
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOCK: A KNOWLEDGE GRAPH FOUNDATION MODEL
VIA LEARNING ON RANDOM WALKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of zero-shot link prediction on knowledge graphs (KGs),
which requires models to generalize over novel entities and novel relations.
Knowledge graph foundation models (KGFMs) address this task by enforcing
equivariance over both nodes and relations, learning from structural properties
of nodes and relations, which are then transferable to novel graphs with similar
structural properties. However, the conventional notion of deterministic equivari-
ance imposes inherent limits on the expressive power of KGFMs, preventing them
from distinguishing structurally similar but semantically distinct relations. To
overcome this limitation, we introduce probabilistic node-relation equivariance,
which preserves equivariance in distribution while incorporating a principled ran-
domization to break symmetries during inference. Building on this principle, we
present FLOCK, a KGFM that iteratively samples random walks, encodes them
into sequences via a recording protocol, embeds them with a sequence model,
and aggregates representations of nodes and relations via learned pooling. Cru-
cially, FLOCK respects probabilistic node-relation equivariance and is a universal
approximator for isomorphism-invariant link-level functions over KGs. Empiri-
cally, FLOCK perfectly solves our new diagnostic dataset PETALS where current
KGFMs fail, and achieves state-of-the-art performances on entity- and relation
prediction tasks on 54 KGs from diverse domains.

1 INTRODUCTION

Knowledge graph foundation models (KGFMs) (Lee et al., 2023; Geng et al., 2023; Galkin et al.,
2024; Zhang et al., 2024; Cui et al., 2024; Huang et al., 2025) aim to infer missing links over novel
knowledge graphs (KGs) that are not part of the training graphs or domains. This task requires gen-
eralization to both unseen nodes and unseen relation types. To achieve this, KGFMs rely on learning
node and relation invariants: structural properties of nodes and relations that are transferable across
KGs even when their relational vocabularies differ. This inductive bias is formalized by Gao et al.
(2023) as double-equivariance — equivariance under permutations of both entities and relations —
and used as a core principle in the design of KGFMs in the literature.

Luke

Yoda

HanSolo

Emperor

Jabba

DarthVader

Chewbacca

Leia

Figure 1: A KG representing char-
acters’ relationships in Star Wars
movies. Blue arrows indicate like,
red arrows – dislike, and green ar-
rows indicate relation (friendWith).

Problem statement. In this work, we challenge the fun-
damental assumption of existing KGFMs dictated by strict
equivariance: structural isomorphism of relations implies se-
mantic equivalence. Consider, for example the KG from Fig-
ure 1, where the relations like and dislike are structurally iso-
morphic, and yet they represent semantically opposite rela-
tions. In this motivating example, any KGFM that computes
relation invariants is forced to assign the same representation
to both like and dislike — losing the ability to distinguish
between two entities with opposite relationships. This ex-
pressiveness limitation is an architectural one and cannot be
resolved through finetuning, which further limits the down-
stream use of existing KGFMs. This raises a central question:
How can we design KGFMs that are both expressive and have
the right inductive bias for generalization?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our approach. We propose a new approach for KGFMs, which relies on probabilistic node-
relation equivariance as inductive bias. Instead of enforcing deterministic equivariance over nodes
and relations, these KGFMs respect probabilistic node-relation equivariance. This relaxes the hard
constraint that “structurally isomorphic relations must have identical representations”, and requires
only that “the representations of structurally isomorphic relations need to be equivalent in distribu-
tion” over a model’s stochastic processes. This way, the model retains crucial inductive bias needed
for generalizing across different KGs, while the stochasticity of each forward pass ensures that struc-
turally identical but semantically distinct relations are assigned different representations, allowing
the model to distinguish between them (Srinivasan & Ribeiro, 2020; Abboud et al., 2021).

Inspired by the success of models that learn probabilistic invariants via random walks (Perozzi et al.,
2014; Grover & Leskovec, 2016; Nikolentzos & Vazirgiannis, 2020; Kim et al., 2025), we introduce
FLOCK, a KGFM that inherently computes probabilistic node-relation invariants. Given a (poten-
tially unseen) KG, and a query, in each iteration, FLOCK first samples a set of random walks over
KG based on the query, noting down both encountered nodes and relations with a recording pro-
tocol. To ensure the model can generalize to unseen entities and relation types, we anonymize all
nodes and relations, enforcing that FLOCK only learn from their structural roles. These anonymized
sequences are then fed into a sequence processor, and the representations for each node and relation
are aggregated via a consensus protocol. Finally, we construct per-query (triple) features from the
aggregated entity and relation embeddings and input them into a binary classifier for link prediction.

Key findings and contributions. The design of FLOCK offers several key advantages over exist-
ing KGFMs. First, it entirely abandons the conventional two-stage process of encoding relations and
node representations via two separate networks, and does not rely on message-passing at all, thereby
avoiding the well-known expressivity limitations of MPNNs on KGs (Barceló et al., 2022; Huang
et al., 2023; 2025). Second, FLOCK is a universal approximator (see Proposition 4.1), and thus can
approximate every link-level function defined on KGs of any bounded size. Finally, FLOCK archi-
tecture inherently respects the principle of probabilistic node-relation equivariance, which enables a
strong generalization capacity. Our experimental results over both entity prediction and relation pre-
diction validate the strength of this approach, demonstrating that FLOCK consistently outperforms
state-of-the-art KGFMs on existing benchmarks. Our contributions can be summarized as follows:

• We highlight a limitation in existing KGFMs: their over-reliance on deterministic node–relation
equivariance prevents them from distinguishing between structurally similar but semantically
different relations, limiting their expressivity.

• We propose to leverage probabilistic node-relation equivariance, a property for KGFMs that
ensures invariance only in distribution, as an effective solution balancing the model expressivity
and generalization.

• We propose FLOCK, a KGFM that respects probabilistic node-relation equivariance. FLOCK re-
places the conventional two-stage, message-passing paradigm with a direct sequence encoding
approach based on random walks, and acts as a universal approximator of link-level functions.

• We validate our approach on both entity and relation prediction tasks across 54 diverse KGs,
where FLOCK consistently achieves state-of-the-art performance over existing KGFMs. We
further design a synthetic dataset PETALS to confirm our theoretical results empirically.

The codebase is available at https://anonymous.4open.science/r/flock/.

2 RELATED WORK

Link prediction and KGFMs. Early methods for inferring missing links in KGs (Bordes et al.,
2013; Sun et al., 2019; Balazevic et al., 2019; Abboud et al., 2020; Schlichtkrull et al., 2018;
Vashishth et al., 2020) rely on learned embeddings, hence operating in the transductive setting,
incapable of generalizing to unseen entities or relation types. Later GNN-based approaches based
on the labeling trick (Teru et al., 2020; Zhang et al., 2021) or conditional message passing (Zhu
et al., 2021; 2023; Zhang & Yao, 2022; Zhang et al., 2023b; Huang et al., 2023), unlocked the node
inductive scenario, while remaining restricted to a fixed relational vocabulary. KGFMs eliminate
this restriction and enable node-relation inductive link prediction over both unseen nodes and rela-
tion types through the use of a two-stage process by first encoding relations and then nodes. The

2

https://anonymous.4open.science/r/flock/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

first examples of this paradigm are InGram (Lee et al., 2023) and ULTRA (Galkin et al., 2024).
Their ideas were extended by TRIX (Zhang et al., 2024) to build a more expressive framework. KG-
ICL (Cui et al., 2024) achieved full inductivity by combining in-context learning with node-relation
tokenization. ISDEA (Gao et al., 2023) and MTDEA (Zhou et al., 2023) highlighted the benefits of
equivariance over both nodes and relations. MOTIF (Huang et al., 2025) was proposed as a general
KGFM framework, supported by a theoretical analysis of the expressive power of KGFMs. Our
work further advances the field with a stochastic KGFM, which is invariant in probability and prov-
ably more expressive than all the existing methods. Notably, FLOCK achieves universality without
any form of message passing, instead relying on random walks and sequence models to encode both
nodes and relations anonymously to ensure generalization. This is distinct from previous stochastic
KGFMs that rely on random initialization to message passing (Lee et al., 2023; Gao et al., 2023).

Random walks for graph representations. Random walks have attracted a lot of attention in
graph learning, due to their simplicity and ability to gather context from neighborhoods. DeepWalk
(Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) were among the first to explore
the potential of random walks for producing graph embeddings, treating walks as analogues of
sentences in natural language and processing them using skip-gram models. Nikolentzos & Vazir-
giannis (2020) generated graph-level task predictions by executing joint random walks on direct
products of graphs with their extracted subgraphs. CRaWL (Tönshoff et al., 2021) represents the
input graph as a collection of random walks and processes them with a 1-dimensional convolutional
NN. WalkLM (Tan et al., 2023) samples random walks from graphs with textual features, passing
them to a language model for embedding generation. RWNN (Kim et al., 2025) and RUM (Wang
& Cho, 2024) anonymize the extracted walks and process them with sequence models and RNNs,
respectively. NeuralWalker (Chen et al., 2025) aggregates embeddings derived by encoding random
walks into message passing layers.

Probabilistic invariance. Neural architectures that enforce invariance to specific transformations
often exhibit more stable training and improved performance (Bronstein et al., 2021), but this induc-
tive bias can reduce their expressivity by preventing the model from distinguishing non-equivalent
inputs. In graph learning, this trade-off is exemplified by MPNNs, whose power is limited by the
1-WL test (Xu et al., 2019; Morris et al., 2019). Randomization has emerged as a solution, en-
hancing expressivity through techniques such as noise injection (Abboud et al., 2021), vertex drop-
ping (Papp et al., 2021), subgraph sampling (Bevilacqua et al., 2022; Zhang et al., 2023a), dynamic
rewiring (Finkelshtein et al., 2024), and random walks (Kim et al., 2025; Wang & Cho, 2024).
Despite their stochasticity, such methods can remain probabilistically invariant, ensuring that equiv-
alent inputs yield identical expected outputs, or even identical output distributions. In line with a
prior work (Gao et al., 2023), we extend the notion of probabilistic invariance to KGs and prove that
FLOCK satisfies invariance in distribution, and further clarify its usefulness in KG learning.

3 PRELIMINARY

Knowledge graphs. A knowledge graph (KG) is a tuple G = (V,E,R), where V denotes the set
of entities (nodes), R the set of relation types, and E ⊆ V ×R× V the set of labeled edges (facts).
A fact is written as (h, r, t) (or h r−→ t interchangeably) with r ∈ R and h, t ∈ V . A (potential) link
in G is any triple (h, r, t) in V ×R×V , regardless of whether it is present in E. We denote by R−1

the set of inverses of relations R, defined as {r−1 | r ∈ R}, and mean r when writing (r−1)−1.
Further, let Kn,m be the space of knowledge graphs with n vertices and m relation types.

Isomorphism. An isomorphism between two knowledge graphs G = (V,E,R) and G′ =
(V ′, E′, R′) is a pair of bijections µ = (π, ϕ), where π : V → V ′ and ϕ : R → R′, such that
a fact (h, r, t) belongs to E if and only if the fact µ((h, r, t)) = (π(h), ϕ(r), π(t)) belongs to E′.
Two KGs are isomorphic if such a mapping exists, in which case we write G ≃ G′.

Link invariance. In this work, we focus on link-invariant functions. Let ω be a function assigning
to each KG G = (V,E,R) ∈ Kn,m a map ω(G) : V ×R×V → Rd. We say that ω is link invariant
if for every pair of isomorphic KGs G,G′ ∈ Kn,m, every isomorphism (π, ϕ) from G to G′, and
every link (h, r, t) in G, we have ω(G)((h, r, t)) = ω(G′)((π(h), ϕ(r), π(t))).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

r3

r1

r1

r1

r1

r2

r2

r2

r2

Random walks

1, 2, 3, 4α−1, β, γ,

1, 2, 3, 4α, α, α−1,

[]

[]

Recording protocol Sequence processor Consensus protocol

Figure 2: Overall pipeline of FLOCK. In each updating step, FLOCK 1) samples random walks on
the KG (two walks indicated by red and teal, respectively), 2) anonymizes the encountered nodes
and relations via a recording protocol (for each walk, nodes are anonymized as 1, 2, ... and relations
as α, β, ...), and 3) feeds the sequences in a sequence processor to compute node and relation repre-
sentations. 4) A consensus protocol then pools them back to the original KG’s nodes and relations.

Probabilistic invariance. A stochastic KG model φ can be viewed as a function that takes a KG and
returns a random variable φ(G). Following Kim et al. (2025), we call φ invariant in probability if

∀G,G′ ∈ Kn,m : G ≃ G′ =⇒ φ(G)
d
= φ(G′)

i.e. the distributions of φ(G) and φ(G′) are equal. In particular, this implies E[φ(G)] = E[φ(G′)].

4 METHODOLOGY

We present FLOCK, a KGFM respecting probabilistic node-relation invariance. FLOCK is a random-
ized function Xθ(·) which takes as input a KG G = (V,E,R) and a link prediction query q. We
consider two types of queries: entity prediction q = (h, r, ?) and relation prediction q = (h, ?, t).
FLOCK outputs a random variable ŷ ∼ Xθ(G, q) which is suited for the task at hand. For entity pre-
diction, it outputs ŷ : V → [0, 1] such that a potential link (h, r, t) can be evaluated by ŷ(t) ∈ [0, 1].
For relation prediction, it outputs ŷ : R → [0, 1] such that a link (h, r, t) can be evaluated by ŷ(r).

At test time, we average multiple (P) independent stochastic predictions to produce the final output.
This improves performance and reduces variance through an ensembling effect.

We describe the architecture of FLOCK in Section 4.1 focused on four main components, and then
analyze its theoretical properties in Section 4.2, showing universality and probabilistic equivariance.
An expansion on the model details can be found in Appendix A.

4.1 FLOCK

Internally, FLOCK has two lookup tables of hidden states, v : V → Rd for entities and r : R → Rd

for relations, respectively. At each forward pass, it starts from trained initializations of these states
v(0)(·) := v0 and r(0)(·) := r0, and updates them iteratively v(i), r(i) for i ≤ I . Each update is
done residually using a randomized function Uθi :

v(i+1) := v(i) +∆v, r(i+1) := r(i) +∆r, (∆v,∆r) ∼ updateθi(v
(i), r(i)). (1)

The final hidden states v(I) : V → Rd and r(I) : R → Rd are then processed by a binary classifier
head : Rd → [0, 1] to produce the output ŷ which is V → [0, 1] or R → [0, 1] depending on task.

We now describe the randomized updateθ. We drop i for brevity. It consists of four components:

1. Random walk algorithm produces n random walks η1, ..., ηn of length ℓ on the input KG.
2. Recording protocol w : ηj 7→ zj transforms each walk into a graph-agnostic sequence.
3. Sequence processor fθ : zj 7→ hj processes each sequence independently, outputting features.
4. Consensus protocol c : (h1:N , η1:N) 7→ (∆v,∆r) collects features of all walks and decides

state updates for each entity and relation type.

An overview is presented in Figure 2. We note that w, fθ, and c are all deterministic, and the random
walk is the only source of stochasticity. We now discuss the design choice for each. For the ease of
exposition, we explain for entity prediction tasks q = (h, r, ?), but relation prediction is similar.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Random walks. In FLOCK, random walks are central in two ways: they rewrite the connectivity
of nodes and relations as sequences, and support generalization via probabilistic equivariance.

Formally, the random walk algorithm produces n random walks η1, ..., ηn of length ℓ on KG G.
Each random walk η is a chain of random variables, written as:n as:

η = v0
r1−→ v1

r2−→ · · · rℓ−→ vℓ, vs ∈ V, rs ∈ R, (vs−1, rs, vs) ∈ E, (2)

where the underlying transition mechanism and ℓ are hyperparameters.

To support probabilistic equivariance, we ask the walk algorithm to be invariant in probability. We
say η is invariant in probability if for any G ≃ H in Kn,m with isomorphism (π, ϕ) from G to H:

π(v0)
ϕ(r1)−−−→ π(v1)

ϕ(r2)−−−→ · · · ϕ(rℓ)−−−→ π(vℓ)
d
= u0

s1−→ u1
s2−→ · · · sℓ−→ uℓ (3)

where v0
r1−→ · · · rℓ−→ vℓ and u0

s1−→ · · · sℓ−→ uℓ follow the distributions of η(G, ℓ) and η(H, ℓ),
respectively. In such case, the isomorphism (π, ϕ) yields a natural translation from walks in G to H .

In FLOCK, we use a simple random walk algorithm which we show to be invariant in probability.
Specifically, we use uniform walks with non-backtracking, with minor modifications to handle di-
rected multi-edges of KGs. Despite the simplicity, we find that this choice works well in practice,
consistent with findings of prior works (Tönshoff et al., 2021; Kim et al., 2025).

Under this choice, we diversify the starting locations of walks such that local context around the
query q and broad regions of the nodes and relations in a KG are both well-captured. Our diversi-
fication strategy is as follows: given a base walk count n, for entity prediction queries (h, r, ?), we
use 3n walks with three types of start locations. The first n walks start at query node h, capturing
local context around the query; the second n walks start by traversing a random edge (v, s, u) where
s is a uniformly chosen relation, broadly capturing the relations of the KG including r; the last n
walks start at random nodes, broadly capturing various regions of the KG. For relation prediction
queries (h, ?, t), we additionally start n walks at the tail node t, sampling a total of 4n walks.

We lastly discuss how to choose the base walk count n. While this is a fixed hyperparameter ntrain

at pretraining, we find that scaling it adaptively to input KG at test-time benefits size generalization.
We thus propose test-time adaptation of walk counts, and use:

n = ntrain × harmonic mean

(
|V |

|V |train
,

|E|
|E|train

)
(4)

where |V |train, |E|train are average numbers of nodes and edges in pretraining KGs, respectively.
Intuitively, this scales n proportionally to the sizes of test KGs relative to pretraining. In practice,
we clamp n to the nearest power of 2 and limit its value in an interval to avoid out-of-memory errors.

Recording protocol. While random walks provide a basis for invariant sequence representations
of KGs, two issues remain: (1) They reveal nodes vs and relations rs specific to each KG which
obstructs transferability to unseen KGs. (2) They do not offer a way to condition on current states
of entities v, relations r, and the query q = (h, r, ?) as often done in KGFMs via the labeling trick.

The recording protocol w : ηj 7→ zj resolves this by transforming each walk into a graph-agnostic
sequence that only leaves structural information. Motivated by prior works on node anonymization
for invariance (Kim et al., 2025; Wang & Cho, 2024), we propose an extension called node-relation
anonymization: reserve separate namespaces for nodes and relations, respectively, and assign unique
names in the order of discovery. For example, with 1, 2, 3, ... for nodes and α, β, ... for relations:

η = v0
r1−→ v1

r2−→ v2
r−1
1−−→ v0 7→ 1

α−→ 2
β−→ 3

α−1

−−→ 1, (5)

where (·)−1 marks direction of a relation. The protocol additionally employs a simple conditioning
on current states (v, r) and query q = (h, r, ?), completing the record z as follows:

w : η 7→ z = (1,v(v0),1h(v0))
α,r(r1),1r(r1)−−−−−−−−−→ (2,v(v1),1h(v1))

β,r(r2),1r(r2)−−−−−−−−−→ · · · , (6)

with indicator functions 1h(·),1r(·) at h and r, respectively. As we will show, the recording protocol
keeps node-relation invariance by hiding nodes and relations while leaving their structural roles.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sequence processor. Now that the recordings z only encode structural information of KG, we
can safely process them with an arbitrary neural network fθ : z 7→ h without the risk of losing
invariance. Since z are sequences, we choose sequence networks to leverage their inductive bias.
Specifically, we use bidirectional GRU (Cho et al., 2014) equipped with RMSNorm (Zhang & Sen-
nrich, 2019) and SwiGLU feedforward network (Shazeer, 2020), which provided robust results. To
convert anonymizations into input feature vectors to the GRU, we use trainable embedding tables.

Given that fθ is a sequence network, it is convenient to interpret its output h as positionally aligned
with each step of the walk η or record z. Specifically, for the example in Equation 6, we obtain:

fθ : z 7→ h = (∆v0, a0)
∆r1,b1−−−−→ (∆v1, a1)

∆r2,b2−−−−→ · · · . (7)

where ∆vs,∆rs ∈ Rh×dh and as, bs ∈ Rh are the decoded outputs at each position using linear
projections. Intuitively, ∆vs,∆rs encode proposals of state updates for entities and relations by fθ,
and as, bs encode respective confidences of fθ for the proposed updates. This separation is useful
due to the localized, pure-structure nature of the recordings z. If a random walk η densely visited a
cycle-like region and then terminated in a dangling manner, it is natural to assign more confidence
to the cycle-like region of the structural encodings h, and less confidence to the dangling region.

Consensus protocol. After sequence processing, we are left with a handful of state update pro-
posals h1:N from fθ, that are positionally aligned with random walks η1:N on KG. The consensus
protocol c uses the information to decide final state updates ∆v : V → Rd and ∆r : R → Rd.

Since c can access how each ∆vs within hj is associated to a node vs ∈ V (and how each ∆rs is
associated to a relation rs ∈ R) through the random walk ηj , a simple way to form a consensus is
by finding all proposals {∆vs} associated to each node v, and all {∆rs} associated to each relation
r, and take averages of these proposals. The drawback is that uninformative proposals from e.g.,
dangling regions of walks are not directly suppressed, and can affect the state updates.

We can leverage the confidences as, bs from fθ to alleviate this issue. For each node v ∈ V or
relation r ∈ R, we first find all respective associated pairs {(∆vs, as)} or {(∆rs, bs)} of proposals
and confidences, and compute a multi-head softmax-normalized weighted average:

∆v(v) :=
[∑

exp(as)⊙∆vs

]
⊘
∑

exp(as) ∆r(r) :=
[∑

exp(bs)⊙∆rs

]
⊘
∑

exp(bs),

where ⊙ and ⊘ are row-wise multiplication and division, respectively. Intuitively, this normalization
induces competition between state update proposals, naturally leading to uninformative proposals
being suppressed. Similar ideas are presented by Locatello et al. (2020).

Again, we can show that the consensus protocol does not operate in a way specific to particular KGs,
and hence retains node-relation equivariance.

4.2 THEORETICAL ANALYSIS

Expressivity. Following the notion of probabilistic expressivity introduced by Abboud et al. (2021),
we say that a FLOCK model Xθ is a universal approximator of link invariant functions over Kn,m if
for any link invariant φ : Kn,m → (V ×R × V → [0, 1]) and any ϵ, δ > 0, there exists a choice of
the network parameters θ and the length of the sampled random walks ℓ, such that:

P(|φ(G)((h, r, t))−Xθ(G, (h, r, ?))(t)| < ϵ) > 1− δ

for all graphs G = (V,E,R) ∈ Kn,m and all links (h, r, t) ∈ V ×R× V .
Proposition 4.1. With a powerful enough sequence processor fθ, the FLOCK framework described
above is a universal approximator of link invariant functions over Kn,m for all pairs (n,m).

All proofs are in Appendix B. To offer an intuition behind the result, we provide a proof sketch.

Proof sketch. A sufficiently long random walk will cover all edges of the graph with high proba-
bility. Then, from its anonymized version, assigning unique positional identifiers to every node and
relation, one can reconstruct the input graph, up to isomorphism. Thus, with a sufficiently expressive
sequence processor, FLOCK can approximate any link-invariant function.

Invariance. Despite the stochastic nature of our framework, beyond randomized node embeddings
(Abboud et al., 2021), FLOCK can be provably guaranteed to satisfy probabilistic invariance:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 4.2. Suppose that the walk sampling protocol η is invariant in probability and both the
recording protocol w and the consensus protocol c are invariant. Then, regardless of the choice of
the deterministic sequence processor fθ, the corresponding FLOCK model is invariant in probability.

Proof sketch. Since each of these components is invariant (in probability), and invariance of individ-
ual component is preserved under composition, we have that FLOCK is invariant.

Moreover, the designs of FLOCK’s components provided earlier in this section satisfy the conditions
of Proposition 4.2. Therefore, the suggested pipeline is indeed invariant in probability:

Proposition 4.3. Any FLOCK model with components as outlined in this section, and detailed in
Appendix A is invariant in probability.

5 EXPERIMENTS

We test FLOCK over a wide range of KGs for both entity and relation predictions, aiming to answer:

Q1. Can FLOCK approximate functions that existing KGFMs cannot?

Q2. How does FLOCK generalize to unseen entities and relations compared to existing KGFMs?

Q3. How does performance scale with the sizes of pretraining graph mix and test-time ensemble?

Q4. What is the impact of choices of each component on the behavior and performance of FLOCK?

In addition to the experiments herein, we provide detailed scalability analysis in Appendix D and E,
and provide comparisons against current KGFMs augmented with noise injection in Appendix F.
Further experimental details and hyperparameter settings can be found in Appendix I.

5.1 SYNTHETIC DATASET

s

t1

t2

Figure 3: Example KG from PETALS.
KGFMs with relational invariants
must equate blue r1 and red r2, thus
predicting the same scores for both
dashed queries with r0.

Setup. To validate the limitations of KGFMs with node-
relation equivariance (Q1), we construct a synthetic bench-
mark PETALS. It contains 220 instances, each including:
(1) a KG G = (V,E,R) consisting of a ‘central’ node s, a
‘stem’ T ⊂ V with query relation r0, and multiple cyclic
‘petals’, each ‘colored’ with a different pair of relations
in R \ {r0}, (2) an entity prediction query (h, r0, ?) with
h ∈ {s} ∪ T , and (3) two candidate targets t1 and t2 from
the same ‘petal’, located at the same distance from s. An
example is in Figure 3. See Appendix C for more details.

PETALS is designed such that each instance always admits
non-trivial automorphisms, meaning that swapping rela-
tions occurring in the same ‘petal’ results in an isomorphic
KG. Consequently, any model computing relation invari-
ants will not be able to distinguish between potential links
(s, r0, t1) and (s, r0, t2). However, the samples are constructed so that these links are not isomor-
phic from the graph perspective, making them distinguishable for general link-invariant functions.
We say a model solves an instance if it can classify (s, r0, t1) as TRUE and (s, r0, t2) as FALSE.

Table 1: Accuracies of KGFMs
on the PETALS benchmark.

Model PETALS

ULTRA 50%
MOTIF(F3

Path) 50%
TRIX 50%

FLOCK 100%

We train ULTRA (Galkin et al., 2024), MOTIF(F3
Path) (Huang

et al., 2025), TRIX (Zhang et al., 2024), and FLOCK from scratch
and validate them on the training instances.

Results. The results are in Table 1. As expected, all exist-
ing KGFMs relying on learning deterministic relational invari-
ants fail to distinguish between the candidate target triplets com-
pletely, achieving 50% accuracy due to random guesses. In con-
trast, FLOCK succeeds on all considered instances, displaying
that, while remaining invariant in probability, it can differentiate
between non-isomorphic links, even with isomorphic relations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Average entity prediction MRR and Hits@10 over 54 KGs from distinct domains.

Inductive e, r Inductive e Transductive Total Avg Pretrained
Model (23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA (zero-shot) 0.345 0.513 0.431 0.566 0.312 0.458 0.366 0.518 - -
TRIX (zero-shot) 0.368 0.540 0.455 0.592 0.339 0.500 0.390 0.548 - -
FLOCK (zero-shot) 0.369 0.554 0.456 0.604 0.340 0.509 0.391 0.560 - -

ULTRA (finetuned) 0.397 0.556 0.440 0.582 0.379 0.543 0.408 0.562 0.407 0.568
TRIX (finetuned) 0.401 0.556 0.459 0.595 0.390 0.558 0.418 0.569 0.415 0.564
FLOCK (finetuned) 0.417 0.576 0.473 0.619 0.383 0.544 0.427 0.582 0.415 0.561

Table 3: Average relation prediction MRR and Hits@1 over 54 KGs from distinct domains.

Inductive e, r Inductive e Transductive Total Avg Pretrained
Model (23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1

ULTRA (zero-shot) 0.785 0.691 0.714 0.590 0.629 0.507 0.724 0.613 - -
TRIX (zero-shot) 0.842 0.770 0.756 0.611 0.752 0.647 0.792 0.687 - -
FLOCK (zero-shot) 0.898 0.846 0.864 0.782 0.873 0.813 0.881 0.817 - -

ULTRA (finetuned) 0.823 0.741 0.716 0.591 0.707 0.608 0.759 0.659 0.876 0.817
TRIX (finetuned) 0.850 0.785 0.759 0.615 0.785 0.693 0.804 0.706 0.879 0.797
FLOCK (finetuned) 0.929 0.889 0.887 0.808 0.897 0.844 0.907 0.851 0.977 0.959

5.2 ENTITY AND RELATION PREDICTION OVER KNOWLEDGE GRAPHS

Setup. To answer Q2, we follow the protocol of Galkin et al. (2024); Zhang et al. (2024) and
pretrain FLOCK on FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), and
CoDEx Medium (Safavi & Koutra, 2020). We then evaluate its zero-shot and finetuned inference
performance with the test set of 54 KGs (see Appendix I for details). These KGs are extracted from
diverse domains across three settings: inductive on nodes and relations (Inductive e, r), inductive on
nodes (Inductive e), and transductive. Note that these settings differ only during finetuning setup;
in zero-shot setup, all entities and relations are unseen. We choose state-of-the-art KGFMs ULTRA
(Galkin et al., 2024) and TRIX (Zhang et al., 2024) as baselines, as they are pretrained on the same
KGs, to ensure a fair comparison. For evaluation, we use the filtered ranking protocol (Bordes et al.,
2013), reporting mean reciprocal rank (MRR) and Hits@10 for entity prediction, and Hits@1 for
relation prediction, as some KGs have fewer than 10 relations. Per-dataset results are in Appendix I.

Entity prediction results. We present the entity prediction results in Table 2. In the zero-shot
setting, FLOCK consistently outperforms ULTRA and TRIX on all metrics, demonstrating its strong
generalization on KGs over diverse domains. Notably, on Metafam (Zhou et al., 2023), a dataset
designed to challenge models with conflicting and compositional relational patterns, FLOCK roughly
doubles MRR over ULTRA and achieves about a 40% MRR gain over TRIX in zero-shot setting.
We find that FLOCK distinguishes structurally similar but semantically conflicting relations while
ULTRA fails, which explains the gain (Appendix G). These findings align with our hypothesis that
probabilistic node–relation equivariance improves expressivity without sacrificing generalization. In
the finetuning setting, we observe a similar pattern: FLOCK maintains a consistent improvement over
all datasets except transductive ones, where the underlying KGs are generally larger. We hypothesize
that this gap stems from random walk coverages. Unlike ULTRA and TRIX whose message passing
guarantees a full k-hop neighborhood coverage over the queried node, FLOCK relies on sampled
walks, which may not fully cover the target nodes of interest. We find that FLOCK favors sparse
KGs (Appendix H), which agrees with this hypothesis as random walks cover sparse graphs faster.

Relation prediction results. Table 3 presents the relation prediction results. FLOCK substantially
outperforms all existing KGFMs across all categories in the zero-shot setting, achieving an 11.2%
relative improvement in MRR compared to the best baseline TRIX. FLOCK shows a further perfor-
mance boost of 12.8% in the finetuned setting. We attribute this huge gain to FLOCK’s joint encoding
of entities and relations during the updating step via the sequence encoder, while existing KGFMs,
ULTRA and TRIX, have separate update steps for entities and relations. This joint update mechanism
yields more holistic representations of both entities and relations with minimal information loss.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Zero-shot MRR vs. #pretraining graphs. (b) Zero-shot MRR vs. #ensembled predictions.

Figure 4: Pretraining and test-time scaling of FLOCK on 41 inductive KG datasets.

Table 4: Ablation study of adaptive test-time walks with zero-shot entity prediction task. We show
the average number of entities |V |, triples |E|, base walks n, MRR, and Hits@10.

Dataset split Statistics FLOCK FLOCK w/o Adap.

|V | |E| n MRR Hits@10 n MRR Hits@10

Inductive e, r 5,303 10,838 28.40 0.369 0.554 128 0.357 0.551
Inductive e 7,578 29,090 18.08 0.456 0.604 128 0.441 0.596
Transductive 47,810 387,491 214.15 0.340 0.509 128 0.334 0.493

5.3 SCALING ANALYSIS

Size of pretraining graph mix. To assess whether FLOCK benefits from more pretraining graph and
data (Q3), we follow the setup of Galkin et al. (2024), and pretrain FLOCK on an increasing number
of KGs. We then evaluate them on all 41 inductive benchmarks for a fair comparison. We present
the detailed pretraining graph mix in Table 16. As shown in Figure 4a, FLOCK’s generalization
improves consistently as the number of pretraining KGs increases, exhibiting clear scaling behavior,
which is a core characteristic of being a foundation model.

Number of ensembled predictions. To assess how test-time ensemble size P affects performance
(Q3), we take the pretrained FLOCK and run zero-shot entity prediction on 41 inductive KGs by
increasing the number of ensembled passes. As shown in Figure 4b, performance improves from
1 to 8 passes and then begins to plateau beyond 12. This indicates a clear scaling behavior: larger
ensembles provide a more accurate estimate of the underlying node and relation distributions.

5.4 ABLATION STUDIES

Setup. To understand the impact of design choices on the performance and behavior of FLOCK (Q4),
we conduct a series of ablation studies spanning random walks, sequence processor and the consen-
sus protocol, in the entity prediction task in the zero-shot setting.

Adaptive test-time walks. Recall that we employ test-time adaptation of walk counts, which adap-
tively selects the base walk count n based on the graph size, computed via the harmonic-mean rule
shown in Equation (4) during inference. Table 4 compares this adaptive setting with a fixed setting
that uses 128 base walks per sample for all datasets, matching the pretraining setup (ntrain = 128).
As expected, the average selected base count n is smaller on both inductive splits and larger on
the transductive split, yet the adaptive mechanism improves performance across all settings. This
is consistent with the intuition that adaptive n scales up walks on larger KGs to improve coverage
while allocating fewer walks on smaller KGs to reduce redundant visits; FLOCK maintains compa-
rable visiting rates and coverage to those seen during pretraining, thereby producing representations
closer to the pretraining distribution and resulting in consistent performance gains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Detailed ablation study with zero-shot entity prediction task. For the transductive split, con-
sidering resource limits, we test NELL995, NELL23k, WDsinger, ConceptNet100k, and YAGO310.

Inductive e, r Inductive e Transductive Total Avg
Model (23 graphs) (18 graphs) (5 graphs) (46 graphs)

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

FLOCK (ℓ = 128) 0.369 0.554 0.456 0.604 0.360 0.542 0.395 0.567

w/o non-backtracking 0.370 0.549 0.456 0.605 0.334 0.499 0.386 0.551
ℓ = 64 0.372 0.556 0.459 0.606 0.351 0.534 0.394 0.565
ℓ = 256 0.360 0.548 0.458 0.605 0.338 0.508 0.385 0.553
w/o diverse starts 0.360 0.539 0.448 0.596 0.319 0.488 0.385 0.553
transformer fθ 0.356 0.542 0.410 0.591 0.312 0.477 0.359 0.537
w/o weighted consensus 0.351 0.526 0.448 0.593 0.361 0.515 0.387 0.545

Non-backtracking walks. FLOCK employs non-backtracking uniform random walk, which has an
effect of faster exploration and coverage of distant regions (Alon et al., 2007). In Table 5, we com-
pare this with uniform walk that may backtrack and hence is slower in global exploration. While
non-backtracking does not alter results much on inductive splits, it significantly improves perfor-
mance on the transductive split. This is consistent with the idea that improving coverage especially
benefits performances on large KGs, which FLOCK achieves via non-backtracking.

Walk lengths. FLOCK uses random walks of length ℓ = 128, a choice made by finding the lowest ℓ
reliably visiting target node and relation on various KGs. Table 5 compares this with shorter and
longer walks by a factor of two. As expected from coverage, shorter walks show degraded results on
the transductive split with large KGs. Longer walks are overall worse, which is explained by higher
learning complexity of the sequence processor that has a small hidden dimension (64) for scalability.
FLOCK finds a balance of coverage and learnability, achieving robust results on diverse KGs.

Diverse starting locations of walks. We recall that FLOCK uses a diversification strategy of starting
locations of walks, with n walks from the query node, n walks from random relation, and n walks
from random node, adding up to 3n walks capturing both local context near query and global infor-
mation of KG. Table 5 compares this against all 3n walks starting at the query node. As expected,
this causes degradations on all splits, showing the benefit of using both local and global information.

Sequence processor. FLOCK uses a sequence processor fθ with bidirectional GRU. In Table 5, we
compare this against a transformer fθ with a similar SwiGLU-RMSNorm architecture (Dubey et al.,
2024) and parameter count. This alternative does not deliver good results, which is explained by the
restrictions on model scales that are enforced to scale to large KGs. FLOCK benefits from reasoning
efficiency of GRU in limited parameter regime, gaining good performance and scalability together.

Consensus protocol. FLOCK uses softmax-weighted averaging to pool sequence processor outputs
into state updates for nodes and relations, under the intuition that this can suppress uninformative
proposals from the sequence processor better than simple, unweighted averaging. Table 5 provides
a comparison, showing that weighted consensus outperforms the unweighted counterpart. This ver-
ifies our intuition on how the design of the consensus protocol strengthens FLOCK.

6 CONCLUSIONS

We introduced FLOCK, as a knowledge graph foundation model that respects probabilistic node-
relation equivariance. FLOCK iteratively samples query-conditioned random walks from the input
KG, records encountered nodes and relations via a recording protocol, and relies on a sequence pro-
cessor and consensus protocol to obtain node and relation representations. We empirically evaluate
FLOCK over 54 KGs across different domains for both entity and relation prediction tasks, demon-
strating its superior zero-shot and finetuned performances. We further construct a synthetic dataset
PETALS to validate our theoretical findings. One limitation is scalability (discussed in Appendix E):
ensuring coverage of the sampled random walk in a large KG requires an extensive number of longer
walks, which can quickly become computationally infeasible. A future direction is to develop ap-
proximation strategies (Chamberlain et al., 2023; Łącki et al., 2020) that reduce the cost of random
walk sampling while retaining FLOCK’s downstream performance. Another avenue for future work
is studying the families of approximable functions when the walk lengths are restricted, for example
based on connections to subgraph-based reconstructions (Cotta et al., 2021).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces a probabilistic framework for knowledge graph foundation models, aiming to
improve the generalization in zero-shot link prediction. Our contributions are methodological and
theoretical, with evaluations performed on publicly available benchmarks and a synthetic dataset
designed to validate our theoretical results. We do not anticipate any direct ethical risks associated
with this approach. We acknowledge and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of the experiments in our paper. We release an
anonymized codebase with training and evaluation scripts for FLOCK, including pretraining scripts
and checkpoints on FB15k-237, WN18RR, and CoDEx Medium, evaluation over 54 KGs, and the
synthetic dataset PETALS generator in our anonymous codebase. All architectural details needed to
re-implement the method, including the random-walk sampler, recording protocol, sequence proces-
sor, and consensus protocol, are specified in Appendix A, and our theoretical claims are supported
with complete proofs in Appendix B. We additionally include further experimental details in Ap-
pendix I.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In NeurIPS, 2020. (page 2)

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In IJCAI, 2021. (pages 2, 3, 6)

Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random walks mix
faster. Communications in Contemporary Mathematics, 9(04):585–603, 2007. (page 10)

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, 2019. (page 2)

Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel Romero. Weisfeiler and leman go
relational. In LoG, 2022. (page 2)

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In ICLR, 2022. (page 3)

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013. (pages 2, 8)

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. (page 3)

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural
networks for link prediction with subgraph sketching. In ICLR, 2023. (page 10)

Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on
graphs via random walks. In ICLR, 2025. (page 3)

Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction, 2021. (page 32)

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014. (pages 6, 16)

11

https://iclr.cc/public/CodeOfEthics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph rep-
resentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021. (page
10)

Yuanning Cui, Zequn Sun, and Wei Hu. A prompt-based knowledge graph foundation model for
universal in-context reasoning. In NeurIPS, 2024. (pages 1, 3)

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018. (pages 8, 32)

Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embedding using
simple constraints. In ACL, 2018. (page 32)

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roz-
ière, Bethany Biron, Binh Tang, Bobbie Chern, and et al. The llama 3 herd of models. arXiv,
abs/2407.21783, 2024. (page 10)

Ben Finkelshtein, Xingyue Huang, Michael M Bronstein, and Ismail Ilkan Ceylan. Cooperative
graph neural networks. In ICML, 2024. (page 3)

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: Association
rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013. (page
32)

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compositional
and parameter-efficient representations of large knowledge graphs. In ICLR, 2022. (page 32)

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In ICLR, 2024. (pages 1, 3, 7, 8, 9, 32)

Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. In arXiv, 2023. (pages 1, 3, 30)

Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun
Chen. Relational message passing for fully inductive knowledge graph completion. In ICDE,
2023. (page 1)

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.
(pages 2, 3)

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. Elife, 2017. (page 32)

Xingyue Huang, Miguel Romero Orth, İsmail İlkan Ceylan, and Pablo Barceló. A theory of link
prediction via relational weisfeiler-leman on knowledge graphs. In NeurIPS, 2023. (pages 2, 32)

Xingyue Huang, Pablo Barcelo, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models? In
ICML, 2025. (pages 1, 2, 3, 7)

Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong. Revisit-
ing random walks for learning on graphs. In ICLR, 2025. (pages 2, 3, 4, 5, 32)

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph
embedding via relation graphs. In ICML, 2023. (pages 1, 3, 30, 32)

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive knowl-
edge graph completion using pair-wise encoding. In NeurIPS, 2021. (page 32)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. In NeurIPS, 2020. (page 6)

Xin Lv, Lei Hou Xu Han, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, and Suhui
Wu. Dynamic anticipation and completion for multi-hop reasoning over sparse knowledge graph.
In EMNLP, 2020. (page 32)

Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In CIDR, 2015. (page 32)

Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, and Yejin Choi. Commonsense
knowledge base completion with structural and semantic context. In AAAI, 2020. (page 32)

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In AAAI, 2019. (page 3)

Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In NeurIPS,
2020. (pages 2, 3)

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In NeurIPS, 2021. (page 3)

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014. (pages 2, 3)

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Bench-
mark. In EMNLP, 2020. (pages 8, 32)

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.
(page 2)

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. (pages
6, 16)

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In ICLR, 2020. (page 2)

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR, 2019. (pages 2, 33)

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: a uniform language
model fine-tuning framework for attributed graph embedding. In NeurIPS, 2023. (page 3)

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-
graph reasoning. In ICML, 2020. (pages 2, 32)

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. TMLR, 2021. (pages 3, 5)

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Workshop on Continuous Vector Space Models and their Compositionality, 2015.
(pages 8, 32)

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In ICLR, 2020. (page 2)

Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. NeurIPS, 2024.
(pages 3, 5, 32)

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In EMNLP, 2017. (page 32)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. (page 3)

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural infor-
mation processing systems, 32, 2019. (pages 6, 16)

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In ICML, 2023a. (page 3)

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In NeurIPS, 2021. (page 2)

Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In WebConf,
2022. (page 2)

Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han. Adaprop: Learning
adaptive propagation for graph neural network based knowledge graph reasoning. In KDD, 2023b.
(page 2)

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A more expressive
model for zero-shot domain transfer in knowledge graphs. In LoG, 2024. (pages 1, 3, 7, 8)

Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link prediction
with new relation types and nodes. In NeurIPS GLFrontiers, 2023. (pages 3, 8, 30, 32)

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In NeurIPS, 2021. (pages
2, 29, 32)

Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,
and Jian Tang. A*net: A scalable path-based reasoning approach for knowledge graphs. In
NeurIPS, 2023. (page 2)

David Zuckerman. On the time to traverse all edges of a graph. Inf. Process. Lett., 1991. (page 32)

Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Walking randomly, mas-
sively, and efficiently. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 364–377, 2020. (page 10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A METHODOLOGY - DETAILS

In this section, we expand on the descriptions of individual components of FLOCK summarized
in Section 4: the random walk algorithm, the recording protocol, the sequence processor, and the
consensus protocol.

A.1 UNIFORM RANDOM WALK

Let G = (V,E,R) be a knowledge graph, and let ℓ be the length of random walks. For each node
v ∈ V , we will denote by N (v) the set of neighbors of v:

N (v) = {w ∈ V : ∃r ∈ R.(v, r, w) ∈ E ∨ (w, r, v) ∈ E}
and by E(v, w), the set of relational edges from v to w (allowing for the inverse direction):

E(v, w) ={(v, r, w) ∈ R× {v} × {w} : (v, r, w) ∈ E}
∪ {(v, r−1, w) ∈ R−1 × {v} × {w} : (w, r, v) ∈ E}

where R−1 is the set symbolizing the inverses of relation types in R. The uniform random walk
with no backtracking η(G, ℓ) of length ℓ over G, represented as:

V0
R1−−→ V1

R2−−→ · · · Rℓ−−→ Vℓ

is a second-order Markov process that follows the rules:

P(Vi+2 = v | Vi+1 = w, Vi = u) =


0 if v = u and |Nw| > 1

1 if v = u and Nw = {u}
1

|Nw|−1 if v ̸= u and v ∈ Nw

0 if v /∈ Nw

P(Rj+1 = r | Vj+1 = w, Vj = u) =

{
1

|E(w,u)|
if r(w, u) ∈ E(w,u)

0 otherwise

(8)

for all i ≥ 0, j ≥ 1. Intuitively, at each step of the walk, we first select a neighbor (except for the
vertex chosen one step ago) of the current node uniformly at random (disregarding multi-edges and
edge directions), and then sample an edge between these two nodes uniformly at random. If the
current node has only one neighbor, we are forced to return to it.

The initial conditions depend on the selected scenario. Given a query q = (h, r, ?) over G, we can

describe the process of selecting the first step V0
R1−−→ V1 as setting either (each with probability 1

3):

• V0 = h and selecting the first step uniformly at random as described above, meaning:

P(V1 = v | V0 = h) =

{
1

|Nh| if v ∈ Nh

0 if v /∈ Nh

P(R1 = r | V1 = w) =

{
1

|E(w,h)|
if r(w, h) ∈ E(w,h)

0 otherwise

• setting R1 = r and selecting V0
R1−−→ V1 uniformly at random from edges with type r.

• choosing V0 uniformly at random, and then sampling the first step at random as well:

P(V0 = w) =
1

|V |

P(V1 = w | V0 = v) =

{
1

|Nw| if v ∈ Nw

0 if v /∈ Nw

P(R1 = r | V1 = v, V0 = w) =

{
1

|E(w,v)|
if r(w, v) ∈ E(w,v)

0 otherwise

For the relation prediction objective, we add one more scenario, similar to the first one described
above, but substituting V0 = t instead. For that problem, each scenario is chosen with probability 1

4 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 RECORDING FUNCTION

Given a KG G = (V,E,R), a query q = (hq, rq, ?), a walk η̄ = v0
r1−→ v1

r2−→ . . .
rℓ−→ vℓ of length

ℓ over G, and a set of embeddings v of nodes V and r of relations R, our recording function w first
splits the walk into a sequence of ℓ+ 1 steps:

(r0, v0), (r1, v1), . . . (rℓ, vℓ)

with r0 = r∅ being a special marker for no relation. Each step (ri, vi) is transformed into a 7-tuple:

Si =
(
idV (vi; η̄), idR(ri; η̄),diri, δvi=hq

, δri=rq ,v(vi), r(ri)
)

where:

• idV (vi; η̄) and idR(ri; η̄) are the anonymized id’s of the node vi and relation ri, evaluated as:

idV (vi; η̄) = argmin
t

[vt = vi]

idR(ri; η̄) = argmin
t

[
rt = ri ∨ rt = r−1

i

]
• diri denotes the direction in which we follow the edge. We set diri =0 if ri ∈R (the edge is

traversed from head to tail) and diri = 1 if ri ∈ R−1 (the edge is taken in the reverse direction).
• δvi=hq

and δri∼rq are binary flags representing whether the current node vi is the query head
vq and if the relation ri is either the queried relation rq or its inverse r−1

q .

• v(vi), r(ri) are the embeddings of vi and ri, respectively.

The output of w for η̄ given G, q,v, r is then:

w(η̄;G, q,v, r) = (S0, S1, . . . , Sℓ)

A.3 SEQUENCE PROCESSOR

Once the sampled walks are anonymized by the recording protocol w, the output for each walk η̄i:

w(η̄;G, q,v, r) = (S0, S1, . . . , Sℓ)

is passed through the sequence processor fθ, parametrized by the following modules:

• Av,Ar ∈ R(ℓ+1)×d: embedding tables for anonymized vertices and relations, respectively,
• D ∈ R2×d: look-up table for the direction embedding,
• Qh,Qr ∈ R2×d: embedding tables for the binary query labels,
• V,R : Rd → Rd: linear maps applied to the passed embeddings of vertices and relations,
• Ω: a bi-directional GRU (Cho et al., 2014) cell equipped with RMSNorm (Zhang & Sennrich,

2019) and SwiGLU (Shazeer, 2020) activation function.

For each step, encoding Si of the form:

Si =
(
idV (vi; η̄i), idR(ri; η̄i), diri, δvi=hq

, δri=rq ,v(vi), r(ri)
)

we evaluate the processed embedding ci of Si as a sum of the corresponding encoded components:

ci =Av(idV (vi; η̄i)) +Ar(idR(ri; η̄i)) +D(diri)

+Qh(δvi=hq) +Qr(δri=rq) +V(v(vi)) +R(r(ri))

These are then passed to the GRU cell Ω, which fuses the features across the whole walk and
produces multi-head embeddings of vertices and relations, as well as the associated weights:(

s
(V)
i , s

(R)
i ,a

(V)
i ,a

(R)
i

)
= Ω([c0, c1, . . . , cℓ])

where s
(V)
i , s

(R)
i ∈ R(ℓ+1)×h×dh and a

(V)
i ,a

(R)
i ∈ R(ℓ+1)×h. Stacking all N of them gives us the

final output of the sequence processor.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 CONSENSUS PROTOCOL

Given walks η̄1:N over G = (V,E,R) and the outputs s(V), s(R),a(V),a(R) of the sequence pro-
cessor, the consensus protocol c aggregates the signal for each node by evaluating a weighted sum
over the appearances of this node across the walks. More precisely, for each node v ∈ V , we find all
pairs of indices (i, j), such that the jth node visited in η̄i was v, and concatenate the weighted sums
of embeddings produced by each head, with weights exponentially proportional to the scores a(V):

∆v(v) =

h⊕
k=1

∑
i,j

η̄i(vj)=v

exp
(
a
(V)
i,j,k

)
· s(V)

i,j,k

∑
i,j

η̄i(vj)=v

exp
(
a
(V)
i,j,k

)
Similarly, we aggregate the encodings for relations, considering their occurrences in both directions:

∆r(r) =

h⊕
k=1

∑
i,j

η̄i(rj)∈{r,r−1}

exp
(
a
(R)
i,j,k

)
· s(R)

i,j,k

∑
i,j

η̄i(rj)∈{r,r−1}

exp
(
a
(R)
i,j,k

)

In both formulas above,
⊕

denotes concatenation.

Additionally, we say that a consensus protocol c is invariant if for any pair of isomorphic KGs
G = (V,E,R) and H = (V ′, E′, R′), any isomorphism µ = (π, ϕ) from G to H , any list of
embeddings h1:N with hi ∈ Rd, and any sequence of sampled walks η̄1:N over G, the outputs

(∆v,∆r) = c(h1:N , η̄1:N)

(∆v′,∆r′) = c(h1:N , µ(η̄1:N))

satisfy:
∆v(v) = ∆v′(π(v)) ∀v ∈ V

∆r(r) = ∆r′(ϕ(r)) ∀r ∈ R

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROOFS

B.1 EXPRESSIVITY

The main proposition of this section formalizes the fact that FLOCK can approximate any link-
invariant function over fixed-size knowledge graphs in probability. Intuitively, when the length of
the sampled walks ℓ becomes higher, the probability of a single walk witnessing all the edges grows
to 1. Once a walk visits all the edges, a sufficiently powerful sequence processor can derive the
whole graph structure from its anonymized representation, recreating the graph in its entirety, up to
isomorphism. Then, the processor can return the value of the approximated function for that graph.

We start by showing that the edge cover time CE(·) of graphs in Kn,m is bounded:

Lemma B.1. Let G ∈ Kn,m for some n,m. The edge cover time CE(G) of G, using the algorithm
from Appendix A.1, is finite.

Proof. Let G = (V,E,R) ∈ Kn,m be a graph. For any edge e ∈ E and any vertex v ∈ V , let Hv(e)
denote the expected number of steps of the random walk algorithm η described in Appendix A.1.
Then, the edge cover time CE(G) of G with η, i.e. the expected number of steps that η needs to take
before visiting every edge in G, is bounded above by:

CE(G) ≤
∑
e∈E

max
v∈V

Hv(e) ≤ m ·max
e∈E
v∈V

Hv(e)

Indeed, consider the event of visiting all these edges in order e1, . . . , em:

CE(G) = E[#steps to visit all e1, . . . , em]

≤ E[#steps to visit e1, then e2, . . . , then em]

≤ E[#steps to visit e1] +
m−1∑
i=1

E[#steps to visit ei+1 starting from hi or ti]

≤ max
v∈V

Hv(e1) +

m−1∑
i=1

max(Hhi(ei+1), Hti(ei+1))

≤ max
v∈V

Hv(e1) +

m−1∑
i=1

max
v∈V

Hv(ei+1)

=

m∑
i=1

max
v∈V

Hv(ei)

where hi and ti are the head and tail of the edge ei, respectively. Therefore, to show that CE(G) is
finite, it suffices to prove that Hv(e) is bounded for all v ∈ V, e ∈ E.

Fix v ∈ V and e ∈ E. Consider an infinite random walk generated with η over G, starting at v:

v = v0
r1−→ v1

r2−→ v2
r3−→ . . .

We want to bound the expected first index t, such that e is the edge traversed in step vt−1
rt−→ vt.

Denote by ∆ a maximum degree of a vertex in G (counted as the number of connected vertices
N (v)), by ρ the maximum number of edges between any single pair of nodes and by d – the diameter
of the graph, i.e. the length of the longest shortest path between two vertices (in the undirected
version of G). Consider the series of events A0, A1, . . . where Ai is characterized as:

Ai := the event that starting from vi(d+2) the walk will follow a shortest path

to one of the endpoints of e and then go through e

Let e = (he, re, te). For all values of i, by definition, the length of the shortest path from vi(d+2) to
he or te is at most d. Therefore, the whole part of the walk described in Ai is at most d + 1 steps
long. By the definition of the used random walk algorithm, which only looks at the previously taken
edge, we can deduce that the events Ai are all mutually independent.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Moreover, let vi(d+2) = u0
s1−→ u1

s2−→ . . .
sℓ−→ uℓ ∈ {he, te} be a shortest path from vi(d+2) to

one of he, te. Note that by minimality, there cannot be any backtracking while following this path.
Therefore, the probability of the next visited node is dependent only on the value of the previous
one, and we can bound the probability P (Ai) of Ai from below by:

P(Ai) ≥ P(pass through e after reaching he or te) ·
ℓ−1∏
j=0

P(vi(d+2)+j+1 = uj+1 | vi(d+2)+j = uj)

The first term on the right hand side is the probability of selecting e while being at he or te, which
is the probability of first selecting the other endpoint (out of at most ∆ neighbors) and then picking
e over other edges between he and te (of which there is at most ρ). Hence:

P(pass through e after reaching he or te) ≥
1

∆
· 1
ρ
=

1

∆ · ρ
As we never reach a backtracking situation by minimality of the shortest path, we can also write:

P(vi(d+2)+j+1 = uj+1 | vi(d+2)+j = uj) =
1

|N (vi(d+2)+j)|
≥ 1

∆

Combining these observations, we can derive a bound for P(Ai) in terms of ∆, ρ and d:

P(Ai) ≥ P(pass through e after reaching he or te) ·
ℓ−1∏
j=0

P(vi(d+2)+j+1 = uj+1 | vi(d+2)+j = uj)

≥ 1

∆ · ρ
·
ℓ−1∏
j=0

1

∆
≥ 1

∆ · ρ

(
1

∆

)ℓ

≥ 1

∆ · ρ

(
1

∆

)d

=
1

ρ∆d+1

Finally, note that if Ai is true, then the first index t such that vt−1
rt−→ vt traverses e is at most

(i+ 1)(d+ 2). We can therefore bound the expectation of such t, being Hv(e) = Hv0(e) by:
Hv(e) ≤ (d+ 2) · P(A0) + 2(d+ 2) · P(¬A0 ∧A1) + 3(d+ 2) · P(¬A0 ∧ ¬A1 ∧A2) + . . .

= (d+ 2) · P(A0) + 2(d+ 2) · P(¬A0) · P (A1) + 3(d+ 2) · P(¬A0) · P(¬A1) · P(∧A2) + . . .

= (d+ 2) + P(¬A0) · (d+ 2 + P(¬A1) · (d+ 2 + P(¬A2) · (. . .)))

≤ (d+ 2) +

(
1− 1

ρ∆d+1

)
·
(
d+ 2 +

(
1− 1

ρ∆d+1

)
·
(
d+ 2 +

(
1− 1

ρ∆d+1

)
· (. . .)

))
= ρ(d+ 2)∆d+1

Since ρ ≤ m, d+2 ≤ n and ∆ ≤ n, we have Hv(e) ≤ m(n+2)nn, which completes the proof.

Remark B.2. The bound obtained in the proof of Lemma B.1 is very crude. In fact, we could
transform the given knowledge graph into a simple graph (undirected, with no multi-edges) by sub-
stituting each edge u

r−→ v with two undirected edges u ↔ v(u,r,v) ↔ v. The augmented graph
will then have n + m vertices, and our random walk algorithm naturally translates to a weighted
random walk on the transformed graph. This hints at an assumption that in practice, the edge cover
time of the used random walk algorithm is of the magnitude O((n+m)3) = O(n3 +m3).

Let us now prove a fact about the number of distinct, up to isomorphism, graphs in Kn,m.
Lemma B.3. For any n,m, the number of isomorphism classes in Kn,m is finite.

Proof. Since the number of distinct relation types that a graph in Kn,m is at most m, it suffices to
show that the number of isomorphism classes of graphs in Kn,m with exactly k relation types is
bounded, for all k ∈ {1, 2, . . . ,m}.

Fix the number k ∈ {1, 2, . . . ,m} and consider G = (V,E,R) ∈ Kn,m with |R| = k. We will
show that, up to isomorphism, there are finitely many such choices of G. Firstly, as renaming does
not change the graph structure, without loss of generality, we can assume that:

V = {v1, v2, . . . , vn} and R = {r1, r2, . . . , rk}
Then, there are exactly n2k possible relational edges e ∈ (V × R × V), and E ⊆ V × R × V

is a set of m elements. Hence, there are
(
n2k
m

)
possible choices of E, and hence, at most

(
n2k
m

)
non-isomorphic choices of G. Since k was chosen arbitrarily, this completes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma B.4. For each pair (n,m), there exists a number Cn,m such that the edge cover time, using
the algorithm from Appendix A.1, of any knowledge graph in Kn,m is at most Cn,m.

Proof. The result follows from Lemmas B.1 and B.3. As two isomorphic graphs have identical
cover time, we can set Cn,m to be the maximum of cover times of representatives of all isomorphic
classes, which, by finiteness of both, is well-defined.

Lemma B.5. Let G ∈ Kn,m be a graph, q = (hq, rq, ?) be a link query over G, and η̄ be a walk
over G. If η̄ traverses all edges of G, then using only the output w(η̄;G, q, ·, ·) of the recording func-
tion w detailed in Appendix A.2, we can construct a graph-query pair (H, q′) isomorphic to (G, q).

Proof. Suppose that η̄ = v0
r1−→ v1

r2−→ . . .
rℓ−→ vℓ visits all edges of G = (V,E,R) and let ℓ be

its length. Recall the anonymization functions idV (·; η̄) and idR(·; η̄) as defined in Appendix A.2.
The output w(η̄;G, q, ·, ·) (the embedding functions provided as the last two arguments are irrele-
vant) is a sequence of tuples S0, S1, . . . , Sℓ with each Si equal to:

Si =
(
idV (vi; η̄), idR(ri; η̄),diri, δvi=hq , δri=rq , ·, ·

)
Consider a graph H = (V ′, E′, R′) constructed as follows:

• the vertices V ′ correspond to the anonymized node ids idV (vi; η̄):

V ′ = {idV (v; η̄) | v ∈ V }
Since each vertex must have been visited by η̄, this is well-defined.

• the relation types R′ are the anonymized relation ids idR(ri; η̄):

R′ = {idV (r; η̄) | r ∈ R}
Again, this is well-defined, as each relation must have been noticed by η̄.

• the edges E′ are reconstructed from the consecutive step encodings using the anonymized
vertex and relation indices and the direction diri:

E′ = {(idV (vi−1), idR(ri), idV (vi)) | diri = 0, 1 ≤ i ≤ l}
∪ {(idV (vi), idR(ri), idV (vi−1)) | diri = 1, 1 ≤ i ≤ l}

and a query q′ = (idV (vi; η̄), idR(rj , η̄), ?) for i, j such that δvi=hq = 1 and δrj=rq = 1.

Then by the definition of w (Appendix A.2), it is straightforward to check that the pair
(idV (·; η̄), idR(·; η̄)) defines an isomorphism from (G, q) to (H, q′). Indeed, both these functions are
injective by construction, and as η̄ witnesses all nodes and relations, they are well-defined bijections.
For each unique edge traversed by η̄, there exists a unique edge in E′ translated to the anonymized
space, which implies an isomorphism between E and E′. Finally, by utilizing the flags δvi=hq and
δrj=rq , we can identify the query head node and relation in the new graph. All things considered,
we can reconstruct the pair (G, q), up to isomorphism, from the output of w(η̄;G, q, ·, ·).

We are now ready to prove the main result regarding the universality of FLOCK as an approximation
of link invariant functions. The outline of the proof is as follows: 1) Using the upper-bound on the
edge cover time of graphs in Kn,m derived in Lemma B.4, we can bound the probability of sampling
a walk that visits all edges, 2) Once such a walk is sampled, we can recover the graph and query, up
to isomorphism, from its anonymized form (Lemma B.5), 3) Lastly, we can return the value of the
approximated function for the derived isomorphic instance. Since the approximated function is link
invariant, if the reconstructed graph matches the original one, we return precisely the correct value.
Proposition 4.1. With a powerful enough sequence processor fθ, the FLOCK framework described
in Section 4 is a universal approximator of link invariant functions over Kn,m for all pairs (n,m).

Proof. Let φ : Kn,m → (V × R × V → [0, 1]) be a link invariant function over Kn,m returning
values from the interval [0, 1]. Let G = (V,E,R) ∈ Kn,m, q = (h, r, ?) be a link prediction query
over G and t ∈ V be a target node. Pick some ϵ, δ > 0. Our goal is to show that:

P(|φ(G)((h, r, t))−Xθ(G, (h, r, ?))(t)| < ϵ) > 1− δ (9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For simplicity, let us consider a situation where only a single walk η̄ of length ℓ is sampled by
the model (otherwise, omit additional walks). We will also restrict the argument to a single refine-
ment case – the result can be extended to multiple refinement steps by returning ∆v,∆r = 0 during
all additional iterations. Consider a sequence processor fθ that given the output w(η̄;G, q, ·, ·) of
the recording protocol, creates a graph-query pair (H, q′) with q′ = (hq′ , rq′ , ?) using the strat-
egy described in the proof of Lemma B.5, and returns a vector h ∈ Rl+1 whose ith entry is equal
hi = φ(H)((hq′ , rq′ , idV (vi; η̄)) where vi is the ith node visited by η̄. The consensus protocol c,
provided t was visited by η̄, can then identify t as one of the vj and pull the corresponding em-
bedding hj = φ(H)((hq′ , rq′ , idV (t; η̄)), returning it as the output v(t) = hj (note that no matter
which specific value of j is chosen, this value will be the same). Finally, the classification head can
work as an identity operation, returning Xθ(G, q)(t) = v(t) = φ(H)((hq′ , rq′ , idV (t; η̄)).

We claim that if the sampled walk η̄ traverses all edges of G, then the output of the FLOCK model
described above satisfies:

φ(G)((h, r, t)) = Xθ(G, (h, r, ?))(t)

By Lemma B.5, in such case, the reconstructed pair (H, q′) is isomorphic to (G, q) by the isomor-
phism id = (idV (·; η̄), idR(·; η̄)). Since φ is link invariant, we can write:

φ(G)((h, r, t)) = φ(id(G))((idV (h; η̄), idR(r; η̄), idV (t; η̄)))

= φ(H)((hq′ , rq′ , idV (t; η̄)))

= Xθ(G, (h, r, ?))(t)

Therefore, whenever the walk η̄ witnesses all edges of G, the output of the FLOCK model satisfies:

φ(G)((h, r, t)) = Xθ(G, (h, r, ?))(t)

Hence, to show (9), it suffices to prove that we can uniformly choose the length ℓ of the random
walk so that the probability of η̄ covering all the edges is greater than 1−δ. By Markov’s inequality:

P(η̄ does not cover all edges) = P(it takes > ℓ steps for η to cover edges of G)

≤ E[#steps such that η covers all edges of G]

ℓ

=
CE(G)

ℓ

But by Lemma B.4, CE(G) ≤ Cn,m for some constant Cn,m. Hence, taking ℓ >
Cn,m

δ , we get:

P(η̄ does not cover all edges) ≤ CE(G)

ℓ
≤ Cn,m

ℓ
< δ

This means that for such a choice of ℓ:

P(η̄ witnesses all edges of G) > 1− δ

which leads to the conclusion that for ℓ > Cn,m

δ , the proposed FLOCK framework satisfies:

P(|φ(G)((h, r, t))−Xθ(G, (h, r, ?))(t)| < ϵ) > 1− δ

for any choice of G = (V,E,R) ∈ Kn,m and (h, r, t) ∈ V ×R× V .

B.2 INVARIANCE

First, let us recall the definition of invariance for the context of knowledge graphs and the associated
notion of invariance in probability. We say that a function φ taking KGs as input is invariant if for
any pair of isomorphic KGs G ≃ H it produces the same input, i.e. G ≃ H =⇒ φ(G) = φ(H).

We extend the notion of invariance for further types of inputs, not limited to full knowledge graphs,
particularly to random walks and link prediction queries. Let G = (V,E,R) ∈ Kn,m and let
H = (V ′, E′, R′) ≃ G be a KG isomorphic to G via the isomorphism µ = (π, ϕ). For any h ∈ V
and r ∈ R, we identify the link prediction query q = (h, r, ?) in H using the isomorphism µ as:

µ(q) = µ((h, r, ?)) = (π(h), ϕ(r), ?)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Similarly, let η = v0
r1−→ . . .

rℓ−→ vℓ be a walk of length ℓ in G. The view of η with µ is defined as:

µ
(
v0

r1−→ v1
r2−→ . . .

rℓ−→ vℓ

)
= π(v0)

ϕ(r1)−−−→ π(v1)
ϕ(r2)−−−→ . . .

ϕ(rℓ)−−−→ π(vℓ)

Let f be a function taking inputs drawn from KGs. We call f invariant if for any pair of isomorphic
graphs G

µ
≃ H and an associated isomorphism µ = (π, ϕ), f satisfies

f(x) = f(µ(x))

where x can be, e.g., a walk or link prediction query. In words, invariance means that the function
preserves output under the re-identifications of the input graph and the induced transformations of
queries and walks.

This notion extends to functions with multiple inputs, where we enforce the transformation on each
graph-related input. For example, a function φ taking a KG, query and a d-dimensional vector is
invariant if it satisfies:

∀G
µ
≃ H, q,v ∈ Rd : φ(G, q,v) = φ(µ(G), µ(q),v)

Following the definition of invariance in probability, provided in Section 3, we extend all the defi-
nitions above to the stochastic case, replacing equality (=) with equality in distribution (d

=).

We can now prove the main propositions stated in Section 4.2. Let’s begin with the more general:
Proposition 4.2. Suppose that the walk sampling protocol η is invariant in probability and both the
recording protocol w and the consensus protocol c are invariant. Then, regardless of the choice of
the deterministic sequence processor fθ, the corresponding FLOCK model is invariant in probability.

Proof. Let (V,E,R) = G ≃ H = (V ′, E′, R′) be isomorphic knowledge graphs with isomorphism
µ = (π, ϕ) transforming G into H . Our goal is to show that when the statement conditions are met
for a FLOCK model Xθ with I refinement steps, then for any link prediction query q = (h, r, ?) and
any target node t ∈ V , the prediction of FLOCK for t over (G, q) is an identical random variable to
the prediction for π(t) over (H,µ(q)), i.e.

Xθ(G, q)(t)
d
= Xθ(H,µ(q))(π(t))

where µ(q) = (π(h), ϕ(r), ?). Recall that these predictions are defined as:

Xθ(G, q)(t) := head(v(I)(t) + r(I)(r))

Xθ(H,µ(q))(π(t)) := head(v′(I)(π(t)) + r′
(I)

(ϕ(r)))

As head is a deterministic map, it suffices to show that the final embeddings v(I), r(I) for (G, q)

and v′(I), r′
(I) for (H,µ(q)) satisfy:

v(I)(v)
d
= v′(I)(π(v)) and r(I)(r)

d
= r′

(I)
(ϕ(r)) ∀v ∈ V, r ∈ R

We will prove this result by induction on the number of layers i. The base case i = 0 is trivial, as
we initialize the embeddings of all nodes with a pretrained vector v0, and all relations with r0.

For the induction step, suppose the claim holds for i. We drop the superscript (i) for readability.
The result for i + 1 becomes apparent by unfolding the definitions of invariance of the considered
components. Since η is invariant in probability, we have

µ(η(G))
d
= η(H) (10)

Let η1, . . . , ηn be the random walks over G using η and η′1, . . . , η
′
n be random walks over H . Now,

η1, . . . , ηn are independent and identically distributed random variables, each following the distri-
bution ηj ∼ η(G). Similarly, using (10):

η′j ∼ η(H)
d
= µ(η(G)) =⇒ η′j

d
= µ(ηj) (11)

As the recording protocol w is invariant, w(ηj)=w(µ(ηj)) for all j, which with (11) yields:

zj := w(ηj) = w(µ(ηj))
d
= w(η′j) := z′j (12)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then, fθ is a deterministic map, so (12) implies:

hj := fθ(zj)
d
= fθ(z

′
j) := h′

j

Let (∆v,∆r) = c(h1:N , η1:N), (∆v′,∆r′) = c(h′
1:N , η′1:N) be the outputs of the consen-

sus protocol. We will denote by cv and cr, the restrictions to the first and second output, e.g.
∆v = cv(h1:N , η1:N). Let x ∈ Rd be a vector, and denote by W(G) the space of walks over G.
For any vertex v ∈ V , the probability that ∆v(v) = x equals:

P(∆v(v) = x) =
∑

η̄∈W(G)n

P(∆v(v) = x|η1:N = η̄) · P(η1:N = η̄)

=
∑

η̄∈W(G)n

P(cv(h1:N , η1:N) = x|η1:N = η̄) · P(η1:N = η̄)

=
∑

η̄∈W(G)n

P(cv(fθ(w(η1:N)), η1:N) = x|η1:N = η̄) · P(η1:N = η̄)

=
∑

η̄∈W(G)n

P(cv(fθ(w(η̄)), η̄) = x|η1:N = η̄) · P(η1:N = η̄)

=
∑

η̄∈W(G)n

cv(fθ(w(η̄)),η̄)(v)=x

P(η1:N = η̄)

Similarly, we can derive:

P(∆v′(π(v)) = x) =
∑

η̄′∈W(H)n

cv(fθ(w(η̄′)),η̄′)(π(v))=x

P(η′1:N = η̄′)

Using the invariance of the consensus protocol and the invariance of fθ ◦ w, we can write:

cv(fθ(w(η̄
′)), η̄′)(π(v)) = cv(fθ(w(µ(η̄))), µ(η̄))(π(v))

= cv(fθ(w(η̄)), µ(η̄))(π(v))

= cv(fθ(w(η̄)), η̄)(v)

The graph isomorphism µ defines a bijection between walks W(G) in G and walks W(H) in H , so
we can use this correspondence to deduce:

P(∆v′(π(v)) = x) =
∑

η̄′∈W(H)n

cv(fθ(w(η̄′)),η̄′)(π(v))=x

P(η′1:N = η̄′)

=
∑

µ(η̄)∈W(H)n

cv(fθ(w(µ(η̄))),µ(η̄))(π(v))=x

P(η′1:N = µ(η̄))

=
∑

η̄∈W(G)n

cv(fθ(w(η̄)),η̄)(v)=x

P(η′1:N = µ(η̄))

(13)

Since η is invariant in probability, P(η1:N = η̄) = P(η′1:N =µ(η̄)). Applying this to (13) yields:

P(∆v′(π(v)) = x) =
∑

η̄∈W(G)n

cv(fθ(w(η̄)),η̄)(v)=x

P(η′1:N = µ(η̄))

=
∑

η̄∈W(G)n

cv(fθ(w(η̄)),η̄)(v)=x

P(η1:N = η̄) = P(∆v(v) = x)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

As x was chosen arbitrarily, we can conclude that ∆v(v)
d
= ∆v′(π(v)). The proof for relations

follows analogously, considering cr instead of cv. This allows us to write:

∆v(v)
d
= ∆v′(π(v)) ∀v ∈ V

∆r(r)
d
= ∆r′(ϕ(r)) ∀r ∈ R

(14)

By the induction hypothesis, v(i)(v)
d
= v′(i)(π(v)) for all v ∈ V and r(i)(r)

d
= r′

(i)
(r) for all

r ∈ R. Therefore, by (14), combined with properties of sums of random variables:

v(i+1)(v) := v(i)(v) + ∆v(v)
d
= v′(i)(π(v)) + ∆v′(π(v)) := v′(i+1)

(π(v)) ∀v ∈ V

r(i+1)(r) := r(i)(r) + ∆r(r)
d
= r′

(i)
(ϕ(r)) + ∆r′(ϕ(r)) := r′

(i+1)
(ϕ(r)) ∀r ∈ R

which completes the induction step, and hence the proof.

We can use the conclusion from Proposition 4.2 to prove the probabilistic invariance of the architec-
ture proposed in Section 4. To be able to apply it, we first need to verify the invariance of all used
components, which we formalize in the following lemmas.

Lemma B.6. The choice of the first step v0
r1−→ v1 of the uniform random walk algorithm described

in Appendix A.1 is invariant.

Proof. Let G = (V,E,R) be a graph and let H ≃ G be an isomorphic graph, with the isomorphism
µ = (π, ϕ) taking G to H . Consider a link prediction query q = (h, r, ?) over G, and its identifica-
tion q′ = µ(q) = (π(h), ϕ(r), ?). The goal is to show that when using η described in Appendix A.1
for (G, q) and (H, q′), the first steps:

V0
R1−−→ V1 and U0

S1−→ U1

of the execution of η over G and H , respectively, satisfy the following property:

π(V0)
ϕ(R1)−−−−→ π(V1)

d
= U0

S1−→ U1

By definition of η, there are three scenarios of choosing the first step, each with probability 1
3 .

Hence, it suffices to show that within each scenario, the selection process is invariant in probability:

• Scenario 1: selecting the query head as the first node, then proceeding by random. First,
π takes the head node of q to the head node of q′. Secondly, as isomorphisms preserve the
number of neighboring nodes and number of edges between a pair of nodes, we have:

P(V1 = v | V0 = h) =

{
1

|Nh| if v ∈ Nh

0 if v /∈ Nh

=

{
1

|Nπ(h)|
if π(v) ∈ Nπ(h)

0 if π(v) /∈ Nπ(h)

= P(U1 = π(v) | U0 = π(h))

and

P(R1 = r | V1 = w) =

{
1

|E(w,h)|
if r(w, h) ∈ E(w,h)

0 otherwise

=

{
1

|E(π(w),π(h))|
if ϕ(r)(π(w), π(h)) ∈ E(π(w),π(h))

0 otherwise

= P(S1 = ϕ(r) | U1 = π(w))

• Scenario 2: selecting an edge with query relation type at random. Here, we use the fact that
isomorphisms preserve the number of edges of a given type. Hence, µ defines a bijection
between the sets of edges with type r in G and type ϕ(r) in H , which allows us to conclude
that this scenario is also invariant in probability.

• Scenario 3: selecting the first step completely at random. This case is similar to Scenario 1
– using the invariance of the number of neighboring nodes under isomorphism, we can repeat
similar calculations in a straightforward manner to show probabilistic invariance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Either way, we find that the selection process of the first step of η over G translates naturally via µ
to the choice of the first step over H , proving the desired statement.

Lemma B.7. Suppose that the first step v0
r1−→ v1 is chosen in an invariant manner. Then, the

uniform random walk with no backtracking algorithm η is invariant in probability.

Proof. Let G = (V,E,R) be a knowledge graph, and let ℓ be the length of random walks. Let H
be a KG isomorphic to G via the isomorphism µ = (π, ϕ). We aim to show that:

µ(η(G, ℓ)) = π(V0)
ϕ(R1)−−−−→ π(V1)

ϕ(R2)−−−−→ . . .
ϕ(Rℓ)−−−−→ π(Vℓ)

d
= U0

S1−→ U1
S2−→ . . .

Sℓ−→ Uℓ = η(H, ℓ)

Let η̄ = v0
r1−→ v1

r2−→ . . .
rℓ−→ vℓ ∈ W(G) be a walk of length ℓ over G. It suffices to show that the

probability of sampling η̄ from G is identical to the probability of sampling µ(η̄) from H:

P(η(G, ℓ) = η̄) = P(η(H, ℓ) = µ(η̄))

To see this, let us expand the definitions of P(η(G, ℓ) = η̄):

P(η(G, ℓ) = η̄) =P(V0 = v0)

· P(V1 = v1 | V0 = v0)

·
ℓ−2∏
i=0

P(Vi+2 = vi+2 | Vi+1 = vi+1, Vi = vi)

·
ℓ−1∏
i=0

P(Ri+1 = ri+1 | Vi+1 = vi+1, Vi = vi)

(15)

and P (η(H, ℓ) = µ(η̄)):

P(η(H, ℓ) = µ(η̄)) =P(U0 = π(v0))

· P(U1 = π(v1) | U0 = π(v0))

·
ℓ−2∏
i=0

P(Ui+2 = π(vi+2) | Ui+1 = π(vi+1), Ui = π(vi))

·
ℓ−1∏
i=0

P(Si+1 = ϕ(ri+1) | Ui+1 = π(vi+1), Ui = π(vi))

(16)

Given that the graph isomorphism preserves the number of neighbors for each node and is a bijection,
we can easily verify using the definitions from (8) that the following indeed hold:

P(Vi+2 = vi+2 | Vi+1 = vi+1, Vi = vi) = P(Ui+2 = π(vi+2) | Ui+1 = π(vi+1), Ui = π(vi))

P(Rj+1 = rj+1 | Vj+1 = vj+1, Vj = vj) = P(Sj+1 = ϕ(rj+1) | Uj+1 = π(vj+1), Uj = π(vj))
(17)

for all i ∈ {0, 1, . . . , ℓ − 2}, j ∈ {1, . . . , ℓ − 1}. Moreover, by the assumption that the first step
V0

R1−−→ V1 is invariant, we have:

P((V0, R1, V1) = (v0, r1, v1)) = P((U0, S1, U1) = (π(v0), ϕ(r1), π(v1))) (18)

But by the laws of conditional probability:

P((V0, R1, V1) = (v0, r1, v1)) = P(R1 = r1 | V0 = v0, V1 = v1) · P(V0 = v0, V1 = v1)

= P(R1 = r1 | V0 = v0, V1 = v1) · P(V1 = v0 | V0 = v0) · P(V0 = v0)

and analogously:

P((U0,S1, U1) = (π(v0), ϕ(r1), π(v1)))

= P(S1 = ϕ(r1) | U0 = π(v0), U1 = π(v1)) · P(U1 = π(v0) | U0 = π(v0)) · P(U0 = π(v0))

Substituting these equalities into (18) and multiplying both sides by the equalities from (17) for all
choices of i ∈ {0, 1, . . . , ℓ− 2}, j ∈ {1, . . . , ℓ− 1}, we get precisely the equality of the right sides
of equations (15) and (16). Hence,

P(η(G, ℓ) = η̄) = P(η(H, ℓ) = µ(η̄))

and we can conclude that µ(η(G, ℓ))
d
= η(H, ℓ), and the algorithm η is invariant in probability.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Corollary B.8. The random walk algorithm presented in Appendix A.1 is invariant in probability.
Lemma B.9. The recording protocol w, as described in Appendix A.2, is invariant, provided that
the embedding functions v and r are invariant.

Proof. Let G = (V,E,R) and H = (V ′, E′, R′) be isomorphic knowledge graphs with the iso-
morphism µ = (π, ϕ) taking G to H . Let q = (hq, rq, ?) be a link prediction query over G, and
µ(q) = (π(hq), ϕ(rq), ?) be its identification in H . Let η̄ = v0

r1−→ v1
r2−→ . . .

rℓ−→ vℓ ∈ W(G) be

a walk over G, and η̄′ = µ(η̄) = π(v0)
ϕ(r1)−−−→ π(v1)

ϕ(r2)−−−→ . . .
ϕ(rℓ)−−−→ π(vℓ) be the analogous walk

over H . To prove that the recording protocol w outlined in Appendix A.2 is invariant, it suffices to
show that the encoding of each step:

Si =
(
idV (vi; η̄), idR(ri; η̄),diri, δvi=hq , δri=rq ,v(vi), r(ri)

)
is identical for η̄ and η̄′. We will show this for each component:

• since π defines a bijection between nodes in G and H , for any i, we have:

idV (vi; η̄) = argmin
t

[vt = vi] = argmin
t

[π(vt) = π(vi)] = idV (π(vi); η̄
′)

• similarly to the point above, ϕ is a bijection between relations of G and H , so we can write:

idR(ri; η̄) = argmin
t

[
rt = ri ∨ rt = r−1

i

]
= argmin

t

[
ϕ(rt) = ϕ(ri) ∨ ϕ(rt) = ϕ(ri)

−1
]

= idR(ϕ(ri); η̄
′)

• diri is clearly preserved, as the isomorphism µ preserves the directions of edges,

• as π, ϕ are bijections the masks δvi=hq , δri=rq , representing whether the i’th node and relation
match the types in the query, satisfy:

vi = hq ⇐⇒ π(vi) = π(hq) =⇒ δvi=hq
= δπ(vi)=π(hq)

ri = rq ⇐⇒ ϕ(ri) = ϕ(rq) =⇒ δri=rq = δϕ(ri)=ϕ(rq)

• v and r are invariant by assumption, so:

v(vi) = v(π(vi)) and r(ri) = r(ϕ(ri))

Combining all these observations, we can conclude that w(η̄;G, q,v, r) = w(µ(η̄);H,µ(q),v, r)
and w is indeed invariant.

Lemma B.10. The consensus protocol c, as described in Appendix A.4, is invariant.

Proof. Let G = (V,E,R) be a knowledge graph and H be isomorphic to G via an isomorphism
µ = (π, ϕ). Let η̄1:N ∈ W(G) be a sequence of walks in G. To show that the output of the
consensus protocol is invariant, we need to prove that for each v ∈ V and r ∈ R, the following
holds:

∆v(v) = v′(π(v)) and ∆r(r) = ∆r′(ϕ(r)) (19)

where (∆v,∆r) = c(h, η̄1:N) and (∆v′,∆r′) = c(h, µ(η̄1:N)) for h = (s(V), s(R),a(V),a(R)).

The result follows from the fact that π and ϕ are bijections – whenever v is the jth vertex visited
in the walk η̄i, the jth node of µ(η̄i) must be π(v) (and vice versa). An analogous result holds for
the relations. Hence, the aggregation performed by c for v (resp. r) over η̄1:N is equivalent to the
aggregation for π(v) (resp. ϕ(r)) over µ(η̄1:N), and (19) is indeed satisfied.

Proposition 4.3. FLOCK with components as described in Section 4 is invariant in probability.

Proof. The result follows naturally from aggregating the results of Corollary B.8 and Lemmas B.9
and B.10, followed by applying Proposition 4.2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

b0

a
(1)
2

a
(1)
4

a
(1)
1

a
(1)
3

a
(1)
5

a
(2)
1

a
(2)
3

a
(2)
2

a
(2)
4

a
(2)
5

a
(3)
2

a
(3)
4

a
(3)
1

a
(3)
3

a
(3)
5

a
(4)
1

a
(4)
3

a
(4)
2

a
(4)
4

a
(4)
5

b1 b2 b3

Figure 5: An example of a graph from PETALS with c = 4, l = 2 and t = 3, and the associated link
prediction instances (dashed). The relation types ‘red’, ‘blue’, ‘pink’ and ‘yellow’ are structurally
isomorphic, hence become equated in the eyes of the existing KGFMs.

C DETAILS OF THE PETALS BENCHMARK

State-of-the-art knowledge graph foundation models (KGFMs) typically impose relational invari-
ance. Formally, given two knowledge graphs G = (V,E,R) and H = (V ′, E′, R′), if there exists
an isomorphism (π, ϕ) from G to H , then for any r ∈ R, the model enforces identical representa-
tions for r and its image ϕ(r) ∈ R′. This design promotes generalization across different graphs,
as it aligns analogous relations, but reduces expressivity within a single graph (G = H), where
relations related by automorphisms are forced to be indistinguishable. Concretely, if an automor-
phism (π, ϕ) of G maps r1 to r2, then the model must treat r1 and r2 as identical during inference.
While some approaches mitigate this limitation via the labeling trick, assigning distinct embeddings
to query-specific nodes and relations, this only isolates the queried relation type and does not resolve
the underlying issue in general.

Motivated by this limitation, we introduce the PETALS benchmark. PETALS comprises 220 graphs,
each paired with a link prediction query (h, r, ?) and a target set {t1, t2}. While t1 and t2 are
non-isomorphic, KGFMs enforcing relational invariance are unable to distinguish them, producing
identical predictions. We empirically validate this property by evaluating the classification accuracy
of marking t1 as TRUE and t2 as FALSE, reported in Table 1.

C.1 STRUCTURE OF THE STUDIED KGS

Knowledge graphs in PETALS follow a flower-like structure, parametrized by the number c of
‘petals’, their length l and the length t of the ‘stem’ (see Figure 5 for visualization).

Vertices. Each ‘petal’ is a set A(i) of 2l+1 vertices A(i) =
{
a
(i)
1 , a

(i)
2 , . . . , a

(i)
2l+1

}
, while the stem

B consists of t+ 1 nodes B = {b0, b1, . . . , bt}. The full set of entities is then:

V = B ∪
c⋃

i=1

A(i) = {b0, b1, . . . , bt} ∪
{
a
(i)
j | 1 ≤ i ≤ c, 1 ≤ j ≤ 2l + 1

}
We call b0 the ‘central’ node, as it is connected to every petal, as described below.

Edges. The nodes of the stem are connected in a consecutive manner by the same relation type
r0. Precisely, for each i ∈ 1, · · · , t, there exists an edge (bi−1, r0, bi). Each petal A(i) is associated
with two edge types r(i)1 , r

(i)
2 , and is connected to the central node b0 with links

(
b0, r

(i)
1 , a

(i)
1

)
and(

b0, r
(i)
2 , a

(i)
2

)
. The rest of the petal is connected with edges of type r

(i)
1 only, going from a

(i)
2j−1

to a
(i)
2j+1, and from a

(i)
2j to a

(i)
2j+2. Finally, there are also edges linking a

(i)
2ℓ−1 and a

(i)
2l to a

(i)
2l+1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Therefore, the full set of edges can be characterized as:

E = ({(bi−1, r0, bi) | 1 ≤ i ≤ t}) ∪

(
c⋃

i=1

{
(b0, r

(i)
1 , a

(i)
1), (b0, r

(i)
2 , a

(i)
2)
})

∪

 c⋃
i=1

ℓ−1⋃
j=1

{(
a
(i)
2j−1, r

(i)
1 , a

(i)
2j+1

)
,
(
a
(i)
2j , r

(i)
1 , a

(i)
2j+2

)}
∪

(
c⋃

i=1

{(
a
(i)
2ℓ−1, r

(i)
1 , a

(i)
2l+1

)
,
(
a
(i)
2l , r

(i)
1 , a

(i)
2l+1

)})

We select each of the types r(i)1 and r
(i)
2 from the set of considered relations R = {r1, . . . , r|R|} so

that any relation-invariant model will equate all petals (i.e. so that for each pair of petals, there is
an automorphism taking one to another). For instance, Figure 5 displays a cyclic pattern, in which
r
(i)
2 = r

(i+1)
1 . Such symmetry causes all petals to be isomorphic, and leads to the inability of

KGFMs to distinguish between the relations inside them.

Link prediction instances. Although the petals are isomorphic to each other, given the asymmetry
of edge types from b0 to a

(i)
1 and a

(i)
2 , the nodes within a single petal generally can be distinguished.

Therefore, for each graph with the structure as described above, we randomly sample one of the
stem nodes bs, and ask the link prediction query (bs, r0, ?). For the target nodes, we randomly select
petal index i and distance j from the central node b0, and consider the predictions for a(i)2j−1 and a

(i)
2j .

For example, Figure 5 shows the case when bs = b0, i = 1 and j = 1, where the query is (b0, r0, ?)
and we are interested in the scores for a(1)1 and a

(1)
2 .

C.2 PARAMETERS AND GENERATION

We construct PETALS by manually designing 11 relation-assignment schemes that guarantee isomor-
phism across all petals. For each such selection, which already determines the number c of petals,
we generate 20 graphs corresponding to all combinations of t ∈ {1, 2, 3, 4} and l ∈ {1, 2, 3, 4, 5}.
Each graph is paired with a link prediction query and two target nodes, sampled as described above.
This yields 11 · 20 = 220 instances that constitute the PETALS benchmark.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 6: Training scalability analysis on a single NVIDIA RTX A6000 (48 GB) with batch size = 8.
FLOCK using 16 number of base walks and 1 ensemble.

Model Parameters Time / batch (s) GPU memory (GB)

ULTRA 168,705 0.117 2.110
TRIX 87,138 0.690 3.442
FLOCK 801,969 1.30 27.89

Table 7: Inference scalability on a single NVIDIA RTX A6000 (48 GB) with batch size = 8. Left
columns specify base walks n and ensembled passes P . Dashes indicate not applicable.

Model # Base Walks n Ensemble P Time /batch (s) GPU memory (GB)

ULTRA — 1 0.073 0.848
TRIX — 1 0.500 1.382

FLOCK

16 1 1.26 2.868
16 2 1.99 2.864
16 4 3.24 3.938
16 8 5.45 5.172
16 16 9.45 8.892

128 1 1.77 5.000
128 2 2.80 7.880
128 4 5.00 14.42
128 8 10.05 43.68

D COMPUTATIONAL COMPLEXITY

Recall that I is the iterations in each forward pass of FLOCK; n is the base walk count; ℓ is the
walk length; L is the number of linear sequence-model layers (such as GRU); and d is the hidden
dimension for the sequence processor. Note that in practice, we perform P forward passes and
ensemble their outputs to reduce variance. For a single pass (P=1), walk sampling and recording
cost O(nℓ), while the sequence processor with L layers of hidden dimension d costs O(nℓLd2).
The consensus protocol costs O(nℓd). In total, the time complexity is O

(
PInℓLd2

)
, which scales

linearly with the number of (base) walks n, the length of walks ℓ, and the number of ensembled
predictions P . We empirically verified this in Appendix E.

Compared with message-passing KGFMs like ULTRA and TRIX, FLOCK’s complexity is indepen-
dent of the graph size and average degree; empirically, however, using more walks (increasing n)
and longer walks (increasing ℓ) improves coverage and yields more fine-grained representation.

The space complexity of FLOCK per forward pass is O(nℓd) plus model parameters O(Ld2). Note
that running ensembles sequentially keeps peak memory near this bound, while parallel ensembling
increases it by a factor of P .

E SCALABILITY ANALYSIS

To investigate the scalability of the proposed method FLOCK, we report the training and inference
time per batch and peak GPU memory for ULTRA, TRIX, and variants of FLOCK on a single RTX
A6000 (48 GB) in Tables 6 and 7.

Training. During training, we fix FLOCK to n = 16 base walks and with an ensemble size of P =
1, which yields higher cost than ULTRA/TRIX but remains feasible on a single GPU. In addition,
unlike ULTRA/TRIX, FLOCK does not rely on GNN message passing where highly optimized fused
sparse kernels (e.g., RSPMM kernel developed in Zhu et al. (2021)) accelerate computation; instead,
FLOCK’s runtime is dominated by walk sampling and sequence encoding, making time per batch
the main bottleneck. As a result, pretraining typically takes about three days. One avenue for future
work is to develop similarly highly optimized kernels for random-walk sampling.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 8: Noise injection over the best performing KGFM baseline TRIX.

(a) Zero-shot entity prediction.

MRR Hits@10

TRIX 0.366 0.518
+ noise 0.385 0.545
FLOCK 0.391 0.560

(b) Zero-shot relation prediction.

MRR Hits@1

TRIX 0.792 0.687
+ noise 0.739 0.643
FLOCK 0.881 0.817

(c) Accuracy on PETALS.

Accuracy

TRIX 50%
+ noise 52%
FLOCK 100%

Inference. Additionally, we report the inference results in Table 7, where we vary the number of
walks n and ensembled passes P . We observe near-linear growth of latency and VRAM with n,
reflecting the dominant costs of walk sampling and sequence processing. Note that during infer-
ence, ensembled predictions are parallelizable, meaning that with sufficient GPU memory, these P
stochastic passes can be executed concurrently, so the latency grows sublinearly in P , while peak
VRAM scales roughly linearly with P . In practice, reducing n (walks) or P (ensembled passes)
lowers both memory and latency, while larger n/P settings trade extra cost for better coverage and
stability on harder KGs.

F NOISE INJECTION OVER EXISTING KGFMS

Setup. Since noise injection is a possible way to build a probabilistic equivariant KGFM in a dif-
ferent way from our approach (Gao et al., 2023), it is natural to ask how such KGFMs would perform
compared to FLOCK. To answer this question, we apply noise injection over the best performing
KGFMs baselines TRIX. Specifically, in each forward pass, we add element-wise noise sampled
from a uniform distribution ϵ ∼ U [−0.5, 0] to all relation and entity embeddings after the initializa-
tion stage. Note that the addition of noise technically breaks deterministic node-relation equivari-
ance, but the resulting model (TRIX + noise) still respects probabilistic node-relation equivariance.
We then pretrain TRIX using the same experimental setup shown in Section 5.2, and compare with
TRIX without noise injection and FLOCK. To minimize the variance induced by injected noise and
to ensure a fair comparison, we report ensembled prediction results with 16 samples for both TRIX +
noise and FLOCK. This is a strong baseline implementing the ideas of prior work on noise injection
and test-time ensembling for message passing networks on KGs (Lee et al., 2023; Gao et al., 2023).

Results. We report the average zero-shot performance for entity prediction and relation prediction
over 54 KGs in Tables 8a and 8b, respectively, as well as trained performance for PETALS in Ta-
ble 8c. Across all tasks, TRIX with naive noise injection fails to close the gap between FLOCK. In
particular, TRIX + noise degrades compared with vanilla TRIX without noise injection in relation
prediction, while boosting the performance in the entity prediction task. We hypothesize that such
a difference lies in the added randomization breaks symmetry among entity embeddings more than
among relation embeddings, and entity prediction depends more on having distinguishable entity
representations than relation prediction does. Additionally, we attribute this performance gap be-
tween FLOCK and TRIX + noise to the source of randomization. FLOCK introduces stochasticity
through random walks, which induces structure-informed perturbations that respect the underlying
topology. In contrast, TRIX with naive noise injection attempts to break deterministic node-relation
equivariance by introducing structure-agonistic noise, which might, in turn, hurt the model’s general-
ization. Together, these findings suggest that simply adding structure-agonistic noise is insufficient;
performance gains only arise when stochasticity is topology-aware and is induced from the graph
structure in a principled way.

G CASE STUDY: RELATION EMBEDDING ON METAFAM

Setup. To further showcase why expressivity matters for zero-shot generalization, we present a
case study on the METAFAM dataset (Zhou et al., 2023). METAFAM is built from a fixed family-
relations ontology: during training, models observe edges with relations motherOf, fatherOf,
daughterOf, sonOf, while the test queries only involve motherOf and fatherOf. Up to
gender symmetries, this reduces to two effective predictive patterns (parent_of vs. child_of), and
the test set focuses on a single one (parent_of).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 6: PCA of relation embeddings on METAFAM. ULTRA (Left) maps several inverse pairs
(e.g., fatherOf vs. sonOf) to almost similar embeddings, where FLOCK (Right) yields clearly
separated embeddings, indicating that its probabilistic equivariance allow FLOCK to distinguish
between these semantically different relations, explaining its strong zero-shot performances.

10 4 10 3 10 2

Density

1.0

1.5

2.0

2.5

3.0

Fl
oc

k
M

RR
 /

Ul
tra

 M
RR

corr = -0.53, p-value = 5.0e-05
Trend

Figure 7: The zero-shot entity prediction performance of FLOCK relative to ULTRA, plotted against
the densities of the 53 KGs. Performance of FLOCK and log-density of KGs have a Pearson correla-
tion coefficient of -0.53 with p-value 5.0e-5, showing a statistically significant negative correlation.

In the zero-shot setting, KGFMs cannot adapt to this ontology and must rely on their pretrained
relation representations. Notice that here, METAFAM is challenging: many relations are structurally
similar (e.g., fatherOf, sonOf, sisterOf, nieceOf) yet encode opposite predictive patterns.

Result. Figure 6 shows that ULTRA’s relation embeddings largely collapse these families, plac-
ing fatherOf and sonOf in almost identical positions in the PCA plane. This collapse makes
it difficult to distinguish who is the parent and who is the child, leading to poor zero-shot perfor-
mance. FLOCK, in contrast, can distinguish between these relations even if they are structurally
similar, thanks to its random-walk sampling which introduce probabilistic equivariance on nodes
and relations. As a results, FLOCK can produce distinct embeddings to fatherOf and sonOf and
achieves much stronger zero-shot performance on METAFAM.

H ANALYSIS OF KG SPARSITY AND PERFORMANCE

Setup. While Section G explains FLOCK’s high performance for METAFAM, understanding its
performances for other general KGs would be beneficial. Thus, we present an additional analysis on
the 53 remaining KGs by identifying a structural property that is indicative of the performance of

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

FLOCK. For the performance measure, we use the relative gain of FLOCK’s zero-shot entity predic-
tion MRR compared to ULTRA. For the structural property, we focus on density of KGs defined by

|E|
|V |(|V |−1) which affects the speed of random walks traversing all edges of a KG (intuitively because
more edges means more time needed to traverse all of them), and hence is relevant in the context of
our theory in Section 4.2. We make the argument more grounded below.

Result. Figure 7 shows that FLOCK tends to perform well on sparse KGs, while less so on dense
KGs, and the tendency is statistically significant. Interestingly, this agrees with our theoretical
analysis in Section 4.2, in which a necessary condition for universality is that the random walk
covers all edges of a KG with a high probability (Proposition 4.1). The time taken until covering
all edges is called the edge cover time, and it is known to be e.g., O(|V ||E|) for uniform walks
(Zuckerman, 1991), which is proportional to the density of a graph. This suggests the performance
of FLOCK is associated with the easiness to visit as many edges as possible rapidly, which is more
challenging for dense KGs. This analysis is consistent with the observations of recent works on
graph learning based on random walks, e.g., Wang & Cho (2024, Section 6) and Kim et al. (2025).

I FURTHER EXPERIMENTAL DETAILS

Datasets. This section provides the full details for all experiments described in the main text.
For pretraining, we fit the FLOCK model on three standard transductive knowledge graph com-
pletion benchmarks, following Galkin et al. (2024): FB15k-237 (Toutanova & Chen, 2015),
WN18RR (Dettmers et al., 2018), and CoDEx Medium (Safavi & Koutra, 2020). Then, we eval-
uate zero-shot transfer of both entity prediction and relation prediction, as well as the finetuning
performance on multiple datasets grouped as follows:

• Inductive e, r. Link prediction tasks involving previously unseen nodes and relation types.
This includes the 13 datasets from INGRAM (Lee et al., 2023): FB-25, FB-50, FB-75, FB-
100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-50, NL-75, NL-100, as well as 10
datasets from MTDEA (Zhou et al., 2023): MT1 tax, MT1 health, MT2 org, MT2 sci, MT3 art,
MT3 infra, MT4 sci, MT4 health, Metafam, and FBNELL.

• Inductive e. Link prediction tasks involving novel nodes but fixed relation types. This category
comprises 12 GraIL datasets (Teru et al., 2020) (WN-v1 through WN-v4, FB-v1 through FB-
v4, NL-v1 through NL-v4), 4 INDIGO benchmarks (Liu et al., 2021) (HM 1k, HM 3k, HM 5k,
HM Indigo), and 2 NodePiece datasets (Galkin et al., 2022): ILPC Small and ILPC Large.

• Transductive. Link prediction tasks where both entities and relations are observed dur-
ing training. These include CoDEx Small, CoDEx Large (Safavi & Koutra, 2020), NELL-
995 (Xiong et al., 2017), YAGO 310 (Mahdisoltani et al., 2015), WDsinger, NELL23k, FB15k-
237(10), FB15k-237(20), FB15k-237(50) (Lv et al., 2020), AristoV4 (Chen et al., 2021), DB-
pedia100k (Ding et al., 2018), ConceptNet100k (Malaviya et al., 2020), and Hetionet (Him-
melstein et al., 2017).

Full results of Section 5.2. Full tables of zero-shot entity prediction results are presented in Ta-
ble 9, and full tables of finetuned performance are given in Table 10. We further provide the complete
zero-shot and finetuned relation prediction results in Table 11 and Table 12. The dataset statistics are
in Table 13, Table 14 and Table 15. Table 16 presents the pretraining graph mix shown in Section 5.3.
Finally, detailed hyperparameter settings can be found in Table 17, Table 18 and Table 19.

Training. Following conventions in the literature (Zhu et al., 2021; Huang et al., 2023), for each
triple (h, r, t), we add the corresponding inverse triple (h, r−1, t), where r−1 is a fresh relation
symbol. All FLOCK instances and its variants are optimized to minimize the negative log-likelihood
over positive and negative facts under the partial completeness assumption (Galárraga et al., 2013),
where negatives are generated by randomly corrupting either the head or the tail entity (for entity
prediction) or by corrupting the relation (for relation prediction). To reduce overfitting, we remove
edges that directly connect the queried endpoints. The best checkpoint is selected by validation
performance. For entity prediction, we take the embedding for potential target t and relations r, and
obtain the score p(h, r, t) by passing into a 2-layer MLP. For relation prediction, we concatenate the
embedding for source h, target t, and potential relation r to obtain the score p(h, r, t).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Let (h, r, t) be a positive triple and let k denote the number of negatives sampled per positive, where
(hi, r, ti) is the i-th negative samples for entity prediction, and h, ri, ti is the i-th negative samples
for relation prediction. Following Sun et al. (2019), we also consider a self-adversarial variant where
negatives are reweighted according to their current difficulty. With adversarial temperature α > 0,
the weights for entity and relation prediction, respectively, are

went
i,α = Softmax

(
log
(
1− p(h′

i, r, t
′
i)
)

α

)
, wrel

i,α = Softmax

(
log
(
1− p(h, r′i, t)

)
α

)
.

The corresponding losses become

Ladv
ent = − log p(h, r, t) −

k∑
i=1

went
i,α log

(
1− p(h′

i, r, t
′
i)
)
,

Ladv
rel = − log p(h, r, t) −

k∑
i=1

wrel
i,α log

(
1− p(h, r′i, t)

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 9: Zero-shot entity prediction results. Bold indicates the best score per row.

Dataset ULTRA TRIX FLOCK

MRR Hits@10 MRR Hits@10 MRR Hits@10

Inductive e, r

FB-25 0.388 0.640 0.393 0.650 0.404 0.664
FB-50 0.338 0.543 0.334 0.547 0.352 0.566
FB-75 0.403 0.604 0.401 0.611 0.418 0.622
FB-100 0.449 0.642 0.436 0.635 0.452 0.663
WK-25 0.316 0.532 0.305 0.496 0.280 0.491
WK-50 0.166 0.324 0.166 0.313 0.136 0.278
WK-75 0.365 0.537 0.368 0.513 0.382 0.538
WK-100 0.164 0.286 0.188 0.299 0.187 0.304
NL-0 0.342 0.523 0.385 0.549 0.381 0.606
NL-25 0.395 0.569 0.377 0.589 0.345 0.590
NL-50 0.407 0.570 0.404 0.548 0.366 0.565
NL-75 0.368 0.547 0.351 0.525 0.311 0.524
NL-100 0.471 0.651 0.486 0.676 0.452 0.692
MT1 tax 0.224 0.305 0.358 0.452 0.282 0.383
MT1 health 0.298 0.374 0.376 0.457 0.385 0.481
MT2 org 0.095 0.159 0.091 0.156 0.100 0.163
MT2 sci 0.258 0.354 0.323 0.465 0.318 0.458
MT3 art 0.259 0.402 0.284 0.441 0.301 0.466
MT3 infra 0.619 0.755 0.655 0.797 0.684 0.821
MT4 sci 0.274 0.449 0.290 0.460 0.301 0.463
MT4 health 0.624 0.737 0.677 0.775 0.680 0.780
Metafam 0.238 0.644 0.341 0.815 0.476 0.935
FBNELL 0.485 0.652 0.473 0.660 0.502 0.700

Inductive e

FB-v1 0.498 0.656 0.515 0.682 0.500 0.697
FB-v2 0.512 0.700 0.525 0.730 0.535 0.737
FB-v3 0.491 0.654 0.501 0.669 0.511 0.685
FB-v4 0.486 0.677 0.493 0.687 0.505 0.702
WN-v1 0.648 0.768 0.699 0.791 0.698 0.803
WN-v2 0.663 0.765 0.678 0.781 0.696 0.790
WN-v3 0.376 0.476 0.418 0.541 0.467 0.608
WN-v4 0.611 0.705 0.648 0.723 0.653 0.729
NL-v1 0.785 0.913 0.806 0.898 0.658 0.863
NL-v2 0.526 0.707 0.569 0.768 0.588 0.797
NL-v3 0.515 0.702 0.558 0.743 0.590 0.783
NL-v4 0.479 0.712 0.538 0.765 0.555 0.786
HM 1k 0.059 0.092 0.072 0.128 0.069 0.119
HM 3k 0.037 0.077 0.069 0.119 0.067 0.118
HM 5k 0.034 0.071 0.062 0.110 0.064 0.116
HM Indigo 0.440 0.648 0.436 0.645 0.423 0.638
ILPC Small 0.302 0.443 0.303 0.455 0.309 0.459
ILPC Large 0.290 0.424 0.307 0.428 0.318 0.438

Transductive

NELL995 0.406 0.543 0.472 0.629 0.494 0.655
NELL23k 0.239 0.408 0.290 0.497 0.233 0.398
WDsinger 0.382 0.498 0.511 0.609 0.410 0.528
ConceptNet100k 0.082 0.162 0.193 0.345 0.248 0.453
CoDEx Small 0.472 0.667 0.472 0.670 0.441 0.644
CoDEx Large 0.338 0.469 0.335 0.469 0.342 0.464
YAGO310 0.451 0.615 0.409 0.627 0.414 0.674
AristoV4 0.182 0.282 0.181 0.286 0.308 0.443
DBpedia100k 0.398 0.576 0.426 0.603 0.450 0.627
Hetionet 0.257 0.379 0.279 0.420 0.246 0.371
FB15k-237(10) 0.248 0.398 0.246 0.393 0.246 0.402
FB15k-237(20) 0.272 0.436 0.269 0.430 0.273 0.444
FB15k-237(50) 0.324 0.526 0.321 0.521 0.319 0.518

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 10: Finetuned entity prediction results. Bold indicates the best score per row.

Dataset ULTRA TRIX FLOCK

MRR Hits@10 MRR Hits@10 MRR Hits@10

Inductive e, r

FB-25 0.383 0.635 0.393 0.650 0.405 0.666
FB-50 0.334 0.538 0.334 0.547 0.357 0.570
FB-75 0.400 0.598 0.401 0.611 0.425 0.630
FB-100 0.444 0.643 0.436 0.633 0.460 0.668
WK-25 0.321 0.535 0.300 0.493 0.298 0.506
WK-50 0.140 0.280 0.166 0.313 0.127 0.260
WK-75 0.380 0.530 0.368 0.513 0.405 0.556
WK-100 0.168 0.286 0.188 0.299 0.187 0.306
NL-0 0.329 0.551 0.385 0.549 0.418 0.619
NL-25 0.407 0.596 0.377 0.589 0.405 0.626
NL-50 0.418 0.595 0.405 0.555 0.391 0.562
NL-75 0.374 0.570 0.351 0.525 0.344 0.544
NL-100 0.458 0.684 0.482 0.691 0.486 0.714
MT1 tax 0.330 0.459 0.397 0.508 0.413 0.497
MT1 health 0.380 0.467 0.376 0.457 0.394 0.493
MT2 org 0.104 0.170 0.098 0.162 0.107 0.174
MT2 sci 0.311 0.451 0.331 0.526 0.366 0.525
MT3 art 0.306 0.473 0.289 0.441 0.330 0.483
MT3 infra 0.657 0.807 0.672 0.810 0.709 0.838
MT4 sci 0.303 0.478 0.305 0.482 0.324 0.509
MT4 health 0.704 0.785 0.702 0.785 0.711 0.790
Metafam 0.997 1.000 0.997 1.000 0.992 1.000
FBNELL 0.481 0.661 0.478 0.655 0.531 0.714

Inductive e

FB-v1 0.509 0.670 0.515 0.682 0.549 0.721
FB-v2 0.524 0.710 0.525 0.730 0.553 0.754
FB-v3 0.504 0.663 0.501 0.669 0.528 0.696
FB-v4 0.496 0.684 0.493 0.687 0.510 0.702
WN-v1 0.685 0.793 0.705 0.798 0.715 0.811
WN-v2 0.679 0.779 0.682 0.780 0.702 0.795
WN-v3 0.411 0.546 0.425 0.543 0.494 0.627
WN-v4 0.614 0.720 0.650 0.722 0.665 0.741
NL-v1 0.757 0.878 0.804 0.899 0.762 0.928
NL-v2 0.575 0.761 0.571 0.764 0.612 0.806
NL-v3 0.563 0.755 0.571 0.759 0.606 0.803
NL-v4 0.469 0.733 0.551 0.772 0.572 0.801
HM 1k 0.042 0.100 0.072 0.128 0.071 0.153
HM 3k 0.030 0.090 0.069 0.119 0.067 0.153
HM 5k 0.025 0.068 0.074 0.118 0.061 0.130
HM Indigo 0.432 0.639 0.436 0.645 0.418 0.633
ILPC Small 0.303 0.453 0.303 0.455 0.305 0.454
ILPC Large 0.308 0.431 0.310 0.431 0.320 0.441

Transductive

NELL995 0.509 0.660 0.506 0.648 0.531 0.665
NELL23k 0.268 0.450 0.306 0.536 0.280 0.465
WDsinger 0.417 0.526 0.502 0.620 0.435 0.543
ConceptNet100k 0.310 0.529 0.340 0.564 0.352 0.580
CoDEx Small 0.490 0.686 0.484 0.676 0.463 0.648
CoDEx Large 0.343 0.478 0.348 0.481 0.342 0.467
YAGO310 0.557 0.710 0.541 0.702 0.552 0.700
AristoV4 0.343 0.496 0.345 0.499 0.383 0.523
DBpedia100k 0.436 0.603 0.457 0.619 0.470 0.623
Hetionet 0.399 0.538 0.394 0.534 0.314 0.465
FB15k-237(10) 0.254 0.411 0.253 0.408 0.260 0.420
FB15k-237(20) 0.274 0.445 0.273 0.441 0.284 0.459
FB15k-237(50) 0.325 0.528 0.322 0.522 0.317 0.517

Pretrained

FB15k-237 0.368 0.564 0.366 0.559 0.343 0.532
WN18RR 0.480 0.614 0.514 0.611 0.550 0.656
CoDEx Medium 0.372 0.525 0.365 0.521 0.351 0.496

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 11: Zero-shot relation prediction results. Bold indicates the best score per row.

Dataset ULTRA TRIX FLOCK

MRR Hits@1 MRR Hits@1 MRR Hits@1

Inductive e, r

FB-25 0.687 0.565 0.805 0.724 0.895 0.839
FB-50 0.696 0.575 0.780 0.699 0.880 0.820
FB-75 0.698 0.555 0.822 0.747 0.903 0.844
FB-100 0.830 0.728 0.921 0.880 0.962 0.938
WK-25 0.857 0.760 0.881 0.823 0.952 0.929
WK-50 0.865 0.793 0.868 0.818 0.921 0.882
WK-75 0.911 0.875 0.916 0.883 0.962 0.944
WK-100 0.887 0.812 0.907 0.869 0.963 0.937
NL-0 0.632 0.502 0.658 0.519 0.714 0.574
NL-25 0.688 0.562 0.742 0.614 0.729 0.632
NL-50 0.680 0.569 0.755 0.636 0.813 0.728
NL-75 0.795 0.692 0.788 0.699 0.833 0.756
NL-100 0.743 0.564 0.884 0.796 0.939 0.889
MT1 tax 0.985 0.976 0.975 0.958 0.998 0.997
MT1 health 0.721 0.561 0.973 0.949 0.991 0.983
MT2 org 0.974 0.951 0.986 0.973 0.991 0.984
MT2 sci 0.976 0.961 0.964 0.941 0.995 0.992
MT3 art 0.881 0.798 0.885 0.825 0.944 0.907
MT3 infra 0.962 0.935 0.940 0.905 0.989 0.980
MT4 sci 0.933 0.891 0.966 0.944 0.974 0.957
MT4 health 0.826 0.719 0.937 0.898 0.990 0.983
Metafam 0.124 0.000 0.291 0.011 0.490 0.223
FBNELL 0.700 0.564 0.726 0.605 0.833 0.737

Inductive e

FB-v1 0.646 0.523 0.705 0.599 0.814 0.723
FB-v2 0.695 0.570 0.713 0.590 0.847 0.761
FB-v3 0.679 0.553 0.742 0.644 0.860 0.780
FB-v4 0.638 0.488 0.766 0.665 0.873 0.799
WN-v1 0.836 0.740 0.792 0.613 0.924 0.858
WN-v2 0.853 0.790 0.764 0.572 0.924 0.863
WN-v3 0.707 0.577 0.741 0.568 0.937 0.888
WN-v4 0.860 0.803 0.764 0.570 0.937 0.886
NL-v1 0.636 0.358 0.657 0.453 0.862 0.731
NL-v2 0.742 0.652 0.780 0.696 0.893 0.855
NL-v3 0.669 0.544 0.725 0.612 0.815 0.731
NL-v4 0.606 0.489 0.794 0.691 0.868 0.807
ILPC Small 0.905 0.843 0.919 0.872 0.955 0.921
ILPC Large 0.875 0.799 0.894 0.829 0.948 0.908
HM 1k 0.626 0.447 0.663 0.414 0.687 0.500
HM 3k 0.592 0.439 0.664 0.418 0.714 0.549
HM 5k 0.605 0.452 0.672 0.428 0.746 0.593
HM Indigo 0.681 0.559 0.852 0.765 0.956 0.921

Transductive

NELL995 0.583 0.437 0.578 0.457 0.684 0.555
NELL23k 0.669 0.548 0.756 0.657 0.831 0.762
WDsinger 0.668 0.546 0.720 0.621 0.823 0.738
ConceptNet100k 0.181 0.083 0.650 0.469 0.795 0.658
CoDExSmall 0.900 0.820 0.961 0.935 0.982 0.970
CoDExLarge 0.892 0.824 0.902 0.837 0.973 0.950
YAGO310 0.646 0.403 0.783 0.598 0.971 0.943
AristoV4 0.254 0.201 0.389 0.265 0.597 0.496
DBpedia100k 0.650 0.509 0.717 0.582 0.919 0.861
Hetionet 0.634 0.524 0.809 0.707 0.940 0.890
FB15k-237(10) 0.688 0.550 0.795 0.711 0.918 0.876
FB15k-237(20) 0.695 0.558 0.834 0.758 0.952 0.923
FB15k-237(50) 0.717 0.591 0.876 0.812 0.968 0.946

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 12: Finetuned relation prediction results. Bold indicates the best score per row.

Dataset ULTRA TRIX FLOCK

MRR Hits@1 MRR Hits@1 MRR Hits@1

Inductive e, r

FB-25 0.684 0.563 0.805 0.724 0.909 0.857
FB-50 0.696 0.575 0.780 0.699 0.881 0.820
FB-75 0.754 0.638 0.822 0.699 0.911 0.854
FB-100 0.851 0.769 0.921 0.880 0.965 0.939
WK-25 0.897 0.834 0.905 0.860 0.968 0.954
WK-50 0.865 0.793 0.881 0.840 0.925 0.876
WK-75 0.911 0.875 0.937 0.910 0.965 0.948
WK-100 0.924 0.879 0.916 0.885 0.970 0.946
NL-0 0.632 0.502 0.655 0.518 0.731 0.602
NL-25 0.737 0.622 0.709 0.606 0.757 0.634
NL-50 0.808 0.704 0.774 0.683 0.814 0.721
NL-75 0.795 0.678 0.790 0.671 0.848 0.774
NL-100 0.803 0.678 0.885 0.793 0.937 0.887
MT1 tax 0.990 0.984 0.995 0.990 0.999 0.998
MT1 health 0.929 0.867 0.973 0.949 0.994 0.988
MT2 org 0.981 0.963 0.987 0.978 0.994 0.988
MT2 sci 0.977 0.961 0.990 0.984 0.995 0.992
MT3 art 0.907 0.851 0.887 0.828 0.950 0.916
MT3 infra 0.966 0.947 0.970 0.952 0.996 0.993
MT4 sci 0.954 0.929 0.972 0.952 0.983 0.968
MT4 health 0.951 0.919 0.986 0.979 0.995 0.991
Metafam 0.368 0.112 0.265 0.024 0.997 0.995
FBNELL 0.720 0.576 0.766 0.639 0.879 0.801

Inductive e

FB-v1 0.650 0.513 0.705 0.599 0.855 0.766
FB-v2 0.675 0.547 0.713 0.590 0.887 0.812
FB-v3 0.677 0.556 0.742 0.644 0.879 0.810
FB-v4 0.690 0.560 0.766 0.665 0.884 0.807
WN-v1 0.844 0.754 0.776 0.591 0.926 0.879
WN-v2 0.834 0.766 0.765 0.574 0.927 0.869
WN-v3 0.707 0.577 0.756 0.594 0.950 0.911
WN-v4 0.861 0.795 0.804 0.651 0.943 0.898
NL-v1 0.719 0.504 0.590 0.341 0.883 0.766
NL-v2 0.668 0.549 0.811 0.740 0.911 0.870
NL-v3 0.646 0.484 0.757 0.643 0.868 0.795
NL-v4 0.570 0.412 0.822 0.735 0.906 0.849
ILPC Small 0.922 0.876 0.919 0.872 0.953 0.918
ILPC Large 0.875 0.799 0.894 0.829 0.953 0.915
HM 1k 0.626 0.447 0.663 0.414 0.756 0.561
HM 3k 0.592 0.439 0.664 0.418 0.790 0.623
HM 5k 0.605 0.452 0.672 0.428 0.744 0.591
HM Indigo 0.726 0.614 0.835 0.746 0.946 0.903

Transductive

NELL995 0.630 0.513 0.578 0.457 0.713 0.584
NELL23k 0.688 0.571 0.755 0.658 0.869 0.805
WDsinger 0.730 0.603 0.721 0.627 0.885 0.815
ConceptNet100k 0.612 0.488 0.712 0.551 0.885 0.813
CoDExSmall 0.942 0.900 0.964 0.943 0.981 0.967
CoDExLarge 0.907 0.850 0.908 0.845 0.973 0.950
YAGO310 0.930 0.891 0.826 0.666 0.970 0.942
AristoV4 0.254 0.201 0.498 0.381 0.651 0.547
DBpedia100k 0.650 0.509 0.780 0.665 0.923 0.869
Hetionet 0.737 0.646 0.922 0.862 0.942 0.897
FB15k-237(10) 0.688 0.550 0.795 0.711 0.940 0.905
FB15k-237(20) 0.695 0.558 0.846 0.778 0.958 0.931
FB15k-237(50) 0.728 0.618 0.903 0.858 0.970 0.948

Pretrained

FB15k-237 0.795 0.709 0.924 0.870 0.976 0.957
WN18RR 0.914 0.871 0.783 0.634 0.982 0.968
CoDExMedium 0.919 0.870 0.931 0.886 0.974 0.952

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 13: Dataset statistics for inductive-e, r link prediction datasets. Triples are the number of
edges given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples
to be predicted in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

FB-25 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 4752 183 10685 597

Wiki MT1 tax 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

Table 14: Dataset statistics for inductive-e link prediction datasets. Triples are the number of edges
given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be
predicted in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph

Entities Triples Entities Triples Valid Entities Triples Test

FB-v1 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-v1 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 29246 77044 10179 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 12797 121601 14121 14775 250195 14904

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 15: Dataset statistics for transductive link prediction datasets. Entity task denotes the entity-
prediction task: h/t is predicting both heads and tails, and t is predicting only tails.

Dataset Entities Rels Train Valid Test Entity Task

FB15k-237 14541 237 272115 17535 20466 h/t
WN18RR 40943 11 86835 3034 3134 h/t
CoDEx Small 2034 42 32888 1827 1828 h/t
CoDEx Medium 17050 51 185584 10310 10311 h/t
CoDEx Large 77951 69 551193 30622 30622 h/t
NELL995 74536 200 149678 543 2818 h/t
YAGO310 123182 37 1079040 5000 5000 h/t
WDsinger 10282 135 16142 2163 2203 h/t
NELL23k 22925 200 25445 4961 4952 h/t
AristoV4 44949 1605 242567 20000 20000 h/t
DBpedia100k 99604 470 597572 50000 50000 h/t
ConceptNet100k 78334 34 100000 1200 1200 h/t
FB15k-237(10) 11512 237 27211 15624 18150 t
FB15k-237(20) 13166 237 54423 16963 19776 t
FB15k-237(50) 14149 237 136057 17449 20324 t
Hetionet 45158 24 2025177 112510 112510 h/t

Table 16: Different graph pretraining mix shown in Section 5.3.

1 2 3 4 5 6 8

FB15k-237 ✓ ✓ ✓ ✓ ✓ ✓ ✓
WN18RR ✓ ✓ ✓ ✓ ✓ ✓
CoDEx Medium ✓ ✓ ✓ ✓ ✓
NELL995 ✓ ✓ ✓ ✓
YAGO 310 ✓ ✓ ✓
ConceptNet100k ✓ ✓
DBpedia100k ✓
AristoV4 ✓

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 17: Hyperparameter for FLOCK in pretraining and finetuning setups.

Hyperparameter Entity prediction Relation prediction

Random walk
Walk length ℓ 128 128

Pretraining base walk ntrain 128 128
Test-time or finetuning base walk n 16–512 16–512

Sequence processor # Layers 1 1
Hidden dimension 64 64

Consensus protocol # Heads h 4 4
Head dimension dh 16 16

Update # Update step I 6 6

Ensemble # Maximum ensembled passes P 16 16

Pretraining

Optimizer AdamW AdamW
Learning rate 0.0005 0.0005
Training steps 400,000 40,000

Adversarial temperature 1 1
Negatives 512 512
Batch size 8 8

Weight decay 0.01 0.00

Finetuning

Optimizer AdamW AdamW
Learning rate 0.0005 0.0005

Adversarial temperature 1 1
Negatives 256 256
Batch size 4–32 4–8

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 18: Detailed finetuning and inference hyperparameters for FLOCK in entity prediction. For
each dataset, we report the finetuning epochs, batches per epoch, batch size, and the inference set-
tings for both zero-shot and finetuned modes: test-time ensemble size P , base walk count n. For
Hetionet finetuning we used (P, n) = (1, 1024), instead of (2, 512) as in zero-shot.

Dataset Epoch # Batch/Epoch Batch Size # Ensembled Passes P # Base Walk n

FB15k-237 1 full 8 16 128
WN18RR 1 full 8 16 128
CoDEx Small 1 full 32 16 16
CoDEx Medium 1 full 8 16 128
CoDEx Large 1 2000 4 2 512
NELL-995 1 full 8 16 128
YAGO310 1 2000 4 8 512
WDsinger 1 full 8 16 16
NELL23k 3 full 8 16 32
FB15k-237(10) 1 full 8 16 32
FB15k-237(20) 1 full 8 16 64
FB15k-237(50) 1 full 8 16 64
Hetionet 1 4000 8 2 512
DBpedia100k 1 1000 4 2 512
AristoV4 1 full 8 4 256
ConceptNet100k 1 full 8 16 128
FB v1–v4 1 full 8 16 16
WN v1–v4 1 full 8 16 16
NL v1–v4 3 full 8 16 16
ILPC Small 1 full 8 16 16
ILPC Large 1 full 8 16 64
FB 25–100 3 full 8 16 16
WK 25–100 3 full 8 16 16
NL 0–100 3 full 8 16 16
Wiki MT1 tax 3 full 8 16 16
Wiki MT1 health 3 full 8 16 16
Wiki MT2 org 3 full 16 16 32
Wiki MT2 sci 3 full 8 16 16
Wiki MT3 art 3 full 16 16 32
Wiki MT3 infra 3 full 16 16 32
Wiki MT4 sci 3 full 8 16 16
Wiki MT4 health 3 full 8 16 16
Metafam 3 full 8 16 16
FBNELL 3 full 8 16 16
HM 1k 1 full 8 16 16
HM 3k 1 full 16 16 32
HM 5k 1 full 8 16 64
HM Indigo 1 full 8 16 128

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 19: Detailed finetuning and inference hyperparameters for FLOCK in relation prediction. For
each dataset, we report the finetuning epochs, batches per epoch, batch size, and the inference set-
tings for both zero-shot and finetuned modes: test-time ensemble size P and base walk count n.

Dataset Epoch # Batch/Epoch Batch Size # Ensembled Passes P # Base Walk n

FB15k-237 1 1000 8 16 128
WN18RR 1 1000 8 16 128
CoDEx Small 1 1000 8 16 16
CoDEx Medium 1 1000 8 16 128
CoDEx Large 1 1000 4 2 512
NELL-995 1 1000 8 16 128
YAGO310 1 1000 8 4 512
WDsinger 1 1000 8 16 16
NELL23k 1 1000 8 16 32
FB15k-237(10) 1 1000 8 16 32
FB15k-237(20) 1 1000 8 16 64
FB15k-237(50) 1 1000 8 16 64
Hetionet 1 1000 4 2 512
DBpedia100k 1 1000 4 2 512
AristoV4 1 1000 8 4 256
ConceptNet100k 1 1000 8 16 128
FB v1–v4 1 1000 8 16 16
WN v1–v4 1 1000 8 16 16
NL v1–v4 1 1000 8 16 16
ILPC Small 1 1000 8 16 16
ILPC Large 1 1000 8 16 64
FB 25–100 1 1000 8 16 16
WK 25–100 1 1000 8 16 16
NL 0–100 1 1000 8 16 16
Wiki MT1 tax 1 1000 8 16 16
Wiki MT1 health 1 1000 8 16 16
Wiki MT2 org 1 1000 8 16 32
Wiki MT2 sci 1 1000 8 16 16
Wiki MT3 art 1 1000 8 16 32
Wiki MT3 infra 1 1000 8 16 32
Wiki MT4 sci 1 1000 8 16 16
Wiki MT4 health 1 1000 8 16 16
Metafam 1 1000 8 16 16
FBNELL 1 1000 8 16 16
HM 1k 1 1000 8 16 16
HM 3k 1 1000 8 16 32
HM 5k 1 1000 8 16 64
HM Indigo 1 1000 8 16 128

42

	Introduction
	Related work
	Preliminary
	Methodology
	Flock
	Theoretical analysis

	Experiments
	Synthetic dataset
	Entity and relation prediction over knowledge graphs
	Scaling analysis
	Ablation studies

	Conclusions
	Methodology - details
	Uniform random walk
	Recording function
	Sequence processor
	Consensus protocol

	Proofs
	Expressivity
	Invariance

	Details of the Petals benchmark
	Structure of the studied KGs
	Parameters and generation

	Computational Complexity
	Scalability analysis
	Noise injection over existing KGFMs
	Case study: relation embedding on Metafam
	Analysis of KG sparsity and performance
	Further experimental details

