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Abstract

Recent instruction-finetuned large language
models (LMs) have achieved notable perfor-
mances in various tasks, such as question-
answering (QA). However, despite their ability
to memorize a vast amount of general knowl-
edge across diverse tasks, they might be sub-
optimal on specific tasks due to their limited
capacity to transfer and adapt knowledge to tar-
get tasks. Moreover, further finetuning LMs
with labeled datasets is often infeasible due
to their absence, but it is also questionable
if we can transfer smaller LMs having lim-
ited knowledge only with unlabeled test data.
In this work, we show and investigate the ca-
pabilities of smaller self-adaptive LMs, only
with unlabeled test data. In particular, we first
stochastically generate multiple answers, and
then ensemble them while filtering out low-
quality samples to mitigate noise from inaccu-
rate labels. Our proposed self-adaption strat-
egy demonstrates significant performance im-
provements on benchmark QA datasets with
higher robustness across diverse prompts, en-
abling LMs to stay stable. Code is available at:
https://github.com/starsuzi/T-SAS.

1 Introduction

Language models (LMs) have gained the ability to
learn generalizable representations that are applica-
ble to diverse tasks by being trained on massive text
corpora with increased parameters (Brown et al.,
2020; Kojima et al., 2022). Moreover, to enhance
the transferability to unseen tasks, LMs are further
fine-tuned on instructions that are verbalized from
a vast amount of the supervised datasets, showing
a remarkable zero-shot ability across a wide range
of tasks (Wei et al., 2022a; Sanh et al., 2022).

However, despite their ability to store a vast
amount of general knowledge across diverse tasks,
LMs show suboptimal performances on specific
downstream tasks when transferring and adapting
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Question 
Who wrote the song ‘Can’t Help Falling 

in Love?’

External Document
‘Can't Help Falling in Love’ is a song

recorded by American singer Elvis

Presley for the album ‘Blue Hawaii’

(1961). It was written by Hugo Perett ...
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Hugo Peretti
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Figure 1: Illustration of our proposed T-SAS that includes
self-ensemble and filtering strategies for self-adapting LMs.

their knowledge to target tasks. One possible so-
lution is to additionally fine-tune LMs, but this
is often impractical in realistic scenarios where
labeled datasets are scarce. Furthermore, while
large LMs with hundreds of billions of parameters
may solve specific target tasks without fine-tuning,
they are rarely accessible. Motivated by these chal-
lenges, we focus on investigating the self-adaptive
capabilities of smaller LMs during the test-time.

While several studies have shed light on the po-
tential for self-improvement of LMs, they mainly
focus on augmenting the supervised labeled data
with additional self-generated labels (He et al.,
2020; Chen et al., 2023; Wang et al., 2023b), which
significantly differs from ours with a more chal-
lenging setup that does not rely on labeled data.
Note that there exists a recent work (Huang et al.,
2022) that has shown the self-adaptive ability of
large LMs with 540B parameters by further train-
ing with their generated answers, focusing on the
reasoning tasks. However, the utilization of large
LMs requires substantial costs and restricted ac-
cessibility. Therefore, our attention shifts towards
smaller LMs, whose potential to be adapted to tar-
get tasks with their limited capability of storing
knowledge remains largely unexplored.

Note that the adaptation of smaller LMs to down-
stream tasks brings forth new and critical chal-
lenges. First, it seems evident that large LMs with
extensive knowledge are adept at facilitating self-
adaption. However, the question arises regarding
the self-adaptive capability of smaller LMs, specif-
ically when the supervised labeled datasets are ab-
sent. Second, it may be suboptimal to use all the
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self-generated labels for training, as some of them
could contain possibly incorrect information, lead-
ing to significant performance degradation (Zhou
et al., 2023). Third, unlike the large LMs, adapting
smaller LMs to specific tasks would require the
incorporation of external knowledge, due to their
limited capabilities of storing specific knowledge.

In this work, we aim at addressing the challenges
of self-adaptive abilities in smaller LMs without ad-
ditional labeled datasets, focusing on the QA tasks
augmented with external knowledge. To this end,
we first stochastically generate multiple answers
according to a given unlabeled question with its
related document. Then the most plausible answer
is selected through majority voting, serving as a
pseudo-label for training during test-time. Note,
however, that we should be aware of the possi-
bility of unreliable results from the self-ensemble.
To mitigate this, we further propose to filter out
potentially incorrect samples based on low agree-
ment among self-generated labels, as illustrated
in Figure 1. We refer to our proposed method as
Test-time Self-Adaptive Small LMs (T-SAS). We
validate our T-SAS on QA datasets with smaller
LMs, on which T-SAS significantly improves the
self-adaptive capabilities of smaller LMs.

Our contributions and findings are threefold:
• We first explore the self-adaptive capability

of the smaller LMs in a realistic setting only
with the unlabeled data during the test-time.

• We ensure that the high quality of the self-
generated labels is maintained by proposing a
novel self-ensemble scheme with filtering.

• We show that our T-SAS method achieves out-
standing performance on the QA tasks.

2 Related Work
Language Models Pre-trained language mod-
els have shown decent advancements in diverse
tasks (Brown et al., 2020) and further improved
by increasing the number of parameters to bil-
lions (Touvron et al., 2023; Anil et al., 2023) and
leveraging instruction-finetuning techniques with
a vast amount of supervised labeled datasets (Wei
et al., 2022a; Sanh et al., 2022). Despite their recent
successes (Wei et al., 2022b; Wang et al., 2023a),
however, we see that LMs still encounter difficul-
ties in effectively addressing downstream tasks due
to their limited task-specific adaptation.

Self-adaptive LMs Due to the frequent occur-
rence of domain or data shift in real-world scenar-

ios, self-adaptive models have gained substantial
attention (Wang et al., 2021a; Shu et al., 2022;
Veksler, 2023). In particular, some work has sug-
gested to augment supervised labeled training data
with self-generated labels (He et al., 2020; Chen
et al., 2023; Wang et al., 2023b). In contrast, we
assume a more realistic test-time setup without
labeled data. Note that there are recent studies
on self-consistent LMs. Specifically, Huang et al.
(2022) demonstrated that large LMs can be further
trained with the most consistent labels among mul-
tiple self-generated labels. On the other hand, our
focus lies on more practical and accessible smaller
LMs with novel strategies of answer sampling and
filtering. While some research focuses on self-
consistent prompts by regularizing LMs to generate
consistent outputs across different prompts (Zhou
et al., 2022; Zeng and Gao, 2023; Wan et al., 2023),
the focus is different and orthogonal to ours which
proposes to self-adapt smaller LMs for specific tar-
get tasks associated with external knowledge.

Self-adaption for Extractive QAs Several previ-
ous studies explored the self-adaptive capabilities
of the traditional pre-trained language models, but
they mainly addressed classification problems un-
der the extractive setting (Li et al., 2020; Shakeri
et al., 2020; Banerjee et al., 2021; Wang et al.,
2021b; Ye et al., 2022). However, we focus on the
generative setting, which makes a large difference
due to fundamentally different objectives. To be
specific, in an extractive setting, self-adaptation is
based on probabilities, while in a generative set-
ting, self-adaptation is done using generated text.
In situations where filtering is further applied, fil-
tering is based on probabilities in the extractive
setting, whereas, it is done using the generated text
in the generative setting. Furthermore, Li et al.
(2020) and Shakeri et al. (2020) assume an unsu-
pervised QA setting, where the context-question-
answer triplets are not available, thus requiring an
additional query-generation module. Such a pair
generation approach is different and orthogonal to
ours, since we aim to enhance answer generation
directly from the provided context and question.

3 Method

3.1 Preliminaries

Question Answering Let Dtrain be a labeled QA
training set, where each instance consists of a ques-
tion qi, a gold answer a∗i , and its associated doc-



Table 1: Exact Match (EM) and F1 scores on three QA benchmark datasets with varying sizes of FLAN.

Base (250M) Large (780M) XL (3B)
Datasets Methods EM F1 EM F1 EM F1

NQ

Finetuned w/ Training Set 67.47 75.28 73.41 80.79 74.36 81.72
Naïve LM w/o Ext. 3.50 7.20 7.19 12.24 12.09 18.24
Naïve LM 37.21 45.00 53.76 65.34 54.53 66.39
Self-Adaptive w/ Greedy 32.75 40.69 56.78 67.69 59.34 71.04
Self-Adaptive w/ Soft 39.53 49.24 54.29 65.98 58.17 71.03
Self-Adaptive w/ LMSI 39.81 49.36 56.79 68.08 62.87 74.17
T-SAS (Ours) 41.70 50.22 63.90 74.20 63.96 75.29

TQA

Finetuned w/ Training Set 71.78 77.28 80.84 85.01 81.93 86.40
Naïve LM w/o Ext. 5.96 11.54 13.29 19.57 25.30 31.14
Naïve LM 51.83 60.79 69.77 76.69 75.27 81.17
Self-Adaptive w/ Greedy 52.95 60.98 69.05 75.45 76.94 82.72
Self-Adaptive w/ Soft 49.57 58.31 69.02 76.19 75.15 81.64
Self-Adaptive w/ LMSI 56.55 65.45 70.47 77.42 77.34 83.37
T-SAS (Ours) 60.67 67.93 74.46 80.60 78.38 84.01

SQD

Finetuned w/ Training Set 69.94 81.72 74.26 85.56 75.58 86.55
Naïve LM w/o Ext. 2.00 6.37 3.55 9.01 5.86 12.17
Naïve LM 59.93 71.25 68.33 80.22 71.66 83.00
Self-Adaptive w/ Greedy 57.20 68.93 64.62 76.77 73.03 84.03
Self-Adaptive w/ Soft 51.79 65.48 65.78 79.02 71.13 83.41
Self-Adaptive w/ LMSI 60.42 72.57 69.19 80.87 73.42 84.39
T-SAS (Ours) 63.02 74.68 71.34 82.57 73.84 84.72

ument di that contains a∗i , as follows: Dtrain =
{(qi, di, a∗i )} with a∗i ∈ di. Similarly, an unlabeled
test set is defined as follows: Dtest = {(qi, di)}.
Assume that LM is a language model parameterized
with θ, which has been instruction-finetuned on
massive datasets. Then, given a pair of the question
and its relevant document (qi, di), LM generates an
answer, as follows: āi = LM(di, qi; θ). Note that,
in order to generate a correct answer, i.e., a∗i = āi,
it is beneficial to train LM with a labeled training
set by minimizing the loss (e.g., cross-entropy) be-
tween a correct answer a∗i and model prediction
āi as follows: L(ai∗, āi). Then, after a training
phase, LM is more likely to correctly predict a∗i on
the unlabeled test set Dtest of the target task.

Self-Adaptive LM While recent LM is capable of
answering questions, directly using LM to the target
task may yield suboptimal results, thus requiring
transfer learning or adaption. In order to do so, our
idea is to maximally leverage the unlabeled test set
Dtest that we have in hand for the target task. In
particular, we have Dtest, and given that, a possi-
ble solution is to train LM with its self-generated
pseudo label, āi∗. In other words, LM can be further
trained on Dtest_self = {(qi, di, āi∗)}, where āi

∗

is generated from the unlabeled test sample (qi, di)
with LM, for self-adaption to target tasks.

3.2 Test-time Self-Adaptive Small LMs

We describe our test-time self-adaptive LMs (T-
SAS) with proposed strategies for effectively gen-
erating and utilizing pseudo labels during test-time.

Stochastic Self-Ensemble Note that relying on
a single āi

∗ generated by LM, which is trained on
general domains, may result in inaccurate predic-
tions when adapted to the target task, as there ex-
ists a possibility of incorrectly self-generated āi

∗.
To mitigate this, we propose to make LM generate
multiple answers { ¯ai,j}nj=1 with diverse points of
view. Note that, while existing work (Huang et al.,
2022; Wang et al., 2023a) proposed to use Top-k
or nucleus sampling (Fan et al., 2018; Holtzman
et al., 2020) when generating { ¯ai,j}nj=1 for reason-
ing tasks, their diversities might be limited due
to answer sampling based on a single representa-
tion. Instead, we propose to leverage multiple rep-
resentations generated through Monte-Carlo (MC)
dropout (Gal and Ghahramani, 2016) by randomly
masking weights on LM during test-time, as follows:

{ ¯ai,j}nj=1 = {LMM∼M(di, qi; θ ⊙M)}nj=1, (1)

where M is a distribution of mask weights and M
is a sampled mask weight. Once we have generated
multiple answers { ¯ai,j}nj=1, our next objective is
to assign one pseudo label āi∗ from the set using a
majority voting strategy, which selects āi∗ with the
highest number of occurrences among { ¯ai,j}nj=1.
After acquiring the self-generated label āi∗ for the
unlabeled Dtest, we now aim at training LM on the
Dtest_self with a following loss term: L(āi∗, āi).

Filtering However, in contrast to Huang et al.
(2022) and Wang et al. (2023a) who use all sam-
ples and their associated pseudo labels āi∗ for train-
ing, relying entirely on them can be largely prob-



Datasets Methods EM F1

SciQ Naïve LM 71.80 80.31
T-SAS (Ours) 73.40 81.30

cpgQA Naïve LM 51.69 72.93
T-SAS (Ours) 53.42 74.30

TyDiQA Naïve LM 64.55 76.97
T-SAS (Ours) 67.95 79.31

Table 2: Results on additional QA datasets with FLAN-T5-
XL: SciQ, cpgQA, and TyDiQA (only using the English data).

lematic since LM lacks specific training to make
valuable predictions on particular tasks. There-
fore, motivated by the fact that the substantial per-
formance improvements of LMs are primarily at-
tributed to their training on high-quality data (Zhou
et al., 2023), we further propose an automatic fil-
tering strategy to identify and exclude samples,
{(qi, di, āi∗)} ⊂ Dtest_self , that are likely to have
incorrect āi∗. We determine this by removing sam-
ples labeled with āi

∗ that have a vote count propor-
tionally lower than a certain threshold.

4 Experiments

4.1 Experimental Setups

In this subsection, we describe experimental setups.
Further details are shown in Appendix A.

Datasets We use three QA datasets, augmented
with external documents from Wikipedia, pre-
processed by Karpukhin et al. (2020): 1) Natu-
ral Questions (NQ) (Kwiatkowski et al., 2019),
2) TriviaQA (TQA) (Joshi et al., 2017), and 3)
SQuAD v1.1 (SQD) (Rajpurkar et al., 2016).

Baselines and Our Model We compare our T-
SAS against other baselines using unlabeled test
data. We use the FLAN (Chung et al., 2022) and
the same prompt across all models. 1) Finetuned
w/ Training Set is an indicator model, which is
finetuned on the labeled training set. 2) Naïve LM
w/o Ext. is a naïve baseline without external knowl-
edge and self-adaptive training. 3) Naïve LM is
a baseline without self-adaptive training, but in-
corporates external knowledge. 4) Self-Adaptive
w/ Greedy is trained on the self-generated pseudo-
labels via Greedy decoding. 5) Self-Adaptive w/
Soft is trained on the result of soft voting. 6) Self-
Adaptive w/ LMSI is trained on the result of ma-
jority voting, using Top-k sampling (Huang et al.,
2022). 7) T-SAS (Ours) is ours, which incorpo-
rates both self-ensembling and filtering strategies.

Methods Large (780M) XL (3B)

T-SAS (Ours) 74.20 75.29
w/o Stochastic 67.67 74.10
w/o Filtering 68.25 73.24

Naïve LM 65.34 66.39

Table 3: Ablation studies on the NQ dataset with FLAN-T5-
Large and FLAN-T5-XL based models .

4.2 Results
Here, we show the overall performance of T-SAS.
Please see Appendix B for more results.

Main Results As Table 1 shows, T-SAS signif-
icantly outperforms all baselines of varying sizes,
particularly with a FLAN-Large model. Note that
Naïve LMs show substantially lower performance
than the supervision finetuned LMs. This corrob-
orates our hypothesis that LMs are not fully opti-
mized for target tasks. Also, by integrating external
knowledge, the performance of all models, espe-
cially smaller ones, is largely improved.

Furthermore, ensembling multiple self-
generated predictions significantly enhances
performance, compared to baselines with Greedy
decoding. This indicates that T-SAS, considering
diverse points of view, reduces the likelihood of
encountering performance-degrading scenarios
caused by relying on a single prediction.

However, when compared to the baselines
with multiple self-generated predictions (i.e., Self-
Adaptive w/ Soft and w/ LMSI), the results indicate
that a filtering strategy is required. Solely relying
on the final result of the self-ensemble should be
avoided with smaller LMs, contrasting the observa-
tion by Huang et al. (2022) with large LMs (540B)
on the reasoning task. Interestingly, the model
trained on soft labels, which must leverage all the
predictions, shows even lower performance than
the Naïve LMs, emphasizing the negative impact
of training on inaccurate self-generated labels.

Comparing the performance with large LMs is
outside our scope, since our work targets at inves-
tigating the effectiveness of smaller LMs on self-
adaption. Note that large LMs and smaller LMs are
not directly comparable to each other, due to their
discrepancy in capacity. However, we additionally
report the performance of the large zero-shot LM
as an indicator in Figure 2. Surprisingly, our T-SAS
significantly outperforms a much larger zero-shot
LM, which further signifies the effectiveness of the
proposed self-adaptive strategies for smaller LMs.
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Figure 4: Comparison of MC drop and
Top-k sampling with varying thresholds
on NQ with FLAN-T5-Large.

Robustness on Diverse Prompts Recent LMs
have been observed to be prompt-sensitive (Cho
et al., 2023; Ishibashi et al., 2023), which is undesir-
able as consistent outputs are expected across sim-
ilar prompts, particularly in real-world scenarios
with diverse users. As shown in Figure 3, T-SAS
shows substantial robustness to diverse prompts,
which are attributed to the proposed stochastic gen-
eration and filtering strategies. In other words, T-
SAS effectively mitigates the impact of inaccurate
predictions by filtering them from multiple perspec-
tives, even for specific prompts.

Effectiveness on Specific Domains In addition
to evaluating T-SAS in general domains, we further
conduct experiments on specific domains, includ-
ing the science domain, SciQ (Welbl et al., 2017),
and the clinical domain, cpgQA (Mahbub et al.,
2023), to assess its domain adaptability. Table 2
shows consistent improvements from T-SAS, high-
lighting its ability to capture and enhance transfer-
ability across domain shifts. These findings indi-
cate the applicability of T-SAS in domains where
high-quality labeled data is scarce.

Effectiveness on Unseen Datasets Recent
instruction-finetuned language models have been
extensively trained on various QA datasets, making
it challenging to evaluate them on new datasets.
Therefore, in Table 2, we further show clear im-
provements even on the unseen datasets, cpgQA
and TyDiQA (Clark et al., 2020). Also, it is worth
noting that the performance improvement achieved
by applying self-adaptation to the already trained
data is not our weakness, but rather a strength. To
be more specific, even though an LM has been
trained comprehensively on diverse datasets in-
cluding the target dataset, the LM remains as the
general-purpose model and is not tailored to the
specific target dataset. However, by using our pro-
posed T-SAS on the target dataset, the model can
further achieve improved performance thanks to its
self-adaptation capabilities over the target dataset.

Stochastic Generation Strategy with Filtering
We compare MC dropout and Top-k sampling with
varying filtering thresholds. As shown in Figure 4,
both strategies benefit from a filtering strategy by
mitigating noises introduced during stochastic gen-
eration processes. Moreover, MC dropout consis-
tently outperforms Top-k sampling, which can be
attributed to its higher lexical diversity (0.24 vs.
0.14). These findings suggest that diversity, com-
bined with a filtering strategy, allows LMs to effec-
tively identify and remove low-quality outputs with
higher variances, consequently resulting in overall
performance improvement.

Ablation Studies In order to see how each of
the stochastic generation and filtering strategies
contributes to the overall performance, we provide
the ablation studies with two variants of T-SAS
with Large and XL sizes. To be specific, in T-SAS
w/o Stochastic, low-quality samples are filtered
out based on the generation probability of a single
prediction, and in T-SAS w/o Filtering, the major-
ity voting results are directly used as pseudo-labels
without applying our proposed filtering strategy. As
shown in Table 3, both of the proposed strategies
positively contribute to the overall performance, by
substantially improving the performance of Naïve
LMs in both model sizes. Furthermore, these strate-
gies indicate that they are in a complementary re-
lationship, suggesting that they work together to
enhance overall performance.

5 Conclusion
In this work, we investigated and improved the
self-adaptive capabilities of the recent smaller LMs
only using unlabeled test data, on the QA task.
Specifically, our proposed method involves self-
ensembling the stochastically generated labels and
a filtering strategy to remove possibly incorrect la-
bels, thereby enabling training with high-quality
self-generated labels. The experimental results and
analyses indicate that our method significantly im-
proves QA performances during test-time.



Limitations

While we show clear advantages of using our T-
SAS to address the realistic challenges of the recent
LMs regarding their self-adaptive capabilities, it is
important to acknowledge that our validation was
conducted under the assumption of having gold
external documents containing the answers. How-
ever, in real-world scenarios, obtaining such gold
documents may not be feasible, necessitating the
incorporation of additional retrieval modules to
retrieve query-relevant information. Although the
integration of retrieval modules is beyond the scope
of our current work, our exploration of the potential
benefits of an external knowledge-augmented set-
ting for self-adaptive smaller LMs opens up fruitful
avenues for future research. We also believe that in-
vestigating the integration of retrieval modules with
T-SAS to further enhance the practical applicabil-
ity of self-adaptive LMs in real-world applications
holds a significant value.

Ethics Statement

The experimental results confirm the effectiveness
of T-SAS in adapting to unlabeled test-time data.
However, it is important to consider and address the
potential bias of the underlying LM when utilizing
its extensive knowledge for training self-adaptive
models. We suggest that implementing specific fil-
tering strategies targeted at mitigating these biases
can be a potential solution to ensure the safety and
reliability of self-adaptive models.

Acknowledgements

This work was supported by Institute for Informa-
tion and communications Technology Promotion
(IITP) grant funded by the Korea government (No.
2018-0-00582, Prediction and augmentation of the
credibility distribution via linguistic analysis and
automated evidence document collection) and Ba-
sic Science Research Program through the National
Research Foundation of Korea (NRF) funded by
the Ministry of Education (RS-2023-00275747).

References
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,

Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023. Palm 2 technical report. arXiv preprint
arXiv:2305.10403.

Pratyay Banerjee, Tejas Gokhale, and Chitta Baral. 2021.
Self-supervised test-time learning for reading com-
prehension. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 1200–1211. Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Wei-Lin Chen, An-Zi Yen, Hen-Hsen Huang, Cheng-
Kuang Wu, and Hsin-Hsi Chen. 2023. ZARA: im-
proving few-shot self-rationalization for small lan-
guage models. arXiv preprint arXiv.2305.07355.

Sukmin Cho, Soyeong Jeong, Jeongyeon Seo, and
Jong C. Park. 2023. Discrete prompt optimization
via constrained generation for zero-shot re-ranker. In
Findings of the Association for Computational Lin-
guistics: ACL 2023. Association for Computational
Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv Preprint arXiv.2210.11416.

Jonathan H. Clark, Jennimaria Palomaki, Vitaly Niko-
laev, Eunsol Choi, Dan Garrette, Michael Collins,

https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.18653/v1/2021.naacl-main.95
https://doi.org/10.18653/v1/2021.naacl-main.95
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2305.07355
https://doi.org/10.48550/arXiv.2305.07355
https://doi.org/10.48550/arXiv.2305.07355
https://doi.org/10.48550/arXiv.2305.13729
https://doi.org/10.48550/arXiv.2305.13729
https://doi.org/10.48550/arXiv.2210.11416


and Tom Kwiatkowski. 2020. Tydi QA: A bench-
mark for information-seeking question answering in
typologically diverse languages. Trans. Assoc. Com-
put. Linguistics, 8:454–470.

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pages 889–898. Association for Computational Lin-
guistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1050–1059. JMLR.org.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Yoichi Ishibashi, Danushka Bollegala, Katsuhito Su-
doh, and Satoshi Nakamura. 2023. Evaluating the
robustness of discrete prompts. In Proceedings of
the 17th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2023, Dubrovnik, Croatia, May 2-6, 2023, pages
2365–2376. Association for Computational Linguis-
tics.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601–1611. Association for
Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,

and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Zhongli Li, Wenhui Wang, Li Dong, Furu Wei, and
Ke Xu. 2020. Harvesting and refining question-
answer pairs for unsupervised QA. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 6719–6728. Association for Com-
putational Linguistics.

Maria Mahbub, Edmon Begoli, Susana B. Martins,
Alina Peluso, Suzanne Tamang, and Gregory D. Pe-
terson. 2023. cpgqa: A benchmark dataset for ma-
chine reading comprehension tasks on clinical prac-
tice guidelines and a case study using transfer learn-
ing. IEEE Access, 11:3691–3705.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Siamak Shakeri, Cícero Nogueira dos Santos, Henghui
Zhu, Patrick Ng, Feng Nan, Zhiguo Wang, Ramesh

https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.18653/v1/P18-1082
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2210.11610
https://aclanthology.org/2023.eacl-main.174
https://aclanthology.org/2023.eacl-main.174
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.acl-main.600
https://doi.org/10.18653/v1/2020.acl-main.600
https://doi.org/10.1109/ACCESS.2023.3235265
https://doi.org/10.1109/ACCESS.2023.3235265
https://doi.org/10.1109/ACCESS.2023.3235265
https://doi.org/10.1109/ACCESS.2023.3235265
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4


Nallapati, and Bing Xiang. 2020. End-to-end syn-
thetic data generation for domain adaptation of ques-
tion answering systems. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November
16-20, 2020, pages 5445–5460. Association for Com-
putational Linguistics.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom
Goldstein, Anima Anandkumar, and Chaowei Xiao.
2022. Test-time prompt tuning for zero-shot general-
ization in vision-language models. In NeurIPS.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Olga Veksler. 2023. Test time adaptation with regular-
ized loss for weakly supervised salient object detec-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7360–7369.

Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Ö. Arik,
and Tomas Pfister. 2023. Better zero-shot reason-
ing with self-adaptive prompting. arXiv preprint
arXiv.2305.14106.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A.
Olshausen, and Trevor Darrell. 2021a. Tent: Fully
test-time adaptation by entropy minimization. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, and Gra-
ham Neubig. 2021b. Efficient test time adapter en-
sembling for low-resource language varieties. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
730–737. Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2023a. Self-
consistency improves chain of thought reasoning in
language models. In 11th International Conference
on Learning Representations, ICLR 2023. OpenRe-
view.net.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Asso-
ciation for Computational Linguistics: ACL 2023.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth

International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, NUT@EMNLP 2017, Copenhagen,
Denmark, September 7, 2017, pages 94–106. Associ-
ation for Computational Linguistics.

Hai Ye, Yuyang Ding, Juntao Li, and Hwee Tou Ng.
2022. Robust question answering against distribution
shifts with test-time adaption: An empirical study.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 6179–6192, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Fengzhu Zeng and Wei Gao. 2023. Prompt to be con-
sistent is better than self-consistent? few-shot and
zero-shot fact verification with pre-trained language
models. In Findings of the Association for Com-
putational Linguistics: ACL 2023. Association for
Computational Linguistics.

Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Prompt con-
sistency for zero-shot task generalization. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 2613–2626. Association
for Computational Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike
Lewis, Luke Zettlemoyer, and Omer Levy. 2023.
LIMA: less is more for alignment. arXiv preprint
arXiv.2305.11206, abs/2305.11206.

https://doi.org/10.18653/v1/2020.emnlp-main.439
https://doi.org/10.18653/v1/2020.emnlp-main.439
https://doi.org/10.18653/v1/2020.emnlp-main.439
http://papers.nips.cc/paper_files/paper/2022/hash/5bf2b802e24106064dc547ae9283bb0c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5bf2b802e24106064dc547ae9283bb0c-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://openaccess.thecvf.com/content/CVPR2023/papers/Veksler_Test_Time_Adaptation_With_Regularized_Loss_for_Weakly_Supervised_Salient_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Veksler_Test_Time_Adaptation_With_Regularized_Loss_for_Weakly_Supervised_Salient_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Veksler_Test_Time_Adaptation_With_Regularized_Loss_for_Weakly_Supervised_Salient_CVPR_2023_paper.pdf
https://doi.org/10.48550/arXiv.2305.14106
https://doi.org/10.48550/arXiv.2305.14106
https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c
https://doi.org/10.18653/v1/2021.findings-emnlp.63
https://doi.org/10.18653/v1/2021.findings-emnlp.63
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/w17-4413
https://doi.org/10.18653/v1/2022.findings-emnlp.460
https://doi.org/10.18653/v1/2022.findings-emnlp.460
https://doi.org/10.48550/arXiv.2306.02569
https://doi.org/10.48550/arXiv.2306.02569
https://doi.org/10.48550/arXiv.2306.02569
https://doi.org/10.48550/arXiv.2306.02569
https://aclanthology.org/2022.findings-emnlp.192
https://aclanthology.org/2022.findings-emnlp.192
https://doi.org/10.48550/arXiv.2305.11206


Sizes Methods EM F1

Small (80M) Naïve LM 23.98 31.92
T-SAS (Ours) 31.28 40.05

XXL (11B) Naïve LM 60.73 70.93
T-SAS (Ours) 66.52 76.58

Table 4: Results of FLAN-Small and FLAN-XXL, on NQ.

A Experimental Setups

Datasets We use three QA datasets, augmented
with external documents from Wikipedia, prepro-
cessed by Karpukhin et al. (2020). 1) Natural
Questions (NQ) (Kwiatkowski et al., 2019) is com-
posed of questions from the Google Search engine.
2) TriviaQA (TQA) (Joshi et al., 2017) is collected
from the Web, which consists of trivia questions.
3) SQuAD v1.1 (SQD) (Rajpurkar et al., 2016) is
constructed by the annotators by writing questions
after reading passages.

Metrics We evaluate models with Exact Match
(EM) and F1-score (F1), following the standard
protocol for the QA task (Rajpurkar et al., 2016;
Karpukhin et al., 2020).

Implementation Details For a fair comparison,
we compare the models using the instruction-
finetuned FLAN-T5 (Chung et al., 2022) model
with three different sizes, Base (250M), Large
(780M), and XL (3B) with the same prompt: ‘Read
this and answer the question{context}{question}’.
For the models larger than 3B, we trained
them adopting a low-rank adaptation (LoRA)
method (Hu et al., 2022), For hyperparameters, we
set the training epoch as 5 for all the self-adaptive
models and 1 for the indicator model. Also, we set
the number of stochastically generated predictions
as 15 and set the filtering threshold as 0.7.

B Additional Experimental Results

Dropout Mask Variations To investigate the im-
pact of the number of masks in MC dropout on
performance, we conduct experiments with vary-
ing mask numbers. Figure 5 illustrates that in-
creasing the number of masks leads to improved
performance, but stabilized after reaching a cer-
tain number of masks. Note that the stochastically
perturbed models, with multiple dropout masks,
offer more diverse perspectives compared to the
ablated model without stochastic generation or the
model with only one dropout mask, thus resulting
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Figure 5: F1 scores with varying numbers of dropout masks.

in decreasing the possibility of selecting inaccurate
self-generated answers.

Effectiveness on Diverse Model Sizes In addi-
tion to the performance on three sizes shown in
Table 1, we additionally conduct experiments for
the FLAN-Small (80M) and FLAN-XXL (11B)
models. The results in Table 4 demonstrate that our
T-SAS consistently enhances performances on the
much smaller or larger model sizes.

Effectiveness on T0-3B In addition to the FLAN
series, we conduct experiments on another LM,
T0 (Sanh et al., 2022) with 3B size. As shown
in Table 5, our T-SAS consistently improves the
performance on three QA datasets, which indicates
the applicability of T-SAS on diverse LMs.

Effectiveness of Augmented External Document
We have observed significant performance improve-
ment with the augmented external documents in
all models as shown in Table 1. Here, we fur-
ther analyze the importance of augmenting external
documents, especially for the models that require
training. As shown in Table 6, the overall per-
formance without external knowledge is largely
devastated for all models. Interestingly, the perfor-
mance degradation for an indicator model trained
on the supervised training dataset is remarkable.
These findings corroborate our proposed challenge
that external knowledge is necessarily required for
training self-adaptive and especially smaller LMs,
whose capabilities of storing specific knowledge
are highly limited.

Case Study We conduct a case study, mainly
comparing our T-SAS against a self-adaptive base-
line model with LMSI, in Table 7. The first exam-
ple shows the robustness of our T-SAS approach
in addressing prompt-sensitive situations, where an
LM exhibits significantly degraded performance
for a specific prompt, ‘Read the following article
and answer the question. Article: {} Question:
{}’. While both models stochastically generate in-



Datasets Methods EM F1

NQ Naïve LM 42.08 54.78
T-SAS (Ours) 50.17 61.61

TQA Naïve LM 62.43 70.23
T-SAS (Ours) 68.70 75.49

SQuAD Naïve LM 50.15 62.73
T-SAS (Ours) 56.86 69.10

Table 5: Results with T0-3B on three QA datasets.

Methods EM F1

Naïve LM 54.53 66.39

Naïve LM w/o Ext. 12.09 18.24
Finetuned. w/o Ext. 7.16 12.79
T-SAS (Ours) w/o Ext. 12.29 18.43

Table 6: Results without using external documents, on NQ.

accurate predictions that are totally unrelated to
the question or document, and subsequently vote
based on these erroneous labels, our T-SAS pre-
vents further training with these unreliable predic-
tions by employing a filtering strategy. This demon-
strates the adaptability of our T-SAS in real-world
scenarios with diverse user prompts. Moreover,
the second example highlights the effectiveness of
a filtering strategy in addressing diverse answers
generated by our stochastic self-generation strat-
egy. Note that MC dropout produces answers with
higher lexical diversity than Top-k sampling, which
enables the removal of low-quality outputs with a
higher variance. In both cases, the removal of low-
quality labels is crucial for the self-adaptive LMs,
and our proposed strategies have demonstrated the
effectiveness of achieving this goal.



Table 7: Examples from two self-adaptive LMs without using labeled data, during the test-time.

Case # 1: Our T-SAS exhibits robustness in handling diverse prompts.
Document: · · · This was necessary because EMI owned another record label called Columbia, which operated in every market
except North America, Spain and Japan. CBS sold the record company in 1988 to (Answer) Sony. In 1991, the CBS label was
officially renamed Columbia Records and the company was renamed Sony Music Entertainment. · · ·
Question: Which Japanese company bought CBS records in 1988?
Prompt: Read the following article and answer the question. Article: {context} Question: {question}

Self-Adaptive w/ LMSI T-SAS (Ours)

Self-Generated Answers: ‘iv.’, ‘(C).’, ‘a).’, ‘(4).’, ‘(a).’,
‘iv.’, ‘[ii]’, ‘[d].’, ‘[iv]’, ‘sony’, ‘(iv).’, ‘(iii).’, ‘B).’, ‘iv.’,
‘sony’

Self-Generated Answers:‘[iv]’, ‘b).’, ‘(4).’, ‘(iv).’, ‘[i]’,
‘d).’, ‘[i]’, ‘[ii]’, ‘sony’, ‘sony’, ‘[i]’, ‘[iv]’, ‘[ii]’, ‘[ii]’,
‘(iv)’

Self-Ensemble Result: ‘iv.’ Self-Ensemble Result: ‘[i]’(
3

15
< Threshold)

Final Prediction: ‘[iv]’ Final Prediction: ‘sony’

Case # 2: Our T-SAS shows effectively combines diverse answer generation and filtering strategies.
Document: · · · Howard in the 2007 film Spider-Man 3 and by (Answer) Emma Stone in the 2012 reboot film The Amazing
Spider-Man and its sequel The Amazing Spider-Man 2. Created by writer Stan Lee and artist Steve Ditko, Gwen Stacy first
appeared in The Amazing Spider-Man # 31 (December 1965). In her initial appearances, Peter Parker met Gwen while both
were studying as undergraduates at Empire State University, but with Aunt May in the hospital, Peter was troubled and ignored
her advances. · · ·
Question: Real name of Gwen Stacy in Amazing Spiderman
Prompt: Read this and answer the question {context} {question}

Self-Adaptive w/ LMSI T-SAS (Ours)

Self-Generated Answers: ‘peter parker’s intellect’, ‘pe-
ter parker’s scientific rigor and’, ‘peter parker’s interest in
science’, ‘peter parker’, ‘peter’, ‘peter parker’s scientific
approach to solving mysteries’, ‘peter parker’s intelligence’,
‘peter parker’, ‘peter parker’, ‘peter parker’, ‘peter’s intel-
lect and’, ‘peter parker’, ‘peter parker’s scientific prowess’,
‘peter parker’s intellect and sass’, ‘peter parker’s under-
standing of science’

Self-Generated Answers: ‘howard’, ‘gwen stacy’,
‘howard’, ‘howard’, ‘emma stone’, ‘howard’, ‘gwen
stacy’, ‘emma stone’, ‘peter parker’s wit and intelligence’,
‘howard’, ‘howard’, ‘gwen stacy’, ‘emma stone’, ‘emma
stone’, ‘emma stone’

Self-Ensemble Result: ‘peter parker’ Self-Ensemble Result: ‘howard’(
6

15
< Threshold)

Final Prediction: ‘peter parker’ Final Prediction: ‘emma stone’


