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Abstract001

Low-Rank Adaptation (LoRA) enables002
parameter-efficient fine-tuning of large lan-003
guage models by decomposing weight updates004
into low-rank matrices, significantly reducing005
storage and computational overhead. While006
effective, standard LoRA lacks mechanisms for007
uncertainty quantification, leading to overconfi-008
dent and poorly calibrated models. Bayesian009
variants of LoRA address this limitation, but010
at the cost of a significantly increased number011
of trainable parameters, partially offsetting012
the original efficiency gains. Additionally,013
these models are harder to train and may014
suffer from unstable convergence. In this015
work, we propose a novel parameter-efficient016
Bayesian LoRA, demonstrating that effective017
uncertainty quantification can be achieved in018
very low-dimensional parameter spaces. The019
proposed method achieves strong performance020
with improved calibration and generalization021
while maintaining computational efficiency.022
Our empirical findings show that, with the023
appropriate projection of the weight space:024
(1) uncertainty can be effectively modeled025
in a low-dimensional space, and (2) weight026
covariances exhibit low ranks.027

1 Introduction028

LoRA (Low-Rank Adaptation) (Hu et al., 2021) re-029

duces computational overhead by decomposing the030

update weights of pre-trained models into low-rank031

matrices, enabling efficient adaptation to down-032

stream tasks. Minimizing the number of trainable033

parameters reduces memory and storage require-034

ments, making large-scale model adaptation fea-035

sible. Reducing computational overhead speeds036

up training time and makes adaptation possible in037

resource-constrained settings.038

Unlike pre-trained models, which are relatively039

well-calibrated (OpenAI, 2023), fine-tuned large040

models (e.g., LLMs) often become overconfident041

and poorly calibrated (Jiang et al., 2021; Tian et al.,042
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Figure 1: Performance averaged over multiple GLUE
datasets (individual results in Fig. 3). Our method
achieves superior calibration (ECE) and competitive
predictive performance (Brier) while maintaining com-
putational efficiency. For example, at r “ 8 (Ĳ), we
reduce ECE by half with only 1/10th LoRA parameters.

2023; Xiao et al., 2022; He et al., 2023), especially 043

when trained on limited data. This hinders their 044

usability for applications where uncertainty-aware 045

decisions are performed. 046

Bayesian treatment is then frequently proposed 047

to address overconfidence in neural networks (Blun- 048

dell et al., 2015; Kristiadi et al., 2020; Aitchi- 049

son et al., 2021; Izmailov et al., 2021). Conse- 050

quently, recently proposed Bayesian variants of 051

LoRA (Onal et al., 2024; Robeyns, 2024; Doan 052

et al., 2025) address the aforementioned challenges 053

by introducing uncertainty estimation directly into 054

the fine-tuning process. During training, these mod- 055

els continuously adjust both the mean and covari- 056

ance of fine-tuned parameters to achieve better gen- 057

eralization and uncertainty quantification. 058

Learning the posterior covariance matrix is nec- 059

essary for modeling epistemic uncertainty. How- 060

ever, its size grows quadratically with the number 061

of parameters, which can easily cancel out the bene- 062

fits of LoRA, in addition to making learning signifi- 063

cantly harder. Using low-rank, Kronecker-factored, 064

or diagonal-only covariances partially alleviates 065

the problem, but as we demonstrate in Sec. 3, this 066

comes at the cost of results quality loss. Further- 067

more, even at rank = 2, the number of trainable pa- 068

rameters is quadrupled compared to vanilla LoRA. 069

This creates a need for an alternative approach that 070
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Figure 2: (left): Weight-adaptation approaches: LoRA vs. B-LoRA-XS. As indicated by the color coding, some
parameters remain frozen (blue), others are trained (orange) or obtained via SVD (green). (right): Number of
trainable parameters per method. XS variants remain computationally competitive even for ranks as large as r “ 25.

retains covariance modeling capacity while reduc-071

ing the number of required parameters.072

We propose a method that learns Bayesian poste-073

riors for weights projected onto a low-dimensional074

manifold, hence maintaining parameter efficiency.075

The thoughtfully selected projection allows for the076

effective representation of the covariances between077

weights through covariances between representa-078

tions in the lower-dimensional space. In this design,079

we follow the work of Bałazy et al. (2024), who080

recently proposed a strategy for finding such pro-081

jections with SVD. We prove that they are effective082

for learning Bayesian models as well.083

Operating in such a reduced parameter space sig-084

nificantly improves the feasibility of Bayesian infer-085

ence. We show that correlations between weights086

can be represented very efficiently – unlike in the087

original weight space, we can use covariance matri-088

ces with ranks as low as k “ 2. Thanks to the low089

number of parameters, training is also more stable.090

Finally, the method achieves superior calibration091

and accuracy at low budgets (e.g., see Fig. 1).092

Crucially, the proposed Bayesian learning specif-093

ically in the low-rank projected subspace derived094

from the pre-trained weights is a novel idea and095

a non-trivial contribution. This approach en-096

ables uncertainty-aware fine-tuning in a highly097

parameter-efficient manner, a challenge not ad-098

dressed directly in any prior work. While the099

core components (LoRA-XS projections, Bayesian100

methods) are known, their synergistic application101

to learn Bayesian posteriors within such a com-102

pressed subspace represents a genuine conceptual103

innovation, leading to clear empirical benefits in104

uncertainty quantification with minimal overhead.105

In the Appendix, we supplement the results pre-106

sented in the paper with a discussion of related107

work and a detailed overview of the experimental108

setup. We are currently preparing our method’s109

implementation for release.110

2 Method 111

LoRA fine-tunes large pre-trained models by learn- 112

ing low-rank weight updates ∆W instead of train- 113

ing the weights W directly. For a pre-trained pa- 114

rameter matrix W 0 P Rmˆn that is kept fixed, 115

LoRA learns a rank-r update ∆W “ AB, where 116

A P Rmˆr and B P Rrˆn have far fewer pa- 117

rameters. The effective weight is then: W “ 118

W 0 ` ∆W “ W 0 ` AB, where only A and B 119

are trained. Typically, LoRA is applied jointly at 120

multiple layers, yielding a set of updates t∆Wlu. 121

Bayesian treatment of a neural network in- 122

volves finding the posterior ppθ | Dq given train- 123

ing data D. By Bayes’ theorem: ppθ | Dq “ 124
ppD|θq ppθq

ppDq
, where θ represents the model’s pa- 125

rameters (i.e., weights) considered random vari- 126

ables. In particular, for the Bayesian LoRA set- 127

ting, θ denotes a set of the learned model up- 128

dates, while the remaining frozen weights are hid- 129

den inside the model likelihood, given by ppD | 130

θq “
ś

iPrDs ppyi|xi, θq. The learned posterior al- 131

lows Bayesian model averaging at inference as: 132

ppy˚ | x˚,Dq “
ş

ppy˚ | x˚, θq ppθ | Dq dθ « 133
1
S

ř

θ„ppθ|Dq ppy˚ | x˚, θq, where we use S “ 15 134

samples from the posterior. 135

Bayesian LoRAs obtain the posterior for 136

t∆Wlu through the learned posterior for θ “ 137

YltAl Y Blu, where l indexes the weight updates 138

(layers). The posterior itself is approximated either 139

using a set of particles or a closed-form distribu- 140

tion. Due to its superior performance, we rely on 141

the latter and assume ppθ|Dq « N pµ,Σq, where 142

µ is the vector of means (of size equal to the num- 143

ber of learned parameters) and Σ is the covariance 144

matrix, whose size grows quadratically with the 145

total number of parameters. Notably, we aim to 146

model cross-layer interdependencies, requiring co- 147

variance estimation also across weights in different 148

layers tlu. However, this results in an impractically 149
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Figure 3: Median˘std. accuracy (left), ECE (middle), and NLL (right) on 4 GLUE tasks (rows) vs. total parameter
count for several methods and varying ranks r. B-LoRA-XS (our) achieves the accuracy and the calibration of
SWAG-LoRA while using significantly fewer parameters than LoRA. See Fig. 1 for averaged results.

large number of parameters. Consequently, we ex-150

plore methods to reduce this cost by representing151

distributions ppt∆W u|Dq differently.152

In LoRA-XS (Bałazy et al., 2024), the adap-153

tation matrices A and B are initialized using the154

truncated SVD of the corresponding pre-trained155

weight matrices W 0. This initialization captures156

the most informative singular components of the157

original weights. Under the assumption that the158

fine-tuned task is similar to the original task, these159

projections retain the functional properties also for160

downstream adaptations. LoRA-XS then freezes161

A and B and inserts a small trainable matrix162

R P Rrˆr between them, reducing the number163

of trainable parameters to r2 (r2 ! pn ` mq ¨ r)164

per weight matrix. Then, the fine-tuning update165

is: h “ xW 0 ` x∆W “ xW 0 ` xARB, where166

A P Rmˆr and B P Rrˆn are low-rank matrices167

obtained from the truncated SVD of W 0, specifi-168

cally A “ UrSr and B “ V T
r .169

B-LoRA-XS, proposed in this paper, leverages170

the frozen projections A and B for effective and171

efficient Bayesian learning. The core idea however172

is not merely applying Bayesian methods to LoRA,173

but to do so within the extremely compressed174

parameter space defined by LoRA-XS, making175

Bayesian inference tractable and highly efficient.176

This specific idea is new, non-trivial and it required177

practical validation preceded by design work and178

tuning. In Sec. 3, we empirically demonstrate that179

A and B, obtained from the SVD of the pre-trained180

weights, are not only effective for point-wise fine-181

tuning but also enable effective uncertainty quantifi-182

cation for t∆Wlu through modeling covariances183

for tRlu. Although we never compute it explic-184

itly, the covariance matrix for individual ∆W is 185

expressed as Σ∆W “ pBT b AqΣRpBT b AqT , 186

where ΣR is the (intra-layer) covariance matrix for 187

R and b denotes the Kronecker product. 188

In practice, we simply learn the joint posterior 189

ppθ “ YlRl|Dq « N pµ,Σq for the inner matrices 190

R. The covariance matrix Σ captures both inter- 191

layer and intra-layer dependencies, allowing the 192

model to learn complex relationships. At inference, 193

similar to LoRA, we use samples of R along with 194

the respective projections A and B to obtain h, as 195

realized through samples of ∆W , however without 196

ever computing it explicitly. 197

The parameters µ and Σ are learned efficiently 198

using SWAG (Maddox et al., 2019) (though Vari- 199

ational Inference or the Laplace approximation 200

could also be used). After a burn-in phase (a fixed 201

10 or 25 epochs) of the gradient-based optimiza- 202

tion, the algorithm maintains µ̂ – a running av- 203

erage of θ – along with k vectors of differences 204

D̂last “ θlast ´ µ̂ for the last k values of θ, and 205

a running average of θ2. Based on these aver- 206

ages, we estimate the variances σ̂2 for individ- 207

ual parameters and approximate the covariance as 208

Σ̂ « 1
2pD̂ ¨ D̂T ` diagpσ̂2qq, which constitutes a 209

rank-k approximation to the covariance matrix. 210

We illustrate B-LoRA-XS method in Fig. 2. Our 211

method uses the total of |θ| ¨ pk ` 2q parameters, 212

where |θ| “
ř

l r
2
l . 213

3 Experiments 214

Setup: We performed experimental evaluation on 215

four GLUE tasks (Wang et al., 2019) (RTE, MRPC, 216

CoLA, and SST-2) using RoBERTA-large (Liu 217

et al., 2019). We compare our method (B-LoRA- 218
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Figure 4: Impact of the posterior covariance matrix rank (k “ 0 indicates the case with no off-diagonal elements)
for CoLA (top) and MRPC (bottom). For brevity, confidence bars (˘ standard deviation) are omitted for MRPC.
The colored lines represent non-Bayesian baselines (e.g., standard LoRA or LoRA-XS at a given rank r).

XS) against the standard LoRA, LoRA-XS – a219

parameter efficient variant, and against SWAG-220

LoRA (Onal et al., 2024) – a Bayesian variant.221

For LoRA-XS and B-LoRA-XS we considered222

ranks r P t2, 8, 16, 25u and for LoRA and SWAG-223

LoRA due to limited budget we were able to test224

r P t2, 8u. The number of parameters (a proxy for225

storage and computation costs) as a function of226

ranks r and k is summarized in Fig. 2. We report227

accuracy (higher is better), ECE and NLL (lower228

is better) of median˘std across 5 runs.229

Performance analysis: Fig. 3 compares accu-230

racy, Expected Calibration Error (ECE), and Nega-231

tive Log-Likelihood (NLL) against total parameter232

count across 4 datasets. Our main claim is that233

B-LoRA-XS improves overall model performance,234

with a particular focus on calibration metrics. In-235

deed, Figure 3 (middle and right) demonstrates236

that B-LoRA-XS consistently yields lower ECE237

and NLL compared to standard LoRA across all238

parameter scales. Regarding accuracy (Figure 3:239

left), while standard LoRA shows marginally bet-240

ter results for a few configurations at moderate241

parameter scales, the majority of configurations242

show B-LoRA-XS matching or exceeding the ac-243

curacy of standard LoRA. More importantly, in no244

setting does standard LoRA significantly outper-245

form B-LoRA-XS in terms of calibration, which246

is a primary focus of our work. Bayesian variants,247

including B-LoRA-XS and SWAG-LoRA, gener-248

ally outperform their non-Bayesian counterparts249

in ECE and NLL. However, our model achieves250

these strong calibration results with 5–15 times251

fewer parameters than SWAG-LoRA. Moreover,252

while SWAG-LoRA sometimes performs well, its253

results vary significantly between runs. In contrast,254

B-LoRA-XS exhibits stable and consistent conver-255

gence. Finally, as results for MRPC and CoLA256

suggest, its performance remains robust across dif-257

ferent values of k, whereas SWAG-LoRA’s ECE258

deteriorates significantly at k “ 2. 259

Covariance matrix rank analysis: Figure 4 260

compares the sensitivity of the Bayesian LoRA 261

variants to changes in covariance matrix rank k. 262

Markers indicate model sizes (e.g., SWAG-LoRA 263

" B-LoRA-XS). As expected, SWAG-LoRA de- 264

teriorates proportionally as rank decreases. On 265

the other hand, B-LoRA-XS maintains its perfor- 266

mance across a wide range of k. Significant degra- 267

dation occurs only when off-diagonal covariance 268

values are entirely ignored (i.e., at k “ 0). Notably, 269

B-LoRA-XS achieves the best calibration at low 270

ranks, particularly at k “ 2 or k “ 5. This demon- 271

strates that the SVD-based projection effectively 272

disentangles parameters, enabling low-dimensional 273

uncertainty modeling. 274

Data size reduction analysis: Due to space con- 275

straints, the experiment was moved to Section F. 276

4 Conclusion 277

B-LoRA-XS addresses the lack of uncertainty 278

quantification in LoRA fine-tuning while maintain- 279

ing parameter efficiency. It utilizes truncated SVD 280

to project model updates into a lower-dimensional 281

space and leverages the Bayesian framework to 282

enhance uncertainty estimation. 283

Our method’s primary strength lies in its 284

calibration capabilities; it consistently achieves 285

lower expected calibration error and negative log- 286

likelihood compared to standard LoRA and LoRA- 287

XS across various parameter scales. While standard 288

LoRA may exhibit marginally better accuracy in 289

a few specific configurations, B-LoRA-XS gener- 290

ally matches or exceeds its accuracy in most set- 291

tings, and critically, always provides superior or 292

equal calibration. Compared to the Bayesian LoRA 293

baseline, B-LoRA-XS matches or surpasses its ac- 294

curacy and calibration performance while using 295

significantly fewer parameters, exhibiting greater 296

training stability, and relying on simpler, lower- 297

rank covariance representations. 298
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Limitations299

While B-LoRA-XS demonstrates promising results300

in parameter-efficient uncertainty quantification,301

several limitations should be acknowledged. First,302

the effectiveness of B-LoRA-XS inherently de-303

pends on the quality of the initial SVD projec-304

tion derived from pre-trained weights (as in LoRA-305

XS). If the principal components of the pre-trained306

model are not well-aligned with the requirements307

of a significantly different downstream task, the308

performance might be suboptimal. Second, our309

method employs SWAG with a low-rank approx-310

imation for the covariance matrix. While effi-311

cient, this is one specific approach to approximate312

Bayesian inference. Other techniques (e.g., more313

sophisticated variational inference methods or dif-314

ferent posterior approximations) might yield differ-315

ent trade-offs between performance, calibration,316

and computational cost, and were not explored317

in this work. Third, although B-LoRA-XS sig-318

nificantly reduces the number of trainable param-319

eters for Bayesian adaptation, the inference pro-320

cess still requires multiple forward passes for sam-321

pling, which increases computational cost com-322

pared to non-Bayesian LoRA or LoRA-XS. This323

trade-off between improved uncertainty and in-324

ference overhead is an important consideration325

for deployment. Four our empirical validation326

is conducted on GLUE classification tasks using327

RoBERTa-Large. The generalizability of B-LoRA-328

XS’s benefits to other model architectures, much329

larger model scales, or different task types (such as330

text generation or more complex reasoning tasks)331

warrants further investigation. Finally, the optimal332

choice of LoRA rank r and SWAG covariance rank333

k might require careful tuning for different datasets334

and models, potentially adding to the practical over-335

head of applying the method effectively.336
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A Related Work477

PEFT: As large language models continue to478

grow, parameter-efficient fine-tuning (PEFT) has479

become a popular approach to reducing compu-480

tational and storage costs. Among various meth-481

ods (Houlsby et al., 2019; Guo et al., 2021; Li482

and Liang, 2021; Lester et al., 2021), LoRA (Hu483

et al., 2021) has emerged as one of the most widely484

used. Building on its success, several approaches485

have been proposed to enhance different aspects of486

PEFT (Kopiczko et al., 2023; Zhang et al., 2023;487

Dettmers et al., 2024). One such method, LoRA-488

XS (Bałazy et al., 2024), further optimizes parame-489

ter efficiency by enabling flexible control over the490

number of trainable parameters per adaptation mod-491

ule. B-LoRA-XS reuses the idea of SVD-based492

projections to reduce the parameter space dimen-493

sionality.494

Bayesian LoRAs: Standard LoRA (Hu et al.,495

2021) does not account for uncertainty, mak-496

ing fine-tuned models susceptible to miscalibra-497

tion. Then, Bayesian LoRA approaches integrate498

Bayesian inference techniques into LoRA to im-499

prove uncertainty estimation and generalization.500

Several Bayesian LoRA methods have been pro-501

posed, each employing different Bayesian tech-502

niques to address these challenges. SWAG-LoRA503

(Onal et al., 2024) combines Stochastic Weight504

Averaging-Gaussian (SWAG) with LoRA to en-505

able approximate Bayesian inference, significantly506

improving model calibration and reducing overcon-507

fidence. Laplace-LoRA (Robeyns, 2024) applies a508

Laplace approximation to the posterior over LoRA509

parameters. Bella (Doan et al., 2025) introduces510

an approach that reduces the cost of Bayesian deep511

ensembles by applying multiple low-rank perturba-512

tions to a pre-trained model. BLoB (Bayesian Low-513

Rank Adaptation by Backpropagation) (Wang et al.,514

2024) jointly learns both the mean and covariance515

of model parameters throughout the fine-tuning pro-516

cess using Variational Inference. B-LoRA (Meo517

et al., 2024) introduces a Bayesian perspective to518

both quantization and rank selection by using a519

prior distribution over these hyperparameters, op-520

timizing model efficiency and reducing bit opera-521

tions.522

The key challenge lies in balancing uncertainty523

modeling with parameter efficiency, as Bayesian in-524

ference typically increases both the number of train-525

able parameters and computational cost. Despite526

their advantages, Bayesian LoRA methods face527

challenges related to increased parameter count and 528

computational cost. One major issue is the higher 529

storage and memory requirements, as Bayesian 530

methods often require additional parameters to 531

model uncertainty, particularly those involving co- 532

variance estimation, such as SWAG-LoRA. Scala- 533

bility remains a concern for methods that explicitly 534

model uncertainty across a large number of param- 535

eters. 536

B Scientific Artifacts Licenses 537

Listed below are the licenses for the scientific ar- 538

tifacts used in this research. For complete infor- 539

mation, please use the links below and refer to the 540

original sources. 541

Scientific Artifacts: RoBERTa-large (MIT), 542

MRPC (Unknown), RTE (Unknown), COLA (Un- 543

known), SST-2 (Unknown), HuggingFace Trans- 544

formers Library (Apache-2.0), SWAG-LoRa repos- 545

itory1 (MIT), LoRa-XS repository2 (Unknown). 546

C Model Size And Budget 547

• RoBERTA-large: 355M parameters 548

• GPUs: RTX4090 and V100-SXM2-32GB, 549

each run was performed on a single GPU 550

• GPU total time: « 63 days 551

D Statistics For Data 552

We followed the original GLUE train-validation 553

split 554

• MRPC - train: 3’668, val: 408 555

• RTE - train: 2’490, val: 277 556

• CoLa - train: 8’551, val: 1043 557

• SST2 - train: 67’349, val: 872 558

E Experimental Setup Details 559

The study was conducted on a subset of the GLUE 560

benchmark (Wang et al., 2019), specifically on 561

RTE, MRPC, CoLA, and SST-2 tasks (with the 562

original train-validation split), using RoBERTa- 563

large (Liu et al., 2019) checkpoints from the 564

HuggingFace Transformers library (Wolf et al., 565

2020). For the RTE and MRPC tasks, we followed 566

LoRA-XS and initialized LoRA-XS modules with 567

1https://github.com/fortuinlab/swag-lora
2https://github.com/MohammadrezaBanaei/

LoRA-XS
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Figure 5: Accuracy, ECE and NLL change as the training set is progressively reduced (e.g. -90% means using only
10% of the data for training). The dashed line marks the model’s performance when trained on the full dataset.

weights fine-tuned on the MNLI task. We inte-568

grated B-LoRA-XS/LoRA-XS modules into the569

Query, Value, Attention Output, and Output Fully570

Connected weight matrices in all transformer lay-571

ers (Vaswani et al., 2017), whereas due to budget572

limits, standard LoRA and SWAG-LoRA modules573

were added only to the Query and Value matrices.574

Note, this is sufficient for SWAG-LoRA to achieve575

its best performance.576

For each dataset, for the burn-in stage of training,577

we adopted hyperparameters from the LoRA-XS578

paper. These include: learning rate, batch size,579

AdamW optimizer (Loshchilov and Hutter, 2019),580

linear scheduler with warm-up, dropout, and the581

LoRA scaling factor α. For standard LoRA we582

followed the same setup, except for the learning583

rate, which was determined through grid search.584

Similarly, the SWAG starting epoch (e.g. 10 or 25)585

was selected through grid search. Based on the find-586

ings from SWAG-LoRA, we used a constant learn-587

ing rate scheduler (SWALR) with warm-up. The588

SWAG learning rate was set to the maximum learn-589

ing rate from the first (burn-in) phase of training.590

Unless stated otherwise, we used a low-rank covari-591

ance matrix approximation with the rank k “ 10.592

In all our experiments, SWAG estimation was ap-593

plied exclusively to the LoRA modules, and SWAG594

predictions were consistently obtained with S “ 15595

model samples.596

F Additional Experimental Results597

Data size reduction analysis: Figure 5 compares598

how accuracy, ECE, and NLL degrade when train-599

ing data is subsampled. All methods predictably600

lose accuracy as data size decreases, with little601

difference between the various LoRA-based ap-602

proaches. We conclude that Bayesian learning does603

not improve robustness in this case. However, we604

note variations across datasets in terms of accu-605

racy. For example, in MRPC, the decline is more606

pronounced, likely due to the dataset smaller size.607
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