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Abstract

Large language models (LLMs) such as GPT-4, Claude 3, and the Gemini series
have pushed the frontier of automated reasoning and code generation. Yet, pre-
vailing benchmarks emphasize accuracy and output quality, neglecting a critical
dimension: decoding token efficiency. In real systems, the difference between
generating 10K tokens vs 100K tokens is nontrivial in latency, cost, and energy.
In our work, we introduce OckBench, the first model-agnostic, hardware-agnostic
benchmark that jointly measures accuracy and decoding token count for reasoning
and coding tasks. Through experiments comparing multiple open- and closed-
source models, we uncover that many models with comparable accuracy differ
wildly in token consumption, revealing that efficiency variance is a neglected but
significant axis of differentiation. We further demonstrate Pareto frontiers over the
accuracy—efficiency plane and argue for an evaluation paradigm shift: we should
no longer treat tokens as “free” to multiply. OckBench provides a unified platform
for measuring, comparing, and guiding research in token-efficient reasoning.

1 Introduction

“Entities must not be multiplied beyond necessity.”

— The Principle of Ockham’s Razor

Large Language Models (LLMs) such as GPT-4, Claude 3, and Gemini have demonstrated remarkable
capabilities in complex problem-solving, largely attributed to their advanced reasoning abilities.
Techniques like Chain of Thought (CoT) prompting and self-reflection have become central to this
success, enabling models to perform step-by-step deductions for tasks requiring deep knowledge
and logical rigor, such as advanced mathematics and programming challenges. As the industry
increasingly emphasizes this “long decoding” mode, the computational cost associated with these
reasoning processes has grown significantly. For instance, public reports indicate that frontier models
may require over ten hours to solve just six mathematical problems [1]], and in coding competitions,
some difficult problems take models more than two hours to complete [2]]. These examples illustrate
a broader issue: while the community often celebrates model accuracy on challenging tasks, the
substantial time and computational costs involved in achieving such results receive far less discussion.

While LLM evaluation and comparison have become increasingly important, most evaluations focus
primarily on the accuracy but the efficiency of generation is less discussed. For example, HELM [3],
LM-Eval [4], and the LMSYS Chatbot Arena [S]] rank almost mostly on task accuracy. This suggests
that the number of decoding tokens, a model- and hardware-agnostic metric, plays a major role in
determining practical efficiency across tasks.

To address this overlooked dimension of reasoning efficiency, we introduce a new evaluation perspec-
tive centered on intrinsic token efficiency. Our contributions are summarized as follows:
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Figure 1: (la) shows that even similar-sized models can exhibit a 10.7x difference in reasoning time due to
varying decoding token counts. (Tb) shows that frontier closed-source models have comparable accuracy but
vary significantly in reasoning efficiency.

* Model-Agnostic Efficiency Metric. We formalize decoding token count as an intrinsic,
hardware- and system-independent efficiency metric, complementing accuracy to provide a
more holistic view of model performance and guiding both model design and training.

* Efficiency-Accuracy Aware Benchmark. We propose OckBench, the first unified bench-
mark specifically designed to evaluate the efficiency of an LLM’s reasoning process by
measuring decoding token consumption alongside accuracy.

* Empirical Efficiency-Accuracy Trade-offs. We conduct experiments across multiple open-
and closed-source models, illustrating their distribution on an accuracy—efficiency Pareto
frontier and revealing substantial practical trade-offs.

2 Toward a Unified Model-Agnostic Reasoning Efficiency Framework

2.1 Practical Cost of LLMs

As model sizes scale and real-time serving requirements become ubiquitous, the inference budget
for large language models (LLMs) has emerged as a critical deployment bottleneck. Each additional
decoding token incurs non-trivial latency, energy consumption, and monetary cost. Indeed, LLM
service providers commonly report billing in units of millions of output tokens, highlighting that
output token generation now dominates operational expenditures [6]]. Meanwhile, empirical analysis
by Epoch Al shows that the response lengths of reasoning-capable models have been growing at
roughly Sx per year, whereas those of non-reasoning models have grown at around 2.2x per year
[7]. This divergence underscores that as reasoning capabilities advance, so too does the hidden cost
of “thinking” in token form.

2.2 Invisible Inefficiency in Current Optimization and Evaluation

Most existing efficiency efforts focus on orthogonal components such as weight compression, quan-
tization, hardware acceleration, or system scheduling [8, [9]. While there are studies on efficient
reasoning or decoding optimization that aim to reduce generated tokens [10} 11} |12, these approaches
typically do not provide a unified benchmark that enables fair comparison of reasoning efficiency
across different models and task domains.

Meanwhile, mainstream evaluation frameworks primarily emphasize output quality—accuracy, ro-
bustness, and fairness—while paying less attention to the number of reasoning tokens generated.
Other efficiency-oriented frameworks (e.g., MLPerf) measure system- or hardware-level perfor-
mance (throughput, latency, CO5 emissions) [13]]. These metrics are informative for deployment
infrastructure, but they do not directly reveal the intrinsic reasoning efficiency of the model itself.

To provide clearer guidance for token-efficiency research and to evaluate reasoning efficiency more
intrinsically, we adopt decoding token count (on a fixed task under a fixed decoding setting) as our
core efficiency metric. Building on this metric, we present OckBench, the first unified benchmark that
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Figure 2: Reasoning Efficiency Comparison Among 16 Models.

is accuracy-efficiency aware, model-agnostic, and hardware-agnostic, enabling fair and reproducible
comparisons of reasoning efficiency across LLMs.

3 OckBench Benchmark

3.1 Benchmark Composition

Our benchmark, OckBench, is structured to test LLMs’ reasoning efficiency across two complemen-
tary domains: math problems solving and coding skills.

Mathematics and Reasoning Tasks. We adopt GSM8K|[14], AIME24, and AIME25 as core
reasoning benchmarks. To better expose token-efficiency differences, we select the top 200 questions
that exhibit high variance in decoding token usage among baseline models.

Software Engineering Tasks. For the coding domain, we build a lightweight variant of MBPP [15]],
supplemented by 200 carefully curated real-world coding problems using the same criterion as the
math dataset. These coding tasks cover algorithmic challenges, code transformation, debugging, and
small-scale project tasks.

3.2 Question Combination.

Our decoding token variance based selection balances difficulty diversity and token-variance sensitiv-
ity. We aim to include questions that are not trivially solved (to avoid floor effects) nor overwhelmingly
hard (to avoid zero accuracy), while also maximizing the spread in decoding token usage across
models. This design helps the benchmark emphasize efficiency contrast among models, rather than
merely ranking by accuracy. This helps to design and evaluate more token efficient and robust models.

4 Experiments

4.1 Setup

We select and evaluate a set of both open- and closed-source models with varying parameter sizes
(see Model List in [subsection 4.2). We gather each model’s decoding token count and accuracy
on two domains: a mathematics dataset (GSM8K, AIME ’24 and AIME °25) and a coding dataset
(MBPP [15]).

From the combined results, we then select the top 200 instances exhibiting the greatest variance in
decoding token count across models. This is a core methodological choice for OckBench. A problem
where all models use a similar number of tokens tells us nothing about efficiency, even if accuracies
differ. By selecting for high variance, we are filtering for the specific instances that force models to
reveal their true reasoning efficiency and best exemplify the accuracy-efficiency trade-offs this paper
investigates. This ensures our benchmark is composed of problems where token count is a decisive
and high-contrast metric.
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4.2 Models and Tasks
The following models were included in the analysis:
¢ Commercial Models: GPT-5 [[16], Gemini 2.5 Pro [17]], GPT-03 [18], Gemini 2.5 Flash [19]],
GPT-4.1 [20], and GPT-40 [21].

* Open-Source Models: AceReason-Nemotron (14B, 7B) [22]], Qwen3-(14B, 8B, 4B, each
with "thinking" and "non-thinking" variants) [23], inclusionAl AReal.-boba-2 (14B, 8B) [24}
25, and NovaSky-AI Sky-T1 (7B, mini) [26]].

OckBench-Math. The first benchmark is evaluated models on the top 200 most challenging problems
from the gsm8k and AIME?24/25 dataset to test their mathematical problem-solving abilities.

Code Generation. The models were also evaluated on a set of 200 variant coding problems from
MBPP dataset to assess their programming and logical reasoning capabilities.

Table 1: Overall Performance Rankings on OckBench-Math. Ranked by Reasoning Efficiency
(#Tokens / Acc). *Sky-T1-7B demonstrates superior performance because

Model Category #Tokens Accuracy (%) Reasoning Efficiency
GPT-40 Commercial 495 35 14.1
GPT-4.1 Commercial 872 59 14.9
Sky-T1-7B Open-Source 556 33 17.1
GPT-5 Commercial 2,336 73 32.2
GPT-03 Commercial 2,347 64 36.8
Gemini-2.5 Flash Commercial 4,777 66 72.6
Gemini-2.5 Pro Commercial 5,198 68 76.2
Qwen3-14B (non-thinking) Open-Source 3,010 33 92.0
Qwen3-4B (non-thinking) Open-Source 3,494 30 118.4
Qwen3-8B (non-thinking) Open-Source 3,692 30 124.1
Nemotron-14B Open-Source 5,540 40 139.4
Sky-T1-mini Open-Source 6,657 33 204.8
Qwen3-14B (thinking) Open-Source 8,190 40 206.0
Nemotron-7B Open-Source 8,895 35 254.2
AReal-boba-2-14B Open-Source 10,439 38 278.4
AReal.-boba-2-8B Open-Source 17,038 37 457.4
Qwen3-8B (thinking) Open-Source 20,440 38 541.5
Qwen3-4B (thinking) Open-Source 24,025 37 649.3

The comprehensive results for mathematical problems are presented in Table[I] The models are
ranked based on their accuracy. The the average decoding token length, which serves as a measure of
verbosity and computational cost.

Table 2] presents the "pass at one" rate, which measures the percentage of problems solved correctly
on the first attempt, alongside the average number of generated tokens.

4.3 Main Result

[Figure 2]illustrates the comparison of accuracy versus decoding token count for models in OckBench,
with a comprehensive comparison shown in Table [Table T} Our experiments shows that there is a
significant reasoning efficiency gap between commercial (closed-source) and open-source models,
details below:

Commercial models demonstrated superior performance, with an average accuracy of 60.8%. GPT-5
achieved the highest accuracy at 73%. Notably, there is a wide variance in token efficiency among
commercial models; while GPT-5 was highly accurate and concise (2,336 tokens), Gemini-2.5
Pro required over two times as many tokens (5,198) to achieve a slightly lower accuracy. GPT-40
stands out as the most token-efficient commercial model, though its accuracy was lower than the top
performers.
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Table 2: Overall Performance Rankings on Top 200 Coding Problems

Model Category #Tokens Accuracy (%) Reasoning Efficiency
GPT-40 Commercial 491 38 12.9
Sky-T1-7B Open-Source 348 23 15.1
GPT-4.1 Commercial 782 47 16.6
GPT-5 Commercial 1,436 75 19.1
Gemini 2.5 Pro Commercial 1,798 77 23.4
Gemini 2.5 Flash Commercial 2,346 60 39.1
GPT-03 Commercial 3,001 71 42.3
Qwen3-4B (non-thinking) Open-Source 1,700 28 60.7
Qwen3-14B (non-thinking)  Open-Source 2,413 35 68.9
Qwen3-8B (non-thinking)  Open-Source 2,098 27 717.7
Nemotron-14B Open-Source 9,840 46 2139
Qwen3-14B (thinking) Open-Source 10,498 48 218.7
Sky-T1-mini Open-Source 5,603 24 233.5
Qwen3-8B (thinking) Open-Source 11,738 41 286.3
Qwen3-4B (thinking) Open-Source 12,563 39 322.1
Nemotron-7B Open-Source 12,895 40 322.4
AReal_-boba-2-14B Open-Source 12,648 32 395.3
AReal.-boba-2-8B Open-Source 14,537 31 468.9

Open-source models had a lower average accuracy of 35.3%. NVIDIA’s AceReason-Nemotron-14B
and Qwen’s Qwen3-14B were the top performer in this category (40% accuracy). A clear trend is
visible where "thinking" variants of the Qwen models, which likely use more extensive chain-of-
thought processing, produced substantially higher token counts compared to their "non-thinking"
counterparts, without a proportional increase in accuracy. The NovaSky-Al Sky-T1-7B model
provided a good balance of performance and efficiency within the open-source group, achieving a
respectable accuracy with a low average token count, comparable to the most efficient commercial
models.

5 Conclusion

In this paper, we introduced OckBench, a unified benchmark that brings reasoning efficiency, mea-
sured via decoding token length alongside accuracy in the evaluation of large language models
(LLMs). Through experiments comparing both open- and closed-source models across mathematics
and coding domains, we found that models with comparable accuracy can differ substantially in
token consumption. For example, among commercial models, one high-accuracy model required
over 4x the tokens of another to reach a slightly lower accuracy. Among open-source models, we
observed that variants optimized for more extensive chain-of-thought reasoning often consumed far
more tokens without proportional accuracy gains. We also find that small models could be inefficient
compared with bigger models given the same reasoning task due to different decoding token length.

These findings highlight that token efficiency is a meaningful axis of differentiation, especially in
deployment contexts where latency, computation, and cost matter. By adopting a metric that is
model- and hardware-agnostic, OckBench provides a reproducible and fair platform for comparing
the accuracy—efficiency trade-off of reasoning models. We hope this benchmark will guide the
community toward designing models that not only get things right, but do so with leaner, more
efficient reasoning. Future work under this framework may explore dynamic reasoning budgets,
early-exit mechanisms, token-pruning strategies, and further evaluation on additional domains and
real-world workloads.
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A Experiments Results and Details

This appendix details the performance analysis of 18 different AI models across two challenging
benchmarks: advanced mathematical reasoning and code generation. The objective was to evaluate
and compare the accuracy, token consumption, and overall efficiency of these models. The models
were categorized into two groups: commercial and open-source.
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