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Abstract
Harvesting resources have emerged as a cutting-2

edge cloud computing solution, aimed at optimiz-3

ing machine utilization and enhancing revenue for4

large-scale cloud platforms. By offering dynami-5

cally sized virtual machines (VMs) at discounted6

prices, platforms can effectively address resource7

bottlenecks. However, existing pricing mecha-8

nisms are vulnerable to untruthful reporting and9

collusion, putting the platform’s integrity and finan-10

cial viability at risk. To address this issue, we for-11

malize the ”Harvesting Game”, a leader-follower12

game that incorporates strategies of lying and col-13

lusion among users and optimal mechanism design14

by the platform. Equilibrium analysis of Harvest-15

ing Game provides useful insights for both users16

and cloud platforms. Further experiments based on17

multi-agent learning under diverse settings are be-18

ing conducted.19

1 Introduction20

Harvesting resource is a kind of innovative cloud comput-21

ing solution, specifically designed to optimize machine uti-22

lization and augment revenue for large-scale cloud platforms23

[Ambati et al., 2020]. By offering unsold resources in the24

form of dynamically-sized virtual machines (VMs) at sig-25

nificantly reduced prices, platforms can effectively and effi-26

ciently address resource bottlenecks and improve overall per-27

formance. Furthermore, the concept of resource harvesting28

extends beyond cloud computing and can be applied to var-29

ious other scenarios, such as power and spectrum harvest-30

ing in network systems. Modern harvesting techniques in-31

clude CPU harvesting [Ambati et al., 2020][Zhang et al.,32

2021][Wang et al., 2021], memory harvesting [Fuerst et al.,33

2022], storage harvesting [Reidys et al., 2022], energy har-34

vesting [Liu et al., 2020], and more. While our primary fo-35

cus within this paper is on harvesting CPU resources, the in-36

Workshop on Artificial Intelligence for Critical Infrastructure
(AI4CI 2024) @ IJCAI’24 , Jeju Island, South Korea, https://sites.
google.com/view/aiforci-ijcai24/, August 4, 2024. Eds: F. Silva, W.
Su, R. Glatt, Y. Wang.

sights, methodologies, and solutions we present can be read- 37

ily adapted and applied to other resource types as well. 38

Figure 1: Sketch of a harvesting resource.

The inherent dynamic nature of harvesting resources ne- 39

cessitates a two-tiered pricing mechanism. The first tier in- 40

volves charging a user-defined minimum size at a predeter- 41

mined fixed price, p, per core hour. The second tier entails 42

providing additional harvested cores beyond this minimum 43

size at a further discounted rate based on the fixed price, αp. 44

The process of selling and allocating a harvesting resource in- 45

volves 3 steps: users report their minimum size requirement, 46

m′
i; the cloud platform then allocates a harvesting resource 47

with an actual minimum size, m̄j ≥ m′
i, according to a spe- 48

cific allocation mechanism, if available; and finally, users are 49

charged based on their reported minimum size, m′
i, and the 50

actual running time of the resource. 51

Despite its ability to improve resource utilization, satisfy 52

users’ service level requirements and provide attractive dis- 53

counts for additional harvested cores, the current pricing 54

mechanism is intrinsically flawed due to its lack of truthful- 55

ness. This issue arises from the discrepancy between users’ 56

reported minimum size and the actual size of allocated har- 57

vesting resources. Users can exploit this mismatch to obtain 58

extra discounts by misreporting a lower minimum size re- 59

quirement (m′
i < mi) than their true needs, effectively cheat- 60

ing the system. Furthermore, collusion and trading among 61

users can exacerbate this cheating behavior, reducing risks 62

and amplifying benefits for dishonest users, ultimately under- 63

mining the integrity and financial viability of the cloud plat- 64

form. 65

In this paper, we address these challenges and present the 66

following contributions: 67
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• We analyze current resource allocation and pricing68

mechanisms of harvesting resource and identify the69

cheating and collusion issue, which reduce cloud plat-70

forms’ revenue.71

• We first formalize the Harvesting Game, a leader-72

follower game compromising lying and collusion in the73

followers’ strategies and leader’s optimal mechanism74

design based on such strategies. Equilibrium analysis75

of Harvesting game gives useful insights to both users76

and the cloud platform.77

2 Harvesting Resource78

A harvesting resource harvests all unsold resource on a ma-79

chine. According to the system design of cloud platforms80

[Ambati et al., 2020] [Fuerst et al., 2022] [Reidys et al.,81

2022], each machine can only host one harvesting resource at82

most. Its size is not controllable by the cloud platform and of-83

ten dynamically changes over time. In practice, users usually84

put those jobs that are flexible in parallelism and interruption-85

resilient to run on harvesting resources, such as various batch86

jobs. A user job running on a harvesting resource requires87

total Mi core hours to finish. It requires a minimum size mi88

to start and can fully exploit any amount of additional cores89

above this threshold. Users declare their minimum sizes m′
i90

for accepting a harvesting resource. Cloud platforms charge91

a harvesting resource by its core hours in use: a fixed price p92

per core hour for using the resource with user declared min-93

imum size per core hour, plus a further discounted price αp94

per hour for any additional resource harvested above the user95

declared minimum threshold, as shown in figure 1.96

3 Cheating and Collusion97

Current pricing and allocation mechanism improves harvest-98

ing resource utilization and is attractive to users. However,99

we identify that users can exploit this mechanism to get extra100

discount by lying. The problem becomes even more severe101

when collusion exists among users, which reduces the rev-102

enue of cloud platforms. Unless other stated, we consider103

users total demand Mi = mi and resource allocation in one104

hour in the following paper. We will explore more compli-105

cated situations where Mi > mi and resource allocations106

more than one shot in the future.107

Exploiting the Price by Lying108

A user’s incentive to lie about their resource requirements is109

primarily driven by the price differential between the base110

price p and the discounted price αp. For example, if a user,111

whose true minimum size mi is 5 core, knows that there is no112

harvesting resource with m̄j = 4. Then it could deliberately113

report its minimum size as m′
i = 4. According to the allo-114

cation mechanism, the cloud platform may allocate a larger115

resource that satisfies the minimum size requirement, e.g. a116

harvesting resource with actual minimum size m̄j = 5, to117

this user, if no other user requests for that resource. Compar-118

ing with truthfully reporting 5 core, it gets the 5th core with119

discount price αp instead of price p.120

Exploiting the Price by Collusion 121

The risk of reporting a smaller minimum size m′
i < mi is 122

that the user might be allocated a resource that is insufficient 123

for their minimum size requirements. However, this risk de- 124

creases when there is a possibility of trading or sharing re- 125

sources among users, which mitigates the consequences of 126

being allocated an insufficient resource. For example, in a 127

super simple case as shown in figure 2, there are 2 harvesting 128

resource with actual minimum size m̄ = (3, 2). There are 3 129

users with truthful minimum size requirements m = (3, 2, 2), 130

and total core hours M = (3, 2, 2). If all 3 users report their 131

minimum size requirements truthfully, as shown in the left 132

part 2a, then the 3 core harvesting resource will be allocated 133

to the 3 core user. The 2 core harvesting resource goes to one 134

of the 2 users requiring 2 core minimum size. The total rev- 135

enue of selling these 2 resources for the cloud platform per 136

hour, i.e. the total cost of buying these resources for the 3 137

users, is calculated as 138

3 cores× p× 1 hour + 2 cores× p× 1 hour = 5p (1)

However, if the 3 users form a collusion, as shown in the 139

right part 2b, they could set an agreement and all report that 140

they need a resource with the minimum size of 3 core. Then 141

the 3 core harvesting resource and 2 core harvesting resource 142

go to the 3 users, where the 3 core harvesting resource is sold 143

to a m′ = 2 user. The total revenue of selling these 2 re- 144

sources for the cloud platform per hour, i.e. the total cost of 145

buying these resources for the 3 users per hour, is calculated 146

as 147

2 cores× p× 1 hour + 1 core× αp× 1 hour (2)
+2 cores× p× 1 hour = 4p+ αp (3)

The total cost of 3 users decreases (1 − α)p comparing with 148

truthfully reporting individually. 149

4 Harvesting Game 150

4.1 Strategic Harvesting Users 151

Players 152

There is a set of players (users) N = {1, 2, ..., n}. Each user 153

requires one harvesting resource with true minimum size mi. 154

Strategies 155

Players have 3 strategic options: Truthful Reporting (Ti), In- 156

dividual Lying (Li), and Collusion (Ck,i). All reported size 157

requirements (cores) are integer values. Specifically, in Ti, 158

the user i reports m′
i = mi. Li = k means that the user i 159

misreports its minimum size as m′
i = k < mi. Ck,i ∈ {0, 1} 160

and Ck,i = 1 means that the user i joins a collusion group 161

where all members agree to report a coordinated size k. Es- 162

pecially, a collusion group with coordinated report size k has 163

a common resource pool Pk, where users with excess cores 164

xi > mi with users do not get enough cores xi < mi with 165

prices q ∈ [αp, p). 166

Environment 167

• Resource Supply. The total number of resources and 168

their sizes determine the supply side of the game. De- 169

fine a set R of resources, each characterized by a size 170

m̄j for j ∈ R. 171



(a) Individual truthful. (b) Collusion.

Figure 2: An example of users forming a collusion and get extra discount.

Payoffs172

Players’ payoffs are defined on the resource allocation out-173

comes xi, i.e. the number of cores allocated to user i.174

• Truthful Reporting (Ti). The payoff function of Ti is175

Ui(Ti, s−i) = vi(xi)− p · xi (4)

where xi = 0 or xi ≥ mi.176

• Individual Lying (Li). The payoff function of Li is177

Ui(Li, s−i) = vi(xi)− p ·m′
i (5)

where xi = 0 or xi ≥ m′
i. Since m′

i < mi, potentially178

m′
i ≤ xi < mi.179

• Collusion (Ck,i). The payoff function of Ck,i is180

Ui(Ck,i, s−i) = vi(xi)− p · k (6)

where xi = 0 or xi ≥ k.181

Equilibrium182

For a game G defined by players N , strategies S =183

{T, L,C}, and payoffs U , a strategy profile s∗ =184

(s∗1, s
∗
2, ..., s

∗
n) is a Nash Equilibrium if185

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀si ∈ Si,∀i ∈ N (7)

where s∗−i represents the strategies of all other players except186

player i.187

4.2 Resource Allocation Mechanism188

Mechanism189

The resource allocation mechanism A takes the resource set190

R and users’ reported minimum size requirements profile m′191

(comprising either truthful reports, lies, or collusion-driven192

reports) as input and outputs a set of resource allocation out-193

comes x, i.e.194

x = A(R,m′) (8)

Design Goal and Constraints195

The design goal of mechanism A is to maximize the cloud196

platform’s revenue Rev(A). The design constraints are that197

xi ∈ {0} ∪ [m′
i,∞), ∀i ∈ N .198

4.3 Leader-followers Game 199

We formalize the harvesting game between the cloud plat- 200

form and strategic users as a 2-stage leader-followers game. 201

In the first stage, the leader (cloud platform) announces a re- 202

source allocation mechanism A. In the second stage, the fol- 203

lowers (users) observe A, and strategically report their min- 204

imum size requirements, resulting the report profile m′. If 205

the followers’ game G reaches a Nash equilibrium, and the 206

cloud platform cannot find a mechanism A′ with Rev(A′) > 207

Rev(A), then we say that the 2-stage Harvesting Game 208

reaches an equilibrium. 209

5 Equilibrium Analysis 210

In the simple case in figure 1, the equilibrium point depends 211

on users’ valuations of their jobs. Informally, when the user 212

1’s job value is high, it is very sensitive to the risk of getting 213

no resources. If users 2 and 3 also have high job values, they 214

are unwilling to trade resources, which increases the chance 215

of user 1 getting no resource in the collusion. In such cases, 216

user 1 reports truthfully m′
1 = 3 to make sure it can get the 3 217

core resources. User 2 and 3 complete for one 2 core resource 218

and the equilibrium strategy is to truthfully report m′
2 = 2, 219

m′
3 = 2. When both user 2 and 3 have low job values, or all 3 220

users have low job values, the 3 users form a collusion and ne- 221

gotiate a trading price q ∈ [αp, p). The optimal coordinated 222

misreport in their collusion k = 0 if mechanism A allocates 223

resources to users with m′
i = 0 or k = 1 if mechanism A 224

refuse to allocate resources to users with m′
i = 0. 225

Finding equilibria in the Harvesting Game becomes hard 226

when there are more diverse resources and users. Inspired 227

by recent advancements in multi-agent learning-based so- 228

lutions for searching equilibria in games [Foxabbott et al., 229

2023][Brero et al., 2022], we use learning agents to sim- 230

ulate strategic users and a neural network to represent the 231

cloud platform’s mechanism A. Especially, each agent (user) 232

adopts Q-learning, as in [Brero et al., 2022], which shares the 233

same architecture as the more sophisticated programs and has 234

clear economic interpretation [Calvano et al., 2020]. Simu- 235

lation experiments with more resources and users in diverse 236

settings are being conducted. 237



6 Conclusion238

In this paper, we identify the cheating and collusion issues239

in the current pricing and allocation mechanism of harvesting240

resources. We formalize the Harvesting Game, where users241

can lie or form collusions to maximize their payoffs. Fur-242

ther experiments for equilibrium simulations under diverse243

settings are being conducted. We will explore repeated inter-244

actions and partial observations in the game in the future.245
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