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Abstract

Large language models (LLMs) such as GPT-4, Claude 3, and the Gemini series1

have pushed the frontier of automated reasoning and code generation. Yet, pre-2

vailing benchmarks emphasize accuracy and output quality, neglecting a critical3

dimension: decoding token efficiency. In real systems, the difference between4

generating 10K tokens vs 100K tokens is nontrivial in latency, cost, and energy.5

In our work, we introduce OckBench, the first model-agnostic, hardware-agnostic6

benchmark that jointly measures accuracy and decoding token count for reasoning7

and coding tasks. Through experiments comparing multiple open- and closed-8

source models, we uncover that many models with comparable accuracy differ9

wildly in token consumption, revealing that efficiency variance is a neglected but10

significant axis of differentiation. We further demonstrate Pareto frontiers over the11

accuracy–efficiency plane and argue for an evaluation paradigm shift: we should12

no longer treat tokens as “free” to multiply. OckBench provides a unified platform13

for measuring, comparing, and guiding research in token-efficient reasoning.14

1 Introduction15

“Entities must not be multiplied beyond necessity.”16

— The Principle of Ockham’s Razor17

Large Language Models (LLMs) such as GPT-4, Claude 3, and Gemini have demonstrated remarkable18

capabilities in complex problem-solving, largely attributed to their advanced reasoning abilities.19

Techniques like Chain of Thought (CoT) prompting and self-reflection have become central to this20

success, enabling models to perform step-by-step deductions for tasks requiring deep knowledge21

and logical rigor, such as advanced mathematics and programming challenges. As the industry22

increasingly emphasizes this “long decoding” mode, the computational cost associated with these23

reasoning processes has grown significantly. For instance, public reports indicate that frontier models24

may require over ten hours to solve just six mathematical problems [1], and in coding competitions,25

some difficult problems take models more than two hours to complete [2]. These examples illustrate26

a broader issue: while the community often celebrates model accuracy on challenging tasks, the27

substantial time and computational costs involved in achieving such results receive far less discussion.28

While LLM evaluation and comparison have become increasingly important, most evaluations focus29

primarily on the accuracy but the efficiency of generation is less discussed. For example, HELM [3],30

LM-Eval [4], and the LMSYS Chatbot Arena [5] rank almost mostly on task accuracy. This suggests31

that the number of decoding tokens, a model- and hardware-agnostic metric, plays a major role in32

determining practical efficiency across tasks.33

To address this overlooked dimension of reasoning efficiency, we introduce a new evaluation perspec-34

tive centered on intrinsic token efficiency. Our contributions are summarized as follows:35
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Figure 1: (1a) shows that even similar-sized models can exhibit a 10.7× difference in reasoning time due to
varying decoding token counts. (1b) shows that frontier closed-source models have comparable accuracy but
vary significantly in reasoning efficiency.

• Model-Agnostic Efficiency Metric. We formalize decoding token count as an intrinsic,36

hardware- and system-independent efficiency metric, complementing accuracy to provide a37

more holistic view of model performance and guiding both model design and training.38

• Efficiency-Accuracy Aware Benchmark. We propose OckBench, the first unified bench-39

mark specifically designed to evaluate the efficiency of an LLM’s reasoning process by40

measuring decoding token consumption alongside accuracy.41

• Empirical Efficiency-Accuracy Trade-offs. We conduct experiments across multiple open-42

and closed-source models, illustrating their distribution on an accuracy–efficiency Pareto43

frontier and revealing substantial practical trade-offs.44

2 Toward a Unified Model-Agnostic Reasoning Efficiency Framework45

2.1 Practical Cost of LLMs46

As model sizes scale and real-time serving requirements become ubiquitous, the inference budget47

for large language models (LLMs) has emerged as a critical deployment bottleneck. Each additional48

decoding token incurs non-trivial latency, energy consumption, and monetary cost. Indeed, LLM49

service providers commonly report billing in units of millions of output tokens, highlighting that50

output token generation now dominates operational expenditures [6]. Meanwhile, empirical analysis51

by Epoch AI shows that the response lengths of reasoning-capable models have been growing at52

roughly 5× per year, whereas those of non-reasoning models have grown at around 2.2× per year53

[7]. This divergence underscores that as reasoning capabilities advance, so too does the hidden cost54

of “thinking” in token form.55

2.2 Invisible Inefficiency in Current Optimization and Evaluation56

Most existing efficiency efforts focus on orthogonal components such as weight compression, quan-57

tization, hardware acceleration, or system scheduling [8, 9]. While there are studies on efficient58

reasoning or decoding optimization that aim to reduce generated tokens [10, 11, 12], these approaches59

typically do not provide a unified benchmark that enables fair comparison of reasoning efficiency60

across different models and task domains.61

Meanwhile, mainstream evaluation frameworks primarily emphasize output quality—accuracy, ro-62

bustness, and fairness—while paying less attention to the number of reasoning tokens generated.63

Other efficiency-oriented frameworks (e.g., MLPerf) measure system- or hardware-level perfor-64

mance (throughput, latency, CO2 emissions) [13]. These metrics are informative for deployment65

infrastructure, but they do not directly reveal the intrinsic reasoning efficiency of the model itself.66

To provide clearer guidance for token-efficiency research and to evaluate reasoning efficiency more67

intrinsically, we adopt decoding token count (on a fixed task under a fixed decoding setting) as our68

core efficiency metric. Building on this metric, we present OckBench, the first unified benchmark that69
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Figure 2: Reasoning Efficiency Comparison Among 16 Models.

is accuracy-efficiency aware, model-agnostic, and hardware-agnostic, enabling fair and reproducible70

comparisons of reasoning efficiency across LLMs.71

3 OckBench Benchmark72

3.1 Benchmark Composition73

Our benchmark, OckBench, is structured to test LLMs’ reasoning efficiency across two complemen-74

tary domains: math problems solving and coding skills.75

Mathematics and Reasoning Tasks. We adopt GSM8K[14], AIME24, and AIME25 as core76

reasoning benchmarks. To better expose token-efficiency differences, we select the top 200 questions77

that exhibit high variance in decoding token usage among baseline models.78

Software Engineering Tasks. For the coding domain, we build a lightweight variant of MBPP [15],79

supplemented by 200 carefully curated real-world coding problems using the same criterion as the80

math dataset. These coding tasks cover algorithmic challenges, code transformation, debugging, and81

small-scale project tasks.82

3.2 Question Combination.83

Our decoding token variance based selection balances difficulty diversity and token-variance sensitiv-84

ity. We aim to include questions that are not trivially solved (to avoid floor effects) nor overwhelmingly85

hard (to avoid zero accuracy), while also maximizing the spread in decoding token usage across86

models. This design helps the benchmark emphasize efficiency contrast among models, rather than87

merely ranking by accuracy. This helps to design and evaluate more token efficient and robust models.88

4 Experiments89

4.1 Setup90

We select and evaluate a set of both open- and closed-source models with varying parameter sizes91

(see Model List in subsection 4.2). We gather each model’s decoding token count and accuracy92

on two domains: a mathematics dataset (GSM8K, AIME ’24 and AIME ’25) and a coding dataset93

(MBPP [15]).94

From the combined results, we then select the top 200 instances exhibiting the greatest variance in95

decoding token count across models. This is a core methodological choice for OckBench. A problem96

where all models use a similar number of tokens tells us nothing about efficiency, even if accuracies97

differ. By selecting for high variance, we are filtering for the specific instances that force models to98

reveal their true reasoning efficiency and best exemplify the accuracy-efficiency trade-offs this paper99

investigates. This ensures our benchmark is composed of problems where token count is a decisive100

and high-contrast metric.101
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4.2 Models and Tasks102

The following models were included in the analysis:103

• Commercial Models: GPT-5 [16], Gemini 2.5 Pro [17], GPT-o3 [18], Gemini 2.5 Flash [19],104

GPT-4.1 [20], and GPT-4o [21].105

• Open-Source Models: AceReason-Nemotron (14B, 7B) [22], Qwen3-(14B, 8B, 4B, each106

with "thinking" and "non-thinking" variants) [23], inclusionAI AReaL-boba-2 (14B, 8B) [24,107

25], and NovaSky-AI Sky-T1 (7B, mini) [26].108

OckBench-Math. The first benchmark is evaluated models on the top 200 most challenging problems109

from the gsm8k and AIME24/25 dataset to test their mathematical problem-solving abilities.110

Code Generation. The models were also evaluated on a set of 200 variant coding problems from111

MBPP dataset to assess their programming and logical reasoning capabilities.112

Table 1: Overall Performance Rankings on OckBench-Math. Ranked by Reasoning Efficiency
(#Tokens / Acc). *Sky-T1-7B demonstrates superior performance because

Model Category #Tokens Accuracy (%) Reasoning Efficiency
GPT-4o Commercial 495 35 14.1
GPT-4.1 Commercial 872 59 14.9
Sky-T1-7B Open-Source 556 33 17.1
GPT-5 Commercial 2,336 73 32.2
GPT-o3 Commercial 2,347 64 36.8
Gemini-2.5 Flash Commercial 4,777 66 72.6
Gemini-2.5 Pro Commercial 5,198 68 76.2
Qwen3-14B (non-thinking) Open-Source 3,010 33 92.0
Qwen3-4B (non-thinking) Open-Source 3,494 30 118.4
Qwen3-8B (non-thinking) Open-Source 3,692 30 124.1
Nemotron-14B Open-Source 5,540 40 139.4
Sky-T1-mini Open-Source 6,657 33 204.8
Qwen3-14B (thinking) Open-Source 8,190 40 206.0
Nemotron-7B Open-Source 8,895 35 254.2
AReaL-boba-2-14B Open-Source 10,439 38 278.4
AReaL-boba-2-8B Open-Source 17,038 37 457.4
Qwen3-8B (thinking) Open-Source 20,440 38 541.5
Qwen3-4B (thinking) Open-Source 24,025 37 649.3

The comprehensive results for mathematical problems are presented in Table 1. The models are113

ranked based on their accuracy. The the average decoding token length, which serves as a measure of114

verbosity and computational cost.115

Table 2 presents the "pass at one" rate, which measures the percentage of problems solved correctly116

on the first attempt, alongside the average number of generated tokens.117

4.3 Main Result118

Figure 2 illustrates the comparison of accuracy versus decoding token count for models in OckBench,119

with a comprehensive comparison shown in Table Table 1. Our experiments shows that there is a120

significant reasoning efficiency gap between commercial (closed-source) and open-source models,121

details below:122

Commercial models demonstrated superior performance, with an average accuracy of 60.8%. GPT-5123

achieved the highest accuracy at 73%. Notably, there is a wide variance in token efficiency among124

commercial models; while GPT-5 was highly accurate and concise (2,336 tokens), Gemini-2.5125

Pro required over two times as many tokens (5,198) to achieve a slightly lower accuracy. GPT-4o126

stands out as the most token-efficient commercial model, though its accuracy was lower than the top127

performers.128
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Table 2: Overall Performance Rankings on Top 200 Coding Problems
Model Category #Tokens Accuracy (%) Reasoning Efficiency
GPT-4o Commercial 491 38 12.9
Sky-T1-7B Open-Source 348 23 15.1
GPT-4.1 Commercial 782 47 16.6
GPT-5 Commercial 1,436 75 19.1
Gemini 2.5 Pro Commercial 1,798 77 23.4
Gemini 2.5 Flash Commercial 2,346 60 39.1
GPT-o3 Commercial 3,001 71 42.3
Qwen3-4B (non-thinking) Open-Source 1,700 28 60.7
Qwen3-14B (non-thinking) Open-Source 2,413 35 68.9
Qwen3-8B (non-thinking) Open-Source 2,098 27 77.7
Nemotron-14B Open-Source 9,840 46 213.9
Qwen3-14B (thinking) Open-Source 10,498 48 218.7
Sky-T1-mini Open-Source 5,603 24 233.5
Qwen3-8B (thinking) Open-Source 11,738 41 286.3
Qwen3-4B (thinking) Open-Source 12,563 39 322.1
Nemotron-7B Open-Source 12,895 40 322.4
AReaL-boba-2-14B Open-Source 12,648 32 395.3
AReaL-boba-2-8B Open-Source 14,537 31 468.9

Open-source models had a lower average accuracy of 35.3%. NVIDIA’s AceReason-Nemotron-14B129

and Qwen’s Qwen3-14B were the top performer in this category (40% accuracy). A clear trend is130

visible where "thinking" variants of the Qwen models, which likely use more extensive chain-of-131

thought processing, produced substantially higher token counts compared to their "non-thinking"132

counterparts, without a proportional increase in accuracy. The NovaSky-AI Sky-T1-7B model133

provided a good balance of performance and efficiency within the open-source group, achieving a134

respectable accuracy with a low average token count, comparable to the most efficient commercial135

models.136

5 Conclusion137

In this paper, we introduced OckBench, a unified benchmark that brings reasoning efficiency, mea-138

sured via decoding token length alongside accuracy in the evaluation of large language models139

(LLMs). Through experiments comparing both open- and closed-source models across mathematics140

and coding domains, we found that models with comparable accuracy can differ substantially in141

token consumption. For example, among commercial models, one high-accuracy model required142

over 4× the tokens of another to reach a slightly lower accuracy. Among open-source models, we143

observed that variants optimized for more extensive chain-of-thought reasoning often consumed far144

more tokens without proportional accuracy gains. We also find that small models could be inefficient145

compared with bigger models given the same reasoning task due to different decoding token length.146

These findings highlight that token efficiency is a meaningful axis of differentiation, especially in147

deployment contexts where latency, computation, and cost matter. By adopting a metric that is148

model- and hardware-agnostic, OckBench provides a reproducible and fair platform for comparing149

the accuracy–efficiency trade-off of reasoning models. We hope this benchmark will guide the150

community toward designing models that not only get things right, but do so with leaner, more151

efficient reasoning. Future work under this framework may explore dynamic reasoning budgets,152

early-exit mechanisms, token-pruning strategies, and further evaluation on additional domains and153

real-world workloads.154
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A Experiments Results and Details232

This appendix details the performance analysis of 18 different AI models across two challenging233

benchmarks: advanced mathematical reasoning and code generation. The objective was to evaluate234

and compare the accuracy, token consumption, and overall efficiency of these models. The models235

were categorized into two groups: commercial and open-source.236
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