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ABSTRACT

Modern agentic models require strong capabilities for orchestrating external tools
to interact with complex environments. However, existing tool-integration ap-
proaches support only a narrow range of tools and lack a unified calling standard.
Consequently, they devote little attention to real-world tasks and struggle to trans-
fer to unseen tools. The emergence of the Model Context protocol (MCP) presents
an open standard for two-way connections between external tools and agents. To
this end, we introduce MCP-R1, a new paradigm designed to enhance models’
universal tool-interaction capabilities. We first construct a virtual-real integrated
MCP tool system, supporting 17 MCP servers with 60+ tools, each sourced from
real-world services to ensure diversity and authenticity during training. Based on
the tool system, we further propose a scalable pipeline for generating multi-tool
invocation data. In addition, going beyond rule-based rewards commonly used
in QA tasks, we introduce a trajectory-based reward mechanism to evaluate the
agent’s performance in goal-driven tasks. Thanks to the unified tool-interaction
standard and our training pipeline, MCP-R1 has generic interacting ability across
a broad set of tools, demonstrates strong performance on practical tasks across
diverse scenarios, while flexibly adapting to unseen tools. Our experiments span
several challenging domains including search (GAIA, WebWalker), general tool
calling (MCP-Universe), and practical task execution. The strong performance of
MCP-R1 underscores the effectiveness of our training paradigm, offering valuable
insights and a scalable approach for developing general agentic models.

1 INTRODUCTION

Agentic models with the critical capability of interacting with environments via external tools have
rapidly evolved into general-purpose task solvers. With the two-way tool-interaction, the model
can not only acquire information beyond parameter memory from the environment, but also execute
operations to change the environment state according to user query, thereby significantly expanding
the boundaries of the agentic model’s capabilities. Recently, tool invocation, dominated by code
and search engines, has garnered attention as a foundational capability for agentic models (Li et al.,
2025d; Singh et al., 2025; Zheng et al., 2025; Dong et al., 2025b;a; Gao et al., 2025; Jin et al., 2025).
Although significant progress has been made in their respective tasks, training models to proficiently
utilize dozens of tools across a broader range of practical tasks remains an unresolved challenge.
The Model Context Protocol (MCP), introduced by Anthropic (Anthropic, 2024), provides a unified
standard for AI systems to interact with external tools, gaining rapid traction (OpenAI; Google;
Cursor) and laying the groundwork for general-purpose tool interaction.

Currently, some work has successfully introduced code/search engines to enhance the model’s capa-
bilities in math/retrieval tasks. WebThinker (Li et al., 2025c) trains models to dynamically search,
navigate, and extract information from websites. ToRL (Li et al., 2025d) and ReTool (Feng et al.,
2025) focus on mathematical reasoning, training models through RL to flexibly utilize code tools for
assisted computation. Furthermore, some works begin to explore the impact of introducing external
tools on the model generation process. For instance, ARPO (Dong et al., 2025b) observes an in-
crease in the entropy of generated tokens following tool invocation, and designs an adaptive rollout
mechanism to facilitate exploration with uncertainty.
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Despite recent advances, existing approaches still suffer from several problems. (1) Limited tool
coverage: Currently, most tool integration approaches only focus on how to incorporate a single tool
to enhance model performance on a single task category. Furthermore, these studies have focused
solely on answer-driven tasks where precise answers can be obtained, neglecting goal-driven tasks
that require actions to alter environmental states rather than providing answers, which is prevalent
in real-world scenarios. (2) Lack of unified interaction standards: Existing approaches rely on
fragmented, customized tools that trap language models in isolated information silos. The lack of
unified interaction standards prevents models from transferring prior knowledge accumulated on
seen tools to unseen tools, directly limiting their generic interacting ability across a broad set of
tools. The introduction of the MCP protocol has, to some extent, facilitated closed-source model
services, but open-source agentic model training has lacked attention to unified tool standards like
MCP, resulting in fragmented, task-specific tool formats that hinder cross-schema adaptability and
limit generalization in tool use.

To address these challenges, we introduce MCP-R1, an agentic training framework designed to
enhance the model’s general-purpose tool-interaction capabilities. To improve the ability of tool-
interaction with real-world environments, we developed a Virtual-Real Integrated MCP Tool Sys-
tem, which supports approximately 17 MCP Servers and over 60 tools. Each tool is sourced from
real-world services and utilizes MCP as a standardized interface for interaction. Based on the con-
structed Tool System, we further introduce the Scalable Data-generation Pipeline to generate multi-
tool invocation tasks. This pipeline encompasses both answer-driven tasks, which retrieve static
standard answers, and goal-driven tasks, which dynamically interact with the environment and exe-
cute operations to alter its state. For more complex goal-driven tasks lacking predefined solutions,
we introduce a trajectory-based evaluation method. By assessing the model’s trajectory against a
comprehensive, predefined rubric, this approach unlocks the potential to optimize agents’ intricate
interaction processes. In summary, the key contributions can be described as follows:

• We present MCP-R1, a paradigm that integrates tools, data synthesis, and training approaches
to enhance the general tool-use capabilities of models. Moreover, we move beyond traditional
answer-driven tasks, empowering models to tackle real-world problems.

• We develop a Virtual-Real Integrated MCP Tool System with 60+ real-world tools compliant
with the MCP standard as a standardized training environment, together with a Scalable Data-
generation Pipeline to generate diverse multi-tool invocation data, both answer-driven tasks and
goal-driven tasks.

• Our experiments demonstrate that MCP-R1 exhibits powerful performance across multiple
challenging domains (specific & general) and diverse task types (answer-driven & goal-driven).
This provides practical insights for exploring general-purpose tool interaction capabilities
within agentic models.

2 RELATED WORKS

2.1 TOOL-INTEGRATED MODELS

Large Language Models (LLMs) (Gemini et al., 2023; Team et al., 2025a; Zeng et al., 2025) are
inherently constrained by their static training data, resulting in knowledge cutoffs and cannot in-
teract with external systems. To address these issues, several works try to augment LLMs with
tools, enabling them to interact with environments by using external APIs and services. ReAct (Yao
et al., 2022) first showed how models can combine reasoning and actions. Later, frameworks like
ART (Paranjape et al., 2023; Sun et al., 2025) built on this idea, allowing models to automatically
choose tools and solve multi-step tasks. Building on this foundation, subsequent work has focused
on scaling and optimizing tool-use. ToolLLM (Qin et al., 2024) collects extensive APIs and employs
ChatGPT to generate trajectories for instruction fine-tuning. Search-o1 (Li et al., 2025b) introduces
the autonomous search mechanism via prompt-guided, thereby enhancing performance on complex
reasoning tasks. Recently, to unify the tool interaction format, Anthropic introduced MCP (An-
thropic, 2024), which defines a unified interface for tool implementations, gradually gaining favor
among AI service providers (OpenAI; Cline). Building upon this foundation, we incorporate it into
MCP-R1, enabling MCP-R1 to adapt to a wide range of existing tools and generalize to unseen tools.
Unlike prior systems such as T3-Agent (Gao et al., 2024), which focus on multimodal QA-style tool
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Figure 1: List of MCP servers in the Virtual-Real Integrated MCP Tool System.

use under proprietary formats, our work targets multi-step, goal-driven agent orchestration with a
unified interaction standard and a scalable data-generation pipeline that enables autonomous explo-
ration and stronger generalization in real-world tool-use tasks. Compared with API-based dataset
generation approaches such as ToolFormer (Schick et al., 2023), our method introduces a unified
interaction protocol, multi-turn goal-oriented data construction, and an SFT-RL training paradigm
that together enable stronger cross-tool generalization and long-horizon task competence beyond
single-step API invocation.

2.2 AGENTIC REINFORCEMENT LEARNING

Agents have long been a research hotspot due to their ability to execute practical tasks in specific
scenarios (Team et al., 2025b). With the rise of Reinforcement Learning (RL), some works have
begun exploring the use of RL to train agents’ interaction capabilities in dynamic environments. (Lù
et al., 2025; Shridhar et al., 2020; Mialon et al., 2024). Some approaches use trajectory-level rewards
to refine an agent’s ability to integrate reasoning with environmental interactions (Wang et al., 2025;
Zhou et al., 2024; Shang et al., 2025). Frameworks such as ToolRL (Qian et al., 2025), ReTool (Feng
et al., 2025), and Tool-Star (Dong et al., 2025a) train models to leverage search engines or Python
compilers to solve complex problems. WebDancer (Wu et al., 2025a) and WebSailor (Li et al.,
2025a) instead employ a meticulously designed extensible data construction pipeline, coupled with
SFT-RL two-stage training, to achieve outstanding performance in the search domain. ARPO (Dong
et al., 2025b) focuses on the impact of introducing external tools on the model generation process,
proposing an entropy-based adaptive rollout mechanism to promote diverse trajectory exploration
in tool-invocation scenarios. In this work, we regard tool interaction as a fundamental capability
of the agentic model and attempt to stimulate the model’s tool invocation for general-purpose tasks
through the Virtual-Real Integrated MCP Tool System with 60+ real-world tools.

3 MCP-R1: GENERALIZED REAL-WORLD TASK AGENT

3.1 TOOL SYNTHESIS AND DATA CONSTRUCTION

Existing tool-integration approaches (Li et al., 2025c; Dong et al., 2025a; Feng et al., 2025) predom-
inantly focus on leveraging search and code execution tools to solve problems within the domains
of web navigation, programming, and so on. However, these approaches exhibit poor generalization
when applied to a broader spectrum of real-world tasks. To improve the generalization capability of
agentic models and enhance their ability to interact with the real world, we first develop a Virtual-
Real Integrated MCP Tool System. By employing a unified MCP protocol, this system provides
the model with a standardized interface for interacting with real-world tasks. Based on the tool
system, a Scalable Data-generation Pipeline is further introduced, which is capable of generat-
ing diverse tasks. These tasks span from answer-driven problems with definite answers to complex
goal-driven tasks that are resolved through intricate environmental interactions.

3.1.1 VIRTUAL-REAL INTEGRATED MCP TOOL SYSTEM

While real-world MCP servers provide high-fidelity environments for agent-environment interac-
tion, they come with (1) significant monetary and temporal costs (e.g., API call fees and response
latency), (2) considerable security vulnerabilities, and (3) limited scalability. The security risks
are particularly notable, as these systems may require user authentication and could potentially exe-
cute irreversible operations (e.g., deleting emails). These limitations become especially pronounced

3
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Figure 2: Data Construction Pipeline. The first two figures show the pipeline of the answer-driven
task. The third one represents goal-driven tasks. (A) Knowledge tree-based construction. (B) Itera-
tive trajectory-based construction. (C) Iterative, template-based construction.

in the context of large-scale agent training. Conversely, simulated environments offer a robust al-
ternative, distinguished by their economic efficiency, rapid responsiveness, and providing a secure
sandbox environment conducive to extensive trial-and-error learning. Therefore, constructing a hy-
brid tool system that integrates virtual and real-world MCP servers is of paramount importance.
This approach not only enhances overall system security and minimizes training costs but does so
without compromising the authenticity of the agent’s interactive experience. Our MCP server list is
shown in Fig. 1 and more details about the tools are provided in our Appendix.

Real MCP servers provide an environment that allows agents to interact directly with live and
publicly accessible systems. These tools are primarily used in scenarios where agents must interact
with dynamic, unpredictable, and difficult-to-simulate information sources. A notable characteristic
of real-world tools is that their output is often random and non-reproducible, such as real-time results
from internet search engines. We encapsulate these real-world APIs (e.g., Google Search API) in
servers that adhere to the MCP standard.

Virtual MCP servers, in contrast, are high-fidelity simulations designed to mirror the functionality
of their real-world counterparts. They are primarily used in three scenarios: (1) for tasks where the
output can be programmatically modeled based on the input; (2) for operations that require user
authentication, involve private data, or have strict security guarantees, such as accessing a personal
Gmail account; and (3) as a cost-effective alternative to interacting with expensive proprietary APIs.
These tools are built by hand-implementing a simulation service that accurately replicates the MCP
interface of the real tool. This approach ensures that agents trained specifically in a safe and con-
trollable virtual environment can be seamlessly deployed to run alongside the real tool, achieving
zero-shot transfer without further fine-tuning.

3.1.2 SCALABLE DATA GENERATION PIPELINE

To systematically construct our dataset, we categorize real-world tasks into two categories. (1)
Answer-driven tasks: The goal is to retrieve a single, static, and verifiable ground-truth answer,
such as using web search for question answering. Most of the existing works (Li et al., 2025a; Dong
et al., 2025a) mainly focus on this type of task. (2) Goal-driven tasks: These tasks lack a single,
predefined solution. Their success depends on effectively achieving a specific goal through a series
of decisions and actions. This requires the agent to interact with the external environment (e.g., file
system). The agent must be able to observe the environment, formulate plans, execute actions, and
iteratively refine its policy based on subsequent feedback.

Answer-driven Task Construction. We utilize two approaches to generate the answer-driven task.
The first approach, known as knowledge tree-based construction, focuses on generating questions
that require synthesizing information from multiple sources. As shown in the Fig. 2 (a), this process
begins by extracting a sub-knowledge tree from a structured database (e.g., Wikipedia). Each node in
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Figure 3: Agentic Training Pipeline of MCP-R1. Our training pipeline includes two stages: (1) Fine-
tuning the LLM based on the sampling trajectories and (2) Post-training LLM with the designed
reward.

this tree represents an entity, supported by multiple independent sources. A LLM is then prompted to
analyze the target node and its associated information, intentionally obscuring the entity to construct
a complex question. Such questions cannot be answered with a single query; they require the agent
to gather diverse evidence from various sources to ultimately determine the answer. The other
approach is Iterative Trajectory-Based Construction which is designed to generate multi-hop
reasoning tasks. This approach functions by employing a language model to iteratively build a
query dependency chain through the continuous injection of new information. In this process, the
output of a preceding step is programmatically used as the foundational input for the subsequent
query. As shown in Fig. 2 (b), a task might first require an agent to identify a high-order entity, and
then leverage that entity to resolve a more specific, related question. Consequently, this structure
compels the agent to execute a series of logically interdependent queries to obtain the final answer.

Goal-driven Task Construction. To generate goal-driven tasks across multi-level difficulty, we
employ an iterative, template-based strategy as shown in Fig. 2 (c). The first step is to classify
all available servers and their corresponding tools based on the scenario. Tools with similar ap-
plication contexts, such as flight-server and hotel-server, are grouped into the same
category. Building upon this categorical foundation, we designed an iterative process for task tem-
plate construction. Initially, a single tool is randomly selected and the LLM is instructed to generate
a foundational task template. This template is not a concrete query but rather an abstract framework
containing placeholders (e.g., {departure}). The process then iterates: a new tool is sampled,
with a higher probability of being drawn from the same category, and the LLM is tasked with in-
tegrating its functionality into the existing template. This procedure results in a more complex,
multi-step task requiring the invocation of multiple tools. By repeating this cycle, we collect a
structured hierarchy of task templates, including both single-tool and multi-tool scenarios.

Following the template generation, each template undergoes an assessment process. An LLM first
performs an automated assessment of the template’s logical feasibility and its solvability using the
provided tools and then a final manual review is executed to guarantee the quality of the task. Tem-
plates that pass this verification are then instantiated with concrete data, where placeholders are
populated with specific details such as user information, times, and locations. Finally, to ensure that
tasks are closely related to real-world tasks, we prompt the LLM to inject context into each task. For
example, a simple instruction to book a flight and hotel might be transformed into the more realistic
instruction to plan a business trip.

3.2 AGENT LEARNING WITH DYNAMIC TOOLS

Following Guo et al. (2025), we adopt a two-stage training paradigm based on our constructed
dataset. The initial stage consists of Supervised Fine-Tuning (SFT) using the sampled trajectories,
followed by a reinforcement learning stage with the designed reward.

3.2.1 COLD START WITH SAMPLING TRAJECTORY

We first generate trajectories using the Qwen3-Max-Preview (Yang et al., 2025) based on our
dataset, adhering to the Qwen tool-calling format. We discard trajectories that are either solved
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correctly by the model without tool use or remain incorrectly answered even with tools. Finally, the
SFT dataset is composed of 3K trajectories and the model is updated with the following loss:

LSFT = −
T∑

i=1

mask(i) · logPθ(yt|y<t,x), (1)

where mask(i) denotes the mask for the i-th token and is set to 0 for any token returned by the tool.

3.2.2 REINFORCEMENT LEARNING

Following the SFT phase, we adopt a RL phase to further enhance the model’s capabilities in com-
plex tasks. We employ the GRPO (Shao et al., 2024) algorithm to optimize the model’s policy. For
different task types (i.e., answer/goal-driven), we utilize distinct strategies to obtain the final reward
signal from the LLM judge.

For answer-driven tasks that have verifiable ground truth. We leverage the LLM to determine the
consistency between the generated answer and the reference solution. For goal-driven tasks, which
are inherently more complex and lack a single definitive outcome, we develop a trajectory-based
evaluation method. For each trajectory, we first extract a structured execution trajectory from the
model’s output. This trajectory contains not only the specific parameters and return values of each
tool call, but also the tool call logic (e.g., the order and concurrency of these calls). Subsequently, the
LLM is guided by a comprehensive, predefined rubric to assess the effectiveness of this trajectory.
This evaluation rubric examines the logical soundness of each step, the accuracy of the tools invoked,
and the degree to which the final result successfully achieves the user’s initial goal. This approach
transforms the challenge of evaluating performance against vague goals into a structured, systematic
evaluation of a series of specific, verifiable actions. Detailed criteria for this evaluation rubric are
provided in the Appendix.

In addition, we realize that incorporating the full definitions for all available MCP servers into the
model’s context consumes significant memory and context window space, degrading training effi-
ciency as the server library expands. To address this issue, we employ a Dynamic Server Sampling
strategy. For each training sample, we first ensure that all MCP servers required to perform the
current task are included in the context (i.e., system prompts). Further, we randomly extract one or
two additional MCP servers that are not directly related to the current task from our tool system and
inject their definitions into the context. This approach not only ensures that the model can solve the
problem with the provided tools but also trains the model to accurately identify and ignore irrelevant
ones, thereby enhancing its generalization capabilities.

Finally, we mask the response of tools during RL training and the update process of agentic model
can be formulated as follows:

JRL(θ) =Eq,{oi}

[
1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

))

− βDKL(πθ∥πref)

]
, where Ai =

Ri −mean({Rj})
std(Rj)

.

(2)

4 EXPERIMENT

4.1 PRELIMINARY

To evaluate the effectiveness of MCP-R1, we conduct experiments on the following benchmarks: (1)
Deep Search: including General AI Assistant (GAIA) (Mialon et al., 2024) and WebWalkerQA (Wu
et al., 2025b). Following previous works (Dong et al., 2025b; Li et al., 2025a), for GAIA, we
report the result on the search split. (2) MCP Benchmarks: We further evaluate MCP-R1 on MCP-
Universe (Luo et al., 2025), an execution-based MCP benchmark specifically designed for evaluating
the agent’s ability to interact with the external environment by leveraging MCP servers. (3) Multi-
Tool Real-World Task: We report evaluation results on the full-set of GAIA, with contains real-
world questions that require a set of fundamental abilities and generally tool-use proficiency beyond
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Table 1: Overall performance on various deep search tasks, including GAIA and WebWalkerQA,
with accuracy results for each dataset obtained using llm-as-judge.

Method Base Model GAIA WebWalkerQA
Lv.1 Lv.2 Lv.3 Avg. Easy Med. Hard Avg.

Direct Reasoning (>=32B)
Qwen3-32B-thinking - 26.2 12.1 0 14.9 6.9 1.1 2.9 3.1
DeepSeek-R1-32B - 21.5 13.6 0.0 14.2 7.5 1.4 4.2 3.8
QwQ-32B - 30.9 6.5 5.2 18.9 7.5 2.1 4.6 4.3
GPT-4o - 23.1 15.4 8.3 17.5 6.7 6.0 4.2 5.5
DeepSeek-R1-671B - 40.5 21.2 5.2 25.2 5.0 11.8 11.3 10.0
o4-mini - - - - 33.3 - - - -
o1-preview - - - - - 11.9 10.4 7.9 9.9

Prompt-Based Method

ReAct
GPT-4o 28.2 9.6 0.0 15.5 6.7 9.5 4.2 7.0
Qwen3-8B 18.0 17.3 8.3 16.5 13.3 19.1 21.3 18.5
Qwen3-235B 51.2 34.6 8.3 37.8 20.0 23.8 19.7 21.5

Vanilla RAG Qwen3-8B 28.2 15.4 16.7 20.4 8.9 10.7 9.9 10.0
Search-o1 Qwen3-8B 35.9 15.4 0.0 21.4 6.7 15.5 9.7 11.5

RL-based Method
WebThinker Qwen3-8B 43.6 11.5 0.0 22.3 6.7 13.1 16.9 13.0
WebDancer Qwen2.5-7B 41.0 30.7 0.0 31.0 40.6 44.1 28.2 36.0
WebSailor Qwen2.5-7B - - - 37.9 - - - -
ARPO Qwen3-8B 53.9 32.7 16.7 38.8 26.7 33.3 29.6 30.5
MCP-R1 Qwen3-8B 35.9 48.0 16.7 39.8 31.1 33.3 33.8 33.3

search engine. We further develop a benchmark, named MCP-RealWorld, to evaluate the task-
solving capabilities of the agentic model in real-world scenarios. This benchmark consists of 199
distinct, goal-driven tasks, covering a variety of everyday situations such as travel planning and daily
office management. More details can be found in the Appendix.

• GAIA (Mialon et al., 2024) is a benchmark for evaluating general AI assistants across rea-
soning, multimodal understanding, and tool usage. Most questions are text-based, while
some include multimodal inputs such as images or spreadsheets and the problems are or-
ganized into three levels of difficulty.

• WebWalkerQA (Wu et al., 2025b) is a benchmark dataset designed to evaluate the web
traversal capabilities of LLMs. The dataset comprises 680 high-quality question-answer
pairs spanning more than 1,373 web pages.

• MCP-Universe (Luo et al., 2025) is a comprehensive benchmark designed to evaluate large
language models in realistic interactions with real-world MCP servers. It spans six core
domains: location navigation, repository management, financial analysis, 3D designing,
browser automation, and web searching. The benchmark integrates eleven distinct servers
and comprises 231 tasks in total.

4.2 IMPLEMENTATION DETAILS

For the Supervised Fine-Tuning (SFT) phase, we utilize the Llama Factory framework. We curate a
dataset of 3,000 trajectories and set the learning rate to 7e-6. For the Reinforcement Learning (RL)
phase, we employed RL-Factory (Chai et al., 2025), an open-source repository based on verl (Sheng
et al., 2024) that natively supports the MCP environment. In this phase, we configure the rollout
to 4 and adjust the learning rate to 1e-6. We generate 5K data to perform RL training, including
3K answer-driven data and 2K goal-driven data. All experiments were conducted on 8 NVIDIA
A800 GPUs. During the evaluation phase, we leverage the Qwen-Agent framework to assess the
performance of our models. In our evaluations, we only expose the toolset corresponding to each
domain (GAIA, MCP-RealWorld) or the standard toolset provided by the test set (MCP-Universe),
rather than giving the model the entire tool inventory.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison on MCP-Universe benchmark. Following Luo et al. (2025), we use the ReAct
agent pipeline. We report the success rate for each domain and all tasks.

Model Size Location
Navigation

Repository
Management

Financial
Analysis

Browser
Automation

Web
Searching

Overall
Success Rate

Proprietary Models
Claude-3.7-Sonnet - 13.33 18.18 40.00 23.08 21.82 23.28
Gemini-2.5-Pro - 13.33 12.12 50.00 25.64 12.73 22.76
Gemini-2.5-Flash - 15.56 12.12 37.50 30.77 14.55 22.10
GPT-4.1 - 8.89 6.06 40.00 23.08 10.91 17.79
GPT-4o - 8.89 9.09 35.00 12.82 9.09 14.99

Open-Source Models
GLM-4.5 355B 17.78 9.09 50.00 15.38 27.27 23.90
Kimi-K2 1T 11.11 9.09 47.50 15.38 14.55 19.53
Qwen3-Coder 480B 8.89 3.03 50.00 25.64 10.91 19.69
Qwen3-235B 235B 11.11 9.09 50.00 15.38 9.09 18.93
DeepSeek-V3 671B 11.11 6.06 30.00 12.82 7.27 13.45
GPT-OSS-120B 120B 6.67 6.06 35.00 5.13 5.45 11.62

Qwen3-8B 8B 4.44 0.00 17.50 2.56 3.60 5.61
MCP-R1 8B 11.11 6.06 37.50 12.82 12.73 16.04

4.3 RESULTS ON DEEP SEARCH.

Results on Deep Search Benchmarks. To validate the performance of MCP-R1 in specific complex
scenarios, we conducted tests on challenging Deep Search tasks and compared the results against a
series of powerful baseline models. As can be seen from Tab. 1, deep search tasks pose significant
challenges for existing agent models. Even GPT-4o, lacking tool interaction capabilities, could
only achieve scores of 15.5% on GAIA and 7.0% on WebWalker, respectively. By comparison,
Qwen-235B achieves scores of 37.8% and 21.5% respectively under identical configurations. This
disparity demonstrates the strong limitations of purely prompt-based tool-interaction methods, while
the model—as a critical component of agent systems—should prioritise tool-interaction capability as
a foundational capability. With only 3K search data involved in RL, MCP-R1 achieved outstanding
performance, scoring 39.8% on GAIA and 33.3% on Webwalker, respectively. This significantly
surpassed Qwen3-8B under the ReAct framework and yielded the best results among methods of
comparable scale. Moreover, MCP-R1 demonstrated comparable or even superior performance to
models with significantly larger scales, further validating our approach’s efficacy in enhancing model
performance on complex tasks through tool interaction. It should be noted that the various baselines
presented in Tab. 1 only support one or two specific tools. In Contrast, while achieving outstanding
performance on Deep Search, MCP-R1 maintains support for a vast array of tools and retains the
capability to execute a broader range of real-world tasks. This enables our approach to stand out
among methods limited to a finite set of tools.

Pass@1
Pass@3

Pass@5

Pass@1
Pass@3

Pass@5

Figure 4: Pass@K results of MCP-R1.

Test-Time Scaling. Given
that agent tasks often
exhibit dynamic and
multi-round interaction
characteristics, we report
MCP-R1’s pass@K results
across various scenarios
to more comprehensively
demonstrate its poten-
tial for utilizing tools in
practical tasks. Fig. 4
demonstrates that MCP-
R1 exhibits a consistent
trend of improvement and
scalability across diverse
scenarios. Our model achieves remarkable performance on pass@5, particularly scoring 60.2% on
GAIA, 88.9% on MCP-RealWorld. Furthermore, compared to the baseline, MCP-R1 exhibits a
stronger trend of performance improvement as the number of samples increases. Such stable per-
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Table 3: Results of Search split and Entire
benchmark on GAIA.

Method Split GAIA
Lv.1 Lv.2 Lv.3 Avg.

Qwen3-8B Search 18.0 17.3 8.3 16.5
Qwen3-8B All 22.0 23.2 4.7 17.0
MCP-R1 Search 37.8 51.0 20.0 39.8
MCP-R1 All 41.5 44.2 7.7 37.6
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Figure 5: Results on MCP-RealWorld.

formance gains when scaling in samples indicate that through extensive interactions with numerous
tools and diverse environments, the model has acquired general tool interaction capabilities beyond
specific individual tools. This enables the model to learn how to explore more effectively within the
tool-involved sampling space, thereby achieving simultaneous benefits in inference performance
and sampling diversity.

4.4 RESULTS ON MCP BENCHMARKS.

To further verify the generalization and general-purpose tool-use capability of MCP-R1, we eval-
uate on MCP-Universe (Luo et al., 2025) benchmark. Specifically, our evaluation is performed on
five core subsets within MCP-Universe (i.e., excluding 3D Designing due to the environment is-
sue of Blender). As shown in Tab. 2, MCP-R1 can significantly outperform the baseline model
(i.e., Qwen3-8B) across all tasks with an average +10.4% improvement. Besides, the overall per-
formance is comparable to the models with much more capacities (e.g., open-source models larger
than 100B). Moreover, MCP-R1 demonstrates remarkable generalization in tool-use scenarios. It
is worth noting that most of the servers used in MCP-Universe ( e.g. financial-server,
google-map-server) are not included in MCP-R1’s training data. Nevertheless, by leverag-
ing the designed scalable data generation pipeline and agent training framework, MCP-R1 is able to
effectively utilize these unseen MCP servers, with its performance even surpassing larger models.
For example, we surpass DeepSeek-V3 (Liu et al., 2024) with an average +2.59% improvement.
These findings indicate that training with the MCP-R1 paradigm on hybrid data is a highly effective
strategy for enhancing the universal tool-use capability of agentic models.

4.5 RESULTS ON MULTI-TOOL REAL-WORLD TASK.

Results on GAIA Full-set. To investigate the performance of MCP-R1 in specific application
scenarios, we report evaluation results on the full-set of the General AI Assistant Benchmark
(GAIA) (Mialon et al., 2024). The results in Tab. 3 demonstrate that even when applied to the
GAIA full-set requiring nearly ten tools, MCP-R1 also achieved an outstanding score of 37.6%,
proving its promising capabilities in solving real-world problems. It should be noted that existing
tool invocation methods typically support only a limited range of tool categories. Moreover, the
customised implementation of these tools prevents them from adapting to usneen’s tools via unified
interaction standards, thereby failing to meet the practical application requirements of real-world
problems. In contrast, MCP-R1, trained with 60+ tools involved under the unified MCP interact
standard, inherently covers most real-world scenarios with its capability set and easily adapts to
newly introduced tools, demonstrating exceptional versatility and scalability.

Results on MCP-RealWorld. To evaluate the real-world task-solving capability of MCP-R1, we
further conduct experiments on the self-constructed MCP-RealWorld bench as shown in Fig. 5. It
can be seen that MCP-R1 not only surpasses the baseline by a significant margin (i.e., +13.6% im-
provement) but also outperforms advanced models like Qwen3-235B-A22B (i.e., +2%). Notably,
the performance of MCP-R1 exceeds Claude-4-Sonnet-Thinking on our benchmarks, which is be-
cause our method can effectively reduce the irreversible operations caused by flawed tool-calling
sequences (e.g., invoking an email-sending tool with a fake email address prior to confirming the
recipient’s address). These results further show that the MCP-R1 can significantly enhance the
model’s planning capabilities, especially in orchestrating tool-use sequences and maintaining logi-
cal integrity during task execution.
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5 CONCLUSION

In this paper, we introduce MCP-R1, a pipeline that spans from tool construction and data acqui-
sition to training. MCP-R1 is designed to enhance the model’s general-purpose tool-use capabil-
ities, enabling it to interact with real-world environments in daily life. Experiments demonstrate
that MCP-R1 not only improves performance on search tasks but also enhances the generalization
of tool-calling abilities, leading to significant performance improvements in real-world, everyday
tasks. We will work on training more versatile and general-purpose agentic models in the future.

REPRODUCIBILITY STATEMENT

We are fully committed to the reproducibility of the results reported in this paper. Section 3.1
provides a detailed description of the data synthesis pipeline, and Section 4.2 presents the com-
plete implementation details of the evaluation setup. The appendix includes all prompts and tool
specifications used in our experiments. We commit to releasing the full training data, training and
evaluation code, test benchmarks, and model checkpoints to the community in future updates.
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focuses on building a scalable data generation pipeline and developing training stages for tool-
interaction capabilities. All data and non-public benchmarks used in this paper were generated
by our own pipeline. We confirm that the data contains no bias toward any group and does not
involve risks related to privacy, safety, or harmful use. During paper preparation, we used large
language models solely for correcting spelling and grammatical errors, and did not rely on them for
substantive content generation.
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You are an impartial LLM judge. Your task: decide whether the Response is semantically consistent with the Reference Answer.

Judging Principles (semantic match rules):
- Focus on whether both texts refer to the same entities, facts, and intended meaning.
- Ignore differences in capitalization, wording order, synonyms, plural vs singular, tense, minor formatting, or extra neutral filler.
- Output 1 (match) only if there is no contradiction and no missing critical fact that changes the core meaning.
- Output 0 (mismatch) if there is contradiction, a different entity, a changed key fact (numbers, names, polarity), or the Response is irrelevant.
- If partially correct but a key element is missing or wrong, output 0.
- Do NOT penalize harmless added clarifications that do not alter meaning.

Output format:
1. First, provide a brief reasoning paragraph (in English) explaining your decision.
2. On the LAST line, output ONLY one of:

<score>1</score>
or
<score>0</score>

No other text after the score line.

Now, judge the consistency between the following Reference Answer and Response:
Question: {question}
Reference Answer: {reference_answer}
Response: {response}

Figure 6: Judge prompt of answer-driven tasks.
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A DETAILS OF MCP SERVERS AND TOOLS

In this section, we provide more details about our hybrid MCP tool systems. We first list all the
servers and tools in Tab. 4. For virtual tools, we refer to open-source MCP codebases as follows:

• https://github.com/blazickjp/arxiv-mcp-server

• https://github.com/modelcontextprotocol/servers

• https://github.com/modelcontextprotocol/servers

• https://github.com/MrCare/mcp_tool

• https://jina.ai/reader/

B TRAINING DETAILS

We further provide the prompt for reward model during training as shown in Fig. 6 and 7.

C DETAILS OF MCP-REALWORLD

We construct MCP-RealWorld, a benchmark comprising 199 real-world tasks from daily life, includ-
ing various scenarios such as working, traveling, and daily life. Within MCP-RealWorld, we have
excluded tasks that can be solved by a single tool call. Consequently, all tasks require the sequen-
tial or parallel execution of multiple tools. To evaluate the performance, we utilize gpt-4.1-mini to
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Table 4: Server and Tool list of MCP-R1.

Server Tool

web-search-server google search

image-describer-server describe image

fileloader-server read file

github-server get repository details, list issues, get file content,
search repositories, search code, search issues, get issue

weather-server get weather, get weather forecast

code-interpreter-server execute code

filesystem-server
list directory, list directory tree, read file, write file,
create directory, delete file, delete directory, move file,
copy file, search files, get file info, search within files

translate-server translate text, get supported languages

arxiv-mcp-server search papers, download paper, list papers,
read paper, get paper meta info

flight-ticket-system-server list airports, search flights, book flight,
view flight booking, cancel flight

hotel-reservation-
server

query hotels, book hotel, view bookings, cancel booking

dining-search-server query dining places

meeting-manager schedule meeting, adjust meeting, cancel meeting,
query schedule, get meeting detail

google-calendar-server add event, get events, delete event, modify event

gmail-server send email, create draft, send draft, delete draft,
list emails, view email, search emails

cloud-drive-server upload, download, list, delete, size

read-page-server read page

assess whether the generated trajectory can successfully complete the entire task. We provide some
examples in MCP-RealWorld as shown in Fig. 8

D LIMITATIONS AND FUTURE DIRECTION

Although we have demonstrated promising results in this work, certain limitations remain: 1) Con-
strained by computational resources, we have not explored the potential for training larger-scale
models via reinforcement learning within the Virtual-Real Integrated MCP Tool System. In fu-
ture work, we shall seek to extend the existing training paradigm to larger models, thereby fully
unlocking the potential for agentic models to improve themselves through interaction with the envi-
ronment. 2)Unimodality: We have explored only the agent model’s capability to perform practical
tasks within the pure language domain, and we believe that native multimodal perception capabili-
ties will significantly broaden the scope of tasks agents can execute. We are planning to extend the
existing training framework to multimodal scenarios, synthesise application tasks specific to multi-
modal contexts, and design perception tools suitable for multimodal environments. This will enable
the development of modern agentic models with a broader capability boundary. 3) Training Over-
head: RL training introduces substantial computational and temporal costs. When tool interactions
are incorporated, tool responses and result computations further amplify these expenditures. Such
high costs will constrain the model’s scalability for learning in more real-world scenarios, diverse
tool systems, and more practical tasks. One potential approach involves asynchronous execution of
tool invocations and training, maximising training efficiency while accounting for tool responses.
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Given a task description and a trajectory of tool calls with their responses, please evaluate whether the execution flow can successfully accomplish the 
given task.

The trajectory is provided as a series of Steps with both tool calls and their responses. (The tool calls listed in the same step may be in a certain order, but 
they are all executed in parallel. Do NOT assume the order in which tool calls within a step complete).
Steps are numbered sequentially (Step1, Step2, ...).
Tool calls within the same Step are executed in parallel; calls in different Steps are executed sequentially.

Your evaluation should consider:

1. Whether the order (Parallel or Sequential) of tool calls matches the logical requirements of the task.
2. Whether the overall trajectory can accomplish the task, even if there are intermediate errors that are later corrected by subsequent tool calls.
3. Whether the selected tools and their combination can successfully complete the task.

Important evaluation guidelines:
1. First, carefully analyze and understand the task intent: Before evaluating the trajectory, clearly identify what the task is asking for and what the desired 
outcome should be. Ensure trajectory operations match task intent: The operations in the trajectory should directly serve the purpose and objective 
identified in the task description. Pay special attention to whether there are some judgment conditions in the task.
2. Pay attention to the execution order logic:
- If a task can be completed with either parallel or sequential execution, both approaches are acceptable.
- If a task requires sequential processing (e.g., one tool's output is needed as input for another), but the trajectory shows parallel execution, this should be 
judged as incorrect.
- Ensure that dependencies between tool calls are properly respected in the execution order.
- Evaluate based on whether the task objective is ultimately achieved with the correct execution logic.
3. If errors occur during the trajectory but are corrected by later tool calls, the trajectory should still be considered successful.
4. Do not be overly strict about minor textual details mentioned in the task (e.g., if the task mentions "top result" but the search returns 10 results, this is 
acceptable as long as the task can be completed).
5. Check for task relevance:
- All tool calls in the trajectory should be relevant to accomplishing the given task.
- If the trajectory contains operations that are unrelated to the task (e.g., sending emails when the task is to check weather), this should be judged as 
incorrect.
- Only tool calls that contribute to or support the completion of the specified task should be present.
6. Ensure that conditional business rules are respected, especially for tasks requiring checks before actions:
- If the task requires that an action (such as creating an event, booking a slot, or making a reservation) is only performed if a certain condition is met (e.g., 
the time slot is free, no conflicts exist), the trajectory must strictly adhere to this logic.
- The trajectory must not alter existing data (e.g., delete or modify conflicting events) to artificially satisfy the condition unless the task explicitly instructs 
to do so.
- If the trajectory bypasses the intended condition by removing, changing, or ignoring existing items in order to fulfill the action, this should be judged as 
incorrect.
- Only if the condition is genuinely met (e.g., the slot is truly free without intervention) should the action be performed.
- If the trajectory violates this rule, output <score>0</score>.
7. If the task cannot be completed due to incomplete information provided by the task description, or insufficient data returned from the environment, but 
the trajectory correctly executes all reasonable steps and checks according to the available information, consider the trajectory successful.
- If the trajectory follows the correct logical process, checks all necessary conditions, and refrains from taking inappropriate actions when required 
information is missing, it should be judged as successful.
- For example, if a required email or data is missing, and the trajectory halts further actions accordingly, this is considered correct.

For your response:

Clearly state the reason for your judgment, focusing on whether the task can be completed successfully.
Output your final score as <score>1</score> if the trajectory can accomplish the task, or <score>0</score> if it cannot.
Input:

Task description:
{question}
Trajectory of tool calls and responses:
{trajectory}

Output:
Reason(s) for your evaluation and finally score in <score></score>."""

Figure 7: Judge prompt of goal-driven tasks.
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I will be attending a business meeting with a valued client, Ms. Yamamoto Yoko, in Dubai on
November 21, 2025. Since the meeting is intended to be more private and informal, could you
assist me in locating a quiet coffee shop near Al Marmoom Desert Conservation Reserve?
Please add the location to my calendar and notify Ms. Yamamoto of the venue.

"You are preparing for an upcoming international business collaboration project and need to
schedule a kickoff meeting with key team members from different parts of the world.
Specifically, you need to coordinate with Shannon Schwartz from the United States and Mirja
Jacobi Jäckel-Fröhlich from Germany. Your objective is to find a suitable meeting time that
falls between 10:00 and 20:00 local time for both participants. Once the meeting time is
secured, ensure to send them an email notification confirming the details.

I‘m currently planning to attend a significant industry conference in the latter part of 2025.
Before diving into the conference activities, I want to ensure the project we’re launching is
off to a solid start. Please find the available time and organize a project kick-off meeting for
the afternoon of 2025-11-08? Please create a calendar invitation with an online meeting link
and send it to ['James Cabrera (email: raven40@gmail.com)', 'Claire Walker-Pritchard (email:
stevenellis@hotmail.com)', 'Céline Fontaine (email: alphonseleduc@wanadoo.fr)']

Figure 8: Examples of tasks in MCP-RealWorld.
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