
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VARIATIONAL RECTIFIED FLOW MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study Variational Rectified Flow Matching, a framework that enhances clas-
sic rectified flow matching by modeling multi-modal velocity vector-fields. At
inference time, classic rectified flow matching ‘moves’ samples from a source
distribution to the target distribution by solving an ordinary differential equation
via integration along a velocity vector-field. At training time, the velocity vector-
field is learnt by linearly interpolating between coupled samples one drawn from
the source and one drawn from the target distribution randomly. This leads to
“ground-truth” velocity vector-fields that point in different directions at the same
location, i.e., the velocity vector-fields are multi-modal/ambiguous. However, since
training uses a standard mean-squared-error loss, the learnt velocity vector-field
averages “ground-truth” directions and isn’t multi-modal. Further, averaging leads
to integration paths that are more curved while making it harder to fit the target
distribution. In contrast, the studied variational rectified flow matching is able to
capture the ambiguity in flow directions. We show on synthetic data, MNIST, and
CIFAR-10 that the proposed variational rectified flow matching leads to compelling
results with fewer integration steps.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) and more generally flow matching (Liu
et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023) have been
remarkably successful in recent years. These techniques have been applied across domains from
computer vision (Ho et al., 2020) and robotics (Kapelyukh et al., 2023) to computational biology (Guo
et al., 2024) and medical imaging (Song et al., 2022).

Flow matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) can be
viewed as a continuous time generalization of classic diffusion models (Albergo et al., 2023; Ma
et al., 2024). Those in turn can be viewed as a variant of a hierarchical variational auto-encoder (Luo,
2022). At inference time, flow matching ‘moves’ a sample from a source distribution to the target
distribution by solving an ordinary differential equation via integration along a velocity vector-field.
To learn this velocity vector-field, at training time, flow matching aims to regress/match a constructed
vector-field/flow connecting any sample from the source distribution — think of the data-space
positioned at time zero — to any sample from the target distribution attained at time one. Notably, in
a ‘rectified flow,’ the samples from the source and target distribution are connected via a straight line
as shown in Fig. 1(a). Inevitably, this leads to ambiguity, i.e., flows pointing in different directions
at the same location in the data-space-time-space domain, as illustrated for a one-dimensional data-
space in Fig. 1(a). Since classic rectified flow matching employs a standard squared-norm loss to
compare the predicted velocity vector-field to the constructed velocity vector-field, it does not capture
this ambiguity. Hence, rectified flow matching aims to match the source and target distribution in
alternative ways, leading to flow trajectories that are more complex and usually more curved. This is
illustrated in Fig. 1(b).

To enable rectified flow matching to capture this ambiguity in the data-space-time-space domain, we
study variational rectified flow matching. Intuitively, variational rectified flow matching introduces a
latent variable that permits to disentangle ambiguous flow directions at each location in the data-space-
time-space domain. This approach follows the classic variational inference paradigm underlying
expectation maximization or variational auto-encoders. Indeed, as shown in Fig. 1(c), variational
rectified flow matching permits to model flow trajectories that intersect. This results in trajectories

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Ground Truth (b) Baseline (c) Ours
Figure 1: Intuition and motivation: Rectified flow matching randomly couples source data and target
data samples, as illustrated in panel (a). This leads to velocity vector-fields with ambiguous directions.
Panel (b) shows that the classic rectified flow matching averages ambiguous targets, which leads to
curved flows. In contrast, the proposed variational rectified flow matching is able to successfully
model ambiguity which leads to less curved flows as depicted in panel (c).

that are more straight, which can often be integrated more quickly. Moreover, the latent variable can
also be used to disentangle different directions.

Note that flow matching, diffusion models, and hierarchical variational auto-encoders are all able to
capture ambiguity in the data-space, as one expects from a generative model. Importantly, variational
rectified flow matching differs in that it enables to also model ambiguity in the data-space-time-space
domain. This enables different flow directions at the same data-space-time-space point, allowing the
resulting flows to intersect at that location.

We demonstrate the benefits of variational rectified flow matching on synthetic data, MNIST, as
well as CIFAR-10. On synthetic data we show that the method leads to more accurately modeled
distributions when using fewer integration steps, a property which we can empirically attribute to
flow fields that are less curved. On CIFAR-10 we demonstrate that the proposed approach leads to an
FID score that’s on par with or slightly better than classic rectified flow matching, particularly when
using fewer integration steps.

In summary, our contribution is as follows: we study the properties of variational rectified flow
matching, and, along the way, offer an alternative way to interpret the flow matching procedure. We
think the proposed method naturally extends classic rectified flow matching.

2 PRELIMINARIES

Given a dataset D = {(x1)} comprised of data samples x1, e.g., an image, generative models learn
a distribution p(x1), often by maximizing the likelihood. In the following we discuss how this
distribution is learnt with variational auto-encoders and rectified flow matching, and how ambiguity
is captured in the data domain.

2.1 VARIATIONAL AUTO-ENCODERS (VAES)

Variational inference generally and variational auto-encoders (VAEs) (Kingma & Welling, 2014)
specifically have been shown to capture ambiguity. This is achieved by introducing a latent variable
z. At inference time, a latent z is obtained by sampling from the prior distribution p(z), typically a
zero mean unit covariance Gaussian. A decoder is then used to characterize a distribution p(x1|z)
over the output space, from which an output space sample x1 is obtained.

At training time, variational auto-encoders use an encoder to compute an approximate posterior
distribution qϕ(z|x1) over the latent space. As the approximate posterior distribution is only needed
at training time, the data x1 can be leveraged. Note, the approximate posterior distribution is often
a Gaussian with parameterized mean and covariance. A sample from this approximate posterior
distribution is then used as input in the distribution pθ(x1|z) characterized by the decoder. The loss
encourages a high probability of the output space samples while pushing the approximate posterior
distribution qϕ(z|x1, c) to not deviate much from the prior distribution p(z). To achieve this, formally,
VAEs maximize a lower-bound on the log-likelihood, i.e.,

Ex1∼D log p(x1) ≥ Ex1∼D
[
Ez∼qϕ [log pθ(x1|z)]−DKL(qϕ(·|x1)|p(·)

]
,

when training a variational auto-encoder.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 RECTIFIED FLOW MATCHING

For flow matching, at inference time, a source distribution p0(x0) is queried to obtain a sample
x0. This is akin to sampling of a latent variable from the prior in VAEs. Different from VAEs
which perform a single forward pass through the decoder, in flow matching, the source distribution
sample x0 is used as the boundary condition for an ordinary differential equation (ODE). This ODE
is ‘solved’ by pushing the sample x0 forward from time zero to time one via integration along a
trajectory specified via a learned velocity vector-field vθ(xt, t) defined at time t and location xt, and
commonly parameterized by deep net weights θ. Note, the velocity vector-field is queried many times
during integration. The likelihood of a data point x1 can be assessed via the instantaneous change of
variables formula (Chen et al., 2018; Song et al., 2021b; Lipman et al., 2023),

log p1(x1) = log p0(x0) +

∫ 0

1

div vθ(xt, t)dt, (1)

which is commonly (Grathwohl et al., 2018) approximated via the Skilling-Hutchinson trace estima-
tor (Skilling, 1989; Hutchinson, 1990). Here, div denotes the divergence vector operator.

Intuitively, by pushing forward samples x0, randomly drawn from the source distribution p0(x0),
ambiguity in the data domain is captured as one expects from a generative model.

At training time the parametric velocity vector-field vθ(xt, t) needs to be learnt. For this, coupled
sample pairs (x0, x1) are constructed by randomly drawing from the source and the target distribution,
usually independently from each other. A coupled sample (x0, x1) and a time t ∈ [0, 1] is then
used to compute a time-dependent location xt at time t via a function ϕ(x0, x1, t) = xt. Recall,
rectified flow matching uses xt = ϕ(x0, x1, t) = (1 − t)x0 + tx1. Interpreting xt as a location,
intuitively, the “ground-truth” velocity vector-field v(x0, x1, t) is readily available via v(x0, x1, t) =
∂ϕ(x0, x1, t)/∂t, and can be used as the target to learn the parametric velocity vector-field vθ(xt, t).
Concretely, flow matching aims to learn the parametric velocity vector field vθ(xt, t) by matching
the target via an ℓ2 loss, i.e., by minimizing w.r.t. the trainable parameters θ the objective

Et,x0,x1

[
∥vθ(xt, t)− v(x0, x1, t)∥22

]
.

Consider two different couplings that lead to different “ground-truth” velocity vectors at the same
data-domain-time-domain (xt, t). The parametric velocity vector-field vθ(xt, t) is then asked to
match/regress to a different target given the same input (xt, t). This leads to averaging and the
optimal functional velocity vector-field v∗(xt, t) = E{(x0,x1,t):ϕ(x0,x1,t)=xt} [v(x0, x1, t)]. Hence,
ambiguity in the data-domain-time-domain is not captured. In the following we discuss and study a
method that is able to model this ambiguity.

3 VARIATIONAL RECTIFIED FLOW MATCHING

Our goal is to capture the ambiguity inherent in “ground-truth” velocity vector-fields obtained from
typically used couplings (x0, x1) that connect source distribution samples x0 ∼ p0 with target data
samples x1 ∈ D. Here, p0 is a known source distribution and D is a considered dataset. This
differs from classic rectified flow matching which does not capture this ambiguity even for simple
distributions as shown in Fig. 1 and as discussed in Sec. 2. The struggle to capture ambiguity leads to
velocity vector fields that are more curved and consequently more difficult to integrate at inference
time. In turn, this leads to distributions that may not fit the data as well. We will show evidence for
both, more difficult integration and less accurately captured data distributions in Sec. 4.

To achieve our goal we combine rectified flow matching and variational auto-encoders. In the
following we first discuss the objective before detailing training and inference.

3.1 OBJECTIVE

The goal of flow matching is to learn a velocity vector-field vθ(xt, t) that transports samples from a
known source distribution p0 at time t = 0 to samples from a commonly unknown probability density
function p1(x1) at time t = 1. The probability densities p0, p1 and the velocity vector-field vθ are
related to each other via the transport problem

∂ log pt(xt)

∂t
= − div vθ(xt, t), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

or its integral form given in Eq. (1).

Solving the partial differential equation given in Eq. (2) in general analytically is challenging, even
when assuming availability of the probability density functions, i.e., when addressing a classic
boundary value problem.

However, if we assume the probability density functions to be Gaussians and if we restrict the velocity
vector-field to be constant, i.e., of the simple parametric form vθ(xt, t) = θ, we can obtain an analytic
solution. This is expressed in the following claim:

Claim 1 Consider two Gaussian probability density functions p̃0 = N (ξ0;x0, I) and p̃1 =
N (ξ1;x1, I) with mean x0 and x1 respectively. Let’s restrict ourselves to a constant velocity
vector-field vθ(ξt, t) = θ. Then θ = x1 − x0 solves the partial differential equation given in Eq. (2)
and its integral form given in Eq. (1) and xt = (1− t)x0 + tx1.

Proof: Given the constant velocity vector-field vθ(ξt, t) = θ, we have
∫ 0

1
div vθ(ξt, t)dt ≡ 0.

Plugging this and both probability density functions into Eq. (1) yields (ξ0 − x0)
2 − (ξ1 − x1)

2 ≡ 0

∀ξ0, ξ1. Using ξ1 = ξ0 +
∫ 1

0
vθ(ξt, t)dt = ξ0 + θ leads to (ξ0 − x0)

2 − (ξ0 − x1 + θ)2 ≡ 0 ∀ξ0
which is equivalent to (x1 − x0 − θ)(2ξ0 − x0 − x1 + θ) ≡ 0 ∀ξ0. This can only be satisfied ∀ξ0 if
θ = x1 − x0, leading to xt = x0 + tθ = (1− t)x0 + tx1, which proves the claim. ■

The arguably very simple setup in Claim 1 provides intuition for the objective of classic rectified flow
matching and offers an alternative way to interpret the flow matching procedure. Specifically, instead
of two Gaussian probability density functions p̃0 and p̃1, we assume the real probability density
functions for the source and target data are composed of Gaussians centered at given data points x0

and x1 respectively, e.g., p0(ξ0) =
∑

x0∈S N (ξ0;x0, I)/|S|. Moreover, importantly, let us assume
that the velocity vector-field vθ(xt, t) at a data-domain-time-domain location (xt, t) is characterized
by a uni-modal standard Gaussian

p(v|xt, t) = N (v; vθ(xt, t), I)

with a parametric mean vθ(xt, t). Maximizing the log-likelihood of the empirical “velocity data” is
equivalent to the following objective

Et,x0,x1
[log p(x1 − x0|xt, t)] ∝ −Et,x0,x1

[
∥vθ(xt, t)− x1 + x0∥22

]
. (3)

Note that this objective is identical to classic rectified flow matching. Moreover, note our use of the
standard rectified flow velocity vector-field, also derived in Claim 1.

This derivation highlights a key assumption: because the vector field is parameterized via a Gaussian
at each data-domain-time-domain location, ambiguity cannot be captured: the Gaussian distribution
is uni-modal. Therefore, classic rectified flow matching aims to average the “ground-truth” velocities.

As mentioned before, this can be sub-optimal. To capture ambiguity, we study the use of a mixture
model over velocities at each data-domain-time-domain location. Concretely, we assume an unob-
served continuous random variable z, drawn from a prior distribution p(z), governs the mean of the
conditional distribution of the velocity vector-field, i.e.,

p(v|xt, t, z) = N (v; vθ(xt, t, z), I).

Note that this model captures ambiguity because p(v|xt, t) =
∫
p(v|xt, t, z)p(z)dz mixes Gaussians

with different means.

We now derive the variational flow matching objective. Since the random variable z is not ob-
served, at training time, we introduce a recognition model qϕ(z|x0, x1, xt, t) a.k.a. an encoder. It is
parameterized by ϕ and approximates the intractable true posterior.

Using this setup, the marginal likelihood of an individual data point can be lower-bounded by

log p(v|xt, t) ≥ Ez∼qϕ [log p(v|xt, t, z)]−DKL(qϕ(·|x0, x1, xt, t)|p(·)). (4)

Replacing the log-probability of the Gaussian in the derivation of Eq. (3) with the lower
bound given in Eq. (4) immediately leads to the variational rectified flow matching objective
Et,x0,x1

[log p(x1 − x0|xt, t)] ≥

Et,x0,x1

[
−Ez∼qϕ

[
∥vθ(xt, t, z)− x1 + x0∥22

]
−DKL(qϕ(·|x0, x1, xt, t)|p(·))

]
. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Variational Rectified Flow Matching Training
Data: source distribution p0 and target sample dataset D

1 while stopping conditions not satisfied do
2 sample x0 ∼ p0, x1 ∈ D; //we use a mini-batch
3 sample t ∼ U(0, 1); //different t for each mini-batch sample
4 xt = (1− t)x0 + tx1;
5 get latent z = µϕ(x0, x1, xt, t) + ϵσϕ(x0, x1, xt, t) with ϵ ∼ N (0, 1);

//reparameterization trick
6 compute loss following Eq. (5);
7 perform gradient update on θ, ϕ;
8 end

Algorithm 2: Variational Rectified Flow Matching Inference
Data: source distribution p0

1 sample x0 ∼ p0;
2 get latent z ∼ p(z);
3 ODE integrate x0 from t = 0 to t = 1 using velocity vector-field vθ(xt, t, z);

We note that this objective could be extended in a number of ways: for instance, the prior p(z) could
be a trainable deep net conditioned on x0 and/or t. Note however that this leads to a more complex
optimization problem with a moving target. We leave a study of extensions to future work.

In the following we first discuss optimization of this objective before detailing the inference procedure.

3.2 TRAINING

To optimize the objective given in Eq. (5), we follow the classic VAE setup. Specifi-
cally, we let the prior p(z) = N (z; 0, I) and the approximate posterior qϕ(z|x0, x1, xt, t) =
N (z;µϕ(x0, x1, xt, t), σϕ(x0, x1, xt, t)). This enables analytic computation of the KL-divergence in
Eq. (5). Note that the mean of the approximate posterior is obtained from the deep net µϕ(x0, x1, xt, t)
and the standard deviation is obtained from σϕ(x0, x1, xt, t). Further, we use the re-parameterization
trick to enable optimization of the objective w.r.t. the trainable parameters θ and ϕ. Moreover, we
use a single-sample estimate for the expectation over the unobserved variable z. We summarize the
training procedure in Algorithm 1. Note, it’s more effective to work with a mini-batch of samples
rather than a single data point, which was merely used for readability in Algorithm 1.

Note that variational rectified flow matching training differs from training of classic rectified flow
matching in only a single step: computation of a latent sample z in Line 5 of Algorithm 1. From a
computational point of view we add a deep net forward pass to obtain the mean µϕ and standard
deviation σϕ of the approximate posterior, and a backward pass to obtain the gradient w.r.t. ϕ. Also
note that the velocity vector-field architecture vθ(xt, t, z) might be more complex as the latent
variable z needs to be considered. The additional amount of computation is likely not prohibitive.

We provide implementation details for the deep nets vθ(xt, t, z), µϕ(x0, x1, xt, t), and
σϕ(x0, x1, xt, t) in Sec. 4, as their architecture depends on the data.

3.3 INFERENCE

We summarize the inference procedure in Algorithm 2. Note that we draw a latent variable only once
prior to classic ODE integration of a random sample x0 ∼ p0 drawn from the source distribution
p0. To obtain the latent z we sample from the prior z ∼ p(z) = N (z; 0, I). Subsequently, we ODE
integrate the velocity field vθ(xt, t, z) from time t = 0 to time t = 1 starting from a random sample
x0 drawn from the source distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2 5 8 10 16 20
Evaluation Steps

4

3

2

1

0

Tr
ue

 L
og

-L
ike

lih
oo

d

Rectified FM
Consistency FM
VRFM (Ours)

2 5 8 10 16 20
Evaluation Steps

4

3

2

1

0

Pa
rz

en
 W

in
do

w
Lo

g-
Lik

el
ih

oo
d

Rectified FM
Consistency FM
VRFM (Ours)

2 5 8 10 16 20
Evaluation Steps

10 2

10 1

100

W
as

se
rs

te
in

 D
ist

an
ce Rectified FM

Consistency FM
VRFM (Ours)

Figure 2: Quantitative evaluation on synthetic 1D data for varying evaluation steps. Metrics are
averaged over three runs with different random seeds. For True and Parzen Window Log-Likelihood,
higher values are better. For Wasserstein Distance, lower values are preferred.

4 EXPERIMENTS

We evaluate the efficacy of variational rectified flow matching and compare to the classic rectified
flow (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) and the recent
consistency flow matching (Yang et al., 2024) using multiple datasets. We show the benefits of
our method in modeling the velocity ambiguity in the data-domain-time-domain, which leads to
compelling results with fewer integration steps using ODE solvers. Moreover, we demonstrate that
explicitly modeling ambiguity through a conditional latent z enhances the interpretability of flow
matching models, leading to controlability.

4.1 SYNTHETIC 1D DATA

For our synthetic 1D experiments, the source distribution is a zero-mean, unit-variance Gaussian,
while the target distribution is bimodal, with modes centered at −1.0 and 1.0.

For the rectified flow matching and the consistency flow matching baselines, we use a multi-layer
MLP network vθ to model the velocity. The network operates on inputs xt and t and predicts the
velocity through a series of MLP layers. We follow this structure in our variational rectified flow
matching, but add an encoding layer for the latent variable z. The posterior model qϕ follows a
similar design as vθ, outputting µϕ and σϕ. At inference time, qϕ isn’t used. Instead, we sample
directly from the prior distribution p(z) = N (z; 0, I). We set the the KL loss weight to 1.0. Further
implementation details are provided in Appendix A.

We assess the performance using the Euler ODE solver and vary the evaluation steps. Results are
presented in Fig. 2. Across all metrics, i.e., True Log-Likelihood, Parzen Window Log-Likelihood,
and Wasserstein Distance, and most evaluation steps, our method outperforms both baselines. Notably,
as the model handles ambiguity in the data-domain-time-domain, it produces reasonable results even
for 2 or 5 evaluation steps. Qualitative visualizations of flow trajectories are provided in Appendix B.

To better understand the velocity ambiguity and to assess the efficacy of our model in handling
it, we randomly sample different trajectories and plot the velocity range standard deviation across
predefined bins in the data-domain-time-domain, as shown in Fig. 3. The ground-truth flow in
Fig. 3 (a) shows that the standard deviation increases with time, peaking at (x = 0.0, t = 0.75).
The velocity distribution transitions from a bi-modal distribution at early times t to a uni-modal
distribution at later times t. Fig. 3 (b) shows that the rectified flow baseline, which uses an MSE loss,
fails to model the velocity distribution faithfully, collapsing to a Dirac-delta distribution as expected.
This is also observed for the consistency flow matching baseline, as results in Appendix K show. In
contrast, Fig. 3 (c) demonstrates that our model successfully captures the distribution with higher
velocity standard deviation range, matching the ground-truth flow reasonably, albeit not perfectly.

As discussed in Section 3.2, the posterior qϕ can be conditioned in different ways. To understand
the implications, we performed ablation studies and visualized the velocity distribution maps in
Fig. 3 (c)-(f). For x0 conditioning (d), the model struggles to predict the bi-modal distribution at
early timesteps (xt = 0.0, t = 0.0) due to the absence of x1 information. However, when t is
sufficiently large, the model can infer x1 from xt, enabling it to predict a bimodal distribution again at
(x = 0.0, t = 0.5). Conversely, with x1 conditioning (e), the model fails to capture the ground-truth

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e) (f)
Figure 3: 1D velocity ambiguity analysis with various conditioning options and sampling strategies.
(a) Ground Truth (GT), (b) Baseline (Rectified Flow), (c) Ours (x0 + x1 + xt), (d) Ours (x0), (e)
Ours (x1), (f) Ours (xt). The heatmap illustrates the velocity standard deviation for sampled bins
in data-domain-time-domain, along with histograms of the velocity at four sampled locations. Our
method effectively models velocity ambiguity, while the baseline produces deterministic outputs.

(a) Ground Truth (b) Rectified FM (c) Consistency FM (d) Ours
Figure 4: Flow visualization for synthetic 2D data using the Euler solver with 20 function evaluations.
Sampled points from the source distribution are shown in red, and points from the target distribution
in purple. Different from Rectified FM, which predicts flow trajectories with sharp curvature and
U-turns to avoid crossings, and Consistency FM, which models straight lines, our model captures
velocity ambiguity and predicts flows that intersect.

distribution at later timesteps (x = −1.0, t = 0.95) as the influence of x1 diminishes. With xt

conditioning (f), the ambiguity plot follows the baseline as no extra data is provided to the posterior.

4.2 SYNTHETIC 2D DATA

We further test efficacy using synthetic 2D data. Following Liu et al. (2023), we model the source
distribution as a mixture of Gaussian components positioned at six equidistant points along a circle
with a radius of 1/3, shown in red in Fig. 4 (a). The target distribution follows a similar structure, but
with components arranged along a larger circle with a radius of 1, shown in purple.

For the architecture we follow Section 4.1 and condition the posterior on [x0, x1, xt]. We report the
Parzen window log-likelihood and the true log-likelihood for various evaluation steps of the Euler
ODE solver, as shown in Fig. 5. Compared to the rectified flow and consistency flow baselines, our
model shows a more significant performance boost. We hypothesize that this is due to the increased
complexity of the task: explicitly modeling ambiguity avoids the need for curved trajectories, making

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Quantitative eval-
uation on synthetic 2D data
for varying evaluation steps.
Metrics are averaged over
three runs with different ran-
dom seeds.

2 4 5 8 10 16 20
Evaluation Steps

10.0

7.5

5.0

2.5

0.0

Tr
ue

 L
og

-L
ike

lih
oo

d

Rectified FM
Consistency FM
VRFM (Ours)

2 4 5 8 10 16 20
Evaluation Steps

10.0

7.5

5.0

2.5

0.0

Pa
rz

en
 W

in
do

w
Lo

g-
Lik

el
ih

oo
d

Rectified FM
Consistency FM
VRFM (Ours)

(a) x0 with random seed 1 (b) x0 with random seed 2 (c) x0 with random seed 3

Figure 6: Visualization of learned MNIST manifold with different random noise x0.

it easier to fit the target distribution. The qualitative flow visualization in Fig. 4 support this hypothesis:
the rectified flow requires a U-turn to avoid collisions, while our model, aided by the variational
training objective, moves in trajectories that intersect and aren’t as curved.

4.3 MNIST

Modeling ambiguity not only improves results with fewer evaluation steps but also enables more
explicit control without additional conditioning signals. We implemented a vanilla convolutional
network with residual blocks (He et al., 2015) and applied variational rectified flow matching to the
MNIST dataset (LeCun et al., 1998). We use (x0, x1, xt) as input to qϕ and set the KL loss weight to
1e−3. The detailed architecture and training paradigm is provided in Appendix C.

Following Kingma & Welling (2014), we set the latent variable z to be 2-dimensional. During
inference, we sample linearly spaced coordinates on the unit square, transforming them through the
inverse CDF of the Gaussian to generate latents z. Using these latents, we integrate the samples
with an ODE solver and plot the generated samples in Fig. 6. To show the effects of the source
distribution sample x0 and the latent z, we visualize the learned MNIST manifold for three randomly
sampled x0 values in Fig. 6 (a)-(c). The results demonstrate that the latent space z enables smooth
interpolation between different digits within the 2D manifold, providing control over the generated
images. By adjusting z, we can transition between various shapes and styles. The initial noise x0

enhances the generation process by introducing additional variations in character styles, allowing the
model to better capture the target data distribution. We also evaluate the FID scores of our method
using this 2-dimensional conditional latent space and report the results in Fig. 7. Despite the small
latent dimension, it still enables the velocity model vθ to achieve better FID scores than the baselines,
except at 2 evaluation steps where Consistency FM (Yang et al., 2024) performs best.

4.4 CIFAR-10

Next, we evaluate our method on the CIFAR-10 data, a widely used benchmark in prior work (Lipman
et al., 2023; Tong et al., 2024). For a fair comparison, we use the architecture and training paradigm
of (Tong et al., 2024), but train the UNet model with the variational rectified flow loss detailed in
Eq. (5). The UNet consists of downsampling and upsampling residual blocks with skip connections,
and a self-attention block added after the residual block at 16 × 16 resolution and in the middle
bottleneck layer. The model takes both xt and t as input, with the time embedding t used to regress
learnable scale and shift parameters γ and β for adaptive group norm layers.

The posterior model qϕ shares similar encoder structure as vθ: image space inputs are chosen from
[x0, x1, xt] and concatenated along the channel dimension, while time t is conditioned using adaptive
group normalization. The network predicts µϕ and σϕ with dimensions 1× 1× 768. During training,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: FID score evaluation for the MNIST
experiment conducted across three trials with dif-
ferent random seeds. Our model with a latent di-
mension of 2 outperforms the baselines, except at
2 evaluation steps where Consistency FM performs
best. Note, the latent dimension of 2 is chosen for a
controllability analysis rather than being optimized
for FID score improvement. 101 102

Evaluation Steps
0

25

50

75

100

FI
D

Rectified FM
Consistency FM
VRFM (Ours)

NFE / sample 2 5 10 50 100 1000 Adaptive

OT-FM
(Lipman et al., 2023; Tong et al., 2024) 166.655 36.188 14.396 5.557 4.640 3.822 3.655

I-CFM
(Liu et al., 2023; Tong et al., 2024) 168.654 35.489 13.788 5.288 4.461 3.643 3.659

1 VRFM (adaptive norm, x1, 2e-3) 135.275 28.912 13.226 5.382 4.430 3.642 3.545
2 VRFM (adaptive norm, x1, 5e-3) 159.940 35.293 14.061 5.265 4.349 3.582 3.561
3 VRFM (adaptive norm, x1 + t, 5e-3) 117.666 27.464 13.632 5.512 4.484 3.614 3.478
4 VRFM (bottleneck sum, x1 + t, 2e-3) 104.634 25.841 13.508 5.618 4.540 3.596 3.520

Table 1: Following Tong et al. (2024), we train the same UNet model and reported the FID scores for
our method and the baselines using both fixed-step Euler and adaptive-step Dopri5 ODE solvers. The
baselines checkpoint was directly taken from Tong et al. (2024). We present four model variants of
our VRFM, which differ in fusion mechanism, posterior model input, and KL loss weight.

the conditional latent z is sampled from the predicted posterior, and at test time, from a standard
Gaussian prior. The latent is processed through two MLP layers and serves as a conditional signal for
the velocity network vθ. We identify two effective approaches as conditioning mechanisms: adaptive
normalization, where z is added to the time embedding before computing shift and offset parameters,
and bottleneck sum, which fuses the latent with intermediate activations at the lowest resolution using
a weighted sum before upsampling. The detailed implementation is provided in Appendix D.

We evaluate results using FID scores computed for varying numbers of function evaluations, as shown
in Table 1. Four model variants were tested, differing in fusion mechanisms, posterior model qϕ
inputs, and KL loss weighting. Compared to prior work (Lipman et al., 2023; Liu et al., 2023; Tong
et al., 2024), model 1 achieves superior FID scores with fewer function evaluations and performs com-
parably at higher evaluations. Using the adaptive Dopri5 solver further improves scores, highlighting
the importance of capturing flow ambiguity. Model 2 increases the KL loss weight, improving
performance at higher function evaluations but reducing effectiveness at lower evaluations, likely
due to reduced information from latent z. Model 3, with additional time conditioning, significantly
improves FID at low evaluations and performs best with the adaptive solver. Model 4, incorporating
bottleneck sum fusion, delivers robust FID scores across evaluation settings, demonstrating the
flexibility of the variational rectified flow objective with different fusion strategies.

Compared to other input configurations, we find conditioning on x1 with optional t generally yields
better results. We hypothesize that this is due to the convolutional net’s ability to effectively handle
noisy data like x0. Furthermore, the large parameter count (i.e., 38M) of the velocity network vθ
may not find any additional useful information in the latent. We leave a search for more scalable
variational rectified flow conditioning mechanisms for larger models as future work.

Similar to the results reported for MNIST data in Section 4.3, we observe clear patterns in color and
content for the generated samples x1, demonstrating a degree of controllability. Fig. 8 visualizes
three sets of images (a)–(c). Each set is conditioned on a different latent z, while the starting noise
x0 varies across individual images within each set. The same noise x0 is applied to images at the
same grid location across all subplots. Images conditioned on the same latent exhibit consistent color
patterns, while images at the same grid location display similar content, as highlighted in the last row.

5 RELATED WORK

Generative modeling has advanced significantly in the last decade, thanks in part due to seminal
works like generative adversarial nets (Goodfellow et al., 2014), variational auto-encoders (Kingma
& Welling, 2014), and normalizing flows (Rezende & Mohamed, 2015).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) z0 (b) z1 (c) z2

Figure 8: Varying x0 for a fixed latent z. Images at the same position across panels share the same
x0, while images within a panel share the same latent sampled from the prior distribution.

More recently, score matching (Song & Ermon, 2019) and diffusion models (Ho et al., 2020) were
introduced. They can be viewed as augmenting variational auto-encoders hierarchically (Luo, 2022)
while restricting involved distributions to be Gaussian. Notably, and analogously to classic discrete
normalizing flows, the number of hierarchy levels, i.e., the number of time steps, remained discrete,
which introduced complications.

Flow matching (Lipman et al., 2023) was introduced recently as a compelling alternative to avoid
some of these complications. It formulates an ordinary differential equation (ODE) in continuous
time. This ODE connects a source distribution to a target distribution. Solving the ODE via forward
integration through time permits to obtain samples from the target distribution, essentially by ‘moving’
samples from the known source distribution to the target time along a learned velocity field.

To learn the velocity field, various mechanisms to interpolate between the source distribution and
the target distribution have been considered (Lipman et al., 2023; Liu et al., 2023; Tong et al.,
2024). Rectified flow matching emerged as a compelling variant, which linearly interpolates between
samples from the two distributions. For instance, it was used to attain impressive results on large
scale datasets (Ma et al., 2024; Esser et al., 2024). Compared to other interpolation techniques, linear
interpolation encourages somewhat straight flows, which simplifies numerical solving of the ODE.

The importance of straight flows was further studied in ReFlow (Liu et al., 2023). Multiple ODEs are
formulated and multiple velocity fields are learned one after the other by sequentially adjusting the
interpolations and ‘re-training.’ Consistency models (Song et al., 2023; Kim et al., 2023; Yang et al.,
2024) strive for straight flows by modifying the loss to encourage self-consistency across timesteps.
More details are provided in Appendix K.

While the aforementioned works aim to establish straight flows either via ‘re-training’ or ‘re-
parameterizing’ of an already existing flow, differently, in this work we study the results of enabling
a rectified flow to capture the ambiguity inherent in the usually employed ground-truth flow fields.

Structurally similar to this idea is work by Preechakul et al. (2022). In a first stage, an autoencoder
is trained to compress images into a latent space. The resulting latents then serve as a conditioning
signal for diffusion model training in a second stage. Note, this two-stage approach doesn’t directly
model ambiguity in the data-space-time-space domain. In similar spirit is work by Pandey et al.
(2022). A VAE and a diffusion model are trained in two separate stages, with the goal to enable
controllability of diffusion models. Related is also work by Eijkelboom et al. (2024) which focuses
on flow matching only for categorical data, achieving compelling results on graph generation tasks.

6 CONCLUSION

We study Variational Rectified Flow Matching, a framework which enables to model the multi-
modal velocity vector fields induced by the ground-truth linear interpolation between source and
target distribution samples. Encouraging results can be achieved on low-dimensional synthetic and
high-dimensional image data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

M. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In Proc.
ICLR, 2023.

M. Albergo, N. Boffi, and E. Vanden-Eijnden. Stochastic Interpolants: A unifying framework for
flows and diffusions. In arXiv preprint arXiv:2303.08797, 2023.

R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. In
Proc. NeurIPS, 2018.

F. Eijkelboom, G. Bartosh, C. Naesseth, M. Welling, and J.-W. van de Meent. Variational Flow
Matching for Graph Generation. In arXiv preprint arXiv:2406.04843, 2024.

P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel, D. Podell, T. Dockhorn, Z. English, K. Lacey, A. Goodwin, Y. Marek, and Robin
Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In Proc. ICML,
2024.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Proc. NeurIPS, 2014.

W. Grathwohl, R. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD: Free-form
continuous dynamics for scalable reversible generative models. In Proc. ICLR, 2018.

Z. Guo, J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng. Diffusion models in bioinformatics
and computational biology. Nature reviews bioengineering, 2024.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
https://arxiv.org/abs/1512.03385, 2015.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, 2020.

M. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 1990.

I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models to
robotics. IEEE Robotics and Automation Letters, 2023.

Dongjun Kim, AI Sony, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Yutong He,
Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode
trajectory of diffusion. In Proc. NeurIPS, 2023.

D. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. ICLR, 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Y. Lipman, R. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow Matching for Generative Modeling.
In Proc. ICLR, 2023.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. In Proc. ICLR, 2023.

C. Luo. Understanding diffusion models: A unified perspective. In arXiv preprint arXiv:2208.11970,
2022.

N. Ma, M. Goldstein, M. Albergo, N. Boffi, E. Vanden-Eijnden, and S. Xie. SiT: Exploring Flow
and Diffusion-based Generative Models with Scalable Interpolant Transformers. In arXiv preprint
arXiv:2401.08740, 2024.

Bao Nguyen, Binh Nguyen, and Viet Anh Nguyen. Bellman optimal stepsize straightening of
flow-matching models. In The Twelfth International Conference on Learning Representations,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

K. Pandey, A. Mukherjee, P. Rai, and A. Kumar. DiffuseVAE: Efficient, controllable and high-fidelity
generation from low-dimensional latents. In arXiv preprint arXiv:2201.00308, 2022.

K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn. Diffusion autoencoders: Toward
a meaningful and decodable representation. In Proc. CVPR, 2022.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proc. ICML, 2015.

J. Skilling. The eigenvalues of mega-dimensional matrices. Maximum Entropy and Bayesian Methods,
1989.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021a.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Proc.
NeurIPS, 2019.

Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based Generative
Modeling Through Stochastic Differential Equations. In Proc. ICLR, 2021b.

Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with
score-based generative models. In Proc. ICLR, 2022.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211–32252. PMLR, 2023.

A. Tong, K. Fatras, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, G. Wolf, and Y. Bengio.
Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR,
2024.

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng,
Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity
consistency. arXiv preprint arXiv:2407.02398, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX: VARIATIONAL RECTIFIED FLOW MATCHING

A IMPLEMENTATION DETAILS OF SYNTHETIC EXPERIMENTS

In the rectified flow baseline, the velocity network vθ features separate encoders for time t and
data x. Each encoder consists of a sinusoidal positional encoding layer followed by two MLP
layers with GeLU activation. The resulting time and data embeddings are concatenated and passed
into a four-layer MLP, also utilizing GeLU activations. Both the positional embedding and hidden
dimensions of the encoder and decoder are set to 64. The training batch size is 1000, and we employ
the standard rectified flow objective to compute the current data xt = (1− t)x0 + tx1 and the ground
truth velocity ut = x1 − x0, using L2 loss for supervision.

In the consistency flow matching baseline, we adopt the same velocity network vθ and modify the
loss function to incorporate the velocity consistency loss proposed by Yang et al. (2024). We find the
hyperparameter settings suggested by the publicly available codebase to work best. Specifically, we
use ∆t = 1× 10−3, Nsegments = 2, and boundary = 0.0 for the first training stage, transitioning to
boundary = 0.9 in the second stage. Additionally, the loss weighting factor α is set to 1× 10−5. For
complete implementation details, we kindly direct readers to the open-source repository which we
used to obtain the reported results.1

For both baselines, the AdamW optimizer is used with the default weight decay and a learning rate of
1× 10−3, over a total of 20,000 training iterations.

In our variational flow matching approach, the velocity network vθ incorporates an additional latent
encoding module comprising three MLP layers with a hidden dimension of 128. The conditional
latent embedding z is concatenated with the embeddings for time t and data x. The decoder maintains
the same structure as the baseline, with the first MLP layer adjusted to accommodate the increased
channel input. For the posterior model qϕ, we employ a similar architecture, designing a separate
encoder for each possible input selected from [x0, x1, xt, t]. Each encoder consists of a sinusoidal
positional encoder layer followed by two MLP layers with GeLU activation. The output embeddings
are concatenated along the channel dimension and processed through three MLP layers to produce
the predicted µϕ and σϕ. The latent dimension of z is set to 4 for 1D experiment and 8 for 2D
experiment. During training, we utilize the reparameterization trick to sample z from the predicted
posterior distribution; during inference, the posterior model qϕ is omitted, and sampling is performed
from a unit variance Gaussian prior distribution. The loss is defined as the sum of the rectified
flow reconstruction loss and the KL divergence loss, with the KL loss weighted at 1.0 for the 1D
experiment and 0.1 for the 2D experiment. We employ AdamW as the optimizer with a learning rate
of 1× 10−3 and train the two networks qϕ and vθ jointly for 20,000 iterations.

B QUALITATIVE RESULTS OF SYNTHETIC 1D EXPERIMENT

We provide qualitative flow visualizations from the synthetic 1D experiment in Fig. 9. Our method
effectively captures velocity ambiguity and predicts crossing flows, whereas the baselines produce
deterministic outputs.

C IMPLEMENTATION DETAILS OF MNIST EXPERTIMENT

In the rectified flow baseline, the velocity network vθ uses separate encoders for time t and data
x. The time t encoder consists of a sinusoidal positional encoding layer followed by two MLP
layers with SiLU activation. The data x encoder includes a convolutional in-projection layer, five
consecutive ResNet He et al. (2015) blocks (each consisting of two convolutional layers with a kernel
size of 3, group normalization, and SiLU activation), followed by a convolutional out-projection layer.
The time and data embeddings are concatenated and passed to a decoder composed of a convolutional
in-projection layer, five consecutive ResNet blocks, and a convolutional out-projection layer with
a kernel size of 1 and an output channel of 1. The hidden dimension is set to 64. MNIST data is
normalized to the [−1, 1] range. We adopted the consistency velocity loss from the consistency flow

1https://github.com/YangLing0818/consistency flow matching

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

matching baseline used for synthetic data experiments. We train the network for 100,000 iterations
using the AdamW optimizer with a learning rate of 1× 10−3 and batch size of 256.

In our variational flow matching approach, the velocity network vθ includes an additional latent
encoding module consisting of a sinusoidal positional encoding layer followed by two MLP layers
with SiLU activation. The conditional latent embedding z is concatenated with the embeddings for
time t and data x. The decoder structure mirrors the baseline, with the first in-projection layer adjusted
to handle the increased channel input. The posterior model qϕ follows a similar architecture, with
separate encoders for each input [x0, x1, xt]. The resulting embeddings are concatenated and passed
through a decoder consisting of a convolutional in-projection layer, followed by three consecutive
interleaving ResNet blocks and average pooling layers. The final hidden activation is flattened and
processed by two linear MLP layers to predict the 1D latent z with a dimension of 2. The two
networks are trained jointly for 100,000 iterations using the AdamW optimizer with a learning rate of
1× 10−3 and a batch size of 256. The KL loss weight is set to 1× 10−3.

D IMPLEMENTATION DETAILS OF CIFAR-10 EXPERTIMENT

We directly adopt the rectified flow baseline from Tong et al. (2024) and add modules to incorporate
conditional signals from a 1D latent z. For both conditioning mechanisms discussed in Section 4.4,
the sampled latent is processed through two MLP layers with SiLU activation, with hidden and output
dimensions set to 512.

In the adaptive norm variant, the latent embedding z is combined with the time embedding from vθ
to regress the learnable scale and shift parameters γ and β for the adaptive group norm layers. For
the bottleneck sum variant, the latent is added to the bottleneck feature of vθ. Since the lowest spatial
resolution of the baseline network is 4 × 4, the 1D latent is spatially repeated and fused with the
bottleneck feature via a weighted sum. To ensure effective use of the latent, we assign a weighting of
0.9 to the latent and 0.1 to the original velocity feature.

The posterior model qϕ shares a similar encoder structure to vθ but omits the decoder. To achieve
greater spatial compression, we increase the number of downsampling blocks, predicting features at
a 1× 1 spatial resolution. The base channel size is set to 16. Both networks are trained jointly for
600,000 iterations using the Adam optimizer with a learning rate of 2× 10−4 and a batch size of 128.
The KL loss weighting is presented alongside the results in Table 1.

E ON PRESERVING THE MARGINAL DATA DISTRIBUTION

We obtain samples by numerically solving the ordinary differential equation

dut = vθ(xt, t, z)dt with z ∼ p(z) = N (z; 0, I).

This differs slightly from Theorem 3.3 of Liu et al. (2023) because the velocity vθ depends on a latent
variable z drawn from a standard Gaussian.

However, Theorem 3.3 of Liu et al. (2023) can be extended to fit this setting as follows.

First, note that we have v∗(xt, t, z) = E[Ẋt|Xt, Z] where Xt and Z are random variables corre-
sponding to instances xt and z.

Incorporating the velocity field depending on the latent variable z into the transport problem defined
in Eq. (2) and taking an expectation over the latent variable, we obtain the continuity equation

ṗt + div(EZ [vθ(xt, t, z)]pt) = 0. (6)

Following Liu et al. (2023), one can show equivalence to the following equality, which uses any
compactly supported continuously differentiable test function h:

d

dt
E[h(Xt)] = E[∇h(Xt)

T Ẋt] = E[∇h(Xt)
T v∗(Xt, t)] = EX [∇h(Xt)

TEZ [v
∗(Xt, t, Z)]].

Concretely, equivalence can be shown via

0 = EZ

(∫
xt

h(ṗt + div(v∗(Xt, t, Z)pt)

)
=

d

dt
E[h(Xt)]− EX [∇h(Xt)

TEZ [v
∗(Xt, t, Z)]].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Ground Truth (b) Rectified FM (c) Consistency FM

(d) Ours (x0) (e) Ours (x1) (f) Ours (xt)

(g) Ours (x0 + x1 + xt)

Figure 9: 1D flow visualization for Unimodal Gaussian to Bimodal Gaussian.

Figure 10: Reconstruction loss for MNIST (left), CIFAR-10 (middle), and ImageNet (right). We
observe lower reconstruction losses for the variational formulation, indicating a better fit.

Note, different from Liu et al. (2023), in our case Ut is driven by a velocity field v(xt, t, z) that
depends on a latent variable. Averaging over instantiations of the random latent variable Z leads to
the same marginal velocity that appears in the continuity equation (Eq. (6)). Therefore, we solve
the same equation with the same initial condition (X0 = U0). Equivalence follows if the solution to
Eq. (6) is unique.

F RECONSTRUCTION LOSS VISUALIZATIONS

We present the reconstruction loss curves for our model and the baseline trained on MNIST, CIFAR-
10, and ImageNet data in Fig. 10. We observe better reconstruction losses of our model compared
to vanilla rectified flow, indicating that the predicted velocities more accurately approximate the
ground-truth velocities.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

NFE / sample 2 5 10 50 100 1000 Adaptive

I-CFM
(Liu et al., 2023; Tong et al., 2024) 2.786 7.143 8.326 8.770 8.872 9.022 9.041

1 VRFM (adaptive norm, x1, 2e-3) 3.943 7.728 8.499 8.973 9.050 9.168 9.171
2 VRFM (adaptive norm, x1, 5e-3) 3.083 7.202 8.342 8.868 8.997 9.166 9.183
3 VRFM (adaptive norm, x1 + t, 5e-3) 4.460 7.930 8.583 9.007 9.104 9.220 9.238

Table 2: Inception Score evaluation of our method compared to the baseline on CIFAR-10, using
fixed-step Euler and adaptive-step Dopri5 ODE solvers. Higher scores indicate better performance.

NFE / sample 2 5 10 50 100 1000 Adaptive

OT-FM
(Lipman et al., 2023; Tong et al., 2024) 166.655 36.188 14.396 5.557 4.640 3.822 3.655

I-CFM
(Liu et al., 2023; Tong et al., 2024) 168.654 35.489 13.788 5.288 4.461 3.643 3.659

1 VRFM-L (100% Posterior Model) 135.275 28.912 13.226 5.382 4.430 3.642 3.545
2 VRFM-M (17.5% Posterior Model) 135.983 30.106 13.783 5.486 4.500 3.697 3.607
3 VRFM-S (6.7% Posterior Model) 144.676 31.224 13.406 5.289 4.398 3.699 3.639

Table 3: We use the same flow matching model vθ and pair it with different sizes of encoders qϕ
during training while maintaining the exact same hyper-parameters. We report the FID scores for our
method and the baseline using both fixed-step Euler and adaptive-step Dopri5 ODE solvers.

G INCEPTION SCORE EVALUATION

We evaluate the Inception Score of our model trained on CIFAR-10 data and present results in Table 2.
This score quantifies the distribution of predicted labels for the generated samples. Compared to the
vanilla rectified flow baseline, our method consistently achieves higher Inception Scores, reflecting
improved diversity in the generated samples.

H ABLATION ON POSTERIOR MODEL SIZE

We conducted ablations to study the impact of varying the size of the encoder qϕ, reducing it to 6.7%
and 17.5% of its original size. The results reported in Table 3 demonstrate that our model maintains
comparable performance across these variations, highlighting the flexibility and robustness of our
approach.

I IMAGENET EXPERIMENTS

We conduct experiments on the ImageNet 64× 64 dataset, using the same training setup as we used
for the CIFAR-10 experiments, i.e., no additional hyperparameter tuning or cherry-picking. The
only changes: increasing the number of iterations to 800k and adjusting the batch size to 128 to
accommodate the larger training set. The resulting FID scores, summarized in Table 4, show that our
method consistently outperforms the baseline models, even on this larger, real-world dataset. These
findings demonstrate the scalability and effectiveness of our approach in handling more complex data
while maintaining its advantage over baseline methods.

J CONDITIONAL IMAGE GENERATION EXPERIMENT

We also present results for class-conditional generation on the CIFAR-10 and ImageNet dataset. The
results are presented in Table 5 and Table 6. Our method consistently outperforms the baseline across
different function evaluations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

NFE / sample 2 5 10 50 100 1000 Adaptive

I-CFM
(Liu et al., 2023; Tong et al., 2024) 194.134 70.008 44.088 32.385 31.218 29.787 29.445

VRFM (adaptive norm, x1, 2e-3) 189.146 66.245 40.649 30.170 29.368 28.338 28.228
VRFM (adaptive norm, x1, 5e-3) 192.516 67.058 41.058 29.919 28.824 27.483 27.330

VRFM (adaptive norm, x1 + t, 5e-3) 168.020 55.639 37.382 29.619 28.826 27.794 27.530

Table 4: FID Score evaluation of our method compared to the baseline on ImageNet, using fixed-step
Euler and adaptive-step Dopri5 ODE solvers. Lower scores indicate better performance.

NFE / sample 2 5 10 50 100 1000 Adaptive

I-CFM
(Liu et al., 2023; Tong et al., 2024) 109.34951 23.87121 11.817 4.787 3.858 3.107 3.046

VRFM (adaptive norm, x1, 2e-3) 104.708 22.677 11.380 4.391 3.539 2.869 2.824
VRFM (adaptive norm, x1 + t, 5e-3) 97.341 22.245 11.580 4.552 3.638 2.910 2.853

Table 5: FID Score evaluation of class-conditional generation on CIFAR-10, using fixed-step Euler
and adaptive-step Dopri5 ODE solvers. Lower scores indicate better performance.

K ADDITIONAL RELATED WORK DISCUSSION

Here, we discuss related work aimed at improving the sample efficiency of diffusion and flow
matching models, either via consistency modeling or via distillation. We used work by Yang et al.
(2024) as the consistency model baseline because it improved upon earlier consistency modeling
work by Song et al. (2023); Kim et al. (2023) and also distillation work by Nguyen et al. (2024).
Specifically, we used the publicly available baseline.2

Consistency models. Consistency models, such as those by Song et al. (2023) and Yang et al. (2024),
enforce self-consistency across timesteps, ensuring trajectories map back to the same initial point.
Moreover, Kim et al. (2023) ensure consistent trajectories for probability flow ODEs. While consis-
tency models focus on improving performance via trajectory alignment if few function evaluations
are used, they don’t model the multimodal ground-truth distribution, which is our goal.

Figure 11: Velocity distri-
bution of consistency flow
matching (Yang et al., 2024).

To illustrate this, we trained the recently developed consistency flow
matching model proposed by Yang et al. (2024) (which improves
upon work by Song et al. (2023) and Kim et al. (2023); both are
not flow matching based) on the data for which VRFM results are
presented in Figs. 3 and 9. We obtain the results illustrated in Fig. 11.
As expected, we observe that classic consistency modeling does not
capture the multimodal velocity distribution, unlike the proposed
VRFM.

We also want to note that we think consistency models are orthog-
onal to our proposed variational formulation. Hence, we think it
is exciting future research to study the combination of variational
formulations and consistency models, which is beyond the scope of
this paper.

Distillation. Nguyen et al. (2024) perform distillation by optimizing
step sizes in pretrained flow-matching models to refine trajectories and improve training dynamics.
Moreover, Yan et al. (2024) perform distillation by introduceing a piecewise rectified flow mechanism
to accelerate flow-based generative models . Note, both methods distill useful information from a
pretrained model, either by using dynamic programming to optimize the step size or by applying
reflow to straighten trajectories, i.e., they focus on distilling already learned models. In contrast, our
VRFM focuses on learning via single-stage training, directly from ground-truth data, and without use
of a pre-trained deep net, a flow-matching model, which captures a multimodal velocity distribution.

2https://github.com/YangLing0818/consistency flow matching

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

NFE / sample 2 5 10 50 100 1000 Adaptive

I-CFM
(Liu et al., 2023; Tong et al., 2024) 132.139 38.421 23.614 19.078 18.611 18.088 18.066

VRFM (adaptive norm, x1, 2e-3) 124.718 34.453 20.632 16.408 15.999 15.440 15.521
VRFM (adaptive norm, x1 + t, 5e-3) 128.773 35.848 22.186 17.579 17.090 16.541 16.567

Table 6: FID Score evaluation of class-conditional generation on ImageNet, using fixed-step Euler
and adaptive-step Dopri5 ODE solvers. Lower scores indicate better performance.

More research on the distillation of a VRFM model is required to assess how multimodality can be
maintained in the second distillation step. We think this is exciting future research, which is beyond
the scope of this paper.

L QUALITATIVE RESULTS OF CIFAR-10 EXPERIMENT

We present qualitative results of our model trained on CIFAR-10 data in Fig. 12.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 12: Samples generated from our model trained on CIFAR-10 data.

19

	Introduction
	Preliminaries
	Variational Auto-Encoders (VAEs)
	Rectified Flow Matching

	Variational Rectified Flow Matching
	Objective
	Training
	Inference

	Experiments
	Synthetic 1D Data
	Synthetic 2D Data
	MNIST
	CIFAR-10

	Related Work
	Conclusion
	Implementation details of Synthetic experiments
	Qualitative results of Synthetic 1D experiment
	Implementation details of MNIST expertiment
	Implementation details of CIFAR-10 expertiment
	On Preserving the Marginal Data Distribution
	Reconstruction Loss Visualizations
	Inception Score Evaluation
	Ablation on Posterior Model Size
	ImageNet Experiments
	Conditional Image Generation Experiment
	Additional Related Work Discussion
	Qualitative results of CIFAR-10 experiment

