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Abstract

Diffusion models have demonstrated remarkable generative capabilities, and Condi-
tional Flow Matching (CFM) has improved their inference efficiency by following
optimal transport paths. However, CFM-based models still require multiple it-
erative sampling steps, which makes them unsuitable for real-time or streaming
generation scenarios. In this paper, we introduce StreamFlow, a novel streaming
generative model designed for real-time audio generation from discrete tokens.
StreamFlow leverages a causal noising training framework along the time axis
and predicts multi-time vector fields at once on each stream, enabling streaming
inference with minimal latency. To further improve generalization, we propose
Scale-DiT, a Diffusion Transformer architecture that enhances robustness by mod-
eling, normalizing, and scaling feature differences prior to skip connections. This
significantly improves the robustness and performance of DiT without increas-
ing the parameter size. We validate the effectiveness of StreamFlow through
audio reconstruction tasks using discrete tokens from EnCodec and Mimi, demon-
strating both high-fidelity synthesis and streaming capability. Furthermore, we
successfully incorporated our model into fully-duplex streaming speech language
models of Moshi by replacing the Mimi decoder. Audio samples are available at

1 Introduction

Recently, conditional flow matching (CFM) models [31] have demonstrated powerful generative
capabilities across modalities such as text, image, and audio. Initially, CFM was introduced for
image-to-image translation and text-to-image generation by conditioning on target labels or text
representation such as those from CLIP [42]. Since then, CFM has been extended to a wide range of
audio applications, including text-to-speech [24, 10, 4, 8], text-to-audio [41, 26], voice conversion
[56, 5, 62], and waveform generation [30, 32, 50]. Additionally, flow matching has been successfully
adapted to discrete domains, such as text generation, through discrete flow matching [11]. Most
existing CFM approaches focus on parallel generation tasks, such as fixed-size image generation
and fixed-length audio generation in a non-autoregressive manner. Although masking and infilling
training frameworks with CFM objectives and Transformers [24, 10, 4] can endow the model with in-
context learning over long sequences, these models still require numerous sampling steps over a fixed
target space, limiting their applicability to real-time streaming generation tasks. To date, streaming
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Figure 1: Comparison of generation strategies: (a) Non-Streaming Generation, (b) Chunck-wise
Parallel Generation, (c) Token-wise Streaming Generation

generation in diffusion models has largely been explored in video domain. From an engineering
perspective, StreamDiffusion [19] introduces the batch denoising method that computes the diffusion
process with a batch. Rolling Diffusion [43] introduces a novel DDPM [14] that progressively
denoises data over time.

However, to the best of our knowledge, streaming audio generation from discrete tokens has not
yet been explored within the frameworks of diffusion or flow matching. While recent parallel
generation approaches based on CFM [30] have achieved promising results, they typically operate on
a chunk-wise generation, as shown in Figure 1-(b), relying on pre-trained non-autoregressive models.
Moreover, generating raw waveform at a high sampling rate (e.g., 24 kHz) introduces additional
challenges, as it requires significantly finer resolution compared to lower-resolution acoustic features
(e.g., 12.5 and 75 Hz), thus increasing both modeling complexity and computational cost.

Additionally, recent speech language models are getting more attention for end-to-end human-like
communication such as GPT-4o [15]. They utilize neural audio codecs with causal layers and GAN-
based objective for high-quality waveform generation [7]. However, these models often suffer from
perceptual degradation when generating high-resolution waveforms directly from highly compressed,
low-bitrate discrete tokens. This is primarily due to the absence of intermediate temporal modeling
and progressive refinement, which are essential for maintaining local coherence and preserving fine-
grained audio details over time, especially in streaming scenarios where real-time and frame-level
consistency are crucial.

In this paper, we introduce StreamFlow, a novel real-time streaming flow matching model for
streaming audio generation. StreamFlow simultaneously estimates multi-time vector fields at each
step, thereby offering both streaming generation and refinement capabilities. To facilitate long-
range temporal modeling, we adopt diffusion transformers with in-context learning capabilities. In
addition, we introduce Scale-DiT, a new diffusion transformer architecture designed to improve
feature regularization. Scale-DiT computes the difference between residuals and features, normalizes
this difference, and applies a scaling operation before the skip connection. This design improves
robustness without increasing model size. We evaluate the effectiveness of StreamFlow on real-time
audio reconstruction tasks using discrete tokens from EnCodec [9] and Mimi [7]. Furthermore, we
verify that StreamFlow can be seamlessly integrated into existing speech generation pipelines that
rely on discrete neural audio codecs. The main contributions of this work are as follows:

* We propose StreamFlow, a novel streaming generative model that leverages self-conditioned
context to estimate multi-time vector fields, enabling token-wise streaming generation.

* We introduce a new DiT structure, Scale-DiT that regularizes the feature space by modeling
the difference between residual and features, normalizing the difference, and scaling it for
elucidating the features.

* We demonstrate the effectiveness of the proposed Streaming Flow Matching framework
for streaming audio generation by reconstructing high-quality waveforms in real time from
discrete tokens produced by neural audio codecs such as EnCodec and Mimi.

2 Related Work

2.1 Waveform Generation

Conventionally, neural waveform generation tasks have been investigated for text-to-speech systems
requiring conversion of acoustic features such as Mel-spectrogram to raw waveform signal, called
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Figure 2: Comparison of (a) conditional flow matching (CFM), which performs full-sequence vector
field estimation across all timesteps, and (b) streaming flow matching (SFM), our method that
leverages self-generated context for multi-time vector field estimation and enables low-latency token-
wise streaming.

by Neural Vocoder. WaveNet [38] introduced causal dilated convolutional networks to increase the
receptive field for high-resolution waveform signal modeling. Due to the slow sampling speed of
auto-regressive generation, many works [37, 40, 18] have shifted their focus to parallel waveform
generation models for efficient and fast waveform generation. GAN-based parallel models have
shown promising parallel generation performance by generating realistic waveform signal. PWG
[54] and MelGAN [22] first adopted adversarial training, and HiFi-GAN [20] introduced a novel
discriminator, multi-period discriminator (MPD) reflecting implicit periodic features. BigVGAN
[25] scaled up the neural vocoder for out-of-distribution robustness by introducing snake activation
and an anti-aliasing filter. Then, Vocos [46] boosted the sampling speed by incorporating iSTFT on
low-resolution feature space.

2.2 CFM in Waveform Generation

Recently, CFM has been adopted for high-fidelity waveform generation. Although previous diffusion-
based models [21, 2] showed slow inference speed and lower performance than GAN-based models,
PeriodWave [30], RFWave [32], and FlowDec [50] demonstrated much higher performance on the
waveform generation tasks compared to GAN models. Although CFM still requires more sampling
steps compared to GAN, they have shown promising results on the waveform generation tasks.
Furthermore, PeriodWave-Turbo [28] accelerated CFM-based models by incorporating adversarial
feedback, achieving improved performance with smaller sampling steps. However, as shown in
Figure 2-(a), streaming generation within the CFM has not been explored.

2.3 Neural Audio Codec

Meanwhile, neural audio codec has garnered more attention than neural vocoder in that it facilitates
various practical applications combined with large language models. SoundStream [59] and EnCodec
[9] introduced a practical neural audio codec by incorporating residual vector quantization (RVQ)
[12, 49] and adversarial training. DAC [23] improved RVQ with carefully designed bottleneck and
various losses. HiFi-Codec [55] proposed group-residual vector quantization to increase the capacity
of RVQ. SpeechTokenizer [61] and X-Codec [57] distilled the self-supervised speech representation
on the quantized representation to increase semantic information without any labeled data. Mimi
[7] also introduced a high-compressed low-bitrate audio codec with SSL distillation for an efficient
speech language model. Furthermore, single VQ models including WavTokenizer [16], BigCodec
[53], and TS3-Codec [51] have been investigated for efficient modeling. Recently, finite scalar
quantization (FSQ)-based models [1, 39] have been adopted to improve the performance of low-
bitrate neural audio codec. CosyVoice 2 [8] introduces supervised semantic tokens and flow matching
with causal layer and lookahead tokens.
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Figure 3: The Overall framework of StreamFlow.

2.4 Full-Duplex Real-time Speech Language Models

Recent advances in speech foundation models [7, 3] have introduced full-duplex systems capable
of simultaneous speech input and output in real-time. Achieving this requires both low-latency
streaming architectures and highly efficient low-bitrate neural codecs. A common design pattern
involves causal convolution-based decoders for real-time waveform generation. However, such causal
models generally underperform compared to their parallel counterparts in terms of perceptual quality.
Moreover, the reliance on low-bitrate codecs, while necessary for efficient streaming, often introduces
noticeable degradation in audio quality and fidelity. To address these limitations, we propose SFM,
a method that enables high-fidelity, low-latency waveform generation—bridging the gap between
efficiency and perceptual quality in streaming audio generation, as illustrated in Figure 2-(b).

3 StreamFlow

This section introduces the StreamFlow framework for high-quality real-time audio streaming genera-
tion. We begin with the fundamentals of Flow Matching (Section 3.1) and extend it to an efficient
Streaming Flow Matching method (Section 3.2). We then describe the data stream, causal noising,
training objective, and streaming generation process. Next, we present Scale-DiT for improved con-
textual learning and generalization (Section 3.3), and explore waveform transformation for efficient
streaming generation (Section 3.4). Finally, we discuss adversarial training for enhanced robustness
and efficiency (Section 3.5).

3.1 Preliminary: Flow Matching

Flow Matching (FM) [31, 33, 48] is a generative modeling method designed to transform a simple
prior distribution py(z) (e.g., zg ~ N (0, I)) into a target data distribution p; (z) = ¢(x) by learning
a time-dependent velocity field v;(x). This transformation is governed by the following ordinary
differential equation (ODE):

d¢t (.’L')
dt

where ¢;(x) represents the state of the system at time ¢ as it evolves under the velocity field v¢. The
FM objective aims to align the learned velocity field v;(x; 6) with an ideal vector field u;(x) that

=v(de(x);0),  do(x) =, T ~ po, (1)



generates the desired probability path p;(z). This alignment is achieved by minimizing the following
training objective:

Lin(0) = Eimfo.1]ompe (o) [[02(230) — wy ()| . ()

To define the probability path p;(z), a common approach is to employ linear interpolation between
the prior sample z( and the target data point :

xy = (1 —t)xg + ta. 3)

The corresponding ideal vector field us(z; | 1) that drives the transformation along this path is given
by:

up(@e | 21) = 1 — 0. 4)

This method effectively learns a smooth and computationally efficient mapping from pg to p;.

3.2 Streaming Flow Matching

We introduce Streaming Flow Matching (SFM), a novel approach designed for real-time streaming
inference by simultaneously estimating multi-time vector fields. Unlike traditional FM, which
processes entire sequences simultaneously, SFM utilizes dynamically structured streaming sequences
and jointly optimizes local and global vector fields. Notably, by estimating multiple vector fields
across multiple time axes, SFM provides not only the global consistency inherited from classical FM
but also satisfies real-time constraints in streaming scenarios.

Data Streams SFM partitions the input sequence x into multiple data streams, each characterized
by a streaming window size Ly and a context prompt ratio . The total length is thus L = L. + L,

where L, = - Ls. Specifically, each data stream {x(lk)7 o ,x(Lk)} simultaneously provides contextual
information (i.e., the context prompt) and performs streaming inference (i.e., the streaming window).
To achieve this, SFM defines two separate timestep sequences. The first sequences corresponds to the
past context segment, which remains fixed at ¢ = 1. The second sequences handles the streaming
segment, where ¢ decreases linearly as t = 1 — A, A € [0, 1] along to the L.

Causal Noising To ensure causality, the SFM introduces the causal noising technique, selectively
masking the streaming window while retaining context prompt for in-context learning. This approach
imposes temporal constraints, preventing information leakage from future data. For each stream &,
let the initial state x(()k) follow a Gaussian distribution A (0, I), and let ng) be the target data point.
Then, the following interpolation path is defined for ¢ € [0, 1]:

x = 1-nx 4+ x{. (5)

Within this path, the streaming window is monotonically reduced from ¢ = 1 to 0, effectively reducing
the range of actively learned stream. The context prompt, however, remains fixed throughout training,
ensuring that the model retains past context information while progressively refining the newly
generated output. In a streaming scenario, the context prompt is dynamically updated to integrate
newly generated frames while preserving historical context. Meanwhile, the model iteratively refines
its predictions through causal noising, wherein structured noise is introduced at each step and
progressively reduced over time. Furthermore, newly generated frames are incorporated via a causal
shift operation, ensuring a smooth transition between past and present content. As a result, this
process not only preserves temporal coherence and stabilizes streaming generation but also prevents
information leakage and enhances robustness.

Training Objective The training objective of SFM is to predict the ideal velocity field ugk). This

velocity field is derived via the temporal derivative of the interpolated path xgk), which simplifies to

(k)
u® = I ),

dt ©



We define the following loss function to minimize the difference between the predicted vgk) (#) and

the ideal uﬁk):

K
LSFM(H) = ZEt,x(k’) (k)
k=1

0 X1
[ G 050) — () @

where igk) is the causally noised interpolation state, c(*~1) represents context prompt providing

temporal consistency and in-context streaming generation ability.

Streaming Generation Thanks to in-context learning ability of Transformer, the model can learn
the long-term dependency during streaming generation. To emerge this ability, we train the model
by applying causal noising to the data stream, and estimating the multi-time vector fields at once
according to the level of noising. Following [24], we also utilize condition drop for prompt and tokens
during training. During inference, we prepend the generated samples at the front of the sequence as a
prompt to in-context learn from the generated data. Furthermore, x; can be refined by reflecting the
next token stream during generation.

3.3 Scale-DiT

Inspired by [34], we introduce Scale-DiT, a novel architecture designed to enhance training stability
and improve model performance. We aim to preserve the scalability of existing DiT while addressing
limitations in optimization and feature representation. This approach allows the model to regulate
feature more effectively during training, leading to more stable optimization within Multi-Head
Self-Attention (MHSA) and Feed-Forward Network (FFN) layers. Specifically, Adaptive Layer Nor-
malization (AdaLN) is integrated with a dynamic scaling mechanism to regularize the feature space
effectively. Given an input sequence x € R, we first apply AdaLN to obtain a normalized representa-
tion & along with trainable scaling and shifting parameters 71, 81, Y2, B2, and gating factors a1, as.
The MHSA output is computed as:

t=o(x) (1+m)+ 5, (®) D
Scale Layer Norm
where o(+) denotes the layer normalization (LN) function. s yl @
A = a; - MHSA(%). ) FFN

Y2, B2
Scale, Shift

Unlike vanilla DiT residual connections, we introduce an learnable
adaptive scaling rate p;, which is restricted between 10~% and 1
before applying it for robust training. This adaptive rate modulates &)
the residual update with the difference:

Layer Norm

Scale Layer Norm
ay

x+x+p-0(A—1x), (10)

where we utilize additional LN, ensuring controlled information flow
and stable optimization for the difference. Following the MHSA ;

computation, we apply an AdaL.N as: Layer Norm MLP
E=o(@) (1+7)+ P2 (11) ﬁ ;

before passing it through the FFN, which is further scaled by ag, ) ]
leading to Figure 4: Scale-DiT architec-

F = oy - FEN(%). (12) ture of StreamFlow.

To maintain training stability and prevent extreme gradient updates,
we introduce a separate adaptive scaling rate ps for the FFN layer. Finally, the residual connection is
updated as:

x4+ 2+ py-o(F—2x). (13)

By scale layer normalization, Scale-DiT improves training stability, optimizes representation learning
efficiency, and enhances overall optimization dynamics.



Table 1: Objective evaluation results from EnCodec tokens using universal speech test samples.
RFWave uses CFG2.

Model | Streaming | Params. | M-STFT | PESQT Period | V/UV? | UTMOS 1 MOS 1

GT - - - - - - 3423 4.07+0.02
Vocos [46] X ™ 1.074 3.051 0.086 0.957 3.100 3.98+0.02
MBD [13] X 411M 1.612 2.645 0.108 0.946 3.300 3.95+0.03
RFWave [32] X 18M 1.280 3.020 0.078 0.957 2.988 3.99+0.02
StreamFlow X 170M 0.997 3.473 0.080 0.957 3.450 4.03£0.02
Encodec [9] v 15M 1.170 2.643 0.112 0.941 2.542 3.74+0.03
StreamFlow-Tiny v 11M 1.111 3.027 0.107 0.947 3.060 3.99+0.02
StreamFlow-Small v 44M 1.072 3.207 0.096 0.950 3.206 3.9940.03
StreamFlow-Base v 175M 1.061 3.335 0.102 0.948 3.325 4.03£0.02

3.4 Waveform Transformation

STFT/ASTFT Conventional waveform generation models used high-resolution features with trans-
posed convolutional layer. However, increasing the resolution of features significantly increases the
inference speed. Vocos [46] introduced iSTFT head to directly transform the feature into waveform
signals on the low-resolution features. Unlike one-step generation models, we utilize multi-step
generation frameworks using CFM so we first extract the STFT-based features of an input x; and
prompt and iSTFT-based vector field estimation. However, we found that STFT and iSTFT require
additional computation cost for each sampling step, and larger receptive field (window size) than
the quantization size of the token (hop size) so it is not proper for the streaming generation system
because it is essential to use future tokens for robust waveform generation.

Linear-Reshape Transformation To reduce this problem, we adopt a linear reshape transformation
proposed in WaveNeXt [36]. We first reshape the 1d waveform-level input x; and prompt of length
T into 2d data of height 7'/h and width h, where h denotes hop size like STFT. After reshaping the
data, we apply the linear projection to map it into the feature space for Scale-DiT. For vector field
prediction, we also utilize linear projection to the data space, and reshape 2d data into 1d original
reshape for loss calculation. It is worth noting that it does not require additional future frames and
reshape function during sampling steps unlike STFT-based models, resulting in better efficient and
faster streaming generation. Specifically, we reshape the waveform signal by & of 160.2

3.5 Fine-tuning with Adversarial Training

For high-fidelity waveform generation, many works utilize adversarial training by introducing well-
designed discriminators. Although leveraging multi-scale of various discriminator could improve
the performance of waveform generation models, it requires too much time to train the models
and it is difficult to optimize their losses together. To reduce the entire training time, we first train
the StreamFlow using the proposed SFM objective, and fine-tune the pre-trained StreamFlow with
adversarial training following [28]. For adversarial training, we utilized the multi-period discriminator
(MPD) of HiFi-GAN [20] to reflect the different periodic features, multi-scale short time Fourier
transform discriminator (MS-STFTD) of [9] to reflect the magnitude and phase from different
STFTs, and multi-scale sub-band constant-Q transform (MS-SB-CQTD) of [13] to reflect the detailed
frequency features. Furthermore, we also utilize multi-scale STFT losses of BigVGAN-v2 together.

4 Experiment and Result

4.1 Experimental Setup

Dataset We utilized LibriTTS [60] to train all models including the ablation study. LibriTTS
is a high-quality speech dataset with a sampling rate of 24,000 Hz. We used EnCodec and Mimi

2We have compared the size of h at our preliminary study. Decreasing h could improve the performance but
increase the computation complexity. We recommend decreasing the dimension size when using smaller h. This
has the advantage of a smaller parameter size with similar performance.



Table 2: Ablation study on Streaming StreamFlow using the LibriTTS-dev subset.

Model | M-STFT | PESQ Period| V/UV?T Pitch] UTMOS 1
Streaming (online)

StreamFlow 1.088 3.430 0.088 0.955 26.843 3.792
w/o In-Context Learning 1.099 3.337 0.088 0.954 26.772 3.748
w/o Adversarial Fine-tuning 1.388 2.669 0.101 0.950 21.099 3.178
w/o SFM Pre-training 1.919 1.153 0.353 0.812 574.55 1.308
w/o Scale-DiT 1.593 2.557 0.099 0.946 27.330 3.033
w/o RoPE 2.049 1.598 0.176 0.898 68.891 1.904

Non-streaming (offline)
StreamFlow 1.017 3.499 0.085 0.955 29.087 3.888
w/o iSTFT 1.097 3.139 0.082 0.956 22.636 3.619

as speech tokenizers to compare the streaming reconstruction performance because they consist
of causal convolutional layers for encoding and decoding the waveform signal. We utilize eight
RVQ of each model to train the model.’> We first validate the models using LibriTTS-dev clean and
test subsets, and then we evaluate the performance of each model using universal speech datasets
consisting of 300 samples from various datasets including Expresso, HiFiTTS, LibriTTS, Aishell3,
JVS, and CML-TTS following RFWave [32].

Training For streaming models, we pre-train StreamFlow models with a learning rate of 2x 1074,
batch size of 512 for 1M steps on four NVIDIA A6000 GPUs. We utilize sliced window training
by randomly segmenting the waveform signal by 10,240 frames (32 tokens of EnCodec). Then,
we fine-tune StreamFlow with a learning rate of 2x 10~?, batch size of 64 for 0.25M steps on four
NVIDIA A6000 GPUs. We utilize sliced window training by randomly segmenting the waveform
signal by 20,480 frames (64 tokens of EnCodec). The architecture details are described in Appendix
A. The parallel models are described in Appendix B.

Sampling We utilize the Euler method as the ODE method. We compared the sampling steps
for pre-trained models in Table 9. For streaming models, we fine-tuned the model with the fixed-
step generator by four steps of parallel models and eight steps of streaming models. For Mimi
reconstruction, we fixed two steps for minimal latency.

4.2 EnCodec Token Reconstruction

We compared the performance of EnCodec token reconstruction with the strong parallel baselines
including Vocos, Multi-Band Diffusion (MBD), and RFWave. Furthermore, we compare with the
streaming baselines including causal EnCodec with the same latency to obtain robust streaming
generation. Table 1 demonstrated the effectiveness of our methods in that streaming models still
outperformed the powerful parallel models including MBD and RFWave. Furthermore, StreamFlow-T
also shows better performance in terms of PESQ. This indicated that our new streaming generation
frameworks could improve the streaming generation performance significantly. Table 1 shows that
our models have much better performance in terms of MOS compared to previous streaming methods,
and also better performance compared to parallel models.

4.3 Ablation Study

In-Context Learning When we prepend the generated samples as prompts, the models could learn
useful information from them. Table 2 also showed much better performance than the model without
prompt even with the same hyperparameter.

Adversarial Fine-tuning The results demonstrated the efficiency and effectiveness of two-stage
training using SFM and adversarial training. Although we only fine-tuned the models with small
training steps of 0.25M, the performance improved significantly.

3We found that StreamFlow using eight RVQ token embedding for training can still generate waveform
signal from any number of RVQ token due to iterative refinement.



Table 3: Scalability with respect to model size

Model | Params. InputDim. Hidden Head | M-STFT| PESQt Period, V/UV1 Pitch) UTMOS 1t
StreamFlow-Tiny 11IM 256 1024 4 1.126 3183 0.097 0951 27.846  3.550
StreamFlow-Small | 44M 512 2048 8 1.099 3307 0089 0955 27.740  3.690
StreamFlow-Base | 175M 1024 4096 16 1.088 3430 0088 0955 26843  3.792

Table 4: Additional comparison between DiT and Scale-DiT before adversarial fine-tuning. We
use 16 steps of Euler method for sampling. Objective evaluation results from Mimi tokens using
LibriTTS-dev subsets.

Model | Training Steps | WER | STOI+ PESQ?t SPK-SIMT UTMOS ¢t
DiT 150k 11.76 0.85 1.71 0.58 2.72
DiT + REPA 150k 8.76 0.86 1.74 0.59 2.85
Scale-DiT 150k 9.68 0.86 1.78 0.59 2.83
Scale-DiT + REPA 150k 8.34 0.87 1.78 0.60 292
DiT 300k 9.41 0.87 1.84 0.62 3.04
DiT + REPA 300k 8.17 0.87 1.84 0.64 3.10
Scale-DiT 300k 7.56 0.87 1.90 0.64 3.16
Scale-DiT + REPA 300k 7.18 0.88 1.92 0.65 3.26
DiT 700k 9.59 0.87 1.92 0.64 3.20
DiT + REPA 700k 6.88 0.88 1.92 0.67 3.28
Scale-DiT 700k 6.23 0.88 2.07 0.68 3.45
Scale-DiT + REPA 700k 5.99 0.89 2.09 0.68 3.52

SFM Pre-training Without SFM pre-training, the model with adversarial training could not emerge
streaming generation ability with ODE sampling at the early steps, resulting in discriminator collapse
and slow training speed.

Scale-DiT We found that training the vanilla DiT model with a linear-reshape transformation using
a high-resolution waveform signal as a target is unstable. Compared to the vanilla DiT, Table 2
indicated that Scale-DiT could improve the performance. We also observed that the learning process
exhibits increased stability with reduced fluctuations during training.

RoPE For streaming generation, it is essential to use positional embeddings. The model without
ROPE could not generate the waveform signal well due to a lack of ability to learn the positional
information of high-resolution waveform signal.

Linear-Reshape Transformation Table 2 confirmed that STFT/iSTFT-based models are better
than Linear-Reshape transformation for parallel generation models so we used STFT/iSTFT-based
methods for parallel models. However, as we described in section 3.4, STFT/iSTFT is not proper for
streaming generation because it requires a larger receptive field for their transformation so we used
Linear-Reshape transformation for streaming methods.

Scalability We train three different models as described in Table 3. The results demonstrate
consistent scalability with respect to model size across all evaluation metrics.

4.4 Further Analysis of Scale-DiT

As a further analysis of Scale-DiT, we first compare it with the vanilla DiT baseline to investigate its
effectiveness and stability. As shown in Table 4, Scale-DiT consistently achieves better performance
across all evaluation metrics, demonstrating enhanced stability and stronger capability for hierarchical
feature modeling. These improvements suggest that the proposed scaling mechanism effectively
stabilizes training and optimizes feature representations compared to the vanilla DiT. Building upon
these results, we conducted additional experiments to investigate whether Scale-DiT can be further
enhanced through feature regularization. Specifically, we incorporated representation alignment for
generation (REPA) [58] into the architecture to examine its extensibility and robustness. In this
setting, the 7th-layer representation from Wav2Vec 2.0 was used as the target semantic embedding,
replacing the DINOv2 features employed in the original REPA, and a cosine similarity based REPA
loss was applied at the 6th block of our 12-block model. When combined with REPA (Scale-DiT +
REPA), the model achieved additional gains indicating that Scale-DiT provides a solid and stable
foundation for structured feature learning, while REPA serves as an effective auxiliary regularization
technique for further refinement.



Table 5: Objective evaluation results from Mimi tokens using LibriTTS-dev subsets. Note that
StreamFlow performs inference in a two-step process.

Model | N, | Bittate F(Hz) | CER| WER| M-STFT| PESQ? Period. | V/UVT Pich) | UTMOS 1
GT | | | 112 3.06 | 3.862
Mimi 4 | 550 50 742 1272 1.552 1.657 0210 0880  77.575 3.019
StreamFlow | 4 | 550 50 522 945 1.410 1584 0212 0876  73.891 3.093
Mimi 6 | 825 75 510 9.0 1.426 2012 0180 0901  60.142 3.347
StreamFlow | 6 | 825 75 378 6.87 1272 2,043 0.177 0906  55.830 3.719
Mimi 8 | 1100 100 | 305 693 1.352 2266 0.165 0910  50.686 3.506
StreamFlow | 8 | 1100 100 | 326  6.16 1217 2306 0162 0915 45640 3.910

Table 6: Inference details and subjective evaluation results from Mimi tokens using universal speech
test samples. Note that StreamFlow performs inference in a two-step process.

Model | Ny | Bitrate F (Hz) | Params. Latency | xRTF1 Avg. Memory | | CMOS1 UTMOS
Mimi 4 550 50 T9M 80ms - - - 2.62
StreamFlow | 4 550 50 175M 160ms - - +0.058 2.76
Mimi 6 825 75 T9M 80ms - - - 291
StreamFlow | 6 825 75 175M 160ms - - +0.022 3.34
Mimi 8 1100 100 T9M 80ms 3.224 502MB - 3.06
StreamFlow | 8 1100 100 175M 160ms 8.319 1176MB +0.085 3.55

4.5 Mimi Token Reconstruction

We evaluated the Mimi decoder and StreamFlow on Mimi token reconstruction using LibriTTS-dev
subsets and universal speech test samples. As detailed in Table 5, StreamFlow outperforms Mimi
decoder in terms of WER, M-STFT, PESQ, Pitch, and UTMOS, and has a comparable performance
in other metrics. Inference details and subjective scores are summarized in Table 6. Furthermore,
StreamFlow directly generated high-resolution waveform signal on the low-resolution features by
linear-reshape transformation, resulting in a much faster inference speed compared to the Mimi
decoder. This indicates that our model could replace the Mimi decoder for full-duplex real-time
speech language models of Moshi. We provide a detailed description of the system’s operation in a
full-duplex setting in Appendix H.

5 Potential Broader Impact

Practical Application We introduce a new generative model, streaming flow matching (SFM) for
streaming generation, and a new diffusion architecture, Scale-DiT. This can be adopted for sequential
data generation including video generation, audio generation, and stock prediction. We successfully
leveraged our methods to real-time streaming waveform generation by proposing StreamFlow. This
can accelerate the research of text-to-speech [27, 29], text-to-audio, real-time voice conversion [6],
and speech language models with high-quality audio generation.

Limitation In this work, we focus real-time generation system using SFM. However, we observed
that increasing the sampling steps of SFM can further improve the quality. Therefore, we aim to
minimize the trade-off between real-time processing and quality even with more sampling steps.
While SFM pre-training significantly reduces the overall training time and emerge new ability for
streaming generation, adversarial fine-tuning is still required for high-fidelity waveform generation,
resulting in slow training speed due to various discriminators.

6 Conclusion

We presented a novel steaming generative models, streaming flow matching (SFM) for real-time
streaming generation. Additionally, we introduce Scale-DiT, a robust diffusion Transformers ar-
chitecture. We verified the effectiveness of our proposed methods in real-time high-resolution
waveform signal generation tasks. To achieve this, we carefully designed a new waveform generation
model, StreamFlow, which incorporates SFM, Scale-DiT, and linear-reshape transformation for
high-resolution waveform modeling using EnCodec and Mimi tokens. Furthermore, we demonstrated
the scalability of our models, and we have a plan to train much larger models for better generalization.
Additionally, we see that our methods can be applied to directly train the neural audio codec more
efficiently.
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A Implementation Details for Streaming Models

We describe the hyperparameter details of StreamFlow for streaming models at Table 7. For En-
Codec Token, we successfully train the model with small segment size. However, we found that
extracting Mimi tokens with small segment size significantly decrease the performance because
Mimi compressed waveform signal of 24,000 Hz into 12.5 Hz. In this regard, we pre-trained the
StreamFlow-Mimi with larger segment size . Furthermore, we utilize small size of audio/token drop
for Mimi model because we only utilized two-step generation. Due to the limited GPU resource,
we only trained the StreamFlow-Mimi for 0.15M steps. However, our model shows much better
performance than Mimi.

Table 7: Hyperparameters of StreamFlow for streaming EnCodec token reconstruction.

Module | Hyperparameter | SteamFlow-T ~ SteamFlow-S  SteamFlow-B  SteamFlow-Mimi
Time Time Embedding 256 512 1024 1024
Linearl [256, 1024] [512,2048] [1024, 4096] [1024, 4096]
Activation SiLU SiLU SiLU SiLU
Linear2 [ 1024,256]  [2048,512] [4096, 1024] [ 4096, 1024]
Condition Token EnCodec EnCodec EnCodec Mimi
Token Hz 75 Hz 75 Hz 75 Hz 12.5Hz
Frame per token 320 320 320 1920
Token dim 128 128 128 512
Linearl [128, 256] [128,512] [128, 1024] [512, 1024]
Activationl GELU GELU GELU GELU
Linear2 [256, 256] [512,512] [1024, 1024] [1024, 1024]
Activation2 GELU GELU GELU GELU
Upsampling Repeating 2 Repeating 2 Repeating 2 Repeating 12
Input&Prompt | h 160 160 160 160
Linear Reshape | Linear]l (No Bias) [160, 512] [160,1024] [160, 2048] [160, 2048]
Linear2 [512,256] [1024,512] [2048, 1024] [2048, 1024]
Output Linearl [256, 512] [512,1024,] [1024,2048] [1024,2048]
Linear Reshape | Linear2 (No Bias) [512,160] [1024,160] [2048,160] [2048,160]
h 160 160 160 160
Scale-DiT Input Dim. 256 512 1024 1024
Hidden Dim. 1024 2048 4096 4096
Layer 8 8 8 8
Head 4 8 16 16
Stream Token 8 8 8 2
Prompt Token 24 24 24 6
Context Prompt Ratio 3 3 3 3
Pre-train Training Step IM M IM 0.5M
Learning Rate 2 x 1074 2 x 1074 2 x 1074 2 x 1074
Learning Scheduling - - - -
Batch Size 512 512 512 128
GPUs 4 4 4 4
Noise Scale 0.25 0.25 0.25 0.25
Segment Size 10240 10240 10240 48000
Audio Drop 0.3 0.3 0.3 0.3
Token Drop 0.2 0.2 0.2 0.2
Fine-tuning Training Step 0.25M 0.25M 0.25M 0.15M
Learning Rate 2x107° 2x107° 2x107° 2x107°
Learning Scheduling - - - -
Batch Size 64 64 64 64
GPUs 4 4 4 4
Noise Scale 0.25 0.25 0.25 0.25
Segment Size 20480 20480 20480 30720
Audio Drop 0.3 0.3 0.3 0.1
Token Drop 0.2 0.2 0.2 0.1
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B Implementation Details for Parallel Models

We describe the hyperparameter details of StreamFlow for parallel models at Table 8. We replace the
linear-reshape transformation with STFT and iSTFT. We do not utilize any iSTFT head which was
used in Vocos. We can not train the model with iSTFT head of Vocos during pre-training. We directly
project components for iSTFT.

Table 8: Hyperparameters of StreamFlow for parallel EnCodec token reconstruction.

Module | Hyperparameter | SteamFlow +iSTFT  SteamFlow
Time Time Embedding 1024 1024
Linearl [1024, 4096] [1024, 4096]
Activation SiLU SiLU
Linear2 [ 4096, 1024] [ 4096, 1024]
Condition Token EnCodec EnCodec
Token Hz 75 Hz 75 Hz
Frame per token 320 320
Token dim 128 128
Linear] [128, 1024] [512, 1024]
Activation] GELU GELU
Linear2 [1024, 1024] [1024, 1024]
Activation2 GELU GELU
Upsampling Repeating 2 Repeating 2
Input&Prompt | h - 160
Linear Reshape | Linearl (No Bias) - [160, 2048]
Linear2 - [2048, 1024]
Output Linearl - [1024,2048]
Linear Reshape | Linear2 (No Bias) - [2048,160]
h - 160
STFTASTFT | Hop/Window/FFT | 160/640/640 -
Scale-DiT Input Dim. 1024 1024
Hidden Dim. 4096 4096
Layer 8 8
Head 16 16
Pre-train Training Step M IM
Learning Rate 2x 1074 2x 1074
Learning Scheduling - -
Batch Size 128 128
GPUs 4 4
Noise Scale 0.25 0.25
Segment Size 48000 48000
Audio Drop 0.3 0.3
Token Drop 0.2 0.2
Fine-tuning Training Step 0.25M 0.25M
Learning Rate 2x107° 2x107°
Learning Scheduling - -
Batch Size 32 32
GPUs 4 4
Noise Scale 0.25 0.25
Segment Size 48000 48000
Audio Drop 0.3 0.3
Token Drop 0.2 0.2
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C Additional Experiments on Pre-trained StreamFlow

Table 9 provides additional objective evalutation results of the pre-trained StreamFlow on the
LibriTTS-dev dataset without adversarial fine-tuning. We evaluate both non-streaming with different
sampling steps and classifier-free guidance values. Notably, comparable performance to the 16-step
setting is achieved even with only 4 sampling steps, demonstrating the efficiency in both offline and
streaming scenarios.

Table 9: Objective Evaluation for the pre-trained StreamFlow without adversarial fine-tuning on the
LibriTTS-dev subsets.

Model | Sampling Steps CFG | M-STFT | PESQ® Period. | V/UV 1  Pitch | | UTMOS 1
EnCodec \ 1 - | 1163 2.771 0.113 0.941 32.147 | 2.969
Non-streaming (offline)
StreamFlow + iSTFT 16 1 1.301 3.094 0.087 0.953  28.635 3.450
StreamFlow + iSTFT 16 0.5 1.311 3.143 0.085 0.954  26.535 3.539
StreamFlow + iSTFT 16 0 1.399 2.827 0.094 0.950  27.020 3.482
StreamFlow + iSTFT 4 1 1.558 2.617 0.092 0950 26.674 3.238
StreamFlow + iSTFT 4 0.5 1.561 2.668 0.089 0.952  27.905 3.339
StreamFlow + iSTFT 4 0 1.649 2.450 0.094 0.950  27.940 3.320
Streaming (online)
StreamFlow 16 1 1.343 2.719 0.097 0.949  22.096 3.147
StreamFlow 16 0.5 1.341 2.790 0.093 0.952  20.328 3.224
StreamFlow 16 0 1.388 2.669 0.101 0.950  21.099 3.178
StreamFlow 4 1 1.509 2.479 0.101 0.946  20.956 3.012
StreamFlow 4 0.5 1.504 2.607 0.094 0.952 17.812 3.131
StreamFlow 4 0 1.570 2.557 0.095 0.952 18.697 3.149
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D Implementation Details for Baselines

EnCodec We utilize an official implementation of EnCodec [9], which is the popular neural audio
codec using RVQ and adversarial training.* They utilize causal convolutional layer for streaming
application, and train the model with 32 quantizer of RVQ. However, most application utilized eight
quantizer as target tokens so we train the model with eight tokens to reconstruct the waveform signal.

Vocos We utilize an official implementation of Vocos [46], which is an iISTFT-based waveform
generation model with adversarial training.’ They utilize an EnCodec as an input representation to
reconstruct the waveform signal. We also generate the waveform signal by chunk-wise generation
using Vocos to compare the streaming generation performance. For a fair comparision, we utilize the
same previous and delayed tokens for chunk-wise generation for robust generation of Vocos.

MBD We utilize an official implementation of Multi-band Diffusion (MBD) [45] as a strong
baseline for EnCodec token reconstruction.® MBD consists of four models for each band, and has
large-scale parameters of 411M. Then, they utilize 10 sampling steps for each band so it takes a lot of
time to generate the waveform signal even with parallel generation.

RFWave We utilize an official implementation of RFWave [32], which a strong baseline using
conditional flow matching for multi-band parallel generation.” We utilize 20 sampling steps for better
performance and CFG of 2 which is suggested by official implementation.

Mimi We utilize an official implementation of Mimi® from Moshi [7]. They utilize causal convolu-
tional layer for streaming generation, and train the model with 32 quantizer of RVQ and compressed
high-resolution waveform signal of 24,000 Hz into 12.5 Hz for efficient speech language models.
Moshi only utilizes eight quantizer of RVQ for target tokens by delayed prediction so we also train
the model with eight tokens.

*nttps://github.com/facebookresearch/encodec
*https://github.com/gemelo-ai/vocos
*https://github.com/facebookresearch/audiocraft
"https://github.com/bfs18/rfwave
8https://github.com/kyutai-labs/moshi
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E Societal Negative Impact

Although our method and model do not directly contribute to malicious use or ethical concerns, they
can be misused when combinded with text-to-speech or voice conversion models to deceive people.
Therefore, it is crucial to explore fake audio detection and voice phishing detection models alongside
our research. In the future, we aim to develop speech language models capable of identifying fake
audio based on its content.

F Evaluation Details

M-STFT We employed the multi-resolution Short-Time Fourier Transform (M-STFT) distance
implemented in the open-source Auraloss [47].” Originally proposed in Parallel WaveGAN [54], the
M-STFT quantifies the distances between ground-truth and generated audio samples across multiple
STFT resolutions, thereby capturing both fine and coarse spectral details.

PESQ For evaluating reproduction quality, we utilized the wide-band (WB) Perceptual Evaluation
of Speech Quality (PESQ) metric '°. The audio signals were downsampled to a sampling rate
of 16,000 Hz before calculating the PESQ scores to ensure consistency with standard evaluation
protocols. Furthermore, we normalize the downsampled waveform signal to avoid overflow.

Periodicity, V/UV F1, and Pitch Following the observations of CarGAN [35] regarding the
perceptual degradation caused by periodicity artifacts, we measured periodicity errors using the
Periodicity Root Mean Square Error (RMSE)!!. Additionally, we evaluated the Voice/Unvoice (V/UV)
classification performance using the F1 score to assess the accuracy of voiced and unvoiced regions
in the generated audio. Also, we calculated pitch errors using the pitch Root Mean Square Error
(RMSQ)izAH metrics utilize pitch predicted by CREPE [17]. We used the pytorch implementation of
CREPE.

UTMOS To assess the naturalness of the generated samples, we utilized the open-source Mean
Opinion Score (MOS) prediction model, UTMOS [44].!3 UTMOS has demonstrated consistent
MOS prediction performance on neutral English speech datasets, providing a reliable measure of the
perceived naturalness of the synthesized audio without reference samples.

*https://github.com/csteinmetzl/auraloss
Ohttps://github.com/ludlows/PESQ
Unttps://github.com/descriptinc/cargan
Zhttps://github.com/maxrmorrison/torchcrepe
®https://github.com/tarepan/SpeechM0S
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Audio Quality Evaluation Test
Please read these instructions carefully before starting!

« Itis strongly recommended to listen to the audio using a headset or in an envi free from noise.

[Evaluation Criteria]

« You should evaluate the audio quality (clarity, naturalness) of each sample, not the speech content or accuracy.
« Each audio sample should be assessed independently.
« The scoring system is as follows:

o Excellent (5)

o Good (4)

o Fair (3)

o Poor (2)

o Bad (1)

° N/A(0)

[N/A Sample Explanation]

« AN/A sample refers to an audio file where speech is heavily mixed with strong background noise, as shown in the example below.
« To maintain the quality of the evaluation, we have included such fake samples in the test set.

« If afake sample is given a high score, the corresponding review will be rejected

« Examples of noise samples:

» 0:00/0:04 0 i

» 0:00/0:08 0 i

To ensure the reliability of the evaluations and eliminate noise, we will reject any attempts to assign high scores to N/A (noise) samples.

Instructions || Shortcuts | How s the aucl aualiy?
Select an option

CD H Excellent -5 1

Good - 4 2

Fair -3 a

Poor - 2 4

Bad -1 s

NA -0 s

Figure 5: Details of the MOS evaluation interface provided to crowdsourcing participants

Audio Quality Evaluation Test
Please read these instructions carefully before starting!

« It is strongly recommended to listen to the audio using a headset or in an envi free from noise.

[Evaluation Criteria]

« Please listen to the two samples below and rate how much better or worse the second B sample is compared to the first A on a scale from -3 to +3.

© Much worse (-3)

o Significantly worse (-2)

o Slightly worse (-1)

o No difference (0)

o Slightly better (+1)

o Significantly better (+2)

o Much better (+3)

To ensure the reliability of the evaluations and eliminate noise, we will reject any attempts to assign high scores to fake samples.

[instructons | [shorcuts | i toms a o a7
Select an option

Audio A B1is much worse than A (-3) 1
Bis significantly worse than A (-2) 2

0:00/0:00 H Bisslightly worse than A (1) ©

No difference between A and B (0) 4

Audio 8 Bis slightly better than A (+1) 5
Bis significantly better than A (+2) ©

CDEED i B is much better than A (+3) v

Figure 6: Details of the CMOS evaluation interface provided to crowdsourcing participants

G Crowdsourcing Details

We conducted Mean Opinion Score (MOS) evaluations using a 5-point scale to assess the quality
of speech. The perceptual quality of each model was evaluated through a crowdsourced listening
test using Amazon Mechanical Turk (MTurk)'*. A total of 20 native English speakers from the
United States participated, each rating 300 samples per model on a scale from 1 to 5. We paid $180
for each MOS experiment. To ensure the reliability of responses, we established strict participant
eligibility criteria: only individuals with a prior task approval rate of at least 50% and a minimum of
100 approved HITs were permitted to take part in this evaluation. Additionally, we included Gaussian
noise fake samples as control samples to enhance evaluation robustness, and we give the instruction
which noise samples should be assigned as N/A sample (0 point). Listener responses were excluded
from the final analysis if they met either of the following conditions: (1) assigning a score over 1 to
the noise augmented samples, or (2) spending less than half the duration of an audio sample on the
evaluation. These measures were implemented to filter out inattentive participants and maintain the
integrity of the collected ratings. The user interface used for the evaluation is illustrated in Figure 5
and Figure 6.

“https://www.mturk. com/
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Figure 7: Inference pipeline comparing the Mimi decoder and the proposed StreamFlow, given
identical Moshi output.

Table 10: Comparison of real-time decoding performance for full duplex spoken dialogue system,
Moshi using the Mimi decoder and the proposed StreamFlow

Method \ CER| WER] \ UTMOS t
Moshi w/ Mimi decoder 7.59 9.89 3.610
Moshi w/ StreamFlow (Ours) 7.19 9.82 3.847

H Replacing Mimi with StreamFlow in a Full-duplex Streaming Model

We replaced the original Mimi decoder in Moshi with StreamFlow, successfully integrating it into
Moshi’s fully-duplex streaming speech language model. For this integration, we utilized the official
Moshi code'”, and conducted experiments using question audio from HeySQuAD [52]'® dataset as
input. We upsampled the dataset, originally at 16 kHz sampling rate, to 24 kHz using Librosa and
used it as input to Moshi. The outputs of the Moshi were kept identical across all conditions, allowing
for a controlled comparison between the original Mimi decoder and our streaming StreamFlow. We
evaluated both speech quality and speech intelligibility, using UTMOS, CER, and WER respectively
as metrics. As shown in Table 10, our proposed StreamFlow consistently outperformed the Mimi
decoder.

As shown in Figure 7, the pipeline of [Question Audio — Mimi Encoder— LLM — Selectable
Decoder] demonstrates that improvements at the decoder stage can lead to substantial gains in speech
generation quality. These experiments support the effectiveness of the proposed decoder in streaming-
based speech generation scenarios and highlight its practical potential as a viable alternative to the
original architecture.

Bhttps://github.com/kyutai-labs/moshi/blob/main/moshi/moshi/run_inference.py
"®https://huggingface.co/datasets/yijingwu/HeySQuAD_human
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly highlight the main contributions of the proposed method in the
abstract and introduction, which are well aligned with the main content of the paper. The
scope of our contributions is described accurately without exaggeration, and necessary
limitations and assumptions are appropriately acknowledged.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation of our works in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We present the prior theory, our proposed theoretical framework, and the cor-
responding results using equations and tables, with clear explanations and cross-references.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly describe the model training and inference procedures, network
architecture, detailed implementation specifics, datasets, and training settings throughout
the main text and appendix. We also plan to release the code and model after the paper
is accepted. Even though the full code is not yet provided, the detailed architecture is
illustrated in figures to enable reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release all source code and checkpoints after paper notification.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We used the open dataset, LibriTTS. We describe the dataset details, and
hyper-parameter, and type of optimizer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We reported the MOS with confidence interval.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe the computation resources and training time.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: We all read the Code of Ethics provided in above link.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in Section 5.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of any models or datasets that pose a
high risk of misuse. Therefore, safeguards are not applicable in this context.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We will release the source code and check point under the license of CC-BY-
NC 4.0.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the source code and check point, and include details about
training, license, limitations, etc.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We described the Crowdsourcing details in Appendix.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We only used Amazon Mturk for evaluation.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs for research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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