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Abstract

Protein-protein interactions (PPIs) are essential for many biological pro-1

cesses, but their design is challenging due to their complex and dynamic2

nature. We propose a new model called Hierarchical Interface CO-design3

Network (HICON) that can jointly generate the sequence and 3D structure4

of protein interfaces. HICON uses a novel hierarchical architecture that5

combines atomic and amino acid resolutions in an equivariant manner and6

leverages Large Protein Language Models for sequence initialization. We7

evaluate HICON on a variety of biological interfaces, including protein-8

protein, enzyme-ligand, and antibody paratope-epitope interfaces. Our9

results show that HICON outperforms state-of-the-art models on sequence10

prediction and paratope co-design on several computational metrics.11

1 Introduction and related work12

Recent advances in generative models for biology[14, 21, 6] have revolutionized the field13

of protein interface design, enabling the development of novel binding proteins with14

unprecedented experimental success rates. This has opened up new possibilities for the15

design of protein interfaces with tailored properties, such as increased binding affinity,16

specificity, and stability.17

There are three main challenges in designing novel interfaces: The first is generation18

scope. Existing models either generate only the sequence or only the structure (e.g.,19

RFDiffusion[17]). It is desirable to perform interface co-design, or the joint generation of20

sequence and structure, as both are highly interdependent. The second is the applicability21

domain: Existing interface co-design models (e.g., RefineGNN[18]) focus on antibody CDRs.22

However, structural antibody datasets[1] are limited, and larger protein datasets contain23

a more diverse set of natural interfaces. It is desirable to optimize an architecture for24

generalized protein-protein interface design. The third challenge is model representation25

and efficiency: binding interactions occur at the atomic scale however modeling proteins at26

an all-atom level is computationally expensive and prone to learning noise. Hierarchical27

message-passing[5] is an effective strategy to introduce inductive bias and ensure learning28

efficacy. ProNet[10] and IEConv[11] leverage the hierarchical structure of proteins, but29

are non-generative. HSRN[19] provides a framework for generative hierarchical co-design30

networks, but its all-atom model does not scale well with large proteins.31

In this paper, we propose a new architecture called Hierarchical Interface CO-design32

Network (HICON) to address the above challenges. HICON simultaneously generates the33

sequence and structure of a protein interface in a one-shot manner, leveraging Large Protein34

Language Models (LPLMs) for sequence initialization. Our architecture is optimized for35

generalized interface design, including enzyme pockets. Finally, HICON introduces a36
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novel Equivariant Hierarchical message-passing network, leveraging atomic features in37

a scalable and efficient framework. We show that HICON outperforms state-of-the-art38

inverse folding and paratope co-design models on various computational metrics. We also39

demonstrate that HICON can be applied for PPI design as well as protein-small molecules40

in an enzyme test case.41

2 Methods42

2.1 Hierarchical 3D Graphs43

Proteins can be naturally modeled as Hierarchical 3D graphs. A two-level Hierarchical 3D44

graph can be represented as G = (V, E, P). Here, V = {vi}n
i=1 is the set of node features,45

where each vi ∈ Rki×dv denotes the feature matrix for node i. E = {eij}n
i,j=1 is the set46

of edge features, where eij ∈ R
ke

ij×de represents the edge feature matrix for edge (i, j).47

Furthermore, P = {Pi}n
i=1 is the set of position matrices, where Pi ∈ Rki×3 denotes the48

position matrix for node i. The parameters ki, and ke
ij can vary for different applications.49

For example, if we treat each atom in a molecule as a node, then ki = 1 and ke
ij = 1 for50

each node i, and each edge (i, j) respectively. Conversely, in the context of proteins, where51

each amino acid serves as a node, ki signifies the number of atoms in amino acid i. And ke
ij52

signifies the number of edges between atoms within amino acid i, and atoms within amino53

acid j, and between the atoms across both.54

2.2 Hierarchical Message Passing55

We generalize GNNs message-passing[8] on simple graphs for Hierarchical Graphs by56

considering all nodes and edges in the subgraphs as follows:57

m(t)
vip =

n

∑
j=1

1ke
ij>0

ke
ij

∑
q=1

m(t)
pq

m(t)
pq = Mt(h

(t)
vip , h(t)vjq , epq

ij )

Where 1 ≤ p ≤ ki is a node in the subgraph i, and Mt is a Multi-Layer Perceptron.58

Our framework allows us to perform message-passing on the subgraph level and the simple59

graph level (ki = 1 and ke
ij ≤ 1). In order to ensure end-to-end learning on both levels60

sequentially, we take a representative node (alpha carbon position and latent embedding)61

from each subgraph after the message-passing on the subgraph level.62

2.3 Model architecture63

The main assumption of this work is that the interface’s sequence and 3D position primarily64

depend on atom-level interactions, which are often neglected when considering an amino65

acid-level abstraction. This statement holds especially true in interfaces involving small66

metabolites such as small molecules Fig. 1. Details are presented in Appendix S2.67

HICON receives 3 main streams of information:68

1. The complex graph is first passed through the Complex Module to encode the69

global embeddings of the complex as separate entities.70

2. The atomic/chemical graph of the interface is then fed into the Encoder to embed71

the atomic-level geometrical and chemical structure of the interface.72

3. The sequence information is embedded separately and fed into the Decoder.73

Masking and Noising We train the model by masking amino acid types in the interface.74

We also remove sidechain atoms and noise the coordinates of backbone atoms using the75
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Figure 1: HICON’s hierarchical framework: circular arrows indicate message-passing steps.

following noising scheme:76

Ptrans = Pinit + Ctranslation × AA_translationAA
[0,1] + Cinternal × internal_noiseAtomic

[0,1]

Pnoised = ( Ptrans − Ptrans ) · RAA
[− π

2 , π
2 ]
+ Ptrans

ESM Initialization We leverage the sequential dependencies using Large Language77

Models trained on sequence data. Specifically, we use ESM-2[3] predictions to initialize the78

masked amino acids, as opposed to random or zero initialization.79

3 Results80

3.1 Interface Sequence Prediction81

We evaluate our architecture on the inverse folding problem given partial sequence infor-82

mation using Proteinflow[9]. Masked amino acids are stripped of their side chain atoms.83

The length of the masked portion is l = 20. We provide non-masked amino acid types as84

node features for PiFold[22] and ProteinMPNN[2] and train them in a one-shot manner.85

Table 1: Protein-protein interface sequence prediction benchmark: First, Second86

Model Accuracy Perplexity

HICON-ESM35M 50.9% 1.92
ESM35M 18% 8.35
HICON 49.3% 2.38
PiFold 49.1% 2.37
ProteinMPNN 45.1% 2.95

87

3.2 PPI Co-design88

We assess the codesign framework of HICON, with 2 cycles, using a general PPI dataset.89

As a baseline, we consider ProNet, with similar blocks as HICON, and equivariant layers.90

Table 2: Protein-protein interface co-design benchmark: First, Second91

Model Accuracy ESM Acc. Cα RMSD C RMSD N RMSD

HICON-ESM150M 29.1% 23.2% 1.48 1.80 1.76
HICON-ESM35M 26.2% 18% 1.52 1.79 1.77
HICON 21.9% - 1.61 1.99 1.96
ProNet 16.2% - 2.79 3.51 3.42

92
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Figure 2: 3 examples of HICON-ESM35M predicted coordinates. Individual Cα RMSDs for
subfigures 1, 2, and 3 are respectively 2.427, 0.933, and 1.735

3.3 Enzyme Co-design93

The atomic features of the HICON model enable its use for another application: enzyme94

interface redesign. We construct 3 datasets from BRENDA[16] with 3 splits: Tanimoto,95

MMseqs[15] sequence similarity, and EC numbers.96

We define the interface with a geometric radius around the ligand. We also add a separate97

chemical message passing block for the ligand. Details about the Protein-Ligand adaptation,98

and ablation studies, are presented in the supplementary materials.99

Table 3: HICON-ESM35M results on enzyme co-design: First, Second100

Split Accuracy ESM Acc. Exp. Res. Cα RMSD C RMSD N RMSD

Tanimoto 45% 29.7% 2.06 ± 0.47 1.65 1.97 1.99
MMseqs 26.8% 25.5% 2.15 ± 0.48 1.67 1.91 1.94
EC number 27.3% 26.7% 2.01 ± 0.46 1.73 1.95 1.94

101

Results show that splitting has a significant impact on sequence prediction accuracy. We102

suggest that ligands with highly dissimilar scaffolds might bind to similar pockets.103

3.4 CDR-H3 Paratope Co-design104

We test HSRN[19] with their position initialization module (original init), and with our105

noising (our init). We consider HSRN’s dataset: the test set is a manually curated dataset106

used in RefineGNN[18], and in Diffab[13], and the training set is extracted from SabDAb[1].107

We also train MEAN[20] using our initialization, and the original Diffab[13].108

Table 4: CDR-H3 paratope co-design benchmark: First, Second109

Model Accuracy Perplexity Cα RMSD C RMSD N RMSD

HICON-ESM35M 31.20% 2.97 1.86 2.13 2.08
HSRN (original init) 28.02% 7.59 2.96 2.85 2.8
HSRN (our init) 27.71% 8.47 2.78 3.18 2.66
MEAN 28.70% 4.10 1.53 1.43 1.45
Diffab 26.93% - 3.44 3.38 2.90
ESM35M 7.4% 8.36 - - -

110

4 Conclusion and Further Work111

This paper presents HICON, a model for protein interface co-design. We introduce a112

hierarchical message-passing framework and LPLMs for sequence initialization. Our exper-113

iments show that HICON outperforms existing methods in PPI sequence prediction and114

CDR-H3 co-design, and can design general PPIs and enzymes using atomic information.115

For further research, we can explore a position initialization module and test its effects116

on robustness and stability. Additionally, experimental validation can further assess the117

model’s capacity to improve binding affinity in various use cases.118
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5 Appendix119

5.1 Ablation Studies120

To test our main assumption regarding the architecture and optimal level of representation121

for encoding protein interaction information (full atom or residue level), we evaluated the122

impact of different architecture choices on the Protein-Protein Interface Co-Design dataset.123

We consider 3 experiments that evaluate the validity of our hierarchical framework and the124

atomic-level representation. We also compare the sizes of different models in terms of125

the number of parameters, as an indicator of the models’ representation efficiency, and126

inference speed.127

128

• The first model HICONAA, operates using the same complex+interface framework129

at a full amino acid resolution; i.e.: removing the chemical, and atomic message130

passing blocks.131

• The second model HICONinterface, only operates on the interface (with atomic and132

amino-acid message passing), but without the complex block.133

• The third model HICONAA_complex performs amino-acid-level message passing on134

the whole complex. We achieve this by removing the complex block and setting the135

interface-defining radius to 100Å: the geometric area where the message passing is136

performed in the encoder and decoder.137

Table 1: Ablation experiments results (HICON-ESM35M) First 1138

Model Nb. params* Accuracy Cα RMSD C RMSD N RMSD

HICON 20.2M 26.2% 1.52 1.79 1.77
HICONAA 11.9M 24.9% 1.58 2.9 2.83
HICONinterface 17.4M 26.2% 1.46 1.79 1.75
HICONAA_complex 9.1M 23.5% 2.08 2.75 3.08

139

Results show that the atomic hierarchical message passing (HICONinterface, HICON)140

improves results significantly on both sequence prediction accuracy, as well as RMSD, when141

compared to models with only amino-acid resolution (HICONAA, HICONAA_complex).142

Additionally, HICONinterface slightly outperforms the baseline on the structure prediction,143

while having 2.8M fewer parameters. This result suggests that complex-level information144

does not have a significant impact on interface co-design, which validates restricting most145

of the HICON’s computations around the interface. Note that due to hardware limitations,146

we could not test a fully atomic model.147

148

Enzyme ablation: In the absence of other models to benchmark our enzyme co-design149

model, we resorted to testing if the model used ligand information to reach its structural150

and sequential performance. We perform a test consisting of training the same model151

on an enzyme dataset, with or without the ligand information, enabling us to test the152

contribution of the ligand in the design of the pocket.153

For this experiment, we curated a cleaner enzyme dataset, from NLDB[? ], which provides154

the active compound associated with the enzyme for each pdb id. This avoids retrieving155

the ligand from raw pdbs where co-factors and other small molecules might be picked up156

as ligands, adding noise to the input. We cluster and split using MMseqs[15] similarity157

measure with a 30% threshold.158

In the table below, we compare HICON-ESM35M, and HICON-ESM35M_nolig, on the159

NLDB dataset.160

1Excluding frozen ESM-35M parameters
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Table 2: HICON-ESM35M results on NLDB enzyme co-design First 2161

Split Accuracy Perplexity Exp. Res.* Cα RMSD C RMSD N RMSD

HICON 29.6% 4.13 2.13 ± 0.45 1.65 2.03 2.01
HICON_nolig 29.1% 4.43 2.13 ± 0.45 1.85 2.22 2.17
ESM35M 21.8% 8.36 - - - -

162

We observe that removing the ligand information has a small effect on the sequence163

retrieval accuracy and a more significant impact on the structure RMSD. Due to the large164

diversity of enzymes present in our datasets, we expect that limiting the pocket diversity165

could enhance the impact of the ligand class in the codesign results. This could be done by166

limiting the dataset to a specific enzyme class or by curating a new dataset where similar167

enzyme sequences appear with several substrate types.168

Size ablation: In our experiments, we tested HICON with 20 missing amino acids for169

fair comparison, and showed results for CDR-H3 co-design, which is a smaller interface.170

To test the performance with bigger interfaces, we tested our model on the general PPI171

dataset with a larger masked interface. The results are shown below:172

Table 3: HICON results with larger interface sizes First173

Split Accuracy Cα RMSD C RMSD N RMSD

20 AA 21.9% 1.61 1.99 1.96
40 AA 20.4% 1.92 2.27 2.24

174

5.2 Model architecture175

5.2.1 Complex Module176

The complex module encodes global information about the pair of molecules that might177

affect the interface information. It performs message passing on both graphs separately at178

an amino acid resolution. Namely, input node features are179

vi =

(
OneHot(Amino Acid Type) , Dihedrals(posCα, posC, posN)

)
∈ Rdv (1)

Where dv = 21 + 6, as in [7], is the node input size, formed of a one-hot encoding of the180

amino-acid type, and the dihedral angles of the backbone. Input Node coordinates are181

Pi = posi
Cα

. While input edge attributes are:182

eij =

(
PosEmb16(i, j), OT

i
Pj − Pi

∥Pj − Pi∥
, q(OT

i Oj) ,
n⊕

(k,l)∈backbonei×backbonej

RBF16(∥Pk− Pl∥)
)
∈ Rde

(2)
The different terms in 5.2.1 are denoted respectively as follows [7]:183

184

• PosEmb16 is a positional embedding that represents distances between residues in185

the sequence (rather than space). This edge feature indicates if connecting nodes186

are in close proximity in the sequence (adjacent amino acids).187

• The second vector is a direction encoding that corresponds to the relative direction188

of Pj in the reference frame of (Pi, Oi). Oi being the relative orientation of node i189

to node i + 1.190

• The third vector is an orientation encoding q(.) of the quaternion representa-191

tion of the spatial rotation matrix OT
i Oj . Quaternions represent 3D rotations192

as four-element vectors that can be efficiently and reasonably compared by an193

inner product. Both the second and third terms describe the relative geometrical194

orientation of the nodes.195

2*Exp. Res.: mean PDB experimental resolution threshold in resp. test-sets
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• The fourth term, as in [2], is formed of the distance encoding in radial basis196

16 between all possible pairs of backbone atoms in amino acids i and j. The197

concatenation of all distance vectors gives a full representation of the relative198

positions of the pair of amino acids involved in the edge.199

The resulting total input edge dimension is de = 423.200

Linear Message Passing The first level of message passing in the complex graph occurs on201

the linear graph defined by the protein sequence. Thus, the set of edges in the linear graph202

is defined as follows:203

E =
⋃

seq∈{sequence1,sequence2}
{(k, k + 1[N]), k ∈ 0...N − 1, N = |seq|} (3)

Where sequence1 and sequence2 represent the amino acid sequences of protein 1 and protein204

2 respectively. The message-passing operation uses the EGNN layer introduced in the205

methods section, with a depth of 4.206

Amino-Acid Message Passing The output node, and edge embeddings, as well as node207

coordinates from the linear block, are passed to a second message-passing block that208

operates on the global 3D structure of the complex at an amino-acid resolution. Namely,209

we construct the graph edges as follows:210

E = {(i, j) ∈ [1...n]2, ∥Pi − Pj∥ ≤ radiusgnn,

|Ei∗| ≤ 32, |Ej∗| ≤ 32, Protein[i] = Protein[j]} (4)

We connect nodes from the same protein within a geometric radius (radiuscomplex_gnn = 20),211

with a maximum number of neighbors set to 32.212

5.2.2 Encoder213

The encoder module operates on the interface only. Message-passing occurs on both the214

atomic and amino-acid resolutions. We introduce the first operator that selects the interface215

using the masked amino acids Chain_maskl :216

Sinter f ace(X) = {i ∈ X, ∃j ∈ Chain_maskl , ∥P
(0)
i − P(0)

j ∥ ≤ radiusinter f ace} (5)

Where radiusinter f ace = 15 in most experiments. Sinter f ace selects a geometric region around217

the masked amino acids in the interface using input positions. We, therefore, select the218

global node embeddings, after message-passing in the complex block, as initialization for219

the encoder’s amino acid level vectors.220

Vglobal
encoder = Sinter f ace(MLPenc

v (hcomplex
v )) (6)

PCα
encoder = Sinter f ace(Pcomplex) (7)

Patoms
encoder = Patoms

encoder + (Sinter f ace(Pcomplex)− Sinter f ace(Pcomplex
init )) (8)

Where MLPenc
v compresses the complex embeddings from Rhidden_dim to Rhidden_dim/2. And221

the sidechain atoms’ positions are translated by a vector in the direction of the new Cα222

coordinates.223

To compute the atomic-level embeddings, we perform message passing sequentially on224

two atomic blocks described below:225

Chemical Message Passing This module considers the full graph on the subgraph level i.e.:226

all atoms. No side chain atoms and information are given in the masked amino acids. This227

is done by initializing masked amino acids as Glycine, which only contains 4 backbone228

atoms, to ignore any sidechain information. Node input features are the biological atom229

type (Cα, Cβ, NE1...). Moreover, the edges are defined as the chemical bonds between230

these atoms. Input edges features are defined using rdkit [12]: type of bond between two231

atoms, such as single, double, or triple. The stereo property indicates whether the bond232

is cis or trans, and the is_conjugated property indicates whether the bond is part of a233

conjugated system.234
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We project these features to a latent space in Rhidden_dim/2. Then, 4 layers of message235

passing update the atom positions and embeddings, which learn to fix bond lengths of the236

initial noisy structure.237

Atomic Message Passing This module performs geometric message-passing on an atomic238

level. The input node embeddings, as well as atom positions, are the output of the chemical239

message-passing block. Then, It passes messages to nearby atoms in the graph, including240

neighboring atoms of other protein chains or ligands. We construct the graph edges as241

below:242

E =

{
(p, q) ∈ [1...ki]× [1...k j], (i, j) ∈ [1...n]2,

∥Pp
i − Pq

j ∥ ≤ radiusatom_gnn, |Eq∗
ij | ≤ 24, |Ep∗

ij | ≤ 24

}
(9)

243

epq
ij =

(
PosEmb16(i, j), RBF16(∥P

p
i − Pq

j ∥)
)
∈ Rd

′
e , d

′
e = 32 (10)

Where radiusatom_gnn = 10. After 4 layers of message-passing, we introduce the following244

operator to select an amino acid representative, allowing us to transition to the amino acid245

level:246

SCα(X) = {xindexCα
i ∈ X, i ∈ [1...n]} (11)

Therefore, we define Vatom
encoder, and PAA

encoder as:247

hatom
encoder = SCα(hatom

v ) ∈ Rhidden_dim/2 (12)

PAA
encoder = SCα(Patom) (13)

Afterward, we concatenate hatom
encoder, and Vglobal

encoder along the last dimension, defining VAA
encoder:248

VAA
encoder =

(
hglobal

encoder, hatom
encoder

)
∈ Rhidden_dim (14)

Taking VAA
encoder, and PAA

encoder as input, we perform 4 layers of message passing on an amino249

acid level, similar to the complex’s 5.2.1, with a lower cutoff radiusAA_gnn = 10, and250

allowing for messages to pass between nodes across both proteins or protein-ligand in the251

interface.252

5.2.3 Decoder253

This module aggregates information from 3 different inputs: the complex module’s embed-254

dings, encoders atomic, and amino acid embeddings and coordinates, as well as the input255

sequence embeddings, defined as:256

Vsequence = MLPseq(sequence) ∈ Rhidden_dim (15)
Similar to the encoder, the decoder operates only on the interface. The input to this module257

are:258

VAA(0)
decoder = Sinter f ace(Vsequence) + Sinter f ace(h

complex
v ) + hencoder

v ∈ Rhidden_dim

PCα
decoder = PCα

encoder

Vatom
decoder = MLPdecoder

v (hatom
encoder) ∈ Rhidden_dim

Patoms
decoder = Patoms

encoder

Where MLPdecoder
v expands the the encoder’s atomic embeddings from Rhidden_dim/2 to259

Rhidden_dim.260

Vatom
decoder, and Patoms

decoder, from the encoder, are used as input to perform 4 layers of atomic261

message passing similar to the encoder’s 5.2.2, defining:262

VAA
decoder =

(
hAA

decoder, SCα(hatom
decoder)

)
∈ Rhidden_dim×2 (16)

PAA
decoder = SCα(Patom

decoder) (17)
Finally, we perform 4 layers of amino-acid message-passing geometrically similar to the263

encoder’s 5.2.1. Fig. 3 summarizes the information flow within the encoder and decoder264

modules.265
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Figure 3: HICON’s Encoder and decoder information flow. Expand and Compress are
MLPs that map the node embeddings to a new embedding dimension.

5.2.4 Predictor266

The predictor module maps the decoder’s hidden node embeddings hdecoder
v to the proba-267

bility distribution of the amino acid type:268

p(aa_type | hdecoder
v ) = So f tmax(MLPout(hdecoder

v )), MLPout : Rhidden_dim×2 −→ R20 (18)

The predicted Cα coordinates correspond to the decoder’s node coordinates after the269

amino-acid message-passing and the rest of the backbone coordinates correspond to the270

respective atom coordinates after the decoder’s atomic message-passing.271

5.3 Datasets272

5.3.1 Curation and cleaning273

We use the Protein Data Bank (PDB) [4] to access the protein and ligand atomic coordinates274

using PDB files and extract the aligned sequence from the entity’s Fasta files. We remove275

entries with sequences longer than 2.000 residues or shorter than 30. We also set a276

resolution threshold of 3.5 Angstroms. Additionally, we remove chains with more than277

10% missing residues in the middle and more than 30% missing residues at the ends of278

the protein chain. Finally, we remove redundant protein chains (sharing more than 90%279

sequence identity).280

5.3.2 Protein Complexes Preprocessing Pipeline281

To evaluate HICON on Protein-Protein interface co-design, we remove single-chain PDBs282

and generate pairs of interacting chains from the rest of the PDBs. Namely, we consider283

protein pairs with at least 3 contact points (Cα’s with a distance ≤ 10Å) i.e:284

is_valid_pair((chain1, chain2)) = |{aa1 ∈ chain1, ∃aa2 ∈ chain2,

∥Paa1
Cα
− Paa2

Cα
∥ ≤ 10}| ≥ 3 (19)

5.3.3 Enzyme Preprocessing Pipeline285

We retrieve a list of enzyme PDBs and their corresponding EC classes from BRENDA [16].286

Then, we extracted the ligands from every PDB. We do not consider ions, or heterogeneous287

molecules having covalent bonds to the protein. We also compare the atomic graph we288

get from the PDB with the natural SMILES of each molecule to get the correct canonical289

indexing of the atoms 3.290

5.4 Splitting291

We consider a (90%, 5%, 5%) split for training, validation, and testing. For the Protein-292

Protein dataset, we split the dataset according to the sequence similarity between single293

chains. Namely, we consider Algorithm 1 using MMseqs[15] clustering.294
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Algorithm 1: Sequence similarity splitting algorithm

Input : Chains = {(chaini, pdb_idi), i ∈ [1...N]}, valid_ratio, test_ratio, train_ratio
1 Clusters← MMseqs_clustering(Chains) using 30% sequence similarity threshold.
2 Build a graph G(Clusters, E) where E are edges connecting clusters with chains sharing

the same pdb_id.
3 Retrieve connected components C from graph G.
4 Assign sets of connected components Cvalid⊂ C, Ctest⊂ C, Ctrain⊂ C, such that the total

number of chains in each set of connected components is respectively equal to
valid_ratio, test_ratio, train_ratio up to 20% margin.

5 if not possible, cut edges from the graph and repeat 4.

For the enzyme dataset, we consider 3 different splits. First, the sequence similarity295

splitting algorithm 1. Second, we consider splitting using ligand similarity. We achieve this296

by using a different clustering algorithm in step 1, using the Tanimoto similarity measure297

and Rdkit’s Butina clustering algorithm with a similarity threshold of 30%. Third, we298

split according to EC classes, we select members from all major EC classes for training but299

prevent certain subclasses (ex: 2.1) to appear in both training, and validation and testing300

set, using algorithm 2 to partition the dataset.

Algorithm 2: EC classes splitting algorithm

Input : Enzymes = {(pdb_idi, ec_numberi), i∈ [1...N], ec_numberi∈ X.Y.Z.T},
valid_ratio, test_ratio, train_ratio

1 Clvalid, Cltest, Cltrain = {}, {}, {}
2 for x ← 1 to X do
3 Clusters← {(pdb_idi, ec_numberi), ec_numberi = x.y. ∗ .∗, y∈Y}
4 Assign sets of clusters Clx

valid⊂ Clusters, Clx
test⊂ Clusters, Clx

train⊂ Clusters, using
the Cutting stock algorithm with sizes valid_ratio × N, test_ratio × N, train_ratio
× N

5 Clvalid← Clvalid∪ Clx
valid

6 Cltest ← Cltest ∪ Clx
test

7 Cltrain← Cltrain∪ Clx
train

8 end

301

When sampling from these datasets for training or inference, we iterate over the individual302

clusters and randomly pick a chain within that cluster. For the EC dataset, we sample303

from the smallest subclass i.e: x.y.z.* (example 2.1.1.*) instead of the clusters defined for304

the splitting. Meaning that we loop over the x.y.z.* subclasses, then we select a random305

data point from that subcluster (example: 2.1.1.2) as the next training/inference point.306

307
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Protein-Protein interface Preprocessing pipeline
Figure 4: We consider a
pair of proteins as a com-
plex if they have at least
3 contact points (defined
using radiuscontact = 10).

Figure 5: We calculate
all contact points in the
binder using radiuscontact

Figure 6: We pick a ran-
dom contact point and
consider the l − 1 closest
neighbors in the binder as
masked amino acids (l =
20).

Figure 7: We noise the
backbone coordinates and
remove sidechain atoms
of the masked amino
acids. See Sec. ?? for more
detail.

Figure 8: We define
interface amino acids
using radiusinter f ace = 15
around each masked
amino acids

Figure 9: We construct
3 types of graphs us-
ing: radiuscomplex_gnn=20 for
the complex AA graph.
radiusAA_gnn=10 for the en-
coder and decoder AA
graphs. radiusatom_gnn=10 for
atomic graphs.
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Figure 10: A: Number of unique pdb ids where specific molecules appear. 60 random
molecules were shown. Some molecules are more common than others: ex. NAP, DTP,
ACT... B: Number of unique active compounds involved in all instances of individual EC
reactions. Data was generated based on NLDB: a subset of BRENDA. 83.3% of EC reactions
have 4 or fewer active compounds involved in the reaction. C: Number of unique active
small molecules per pdb in NLDB. 97.5% of PDBs have 2 or fewer active compounds.

Table 3: Enzyme dataset sources 3308

Dataset Nb. PDB ids Nb. unique compounds

BRENDA 80.173 -*
NLDB 9.284 466

309

Algorithm 3: Ligand extraction algorithm
Input : BRENDA PDB ids
Output : Ligand smiles and atom coordinates

1 For each chain in PDBParser main chains: extract amino acid sequence as
main_component, and consider the rest as molecules (filter for ions and amino acids)

2 Merge all main_components
3 For all other chains: Construct a connectivity matrix of length: len(ligands)+1 (index0

is the main component)
4 Fix CONECT lines in the pdb
5 Get all covalent connections from the connect statements
6 Iteratively aggregate connected components together
7 Independent components are considered ligands
8 Extract smiles from pdb block
9 Compare smiles to the natural canonical smiles to reorder atoms

N.B.: Algorithm 3 reaches 70% accuracy when comparing the extracted ligands to the310

active compounds stated in NLDB.311

3*We used BRENDA, which doesn’t contain ligand information, for constructing our training
dataset, and NLDB to extract statistics and validate our ligand extraction algorithm.
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Figure 11: Distribution of simplified EC numbers (x.y.*.* example: 1.2) in BRENDA. Counts
were clipped to 9000 for a simplified visualization.
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Figure 12: Visualization of the Tanimoto similarity-based clustering (30% threshold) of the
BRENDA dataset. The biggest component is shown in the center, and edges denote pdb
ids connections (chains in clusters appearing in the same pdb)

Table 4: Splits train/val/test partitions312

Dataset Tain Validation Test

Protein-Protein MMseqs 133.984 6.799 6.063
Enzyme MMseqs 47.531 2.355 1.415
Enzyme Tanimoto 46.735 2.060 2.506
Enzyme EC nb. 43.835 3.093 4.373
HSRN SAbDab 2.820 188 79

313
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Figure 13: Visualization of the MMseqs similarity-based clustering (30% threshold) of the
BRENDA dataset. The biggest component is shown in the center, and edges denote pdb
ids connections (chains in clusters appearing in the same pdb)
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