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Large language models (LLMs) have shown remarkable aptitude for scientific tasks, but it remains unclear
whether this stems from genuine reasoning or sophisticated memorization. We introduce Alnstein, a novel
framework designed to test if LLMs can rediscover established scientific concepts from first principles. By
abstracting research work into core conceptual problems, stripped of domain-specific jargon, we challenge
models to solve the problem. Our framework, Alnstein, operates by taking a scientific discovery, distilling it
to its fundamental problem, and tasking an LLM with solving it from scratch.
The Alnstein Framework
We formalize scientific rediscovery as a two-phase, multi-agent process.
1. Generalization Phase: A Generalizer agent (%) takes a scientific abstract (.«7) and, through iterative
refinement, produces a generalized problem statement (&) free of technical jargon and solution hints.
2. Solution Phase: A Solver agent () receives the problem (&) and attempts to derive a technical
solution (3) from first principles.
Both phases are driven by an iterative refinement loop involving two models: a generative internal model (M)
and a more capable external critique model (M.). This nested critique process continues until a high-quality,
converged solution is produced, simulating a rigorous scientific research process.
Experiments and Key Findings
We evaluated our framework using various LLMs as internal
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the agent proposed creative, conceptually sound alternatives that differed from the original paper's method.
This showcases reasoning that goes beyond simple retrieval.

The Alnstein framework provides strong evidence that LLMs possess scientific reasoning capabilities that
extend beyond memorization. Our results demonstrate that models can perform genuine conceptual
rediscovery.
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