Table 6: Training scalability analysis on a single NVIDIA RTX A6000 (48 GB) with batch size = 8.  
 1513 FLOCK using 16 number of base walks and 1 ensemble.

| Model | Parameters | Time / batch (s) | GPU memory (GB) |
|-------|------------|------------------|-----------------|
| ULTRA | 168,705    | 0.117            | 2.110           |
| TRIX  | 87,138     | 0.690            | 3.442           |
| FLOCK | 801,969    | 1.30             | 27.89           |

1520 Table 7: Inference scalability on a single NVIDIA RTX A6000 (48 GB) with batch size = 8. Left  
 1521 columns specify base walks  $n$  and ensembled passes  $P$ . Dashes indicate not applicable.

| Model | # Base Walks $n$ | Ensemble $P$ | Time /batch (s) | GPU memory (GB) |
|-------|------------------|--------------|-----------------|-----------------|
| ULTRA | —                | 1            | 0.073           | 0.848           |
| TRIX  | —                | 1            | 0.500           | 1.382           |
|       | 16               | 1            | 1.26            | 2.868           |
|       | 16               | 2            | 1.99            | 2.864           |
|       | 16               | 4            | 3.24            | 3.938           |
|       | 16               | 8            | 5.45            | 5.172           |
| FLOCK | 16               | 16           | 9.45            | 8.892           |
|       | 128              | 1            | 1.77            | 5.000           |
|       | 128              | 2            | 2.80            | 7.880           |
|       | 128              | 4            | 5.00            | 14.42           |
|       | 128              | 8            | 10.05           | 43.68           |

## D COMPUTATIONAL COMPLEXITY

Recall that  $I$  is the iterations in each forward pass of FLOCK;  $n$  is the base walk count;  $\ell$  is the walk length;  $L$  is the number of linear sequence-model layers (such as GRU); and  $d$  is the hidden dimension for the sequence processor. Note that in practice, we perform  $P$  forward passes and ensemble their outputs to reduce variance. For a single pass ( $P=1$ ), walk sampling and recording cost  $O(n\ell)$ , while the sequence processor with  $L$  layers of hidden dimension  $d$  costs  $O(n\ell Ld^2)$ . The consensus protocol costs  $O(nld)$ . In total, the time complexity is  $O(PIn\ell Ld^2)$ , which scales linearly with the number of (base) walks  $n$ , the length of walks  $\ell$ , and the number of ensembled predictions  $P$ . We empirically verified this in Appendix E.

Compared with message-passing KGFMs like ULTRA and TRIX, FLOCK’s complexity is *independent* of the graph size and average degree; empirically, however, using more walks (increasing  $n$ ) and longer walks (increasing  $\ell$ ) improves coverage and yields more fine-grained representation.

The space complexity of FLOCK per forward pass is  $O(nld)$  plus model parameters  $O(Ld^2)$ . Note that running ensembles sequentially keeps peak memory near this bound, while parallel ensembling increases it by a factor of  $P$ .

## E SCALABILITY ANALYSIS

To investigate the scalability of the proposed method FLOCK, we report the training and inference time per batch and peak GPU memory for ULTRA, TRIX, and variants of FLOCK on a single RTX A6000 (48 GB) in Tables 6 and 7.

**Training.** During training, we fix FLOCK to  $n = 16$  base walks and with an ensemble size of  $P = 1$ , which yields higher cost than ULTRA/TRIX but remains feasible on a single GPU. In addition, unlike ULTRA/TRIX, FLOCK does not rely on GNN message passing where highly optimized fused sparse kernels (e.g., RSPMM kernel developed in Zhu et al. (2021)) accelerate computation; instead, FLOCK’s runtime is dominated by walk sampling and sequence encoding, making time per batch the main bottleneck. As a result, pretraining typically takes about three days. One avenue for future work is to develop similarly highly optimized kernels for random-walk sampling.

1566 Table 8: Noise injection over the best performing KGFMs baseline TRIX.  
1567

|         | (a) Zero-shot entity prediction. |              | (b) Zero-shot relation prediction. |              | (c) Accuracy on PETALS. |         |             |
|---------|----------------------------------|--------------|------------------------------------|--------------|-------------------------|---------|-------------|
|         | MRR                              | Hits@10      | MRR                                | Hits@1       | Accuracy                |         |             |
| TRIX    | 0.366                            | 0.518        | TRIX                               | 0.792        | 0.687                   | TRIX    | 50%         |
| + noise | 0.385                            | 0.545        | + noise                            | 0.739        | 0.643                   | + noise | 52%         |
| FLOCK   | <b>0.391</b>                     | <b>0.560</b> | FLOCK                              | <b>0.881</b> | <b>0.817</b>            | FLOCK   | <b>100%</b> |

1575 **Inference.** Additionally, we report the inference results in Table 7, where we vary the number of  
1576 walks  $n$  and ensembled passes  $P$ . We observe near-linear growth of latency and VRAM with  $n$ ,  
1577 reflecting the dominant costs of walk sampling and sequence processing. Note that during inference,  
1578 ensembled predictions are parallelizable, meaning that with sufficient GPU memory, these  $P$   
1579 stochastic passes can be executed concurrently, so the latency grows sublinearly in  $P$ , while peak  
1580 VRAM scales roughly linearly with  $P$ . In practice, reducing  $n$  (walks) or  $P$  (ensembled passes)  
1581 lowers both memory and latency, while larger  $n/P$  settings trade extra cost for better coverage and  
1582 stability on harder KGs.

## 1583 F NOISE INJECTION OVER EXISTING KGFMs

1586 **Setup.** Since noise injection is a possible way to build a probabilistic equivariant KGFMs in a different  
1587 way from our approach (Gao et al., 2023), it is natural to ask how such KGFMs would perform  
1588 compared to FLOCK. To answer this question, we apply noise injection over the best performing  
1589 KGFMs baselines TRIX. Specifically, in each forward pass, we add element-wise noise sampled  
1590 from a uniform distribution  $\epsilon \sim \mathcal{U}[-0.5, 0]$  to all relation and entity embeddings after the initialization  
1591 stage. Note that the addition of noise technically breaks deterministic node-relation equivariance,  
1592 but the resulting model (TRIX + noise) still respects probabilistic node-relation equivariance.  
1593 We then pretrain TRIX using the same experimental setup shown in Section 5.2, and compare with  
1594 TRIX without noise injection and FLOCK. To minimize the variance induced by injected noise and  
1595 to ensure a fair comparison, we report ensembled prediction results with 16 samples for both TRIX +  
1596 noise and FLOCK. This is a strong baseline implementing the ideas of prior work on noise injection  
1597 and test-time ensembling for message passing networks on KGs (Lee et al., 2023; Gao et al., 2023).

1598 **Results.** We report the average zero-shot performance for entity prediction and relation prediction  
1599 over 54 KGs in Tables 8a and 8b, respectively, as well as trained performance for PETALS in Ta-  
1600 ble 8c. Across all tasks, TRIX with naive noise injection fails to close the gap between FLOCK. In  
1601 particular, TRIX + noise degrades compared with vanilla TRIX without noise injection in relation  
1602 prediction, while boosting the performance in the entity prediction task. We hypothesize that such  
1603 a difference lies in the added randomization breaks symmetry among entity embeddings more than  
1604 among relation embeddings, and entity prediction depends more on having distinguishable entity  
1605 representations than relation prediction does. Additionally, we attribute this performance gap be-  
1606 tween FLOCK and TRIX + noise to the source of randomization. FLOCK introduces stochasticity  
1607 through random walks, which induces *structure-informed* perturbations that respect the underlying  
1608 topology. In contrast, TRIX with naive noise injection attempts to break deterministic node-relation  
1609 equivariance by introducing structure-agnostic noise, which might, in turn, hurt the model’s general-  
1610 ization. Together, these findings suggest that simply adding structure-agnostic noise is insufficient;  
1611 performance gains only arise when stochasticity is topology-aware and is induced from the graph  
1612 structure in a principled way.

## 1613 G CASE STUDY: RELATION EMBEDDING ON METAFAM

1615 **Setup.** To further showcase why expressivity matters for zero-shot generalization, we present a  
1616 case study on the METAFAM dataset (Zhou et al., 2023). METAFAM is built from a fixed family-  
1617 relations ontology: during training, models observe edges with relations `motherOf`, `fatherOf`,  
1618 `daughterOf`, `sonOf`, while the test queries only involve `motherOf` and `fatherOf`. Up to  
1619 gender symmetries, this reduces to two effective predictive patterns (`parent_of` vs. `child_of`), and  
the test set focuses on a single one (`parent_of`).

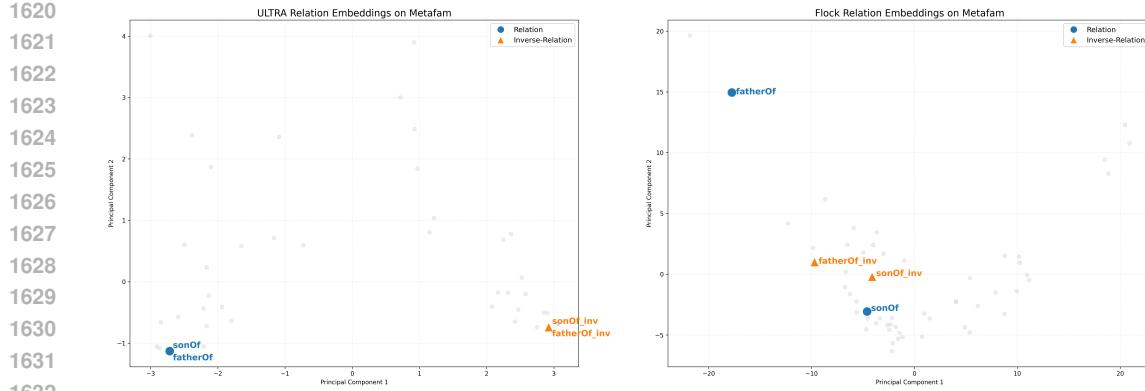


Figure 6: PCA of relation embeddings on METAFAM. ULTRA (Left) maps several inverse pairs (e.g., `fatherOf` vs. `sonOf`) to almost similar embeddings, where FLOCK (Right) yields clearly separated embeddings, indicating that its probabilistic equivariance allow FLOCK to distinguish between these semantically different relations, explaining its strong zero-shot performances.

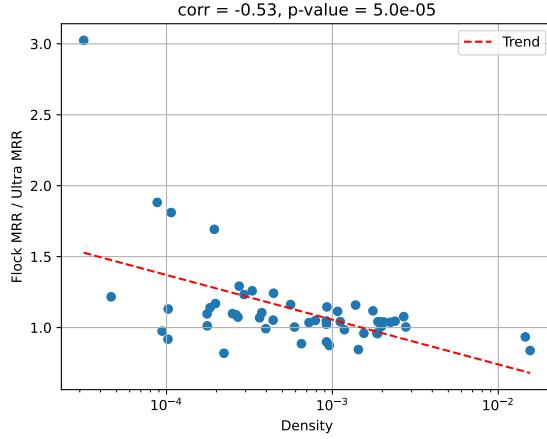


Figure 7: The zero-shot entity prediction performance of FLOCK relative to ULTRA, plotted against the densities of the 53 KGs. Performance of FLOCK and log-density of KGs have a Pearson correlation coefficient of -0.53 with p-value 5.0e-5, showing a statistically significant negative correlation.

In the zero-shot setting, KGFM cannot adapt to this ontology and must rely on their pretrained relation representations. Notice that here, METAFAM is challenging: many relations are structurally similar (e.g., `fatherOf`, `sonOf`, `sisterOf`, `nieceOf`) yet encode opposite predictive patterns.

**Result.** Figure 6 shows that ULTRA’s relation embeddings largely collapse these families, placing `fatherOf` and `sonOf` in almost identical positions in the PCA plane. This collapse makes it difficult to distinguish who is the parent and who is the child, leading to poor zero-shot performance. FLOCK, in contrast, can distinguish between these relations even if they are structurally similar, thanks to its random-walk sampling which introduce probabilistic equivariance on nodes and relations. As a results, FLOCK can produce distinct embeddings to `fatherOf` and `sonOf` and achieves much stronger zero-shot performance on METAFAM.

## H ANALYSIS OF KG SPARSITY AND PERFORMANCE

**Setup.** While Section G explains FLOCK’s high performance for METAFAM, understanding its performances for other general KGs would be beneficial. Thus, we present an additional analysis on the 53 remaining KGs by identifying a structural property that is indicative of the performance of

1674 **FLOCK**. For the performance measure, we use the relative gain of **FLOCK**’s zero-shot entity prediction  
 1675 **MRR** compared to **ULTRA**. For the structural property, we focus on density of KGs defined by  
 1676  $\frac{|E|}{|V|(|V|-1)}$  which affects the speed of random walks traversing all edges of a KG (intuitively because  
 1677 more edges means more time needed to traverse all of them), and hence is relevant in the context of  
 1678 our theory in Section 4.2. We make the argument more grounded below.  
 1679

1680 **Result.** Figure 7 shows that **FLOCK** tends to perform well on sparse KGs, while less so on dense  
 1681 KGs, and the tendency is statistically significant. Interestingly, this agrees with our theoretical  
 1682 analysis in Section 4.2, in which a necessary condition for universality is that the random walk  
 1683 covers all edges of a KG with a high probability (Proposition 4.1). The time taken until covering  
 1684 all edges is called the edge cover time, and it is known to be e.g.,  $O(|V||E|)$  for uniform walks  
 1685 (Zuckerman, 1991), which is proportional to the density of a graph. This suggests the performance  
 1686 of **FLOCK** is associated with the easiness to visit as many edges as possible rapidly, which is more  
 1687 challenging for dense KGs. This analysis is consistent with the observations of recent works on  
 1688 graph learning based on random walks, e.g., Wang & Cho (2024, Section 6) and Kim et al. (2025).  
 1689

## 1690 I FURTHER EXPERIMENTAL DETAILS

1691 **Datasets.** This section provides the full details for all experiments described in the main text.  
 1692 For pretraining, we fit the **FLOCK** model on three standard transductive knowledge graph  
 1693 completion benchmarks, following Galkin et al. (2024): FB15k-237 (Toutanova & Chen, 2015),  
 1694 WN18RR (Dettmers et al., 2018), and CoDEx Medium (Safavi & Koutra, 2020). Then, we eval-  
 1695 uate zero-shot transfer of both entity prediction and relation prediction, as well as the finetuning  
 1696 performance on multiple datasets grouped as follows:  
 1697

- 1698 • **Inductive  $e, r$ .** Link prediction tasks involving previously unseen nodes and relation types.  
 1699 This includes the 13 datasets from INGRAM (Lee et al., 2023): FB-25, FB-50, FB-75, FB-  
 1700 100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-50, NL-75, NL-100, as well as 10  
 1701 datasets from MTDEA (Zhou et al., 2023): MT1 tax, MT1 health, MT2 org, MT2 sci, MT3 art,  
 1702 MT3 infra, MT4 sci, MT4 health, Metafam, and FBNEll.  
 1703
- **Inductive  $e$ .** Link prediction tasks involving novel nodes but fixed relation types. This category  
 1704 comprises 12 GraIL datasets (Teru et al., 2020) (WN-v1 through WN-v4, FB-v1 through FB-  
 1705 v4, NL-v1 through NL-v4), 4 INDIGO benchmarks (Liu et al., 2021) (HM 1k, HM 3k, HM 5k,  
 1706 HM Indigo), and 2 NodePiece datasets (Galkin et al., 2022): ILPC Small and ILPC Large.  
 1707
- **Transductive.** Link prediction tasks where both entities and relations are observed dur-  
 1708 ing training. These include CoDEx Small, CoDEx Large (Safavi & Koutra, 2020), NELL-  
 1709 995 (Xiong et al., 2017), YAGO 310 (Mahdisoltani et al., 2015), WDSinger, NELL23k, FB15k-  
 1710 237(10), FB15k-237(20), FB15k-237(50) (Lv et al., 2020), AristoV4 (Chen et al., 2021), DB-  
 1711 pedia100k (Ding et al., 2018), ConceptNet100k (Malaviya et al., 2020), and Hetionet (Him-  
 1712 melstein et al., 2017).  
 1713

1714 **Full results of Section 5.2.** Full tables of zero-shot entity prediction results are presented in Ta-  
 1715 ble 9, and full tables of finetuned performance are given in Table 10. We further provide the complete  
 1716 zero-shot and finetuned relation prediction results in Table 11 and Table 12. The dataset statistics are  
 1717 in Table 13, Table 14 and Table 15. Table 16 presents the pretraining graph mix shown in Section 5.3.  
 1718 Finally, detailed hyperparameter settings can be found in Table 17, Table 18 and Table 19.  
 1719

1720 **Training.** Following conventions in the literature (Zhu et al., 2021; Huang et al., 2023), for each  
 1721 triple  $(h, r, t)$ , we add the corresponding inverse triple  $(h, r^{-1}, t)$ , where  $r^{-1}$  is a fresh relation  
 1722 symbol. All **FLOCK** instances and its variants are optimized to minimize the negative log-likelihood  
 1723 over positive and negative facts under the *partial completeness assumption* (Galárraga et al., 2013),  
 1724 where negatives are generated by randomly corrupting either the head or the tail entity (for entity  
 1725 prediction) or by corrupting the relation (for relation prediction). To reduce overfitting, we remove  
 1726 edges that directly connect the queried endpoints. The best checkpoint is selected by validation  
 1727 performance. For entity prediction, we take the embedding for potential target  $t$  and relations  $r$ , and  
 obtain the score  $p(h, r, t)$  by passing into a 2-layer MLP. For relation prediction, we concatenate the  
 embedding for source  $h$ , target  $t$ , and potential relation  $r$  to obtain the score  $p(h, r, t)$ .  
 1728

Let  $(h, r, t)$  be a positive triple and let  $k$  denote the number of negatives sampled per positive, where  $(h_i, r, t_i)$  is the  $i$ -th negative samples for entity prediction, and  $h, r_i, t_i$  is the  $i$ -th negative samples for relation prediction. Following Sun et al. (2019), we also consider a self-adversarial variant where negatives are reweighted according to their current difficulty. With adversarial temperature  $\alpha > 0$ , the weights for entity and relation prediction, respectively, are

$$w_{i,\alpha}^{\text{ent}} = \text{Softmax}\left(\frac{\log(1 - p(h'_i, r, t'_i))}{\alpha}\right), \quad w_{i,\alpha}^{\text{rel}} = \text{Softmax}\left(\frac{\log(1 - p(h, r'_i, t))}{\alpha}\right).$$

The corresponding losses become

$$\begin{aligned} \mathcal{L}_{\text{ent}}^{\text{adv}} &= -\log p(h, r, t) - \sum_{i=1}^k w_{i,\alpha}^{\text{ent}} \log(1 - p(h'_i, r, t'_i)), \\ \mathcal{L}_{\text{rel}}^{\text{adv}} &= -\log p(h, r, t) - \sum_{i=1}^k w_{i,\alpha}^{\text{rel}} \log(1 - p(h, r'_i, t)). \end{aligned}$$

1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781

Table 9: Zero-shot entity prediction results. Bold indicates the best score per row.

| Dataset                            | ULTRA        |              | TRIX         |              | FLOCK        |              |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                    | MRR          | Hits@10      | MRR          | Hits@10      | MRR          | Hits@10      |
| <b>Inductive <math>e, r</math></b> |              |              |              |              |              |              |
| FB-25                              | 0.388        | 0.640        | 0.393        | 0.650        | <b>0.404</b> | <b>0.664</b> |
| FB-50                              | 0.338        | 0.543        | 0.334        | 0.547        | <b>0.352</b> | <b>0.566</b> |
| FB-75                              | 0.403        | 0.604        | 0.401        | 0.611        | <b>0.418</b> | <b>0.622</b> |
| FB-100                             | 0.449        | 0.642        | 0.436        | 0.635        | <b>0.452</b> | <b>0.663</b> |
| WK-25                              | <b>0.316</b> | <b>0.532</b> | 0.305        | 0.496        | 0.280        | 0.491        |
| WK-50                              | <b>0.166</b> | <b>0.324</b> | <b>0.166</b> | 0.313        | 0.136        | 0.278        |
| WK-75                              | 0.365        | 0.537        | 0.368        | 0.513        | 0.382        | <b>0.538</b> |
| WK-100                             | 0.164        | 0.286        | <b>0.188</b> | 0.299        | 0.187        | <b>0.304</b> |
| NL-0                               | 0.342        | 0.523        | <b>0.385</b> | 0.549        | 0.381        | <b>0.606</b> |
| NL-25                              | <b>0.395</b> | 0.569        | 0.377        | 0.589        | 0.345        | <b>0.590</b> |
| NL-50                              | <b>0.407</b> | <b>0.570</b> | 0.404        | 0.548        | 0.366        | 0.565        |
| NL-75                              | <b>0.368</b> | <b>0.547</b> | 0.351        | 0.525        | 0.311        | 0.524        |
| NL-100                             | 0.471        | 0.651        | <b>0.486</b> | 0.676        | 0.452        | <b>0.692</b> |
| MT1 tax                            | 0.224        | 0.305        | <b>0.358</b> | 0.452        | 0.282        | <b>0.383</b> |
| MT1 health                         | 0.298        | 0.374        | 0.376        | 0.457        | <b>0.385</b> | <b>0.481</b> |
| MT2 org                            | 0.095        | 0.159        | 0.091        | 0.156        | <b>0.100</b> | <b>0.163</b> |
| MT2 sci                            | 0.258        | 0.354        | <b>0.323</b> | <b>0.465</b> | 0.318        | 0.458        |
| MT3 art                            | 0.259        | 0.402        | 0.284        | 0.441        | <b>0.301</b> | <b>0.466</b> |
| MT3 infra                          | 0.619        | 0.755        | 0.655        | 0.797        | <b>0.684</b> | <b>0.821</b> |
| MT4 sci                            | 0.274        | 0.449        | 0.290        | 0.460        | <b>0.301</b> | <b>0.463</b> |
| MT4 health                         | 0.624        | 0.737        | 0.677        | 0.775        | <b>0.680</b> | <b>0.780</b> |
| Metafam                            | 0.238        | 0.644        | 0.341        | 0.815        | <b>0.476</b> | <b>0.935</b> |
| FBNELL                             | 0.485        | 0.652        | 0.473        | 0.660        | <b>0.502</b> | <b>0.700</b> |
| <b>Inductive <math>e</math></b>    |              |              |              |              |              |              |
| FB-v1                              | 0.498        | 0.656        | <b>0.515</b> | 0.682        | 0.500        | <b>0.697</b> |
| FB-v2                              | 0.512        | 0.700        | 0.525        | 0.730        | <b>0.535</b> | <b>0.737</b> |
| FB-v3                              | 0.491        | 0.654        | 0.501        | 0.669        | <b>0.511</b> | <b>0.685</b> |
| FB-v4                              | 0.486        | 0.677        | 0.493        | 0.687        | <b>0.505</b> | <b>0.702</b> |
| WN-v1                              | 0.648        | 0.768        | <b>0.699</b> | 0.791        | 0.698        | <b>0.803</b> |
| WN-v2                              | 0.663        | 0.765        | 0.678        | 0.781        | <b>0.696</b> | <b>0.790</b> |
| WN-v3                              | 0.376        | 0.476        | 0.418        | 0.541        | <b>0.467</b> | <b>0.608</b> |
| WN-v4                              | 0.611        | 0.705        | 0.648        | 0.723        | <b>0.653</b> | <b>0.729</b> |
| NL-v1                              | 0.785        | <b>0.913</b> | <b>0.806</b> | 0.898        | 0.658        | 0.863        |
| NL-v2                              | 0.526        | 0.707        | 0.569        | 0.768        | <b>0.588</b> | <b>0.797</b> |
| NL-v3                              | 0.515        | 0.702        | 0.558        | 0.743        | <b>0.590</b> | <b>0.783</b> |
| NL-v4                              | 0.479        | 0.712        | 0.538        | 0.765        | <b>0.555</b> | <b>0.786</b> |
| HM 1k                              | 0.059        | 0.092        | <b>0.072</b> | <b>0.128</b> | 0.069        | 0.119        |
| HM 3k                              | 0.037        | 0.077        | <b>0.069</b> | <b>0.119</b> | 0.067        | 0.118        |
| HM 5k                              | 0.034        | 0.071        | 0.062        | 0.110        | <b>0.064</b> | <b>0.116</b> |
| HM Indigo                          | <b>0.440</b> | <b>0.648</b> | 0.436        | 0.645        | 0.423        | 0.638        |
| ILPC Small                         | 0.302        | 0.443        | 0.303        | 0.455        | <b>0.309</b> | <b>0.459</b> |
| ILPC Large                         | 0.290        | 0.424        | 0.307        | 0.428        | <b>0.318</b> | <b>0.438</b> |
| <b>Transductive</b>                |              |              |              |              |              |              |
| NELL995                            | 0.406        | 0.543        | 0.472        | 0.629        | <b>0.494</b> | <b>0.655</b> |
| NELL23k                            | 0.239        | 0.408        | <b>0.290</b> | <b>0.497</b> | 0.233        | 0.398        |
| WDsinger                           | 0.382        | 0.498        | <b>0.511</b> | <b>0.609</b> | 0.410        | 0.528        |
| ConceptNet100k                     | 0.082        | 0.162        | 0.193        | 0.345        | <b>0.248</b> | <b>0.453</b> |
| CoDEx Small                        | <b>0.472</b> | 0.667        | <b>0.472</b> | <b>0.670</b> | 0.441        | 0.644        |
| CoDEx Large                        | 0.338        | <b>0.469</b> | 0.335        | <b>0.469</b> | <b>0.342</b> | 0.464        |
| YAGO310                            | <b>0.451</b> | 0.615        | 0.409        | 0.627        | 0.414        | <b>0.674</b> |
| AristoV4                           | 0.182        | 0.282        | 0.181        | 0.286        | <b>0.308</b> | <b>0.443</b> |
| DBpedia100k                        | 0.398        | 0.576        | 0.426        | 0.603        | <b>0.450</b> | <b>0.627</b> |
| Hetionet                           | 0.257        | 0.379        | <b>0.279</b> | <b>0.420</b> | 0.246        | 0.371        |
| FB15k-237(10)                      | <b>0.248</b> | 0.398        | 0.246        | 0.393        | 0.246        | <b>0.402</b> |
| FB15k-237(20)                      | 0.272        | 0.436        | 0.269        | 0.430        | <b>0.273</b> | <b>0.444</b> |
| FB15k-237(50)                      | <b>0.324</b> | <b>0.526</b> | 0.321        | 0.521        | 0.319        | 0.518        |

1836  
1837

Table 10: Finetuned entity prediction results. Bold indicates the best score per row.

1838  
1839  
1840

1841

1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859

1860

1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874

1875

1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
18851886  
1887  
1888  
1889

| Dataset                            | ULTRA        |              | TRIX         |              | FLOCK        |              |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                    | MRR          | Hits@10      | MRR          | Hits@10      | MRR          | Hits@10      |
| <b>Inductive <math>e, r</math></b> |              |              |              |              |              |              |
| FB-25                              | 0.383        | 0.635        | 0.393        | 0.650        | <b>0.405</b> | <b>0.666</b> |
| FB-50                              | 0.334        | 0.538        | 0.334        | 0.547        | <b>0.357</b> | <b>0.570</b> |
| FB-75                              | 0.400        | 0.598        | 0.401        | 0.611        | <b>0.425</b> | <b>0.630</b> |
| FB-100                             | 0.444        | 0.643        | 0.436        | 0.633        | <b>0.460</b> | <b>0.668</b> |
| WK-25                              | <b>0.321</b> | <b>0.535</b> | 0.300        | 0.493        | 0.298        | 0.506        |
| WK-50                              | 0.140        | 0.280        | <b>0.166</b> | <b>0.313</b> | 0.127        | 0.260        |
| WK-75                              | 0.380        | 0.530        | 0.368        | 0.513        | <b>0.405</b> | <b>0.556</b> |
| WK-100                             | 0.168        | 0.286        | <b>0.188</b> | 0.299        | 0.187        | <b>0.306</b> |
| NL-0                               | 0.329        | 0.551        | 0.385        | 0.549        | <b>0.418</b> | <b>0.619</b> |
| NL-25                              | <b>0.407</b> | 0.596        | 0.377        | 0.589        | 0.405        | <b>0.626</b> |
| NL-50                              | <b>0.418</b> | <b>0.595</b> | 0.405        | 0.555        | 0.391        | 0.562        |
| NL-75                              | <b>0.374</b> | <b>0.570</b> | 0.351        | 0.525        | 0.344        | 0.544        |
| NL-100                             | 0.458        | 0.684        | 0.482        | 0.691        | <b>0.486</b> | <b>0.714</b> |
| MT1 tax                            | 0.330        | 0.459        | 0.397        | <b>0.508</b> | <b>0.413</b> | 0.497        |
| MT1 health                         | 0.380        | 0.467        | 0.376        | 0.457        | <b>0.394</b> | <b>0.493</b> |
| MT2 org                            | 0.104        | 0.170        | 0.098        | 0.162        | <b>0.107</b> | <b>0.174</b> |
| MT2 sci                            | 0.311        | 0.451        | 0.331        | <b>0.526</b> | <b>0.366</b> | 0.525        |
| MT3 art                            | 0.306        | 0.473        | 0.289        | 0.441        | <b>0.330</b> | <b>0.483</b> |
| MT3 infra                          | 0.657        | 0.807        | 0.672        | 0.810        | <b>0.709</b> | <b>0.838</b> |
| MT4 sci                            | 0.303        | 0.478        | 0.305        | 0.482        | <b>0.324</b> | <b>0.509</b> |
| MT4 health                         | 0.704        | 0.785        | 0.702        | 0.785        | <b>0.711</b> | <b>0.790</b> |
| Metafam                            | <b>0.997</b> | <b>1.000</b> | <b>0.997</b> | <b>1.000</b> | 0.992        | <b>1.000</b> |
| FBNELL                             | 0.481        | 0.661        | 0.478        | 0.655        | <b>0.531</b> | <b>0.714</b> |
| <b>Inductive <math>e</math></b>    |              |              |              |              |              |              |
| FB-v1                              | 0.509        | 0.670        | 0.515        | 0.682        | <b>0.549</b> | <b>0.721</b> |
| FB-v2                              | 0.524        | 0.710        | 0.525        | 0.730        | <b>0.553</b> | <b>0.754</b> |
| FB-v3                              | 0.504        | 0.663        | 0.501        | 0.669        | <b>0.528</b> | <b>0.696</b> |
| FB-v4                              | 0.496        | 0.684        | 0.493        | 0.687        | <b>0.510</b> | <b>0.702</b> |
| WN-v1                              | 0.685        | 0.793        | 0.705        | 0.798        | <b>0.715</b> | <b>0.811</b> |
| WN-v2                              | 0.679        | 0.779        | 0.682        | 0.780        | <b>0.702</b> | <b>0.795</b> |
| WN-v3                              | 0.411        | 0.546        | 0.425        | 0.543        | <b>0.494</b> | 0.627        |
| WN-v4                              | 0.614        | 0.720        | 0.650        | 0.722        | <b>0.665</b> | <b>0.741</b> |
| NL-v1                              | 0.757        | 0.878        | <b>0.804</b> | 0.899        | 0.762        | <b>0.928</b> |
| NL-v2                              | 0.575        | 0.761        | 0.571        | 0.764        | <b>0.612</b> | <b>0.806</b> |
| NL-v3                              | 0.563        | 0.755        | 0.571        | 0.759        | <b>0.606</b> | <b>0.803</b> |
| NL-v4                              | 0.469        | 0.733        | 0.551        | 0.772        | <b>0.572</b> | <b>0.801</b> |
| HM 1k                              | 0.042        | 0.100        | <b>0.072</b> | 0.128        | 0.071        | <b>0.153</b> |
| HM 3k                              | 0.030        | 0.090        | <b>0.069</b> | 0.119        | 0.067        | <b>0.153</b> |
| HM 5k                              | 0.025        | 0.068        | <b>0.074</b> | 0.118        | 0.061        | <b>0.130</b> |
| HM Indigo                          | 0.432        | 0.639        | <b>0.436</b> | <b>0.645</b> | 0.418        | 0.633        |
| ILPC Small                         | 0.303        | 0.453        | 0.303        | <b>0.455</b> | <b>0.305</b> | 0.454        |
| ILPC Large                         | 0.308        | <b>0.431</b> | 0.310        | <b>0.431</b> | <b>0.320</b> | 0.441        |
| <b>Transductive</b>                |              |              |              |              |              |              |
| NELL995                            | 0.509        | 0.660        | 0.506        | 0.648        | <b>0.531</b> | <b>0.665</b> |
| NELL23k                            | 0.268        | 0.450        | <b>0.306</b> | <b>0.536</b> | 0.280        | 0.465        |
| WDsinger                           | 0.417        | 0.526        | <b>0.502</b> | <b>0.620</b> | 0.435        | 0.543        |
| ConceptNet100k                     | 0.310        | 0.529        | 0.340        | 0.564        | <b>0.352</b> | <b>0.580</b> |
| CoDEx Small                        | <b>0.490</b> | <b>0.686</b> | 0.484        | 0.676        | 0.463        | 0.648        |
| CoDEx Large                        | 0.343        | 0.478        | <b>0.348</b> | <b>0.481</b> | 0.342        | 0.467        |
| YAGO310                            | <b>0.557</b> | <b>0.710</b> | 0.541        | 0.702        | 0.552        | 0.700        |
| AristoV4                           | 0.343        | 0.496        | 0.345        | 0.499        | <b>0.383</b> | <b>0.523</b> |
| DBpedia100k                        | 0.436        | 0.603        | 0.457        | 0.619        | <b>0.470</b> | <b>0.623</b> |
| Hetionet                           | <b>0.399</b> | <b>0.538</b> | 0.394        | 0.534        | 0.314        | 0.465        |
| FB15k-237(10)                      | 0.254        | 0.411        | 0.253        | 0.408        | <b>0.260</b> | <b>0.420</b> |
| FB15k-237(20)                      | 0.274        | 0.445        | 0.273        | 0.441        | <b>0.284</b> | <b>0.459</b> |
| FB15k-237(50)                      | <b>0.325</b> | <b>0.528</b> | 0.322        | 0.522        | 0.317        | 0.517        |
| <b>Pretrained</b>                  |              |              |              |              |              |              |
| FB15k-237                          | <b>0.368</b> | <b>0.564</b> | 0.366        | 0.559        | 0.343        | 0.532        |
| WN18RR                             | 0.480        | 0.614        | 0.514        | 0.611        | <b>0.550</b> | <b>0.656</b> |
| CoDEx Medium                       | <b>0.372</b> | <b>0.525</b> | 0.365        | 0.521        | 0.351        | 0.496        |

Table 11: Zero-shot relation prediction results. Bold indicates the best score per row.

| Dataset                            | ULTRA |        | TRIX         |        | FLOCK        |              |
|------------------------------------|-------|--------|--------------|--------|--------------|--------------|
|                                    | MRR   | Hits@1 | MRR          | Hits@1 | MRR          | Hits@1       |
| <b>Inductive <math>e, r</math></b> |       |        |              |        |              |              |
| FB-25                              | 0.687 | 0.565  | 0.805        | 0.724  | <b>0.895</b> | <b>0.839</b> |
| FB-50                              | 0.696 | 0.575  | 0.780        | 0.699  | <b>0.880</b> | <b>0.820</b> |
| FB-75                              | 0.698 | 0.555  | 0.822        | 0.747  | <b>0.903</b> | <b>0.844</b> |
| FB-100                             | 0.830 | 0.728  | 0.921        | 0.880  | <b>0.962</b> | <b>0.938</b> |
| WK-25                              | 0.857 | 0.760  | 0.881        | 0.823  | <b>0.952</b> | <b>0.929</b> |
| WK-50                              | 0.865 | 0.793  | 0.868        | 0.818  | <b>0.921</b> | <b>0.882</b> |
| WK-75                              | 0.911 | 0.875  | 0.916        | 0.883  | <b>0.962</b> | <b>0.944</b> |
| WK-100                             | 0.887 | 0.812  | 0.907        | 0.869  | <b>0.963</b> | <b>0.937</b> |
| NL-0                               | 0.632 | 0.502  | 0.658        | 0.519  | <b>0.714</b> | <b>0.574</b> |
| NL-25                              | 0.688 | 0.562  | <b>0.742</b> | 0.614  | 0.729        | <b>0.632</b> |
| NL-50                              | 0.680 | 0.569  | 0.755        | 0.636  | <b>0.813</b> | <b>0.728</b> |
| NL-75                              | 0.795 | 0.692  | 0.788        | 0.699  | <b>0.833</b> | <b>0.756</b> |
| NL-100                             | 0.743 | 0.564  | 0.884        | 0.796  | <b>0.939</b> | <b>0.889</b> |
| MT1 tax                            | 0.985 | 0.976  | 0.975        | 0.958  | <b>0.998</b> | <b>0.997</b> |
| MT1 health                         | 0.721 | 0.561  | 0.973        | 0.949  | <b>0.991</b> | <b>0.983</b> |
| MT2 org                            | 0.974 | 0.951  | 0.986        | 0.973  | <b>0.991</b> | <b>0.984</b> |
| MT2 sci                            | 0.976 | 0.961  | 0.964        | 0.941  | <b>0.995</b> | <b>0.992</b> |
| MT3 art                            | 0.881 | 0.798  | 0.885        | 0.825  | <b>0.944</b> | <b>0.907</b> |
| MT3 infra                          | 0.962 | 0.935  | 0.940        | 0.905  | <b>0.989</b> | <b>0.980</b> |
| MT4 sci                            | 0.933 | 0.891  | 0.966        | 0.944  | <b>0.974</b> | <b>0.957</b> |
| MT4 health                         | 0.826 | 0.719  | 0.937        | 0.898  | <b>0.990</b> | <b>0.983</b> |
| Metafam                            | 0.124 | 0.000  | 0.291        | 0.011  | <b>0.490</b> | <b>0.223</b> |
| FBNELL                             | 0.700 | 0.564  | 0.726        | 0.605  | <b>0.833</b> | <b>0.737</b> |
| <b>Inductive <math>e</math></b>    |       |        |              |        |              |              |
| FB-v1                              | 0.646 | 0.523  | 0.705        | 0.599  | <b>0.814</b> | <b>0.723</b> |
| FB-v2                              | 0.695 | 0.570  | 0.713        | 0.590  | <b>0.847</b> | <b>0.761</b> |
| FB-v3                              | 0.679 | 0.553  | 0.742        | 0.644  | <b>0.860</b> | <b>0.780</b> |
| FB-v4                              | 0.638 | 0.488  | 0.766        | 0.665  | <b>0.873</b> | <b>0.799</b> |
| WN-v1                              | 0.836 | 0.740  | 0.792        | 0.613  | <b>0.924</b> | <b>0.858</b> |
| WN-v2                              | 0.853 | 0.790  | 0.764        | 0.572  | <b>0.924</b> | <b>0.863</b> |
| WN-v3                              | 0.707 | 0.577  | 0.741        | 0.568  | <b>0.937</b> | <b>0.888</b> |
| WN-v4                              | 0.860 | 0.803  | 0.764        | 0.570  | <b>0.937</b> | <b>0.886</b> |
| NL-v1                              | 0.636 | 0.358  | 0.657        | 0.453  | <b>0.862</b> | <b>0.731</b> |
| NL-v2                              | 0.742 | 0.652  | 0.780        | 0.696  | <b>0.893</b> | <b>0.855</b> |
| NL-v3                              | 0.669 | 0.544  | 0.725        | 0.612  | <b>0.815</b> | <b>0.731</b> |
| NL-v4                              | 0.606 | 0.489  | 0.794        | 0.691  | <b>0.868</b> | <b>0.807</b> |
| ILPC Small                         | 0.905 | 0.843  | 0.919        | 0.872  | <b>0.955</b> | <b>0.921</b> |
| ILPC Large                         | 0.875 | 0.799  | 0.894        | 0.829  | <b>0.948</b> | <b>0.908</b> |
| HM 1k                              | 0.626 | 0.447  | 0.663        | 0.414  | <b>0.687</b> | <b>0.500</b> |
| HM 3k                              | 0.592 | 0.439  | 0.664        | 0.418  | <b>0.714</b> | <b>0.549</b> |
| HM 5k                              | 0.605 | 0.452  | 0.672        | 0.428  | <b>0.746</b> | <b>0.593</b> |
| HM Indigo                          | 0.681 | 0.559  | 0.852        | 0.765  | <b>0.956</b> | <b>0.921</b> |
| <b>Transductive</b>                |       |        |              |        |              |              |
| NELL995                            | 0.583 | 0.437  | 0.578        | 0.457  | <b>0.684</b> | <b>0.555</b> |
| NELL23k                            | 0.669 | 0.548  | 0.756        | 0.657  | <b>0.831</b> | <b>0.762</b> |
| WDsinger                           | 0.668 | 0.546  | 0.720        | 0.621  | <b>0.823</b> | <b>0.738</b> |
| ConceptNet100k                     | 0.181 | 0.083  | 0.650        | 0.469  | <b>0.795</b> | <b>0.658</b> |
| CoDExSmall                         | 0.900 | 0.820  | 0.961        | 0.935  | <b>0.982</b> | <b>0.970</b> |
| CoDExLarge                         | 0.892 | 0.824  | 0.902        | 0.837  | <b>0.973</b> | <b>0.950</b> |
| YAGO310                            | 0.646 | 0.403  | 0.783        | 0.598  | <b>0.971</b> | <b>0.943</b> |
| AristoV4                           | 0.254 | 0.201  | 0.389        | 0.265  | <b>0.597</b> | <b>0.496</b> |
| DBpedia100k                        | 0.650 | 0.509  | 0.717        | 0.582  | <b>0.919</b> | <b>0.861</b> |
| Hetionet                           | 0.634 | 0.524  | 0.809        | 0.707  | <b>0.940</b> | <b>0.890</b> |
| FB15k-237(10)                      | 0.688 | 0.550  | 0.795        | 0.711  | <b>0.918</b> | <b>0.876</b> |
| FB15k-237(20)                      | 0.695 | 0.558  | 0.834        | 0.758  | <b>0.952</b> | <b>0.923</b> |
| FB15k-237(50)                      | 0.717 | 0.591  | 0.876        | 0.812  | <b>0.968</b> | <b>0.946</b> |

1944  
1945  
1946  
1947  
1948

Table 12: Finetuned relation prediction results. Bold indicates the best score per row.

| 1949                               | Dataset        | ULTRA |        | TRIX  |        | FLOCK        |              |
|------------------------------------|----------------|-------|--------|-------|--------|--------------|--------------|
|                                    |                | MRR   | Hits@1 | MRR   | Hits@1 | MRR          | Hits@1       |
| <b>Inductive <math>e, r</math></b> |                |       |        |       |        |              |              |
| 1950                               | FB-25          | 0.684 | 0.563  | 0.805 | 0.724  | <b>0.909</b> | <b>0.857</b> |
| 1951                               | FB-50          | 0.696 | 0.575  | 0.780 | 0.699  | <b>0.881</b> | <b>0.820</b> |
| 1952                               | FB-75          | 0.754 | 0.638  | 0.822 | 0.699  | <b>0.911</b> | <b>0.854</b> |
| 1953                               | FB-100         | 0.851 | 0.769  | 0.921 | 0.880  | <b>0.965</b> | <b>0.939</b> |
| 1954                               | WK-25          | 0.897 | 0.834  | 0.905 | 0.860  | <b>0.968</b> | <b>0.954</b> |
| 1955                               | WK-50          | 0.865 | 0.793  | 0.881 | 0.840  | <b>0.925</b> | <b>0.876</b> |
| 1956                               | WK-75          | 0.911 | 0.875  | 0.937 | 0.910  | <b>0.965</b> | <b>0.948</b> |
| 1957                               | WK-100         | 0.924 | 0.879  | 0.916 | 0.885  | <b>0.970</b> | <b>0.946</b> |
| 1958                               | NL-0           | 0.632 | 0.502  | 0.655 | 0.518  | <b>0.731</b> | <b>0.602</b> |
| 1959                               | NL-25          | 0.737 | 0.622  | 0.709 | 0.606  | <b>0.757</b> | <b>0.634</b> |
| 1960                               | NL-50          | 0.808 | 0.704  | 0.774 | 0.683  | <b>0.814</b> | <b>0.721</b> |
| 1961                               | NL-75          | 0.795 | 0.678  | 0.790 | 0.671  | <b>0.848</b> | <b>0.774</b> |
| 1962                               | NL-100         | 0.803 | 0.678  | 0.885 | 0.793  | <b>0.937</b> | <b>0.887</b> |
| 1963                               | MT1 tax        | 0.990 | 0.984  | 0.995 | 0.990  | <b>0.999</b> | <b>0.998</b> |
| 1964                               | MT1 health     | 0.929 | 0.867  | 0.973 | 0.949  | <b>0.994</b> | <b>0.988</b> |
| 1965                               | MT2 org        | 0.981 | 0.963  | 0.987 | 0.978  | <b>0.994</b> | <b>0.988</b> |
| 1966                               | MT2 sci        | 0.977 | 0.961  | 0.990 | 0.984  | <b>0.995</b> | <b>0.992</b> |
| 1967                               | MT3 art        | 0.907 | 0.851  | 0.887 | 0.828  | <b>0.950</b> | <b>0.916</b> |
| 1968                               | MT3 infra      | 0.966 | 0.947  | 0.970 | 0.952  | <b>0.996</b> | <b>0.993</b> |
| 1969                               | MT4 sci        | 0.954 | 0.929  | 0.972 | 0.952  | <b>0.983</b> | <b>0.968</b> |
| 1970                               | MT4 health     | 0.951 | 0.919  | 0.986 | 0.979  | <b>0.995</b> | <b>0.991</b> |
| 1971                               | Metafam        | 0.368 | 0.112  | 0.265 | 0.024  | <b>0.997</b> | <b>0.995</b> |
| 1972                               | FBNELL         | 0.720 | 0.576  | 0.766 | 0.639  | <b>0.879</b> | <b>0.801</b> |
| <b>Inductive <math>e</math></b>    |                |       |        |       |        |              |              |
| 1973                               | FB-v1          | 0.650 | 0.513  | 0.705 | 0.599  | <b>0.855</b> | <b>0.766</b> |
| 1974                               | FB-v2          | 0.675 | 0.547  | 0.713 | 0.590  | <b>0.887</b> | <b>0.812</b> |
| 1975                               | FB-v3          | 0.677 | 0.556  | 0.742 | 0.644  | <b>0.879</b> | <b>0.810</b> |
| 1976                               | FB-v4          | 0.690 | 0.560  | 0.766 | 0.665  | <b>0.884</b> | <b>0.807</b> |
| 1977                               | WN-v1          | 0.844 | 0.754  | 0.776 | 0.591  | <b>0.926</b> | <b>0.879</b> |
| 1978                               | WN-v2          | 0.834 | 0.766  | 0.765 | 0.574  | <b>0.927</b> | <b>0.869</b> |
| 1979                               | WN-v3          | 0.707 | 0.577  | 0.756 | 0.594  | <b>0.950</b> | <b>0.911</b> |
| 1980                               | WN-v4          | 0.861 | 0.795  | 0.804 | 0.651  | <b>0.943</b> | <b>0.898</b> |
| 1981                               | NL-v1          | 0.719 | 0.504  | 0.590 | 0.341  | <b>0.883</b> | <b>0.766</b> |
| 1982                               | NL-v2          | 0.668 | 0.549  | 0.811 | 0.740  | <b>0.911</b> | <b>0.870</b> |
| 1983                               | NL-v3          | 0.646 | 0.484  | 0.757 | 0.643  | <b>0.868</b> | <b>0.795</b> |
| 1984                               | NL-v4          | 0.570 | 0.412  | 0.822 | 0.735  | <b>0.906</b> | <b>0.849</b> |
| 1985                               | ILPC Small     | 0.922 | 0.876  | 0.919 | 0.872  | <b>0.953</b> | <b>0.918</b> |
| 1986                               | ILPC Large     | 0.875 | 0.799  | 0.894 | 0.829  | <b>0.953</b> | <b>0.915</b> |
| 1987                               | HM 1k          | 0.626 | 0.447  | 0.663 | 0.414  | <b>0.756</b> | <b>0.561</b> |
| 1988                               | HM 3k          | 0.592 | 0.439  | 0.664 | 0.418  | <b>0.790</b> | <b>0.623</b> |
| 1989                               | HM 5k          | 0.605 | 0.452  | 0.672 | 0.428  | <b>0.744</b> | <b>0.591</b> |
| 1990                               | HM Indigo      | 0.726 | 0.614  | 0.835 | 0.746  | <b>0.946</b> | <b>0.903</b> |
| <b>Transductive</b>                |                |       |        |       |        |              |              |
| 1991                               | NELL995        | 0.630 | 0.513  | 0.578 | 0.457  | <b>0.713</b> | <b>0.584</b> |
| 1992                               | NELL23k        | 0.688 | 0.571  | 0.755 | 0.658  | <b>0.869</b> | <b>0.805</b> |
| 1993                               | WDsinger       | 0.730 | 0.603  | 0.721 | 0.627  | <b>0.885</b> | <b>0.815</b> |
| 1994                               | ConceptNet100k | 0.612 | 0.488  | 0.712 | 0.551  | <b>0.885</b> | <b>0.813</b> |
| 1995                               | CoDEExSmall    | 0.942 | 0.900  | 0.964 | 0.943  | <b>0.981</b> | <b>0.967</b> |
| 1996                               | CoDEExLarge    | 0.907 | 0.850  | 0.908 | 0.845  | <b>0.973</b> | <b>0.950</b> |
| 1997                               | YAGO310        | 0.930 | 0.891  | 0.826 | 0.666  | <b>0.970</b> | <b>0.942</b> |
| <b>Pretrained</b>                  |                |       |        |       |        |              |              |
| 1998                               | AristoV4       | 0.254 | 0.201  | 0.498 | 0.381  | <b>0.651</b> | <b>0.547</b> |
| 1999                               | DBpedia 100k   | 0.650 | 0.509  | 0.780 | 0.665  | <b>0.923</b> | <b>0.869</b> |
| 2000                               | Hetionet       | 0.737 | 0.646  | 0.922 | 0.862  | <b>0.942</b> | <b>0.897</b> |
| 2001                               | FB15k-237(10)  | 0.688 | 0.550  | 0.795 | 0.711  | <b>0.940</b> | <b>0.905</b> |
| 2002                               | FB15k-237(20)  | 0.695 | 0.558  | 0.846 | 0.778  | <b>0.958</b> | <b>0.931</b> |
| 2003                               | FB15k-237(50)  | 0.728 | 0.618  | 0.903 | 0.858  | <b>0.970</b> | <b>0.948</b> |

1998  
1999  
2000  
2001  
2002  
2003

Table 13: Dataset statistics for **inductive**- $e, r$  link prediction datasets. Triples are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be predicted in the validation and test graphs.

| 2004 | Dataset         | Training Graph |      |         | Validation Graph |      |         | Test Graph |          |      |         |
|------|-----------------|----------------|------|---------|------------------|------|---------|------------|----------|------|---------|
|      |                 | Entities       | Rels | Triples | Entities         | Rels | Triples | Valid      | Entities | Rels | Triples |
| 2005 | FB-25           | 5190           | 163  | 91571   | 4097             | 216  | 17147   | 5716       | 4097     | 216  | 17147   |
| 2006 | FB-50           | 5190           | 153  | 85375   | 4445             | 205  | 11636   | 3879       | 4445     | 205  | 11636   |
| 2007 | FB-75           | 4659           | 134  | 62809   | 2792             | 186  | 9316    | 3106       | 2792     | 186  | 9316    |
| 2008 | FB-100          | 4659           | 134  | 62809   | 2624             | 77   | 6987    | 2329       | 2624     | 77   | 6987    |
| 2009 | WK-25           | 12659          | 47   | 41873   | 3228             | 74   | 3391    | 1130       | 3228     | 74   | 3391    |
| 2010 | WK-50           | 12022          | 72   | 82481   | 9328             | 93   | 9672    | 3224       | 9328     | 93   | 9672    |
| 2011 | WK-75           | 6853           | 52   | 28741   | 2722             | 65   | 3430    | 1143       | 2722     | 65   | 3430    |
| 2012 | WK-100          | 9784           | 67   | 49875   | 12136            | 37   | 13487   | 4496       | 12136    | 37   | 13487   |
| 2013 | NL-0            | 1814           | 134  | 7796    | 2026             | 112  | 2287    | 763        | 2026     | 112  | 2287    |
| 2014 | NL-25           | 4396           | 106  | 17578   | 2146             | 120  | 2230    | 743        | 2146     | 120  | 2230    |
| 2015 | NL-50           | 4396           | 106  | 17578   | 2335             | 119  | 2576    | 859        | 2335     | 119  | 2576    |
| 2016 | NL-75           | 2607           | 96   | 11058   | 1578             | 116  | 1818    | 606        | 1578     | 116  | 1818    |
| 2017 | NL-100          | 1258           | 55   | 7832    | 1709             | 53   | 2378    | 793        | 1709     | 53   | 2378    |
| 2018 | Metafam         | 1316           | 28   | 13821   | 1316             | 28   | 13821   | 590        | 656      | 28   | 7257    |
| 2019 | FBNELL          | 4636           | 100  | 10275   | 4636             | 100  | 10275   | 1055       | 4752     | 183  | 10685   |
| 2020 | WiKi MT1 tax    | 10000          | 10   | 17178   | 10000            | 10   | 17178   | 1908       | 10000    | 9    | 16526   |
| 2021 | WiKi MT1 health | 10000          | 7    | 14371   | 10000            | 7    | 14371   | 1596       | 10000    | 7    | 14110   |
| 2022 | WiKi MT2 org    | 10000          | 10   | 23233   | 10000            | 10   | 23233   | 2581       | 10000    | 11   | 21976   |
| 2023 | WiKi MT2 sci    | 10000          | 16   | 16471   | 10000            | 16   | 16471   | 1830       | 10000    | 16   | 14852   |
| 2024 | WiKi MT3 art    | 10000          | 45   | 27262   | 10000            | 45   | 27262   | 3026       | 10000    | 45   | 28023   |
| 2025 | WiKi MT3 infra  | 10000          | 24   | 21990   | 10000            | 24   | 21990   | 2443       | 10000    | 27   | 21646   |
| 2026 | WiKi MT4 sci    | 10000          | 42   | 12576   | 10000            | 42   | 12576   | 1397       | 10000    | 42   | 12516   |
| 2027 | WiKi MT4 health | 10000          | 21   | 15539   | 10000            | 21   | 15539   | 1725       | 10000    | 20   | 15337   |
| 2028 |                 |                |      |         |                  |      |         |            |          |      |         |
| 2029 |                 |                |      |         |                  |      |         |            |          |      |         |
| 2030 |                 |                |      |         |                  |      |         |            |          |      |         |
| 2031 |                 |                |      |         |                  |      |         |            |          |      |         |

Table 14: Dataset statistics for **inductive**- $e$  link prediction datasets. Triples are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be predicted in the validation and test graphs.

| 2032 | Dataset    | Rels | Training Graph |         | Validation Graph |         |       | Test Graph |         |       |
|------|------------|------|----------------|---------|------------------|---------|-------|------------|---------|-------|
|      |            |      | Entities       | Triples | Entities         | Triples | Valid | Entities   | Triples | Test  |
| 2033 | FB-v1      | 180  | 1594           | 4245    | 1594             | 4245    | 489   | 1093       | 1993    | 411   |
| 2034 | FB-v2      | 200  | 2608           | 9739    | 2608             | 9739    | 1166  | 1660       | 4145    | 947   |
| 2035 | FB-v3      | 215  | 3668           | 17986   | 3668             | 17986   | 2194  | 2501       | 7406    | 1731  |
| 2036 | FB-v4      | 219  | 4707           | 27203   | 4707             | 27203   | 3352  | 3051       | 11714   | 2840  |
| 2037 | WN-v1      | 9    | 2746           | 5410    | 2746             | 5410    | 630   | 922        | 1618    | 373   |
| 2038 | WN-v2      | 10   | 6954           | 15262   | 6954             | 15262   | 1838  | 2757       | 4011    | 852   |
| 2039 | WN-v3      | 11   | 12078          | 25901   | 12078            | 25901   | 3097  | 5084       | 6327    | 1143  |
| 2040 | WN-v4      | 9    | 3861           | 7940    | 3861             | 7940    | 934   | 7084       | 12334   | 2823  |
| 2041 | NL-v1      | 14   | 3103           | 4687    | 3103             | 4687    | 414   | 225        | 833     | 201   |
| 2042 | NL-v2      | 88   | 2564           | 8219    | 2564             | 8219    | 922   | 2086       | 4586    | 935   |
| 2043 | NL-v3      | 142  | 4647           | 16393   | 4647             | 16393   | 1851  | 3566       | 8048    | 1620  |
| 2044 | NL-v4      | 76   | 2092           | 7546    | 2092             | 7546    | 876   | 2795       | 7073    | 1447  |
| 2045 | ILPC Small | 48   | 10230          | 78616   | 6653             | 20960   | 2908  | 6653       | 20960   | 2902  |
| 2046 | ILPC Large | 65   | 46626          | 202446  | 29246            | 77044   | 10179 | 29246      | 77044   | 10184 |
| 2047 | HM 1k      | 11   | 36237          | 93364   | 36311            | 93364   | 1771  | 9899       | 18638   | 476   |
| 2048 | HM 3k      | 11   | 32118          | 71097   | 32250            | 71097   | 1201  | 19218      | 38285   | 1349  |
| 2049 | HM 5k      | 11   | 28601          | 57601   | 28744            | 57601   | 900   | 23792      | 48425   | 2124  |
| 2050 | HM Indigo  | 229  | 12721          | 121601  | 12797            | 121601  | 14121 | 14775      | 250195  | 14904 |

2050  
2051

2052  
 2053  
 2054  
 2055  
 2056  
 2057  
 2058  
 2059  
 2060

Table 15: Dataset statistics for **transductive** link prediction datasets. Entity task denotes the entity-prediction task:  $h/t$  is predicting both heads and tails, and  $t$  is predicting only tails.

| Dataset        | Entities | Rel  | Train   | Valid  | Test   | Entity Task |
|----------------|----------|------|---------|--------|--------|-------------|
| FB15k-237      | 14541    | 237  | 272115  | 17535  | 20466  | $h/t$       |
| WN18RR         | 40943    | 11   | 86835   | 3034   | 3134   | $h/t$       |
| CoDEx Small    | 2034     | 42   | 32888   | 1827   | 1828   | $h/t$       |
| CoDEx Medium   | 17050    | 51   | 185584  | 10310  | 10311  | $h/t$       |
| CoDEx Large    | 77951    | 69   | 551193  | 30622  | 30622  | $h/t$       |
| NELL995        | 74536    | 200  | 149678  | 543    | 2818   | $h/t$       |
| YAGO310        | 123182   | 37   | 1079040 | 5000   | 5000   | $h/t$       |
| WDsinger       | 10282    | 135  | 16142   | 2163   | 2203   | $h/t$       |
| NELL23k        | 22925    | 200  | 25445   | 4961   | 4952   | $h/t$       |
| AristoV4       | 44949    | 1605 | 242567  | 20000  | 20000  | $h/t$       |
| DBpedia100k    | 99604    | 470  | 597572  | 50000  | 50000  | $h/t$       |
| ConceptNet100k | 78334    | 34   | 100000  | 1200   | 1200   | $h/t$       |
| FB15k-237(10)  | 11512    | 237  | 27211   | 15624  | 18150  | $t$         |
| FB15k-237(20)  | 13166    | 237  | 54423   | 16963  | 19776  | $t$         |
| FB15k-237(50)  | 14149    | 237  | 136057  | 17449  | 20324  | $t$         |
| Hetionet       | 45158    | 24   | 2025177 | 112510 | 112510 | $h/t$       |

2076  
 2077  
 2078  
 2079  
 2080  
 2081  
 2082  
 2083  
 2084  
 2085  
 2086  
 2087  
 2088  
 2089

Table 16: Different graph pretraining mix shown in Section 5.3.

|                | 1 | 2 | 3 | 4 | 5 | 6 | 8 |
|----------------|---|---|---|---|---|---|---|
| FB15k-237      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| WN18RR         |   | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| CoDEx Medium   |   |   | ✓ | ✓ | ✓ | ✓ | ✓ |
| NELL995        |   |   |   | ✓ | ✓ | ✓ | ✓ |
| YAGO 310       |   |   |   |   | ✓ | ✓ | ✓ |
| ConceptNet100k |   |   |   |   |   | ✓ | ✓ |
| DBpedia100k    |   |   |   |   |   |   | ✓ |
| AristoV4       |   |   |   |   |   |   | ✓ |

2100  
 2101  
 2102  
 2103  
 2104  
 2105

2106  
 2107  
 2108  
 2109  
 2110  
 2111  
 2112  
 2113  
 2114  
 2115  
 2116  
 2117  
 2118  
 2119  
 2120

2121 Table 17: Hyperparameter for FLOCK in pretraining and finetuning setups.  
 2122

|                    | <b>Hyperparameter</b>                      | <b>Entity prediction</b> | <b>Relation prediction</b> |
|--------------------|--------------------------------------------|--------------------------|----------------------------|
| Random walk        | Walk length $\ell$                         | 128                      | 128                        |
|                    | # Pretraining base walk $n_{\text{train}}$ | 128                      | 128                        |
|                    | # Test-time or finetuning base walk $n$    | 16–512                   | 16–512                     |
| Sequence processor | # Layers                                   | 1                        | 1                          |
|                    | Hidden dimension                           | 64                       | 64                         |
| Consensus protocol | # Heads $h$                                | 4                        | 4                          |
|                    | Head dimension $d_h$                       | 16                       | 16                         |
| Update             | # Update step $I$                          | 6                        | 6                          |
| Ensemble           | # Maximum ensembled passes $P$             | 16                       | 16                         |
| Pretraining        | Optimizer                                  | AdamW                    | AdamW                      |
|                    | Learning rate                              | 0.0005                   | 0.0005                     |
|                    | Training steps                             | 400,000                  | 40,000                     |
|                    | Adversarial temperature                    | 1                        | 1                          |
|                    | # Negatives                                | 512                      | 512                        |
|                    | Batch size                                 | 8                        | 8                          |
|                    | Weight decay                               | 0.01                     | 0.00                       |
| Finetuning         | Optimizer                                  | AdamW                    | AdamW                      |
|                    | Learning rate                              | 0.0005                   | 0.0005                     |
|                    | Adversarial temperature                    | 1                        | 1                          |
|                    | # Negatives                                | 256                      | 256                        |
|                    | Batch size                                 | 4–32                     | 4–8                        |

2145  
 2146  
 2147  
 2148  
 2149  
 2150  
 2151  
 2152  
 2153  
 2154  
 2155  
 2156  
 2157  
 2158  
 2159

2160  
 2161  
 2162  
 2163  
 2164  
 2165  
 2166  
 2167

2168 Table 18: Detailed finetuning and inference hyperparameters for FLOCK in entity prediction. For  
 2169 each dataset, we report the finetuning epochs, batches per epoch, batch size, and the inference set-  
 2170 tings for both zero-shot and finetuned modes: test-time ensemble size  $P$ , base walk count  $n$ . For  
 2171 Hetionet finetuning we used  $(P, n) = (1, 1024)$ , instead of  $(2, 512)$  as in zero-shot.

| Dataset         | Epoch | # Batch/Epoch | Batch Size | # Ensembled Passes $P$ | # Base Walk $n$ |
|-----------------|-------|---------------|------------|------------------------|-----------------|
| FB15k-237       | 1     | full          | 8          | 16                     | 128             |
| WN18RR          | 1     | full          | 8          | 16                     | 128             |
| CoDEx Small     | 1     | full          | 32         | 16                     | 16              |
| CoDEx Medium    | 1     | full          | 8          | 16                     | 128             |
| CoDEx Large     | 1     | 2000          | 4          | 2                      | 512             |
| NELL-995        | 1     | full          | 8          | 16                     | 128             |
| YAGO310         | 1     | 2000          | 4          | 8                      | 512             |
| WDSinger        | 1     | full          | 8          | 16                     | 16              |
| NELL23k         | 3     | full          | 8          | 16                     | 32              |
| FB15k-237(10)   | 1     | full          | 8          | 16                     | 32              |
| FB15k-237(20)   | 1     | full          | 8          | 16                     | 64              |
| FB15k-237(50)   | 1     | full          | 8          | 16                     | 64              |
| Hetionet        | 1     | 4000          | 8          | 2                      | 512             |
| DBpedia100k     | 1     | 1000          | 4          | 2                      | 512             |
| AristoV4        | 1     | full          | 8          | 4                      | 256             |
| ConceptNet100k  | 1     | full          | 8          | 16                     | 128             |
| FB v1-v4        | 1     | full          | 8          | 16                     | 16              |
| WN v1-v4        | 1     | full          | 8          | 16                     | 16              |
| NL v1-v4        | 3     | full          | 8          | 16                     | 16              |
| ILPC Small      | 1     | full          | 8          | 16                     | 16              |
| ILPC Large      | 1     | full          | 8          | 16                     | 64              |
| FB 25-100       | 3     | full          | 8          | 16                     | 16              |
| WK 25-100       | 3     | full          | 8          | 16                     | 16              |
| NL 0-100        | 3     | full          | 8          | 16                     | 16              |
| Wiki MT1 tax    | 3     | full          | 8          | 16                     | 16              |
| Wiki MT1 health | 3     | full          | 8          | 16                     | 16              |
| Wiki MT2 org    | 3     | full          | 16         | 16                     | 32              |
| Wiki MT2 sci    | 3     | full          | 8          | 16                     | 16              |
| Wiki MT3 art    | 3     | full          | 16         | 16                     | 32              |
| Wiki MT3 infra  | 3     | full          | 16         | 16                     | 32              |
| Wiki MT4 sci    | 3     | full          | 8          | 16                     | 16              |
| Wiki MT4 health | 3     | full          | 8          | 16                     | 16              |
| Metafam         | 3     | full          | 8          | 16                     | 16              |
| FBNELL          | 3     | full          | 8          | 16                     | 16              |
| HM 1k           | 1     | full          | 8          | 16                     | 16              |
| HM 3k           | 1     | full          | 16         | 16                     | 32              |
| HM 5k           | 1     | full          | 8          | 16                     | 64              |
| HM Indigo       | 1     | full          | 8          | 16                     | 128             |

2206  
 2207  
 2208  
 2209  
 2210  
 2211  
 2212  
 2213

2214  
 2215  
 2216  
 2217  
 2218  
 2219  
 2220  
 2221  
 2222

2223 Table 19: Detailed finetuning and inference hyperparameters for FLOCK in relation prediction. For  
 2224 each dataset, we report the finetuning epochs, batches per epoch, batch size, and the inference set-  
 2225 tings for both zero-shot and finetuned modes: test-time ensemble size  $P$  and base walk count  $n$ .

| Dataset         | Epoch | # Batch/Epoch | Batch Size | # Ensembled Passes $P$ | # Base Walk $n$ |
|-----------------|-------|---------------|------------|------------------------|-----------------|
| FB15k-237       | 1     | 1000          | 8          | 16                     | 128             |
| WN18RR          | 1     | 1000          | 8          | 16                     | 128             |
| CoDEx Small     | 1     | 1000          | 8          | 16                     | 16              |
| CoDEx Medium    | 1     | 1000          | 8          | 16                     | 128             |
| CoDEx Large     | 1     | 1000          | 4          | 2                      | 512             |
| NELL-995        | 1     | 1000          | 8          | 16                     | 128             |
| YAGO310         | 1     | 1000          | 8          | 4                      | 512             |
| WDsinger        | 1     | 1000          | 8          | 16                     | 16              |
| NELL23k         | 1     | 1000          | 8          | 16                     | 32              |
| FB15k-237(10)   | 1     | 1000          | 8          | 16                     | 32              |
| FB15k-237(20)   | 1     | 1000          | 8          | 16                     | 64              |
| FB15k-237(50)   | 1     | 1000          | 8          | 16                     | 64              |
| Hetionet        | 1     | 1000          | 4          | 2                      | 512             |
| DBpedia100k     | 1     | 1000          | 4          | 2                      | 512             |
| AristoV4        | 1     | 1000          | 8          | 4                      | 256             |
| ConceptNet100k  | 1     | 1000          | 8          | 16                     | 128             |
| FB v1–v4        | 1     | 1000          | 8          | 16                     | 16              |
| WN v1–v4        | 1     | 1000          | 8          | 16                     | 16              |
| NL v1–v4        | 1     | 1000          | 8          | 16                     | 16              |
| ILPC Small      | 1     | 1000          | 8          | 16                     | 16              |
| ILPC Large      | 1     | 1000          | 8          | 16                     | 64              |
| FB 25–100       | 1     | 1000          | 8          | 16                     | 16              |
| WK 25–100       | 1     | 1000          | 8          | 16                     | 16              |
| NL 0–100        | 1     | 1000          | 8          | 16                     | 16              |
| Wiki MT1 tax    | 1     | 1000          | 8          | 16                     | 16              |
| Wiki MT1 health | 1     | 1000          | 8          | 16                     | 16              |
| Wiki MT2 org    | 1     | 1000          | 8          | 16                     | 32              |
| Wiki MT2 sci    | 1     | 1000          | 8          | 16                     | 16              |
| Wiki MT3 art    | 1     | 1000          | 8          | 16                     | 32              |
| Wiki MT3 infra  | 1     | 1000          | 8          | 16                     | 32              |
| Wiki MT4 sci    | 1     | 1000          | 8          | 16                     | 16              |
| Wiki MT4 health | 1     | 1000          | 8          | 16                     | 16              |
| Metafam         | 1     | 1000          | 8          | 16                     | 16              |
| FBNELL          | 1     | 1000          | 8          | 16                     | 16              |
| HM 1k           | 1     | 1000          | 8          | 16                     | 16              |
| HM 3k           | 1     | 1000          | 8          | 16                     | 32              |
| HM 5k           | 1     | 1000          | 8          | 16                     | 64              |
| HM Indigo       | 1     | 1000          | 8          | 16                     | 128             |

2260  
 2261  
 2262  
 2263  
 2264  
 2265  
 2266  
 2267