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Figure 1. Generative Blocks World. Given an input image (bottom left), we extract a set of 3D convex primitives (top left) that provide
an editable and controllable representation of the scene. These primitives are used to generate new images that respect geometry, texture,
and the text prompt. The first column shows the original input and its primitive decomposition. Subsequent columns show sequential edits:
translating the cat to the left (second column), translating it to the right (third column), moving the yarn in front of the cat and shifting
the camera toward the scene center (fourth column), and scaling up the cat’s head (burgundy primitive; fifth column). Our method enables
semantically meaningful, 3D-aware image editing through intuitive manipulation of these learned primitives.

Abstract

We describe Generative Blocks World to interact with the001

scene of a generated image by manipulating simple geo-002

metric abstractions. Our method represents scenes as as-003

semblies of convex 3D primitives, and the same scene can004

be represented by different numbers of primitives, allow-005

ing an editor to move either whole structures or small de-006

tails. Once the scene geometry has been edited, the im-007

age is generated by a flow-based method which is condi-008

tioned on depth and a texture hint. Our texture hint takes009

into account the modified 3D primitives, exceeding texture-010

consistency provided by existing techniques. These texture011

hints (a) allow accurate object and camera moves and (b)012

preserve the identity of objects. Our experiments demon-013

strate that our approach outperforms prior works in visual014

fidelity, editability, and compositional generalization.015

1. Introduction 016

Modern large generative models can generate realistic- 017

looking images from minimal input, but they offer lim- 018

ited control. Recent works have shown that intrinsic scene 019

properties essential for rendering—such as normals, depth, 020

albedo, and illumination—emerge within the learned repre- 021

sentations of these large generative models [3, 4, 12, 52]. 022

Yet despite these emergent capabilities, modifying geom- 023

etry, lighting, or viewpoint often disrupts appearance or 024

object identity. Traditional rendering systems offer pre- 025

cise control through explicit geometric representations and 026

physically based shading models but require extensive au- 027

thoring effort and technical expertise. 028

Our goal is to bring the control of traditional rendering to 029

modern generative models without the overhead of explicit 030

modeling. The system described here enables an author to 031

modify the camera viewpoint of a scene while preserving its 032
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content, and to relocate objects or parts while maintaining033

their high-fidelity appearance (see Fig. 1). Achieving this,034

however, requires addressing two fundamental challenges035

in view synthesis and editing.036

At a high level, these operations should be simple. For037

many pixels, accurate camera moves are easy: acquire an038

accurate depth map, project texture onto that map, then re-039

project into the new camera. Similarly, moving objects or040

parts is conceptually straightforward: project texture onto041

the depth map, adjust the depth map, then reproject. But042

this idealized pipeline breaks down in practice due to two043

key obstacles: (i) many target pixels are not visible in the044

source view, so texture must be extrapolated; and (ii) edit-045

ing depth maps directly is very difficult and unintuitive.046

To address these challenges, we propose representing047

scenes as small assemblies of meaningful parts or primi-048

tives. This idea has deep roots. Roberts’ Blocks World [40]049

viewed simple scenes as a handful of cuboids. Bieder-050

man [6] suggested that humans recognize and reason about051

objects as compositions of primitive parts. For our pur-052

poses, such assemblies must approximate the scene’s depth053

map well enough to enable view-consistent texture projec-054

tion. Primitive decompositions have been widely studied055

in computer vision for recognition, parsing, and reconstruc-056

tion [17, 20–22, 32, 46, 47], but their application to content057

generation has been limited. Moreover, reliable primitive058

fitting is a very recent phenomenon [47, 49]. Our work ex-059

ploits these advances to control modern generative models,060

enabling precise, structured, and editable image synthesis.061

We represent scenes using convex geometric primitives062

and use them to control image synthesis, allowing edits063

such as camera moves, object moves, and detail adjust-064

ments, while maintaining structure and appearance. As065

a nod to computer vision history, we call our framework066

Generative Blocks World, though our learned primitives067

are richer than cuboids. Generative Blocks World decom-068

poses an input image into a sparse set of convex poly-069

topes using an extension of a recent convex-decomposition070

procedure [11, 47]. These convex primitives provide suf-071

ficient geometric accuracy to enable view-consistent tex-072

ture projection. A final rendering using a pretrained depth-073

conditioned Flux DiT [28] preserves textures that should074

be known and inpaints missing textures. Our primitives075

are accurate enough that we don’t need to train the genera-076

tive depth-to-image model on the particular statistics of our077

primitives.078

Good primitive decompositions have very attractive079

properties. They are selectable: individual primitives can080

be intuitively selected and manipulated (see Fig. 1). They081

are object-linked: a segmentation by primitives is close to a082

segmentation by objects, meaning an editor is often able to083

move an object or part by moving a primitive (Fig. 1; Fig. 3;084

Fig. 4). They are accurate: the depth map from a properly085

constructed primitive representation can be very close to the 086

original depth map (Sec. 3.1), which means primitives can 087

be used to build texture hints (Section 3.2) that support ac- 088

curate camera moves (Fig. 2; Fig. 5). They have variable 089

scale: one can represent the same scene with different num- 090

bers of primitives, allowing an editor to adjust big or small 091

effects (Fig. 7; Fig. 8; Fig. 12). 092

Contributions. 093

• We describe a pipeline that fuses convex primitive ab- 094

straction with a SOTA flow-based generator, FLUX. Our 095

pipeline uses a natural texture-hint procedure that sup- 096

ports accurate camera moves and edits at the object-level, 097

while preserving identity. 098

• We provide extensive evaluation demonstrating superior 099

geometric control, texture retention, and edit flexibility 100

relative to recent state-of-the-art baselines. 101

2. Related Work 102

Primitive Decomposition. Early vision and graphics pur- 103

sued parsimonious part-based descriptions, from Roberts’ 104

Blocks World [40] and Binford’s generalized cylinders [7] 105

to Biederman’s geons [6]. Efforts to apply similar rea- 106

soning to real-world imagery have been periodically re- 107

visited [5, 20, 32] from various contexts and applications. 108

Modern neural models revive this idea: BSP-Net [8], CSG- 109

Net [42], and CVXNet [11] represent shapes as unions of 110

convex polytopes, while Neural Parts [46], SPD [58], and 111

subsequent works [30] learn adaptive primitive sets. Re- 112

cent systems extend from objects to scenes: Convex De- 113

composition of Indoor Scenes (CDIS) [47] and its ensem- 114

bling/Boolean refinement [49] fit CVXNet-like polytopes 115

to RGB-D images, using a hybrid strategy. CubeDiff [25] 116

fits panoramas inside cuboids. Our work leverages CDIS 117

as the backbone, but (i) improves robustness to in-the-wild 118

depth/pose noise and (ii) couples the primitives to a Rec- 119

tified Flow (RF) renderer, enabling controllable synthesis 120

rather than analysis alone. 121

Conditioned Image Synthesis. Conditional generative 122

networks such as Pix2Pix [23], CycleGAN [57], and 123

SPADE [37] pioneered layout-to-image translation. Dif- 124

fusion models now dominate; seminal works include Sta- 125

ble Diffusion [41], ControlNet [55], and T2I-Adapter [34]. 126

Subsequent work has shown that multiple spatial controls 127

can be composed for restoring images [48], and recent 128

methods can exert local and global color edits [50]. In this 129

work, we use a pretrained depth-conditional FLUX model 130

using depth maps derived from primitives. 131

Point-Based Interactive Manipulation. Point-based 132

manipulation offers direct, intuitive control over 2D image 133
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attributes. DragGAN [35] allows users to deform an134

object’s pose or shape by dragging handle points on a135

2D generative manifold. This concept was subsequently136

adapted to more general diffusion models by methods137

like DragDiffusion [43], DragonDiffusion [33], Stable-138

Drag [10], DiffusionHandles [36], and Dragin3D [19],139

which improved robustness, controllability, and fidelity.140

Diffusion Self-Guidance can exert layout control and141

perform object-level edits [14]. However, these methods142

fundamentally operate by deforming pixels or lack a true143

understanding of 3D scene structure. They can perform144

in-place pose/shape edits and even simple translations but145

struggle to perform 3D-consistent manipulations, such as146

moving objects within a scene or moving the camera while147

respecting perspective, occlusion, and texture. In contrast,148

we show promising results in such scenarios and offer149

flexible control of primitives, providing both fine-grained150

control when using a large number of primitives and151

coarse, object-level control when using a smaller number152

of primitives.153

Object-Level and Scene-Level Editing. Many recent154

works embed 3D priors into generative editing but focus155

on single objects: StyleNeRF [18], SJC [51], DreamFu-156

sion [38], Make-A-Dream [45], and 3D-Fixup [9]. Meth-157

ods like Obj3DiT [31] use language to guide transforma-158

tions (e.g., rotation, translation) by fine-tuning a model159

on a large-scale synthetic dataset. In contrast, Generative160

Blocks World generalizes to complex editing tasks that are161

not easy to describe precisely in text form. An alternative162

paradigm, seen in Image Sculpting [54] and OMG3D [56],163

offers precise control by first reconstructing a 2D object164

into an explicit 3D mesh, which is then manipulated and165

re-rendered using generative models. While offering high166

precision, these multi-stage pipelines can be complex and167

are often bottlenecked by the initial reconstruction quality.168

Our method provides a more streamlined approach by op-169

erating on abstract primitives, avoiding the complexities of170

direct mesh manipulation while still providing strong geo-171

metric control.172

Primitive-Based Scene Authoring. Recently, LooseCon-173

trol [2] showed how to train LoRA weights on top of a pre-174

trained Depth ControlNet, enabling box-like primitive con-175

trol of image synthesis. The LoRA weights bridge the do-176

main gap between box-like primitive depth maps and stan-177

dard depth maps as one might obtain from, e.g., DepthAny-178

thing [53]. In contrast, this paper demonstrates primitive179

fits that do not require fine-tuning diffusion models because180

the underlying primitive representation is highly accurate.181

We similarly adopt a depth-to-image generator, but our con-182

ditioning signal is structured geometry—a set of editable183

primitives rather than dense maps—yielding stronger se-184

mantic correspondence and causal behavior. More recently, 185

Build-A-Scene [13] uses the same primitive generator and 186

image synthesizer as LooseControl; thus, it suffers from the 187

same problems in depth accuracy. Generative Blocks World 188

differs by (i) decomposing each object into a handful of con- 189

vex polytopes, giving finer yet still abstract control; (ii) sup- 190

porting camera moves; and (iii) allowing new scenes to be 191

authored via primitive assembly. 192

3. Method 193

Generative Blocks World generates realistic images condi- 194

tioned on a parsimonious and editable geometric represen- 195

tation of a scene: a set of convex primitives. The process 196

consists of four main stages: (i) primitive extraction from 197

any image via convex decomposition (Sec. 3.1), (ii) gen- 198

erating an image conditioned on the primitives (and text 199

prompt), (iii) user edits the primitives and/or camera, and 200

(iv) generates a new image conditioned on the updated 201

primitives, while preserving texture from the source image 202

(Sec. 3.3). We describe each component in detail below. 203

See Fig. 2 for an overview. 204

3.1. Convex Decomposition for Primitive Extraction 205

Our primitive vocabulary is blended 3D convex polytopes 206

as described in [11]. CVXnet represents the union of con- 207

vex polytopes using indicator functions O(x) ! [0, 1] that 208

identify whether a query point x 2 R3 is inside or outside 209

the shape. Each convex polytope is defined by a collection 210

of half-planes. 211

A half-plane Hh(x) = nh · x + dh provides the signed 212

distance from point x to the h-th plane, where nh is the 213

normal vector and dh is the offset parameter. 214

While the signed distance function (SDF) of any convex 215

object can be computed as the maximum of the SDFs of its 216

constituent planes, CVXnet uses a differentiable approxi- 217

mation. To facilitate gradient learning, instead of the hard 218

maximum, the smooth LogSumExp function is employed to 219

define the approximate SDF, �(x): 220

�(x) = LogSumExp{�Hh(x)}

The signed distance function is then converted to an in- 221

dicator function C : R3
! [0, 1] using: 222

C(x|�) = Sigmoid(���(x))

The collection of hyperplane parameters for a primitive 223

is denoted as h = {(nh, dh)}, and the overall set of param- 224

eters for a convex as � = [h,�]. While � is treated as a hy- 225

perparameter, the remaining parameters are learnable. The 226

parameter � controls the smoothness of the generated con- 227

vex polytope, while � controls the sharpness of the indicator 228

function transition. The soft classification boundary created 229
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Figure 2. Pipeline Overview. Top left: We use pretrained convex decomposition models [49] to extract primitives from an input image
at multiple scales. Bottom: Users can manipulate these primitives and the camera to define a new scene layout. We render the modified
primitives into a depth map and generate a texture hint image. These serve as inputs to a pretrained depth-to-image model [28], which
requires no fine-tuning (Top right). The resulting image respects the modified geometry, preserves texture where possible, and remains
aligned with the text prompt.

by the sigmoid function facilitates training through differ-230

entiable optimization. The neural architecture of our primi-231

tives model is the standard ResNet-18 Encoder E✓ followed232

by 3 fully-connected layers that decode into the parame-233

ters of the primitives D✓. While the model is lightweight,234

the SOTA of primitive prediction requires a different trained235

model for each primitive count K.236

Recent work has adapted primitive decomposition to real237

scenes (as opposed to isolated objects, such as those in238

ShapeNet [47]). These methods combine neural predic-239

tion with post-training refinement: an encoder-decoder net-240

work predicts an initial set of convex polytopes, which is241

followed by gradient-based optimization to align the prim-242

itives closely to observed geometry. This approach is vi-243

able because the primary supervision for primitive fitting is244

a depth map (with heuristics that create 3D samples, and245

auxiliary losses to avoid degenerate solutions). Note that246

ground truth primitive parameters are not available (as they247

could be in many other computer vision settings e.g., seg-248

mentation [26]). This is why the losses encourage the prim-249

itives to classify points near the depth map boundary cor-250

rectly instead of directly predicting the parameters.251

Rendering the primitives. We condition the RF model252

on the primitive representation via a depth map, obtained253

by ray-marching the SDF from the original viewpoint of the254

scene. Depth conditioning abstracts away potential ‘chatter‘255

in the primitive representation from e.g. over-segmentation,256

while simultaneously yielding flexibility in fine details257

(depth maps typically lack pixel-level high-frequency de- 258

tails). Depth-conditioned image synthesis models are well- 259

established e.g. [55]. Because it’s hard to edit a depth 260

map, but easy to edit 3D primitives, our work adds a new 261

level of control to the existing image synthesis models. As 262

we establish quantitatively in Table 2, our primitive gener- 263

ator is extremely accurate, and our evaluations show that 264

we get very tight control over the synthesized image via our 265

primitives. This means that whatever domain gap there is 266

between depth from primitives and depth from SOTA depth 267

estimation networks is not significant. 268

Scaling to in-the-wild scenes. We collect 1.8M images 269

from LAION to train our primitive prediction models. To 270

obtain ground truth depth supervision, we use DepthAny- 271

thingv2 [53]. To lift a depth map D 2 RH⇥W to a 3D point 272

cloud using the pinhole camera model, each pixel (u, v) 273

with depth du,v maps to a 3D point (X,Y, Z) as: 274

X =
(u� cx) · du,v

fx
, Y =

(v � cy) · du,v
fy

, Z = du,v 275

where (cx, cy) is the principal point (typically 276

W/2, H/2), and (fx, fy) are the focal lengths along 277

the image axes. DepthAnythingv2 supplies a metric depth 278

module with reasonable camera calibration parameters. 279

These 3D samples are required to supervise primitive 280

fitting. In fact, at test-time, we can directly optimize 281

primitive parameters using the training losses since these 282

3D samples are available. 283
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Primitive fitting details. We use the standard ResNet-284

18 encoder (accepting RGBD input) followed by 3 fully-285

connected layers to predict the parameters of the primi-286

tives. We train different networks for different primitive287

counts K 2 {4, 6, 8, 10, 12, 24, 36, 48, 60, 72}, and allow288

the user to select their desired level of abstraction. Alter-289

natively, the ensembling method of [49] can automatically290

select the appropriate number of primitives. Depending on291

the primitive count, the training process takes between 40-292

100 mins on a single A40 GPU, and inference (including293

generating the initial primitive prediction, refinement, and294

rendering) can take 1-3 seconds per image. While tradi-295

tional primitive-fitting to RGB images fits cuboids [27], we296

find that polytopes with more faces and without symmetry297

constraints yield more accurate fits. Thus, we use F = 12298

face polytopes. We do not use a Manhattan World loss or299

Segmentation loss; the former helped on NYUv2 [44] but300

not on in-the-wild LAION images and the latter showed an301

approximately neutral effect in the original paper [47].302

3.2. Depth-Conditioned Inpainting in Rectified303

Flow Transformers304

Here, we describe our image synthesis pipeline. We build305

upon the SOTA FLUX, a rectified flow model [15, 28].306

Forward Noising Process. In the forward process, a307

clean latent representation x0 (derived from an input image308

via a variational autoencoder, VAE) is progressively noised309

over T timesteps to produce a sequence x1,x2, . . . ,xT .310

The noise schedule is defined by sigmas �t, typically lin-311

early interpolated from 1.0 to 1
T

. The forward process is312

governed by:313

xt =
q

1� �2
t
x0 + �t✏, ✏ ⇠ N (0, I),314

where �t controls the noise level, and ✏ is Gaussian noise.315

For conditional inputs like a depth map, the control image316

is encoded into latents via the VAE and concatenated with317

the noisy latents xt during the reverse process.318

Adding Spatial Conditions. Older ControlNet imple-319

mentations [55] train an auxiliary encoder that adds infor-320

mation to decoder layers of a base frozen U-Net. Newer321

implementations, including models supplied by the Black322

Forest Labs developers, concatenate the latent xt and con-323

dition (e.g., depth map) c as an input to the network, yield-324

ing tighter control. FLUX.1 Depth [dev] re-trains the325

RF model with the added conditioning; FLUX.1 Depth326

[dev] LoRA trains LoRA layers on top of a frozen base327

RF model. Both options give tight control and work well328

with our primitives, though LoRA exposes an added pa-329

rameter loraweight 2 [0, 1] tuning how tightly the depth330

map should influence synthesis. This is helpful when the331

primitive abstraction is too coarse relative to the geometric332

complexity of the desired scene.333

Reverse Diffusion Process. The reverse process starts 334

from a noisy latent xT ⇠ N (0, I) and iteratively denoises 335

to approximate x0. The DiT-RF model uses a transformer 336

architecture with: Double-stream layers: process image to- 337

kens (noisy latents and control image latents) and text to- 338

kens (prompt embeddings) separately with cross-attention. 339

Single-stream layers: jointly process all tokens to capture 340

interactions. The model predicts noise ✏✓(xt, t, c,p), where 341

c is the control image and p includes text embeddings and 342

pooled projections. The scheduler updates the latents: 343

xt�1 = SchedulerStep(xt, t, ✏✓), 344

using RF techniques to optimize the denoising trajectory. 345

Role of Hint and Mask. A core contribution of this 346

work is an algorithm to generate a “hint” image to initialize 347

the image generation process, as well as a confidence mask 348

(see Sec 3.3). The hint and mask influence the generation 349

within timesteps tend  t  tstart, which are hyperparame- 350

ters. The mask m 2 [0, 1] specifies regions where the hint 351

should guide the output. The hint is encoded into latents 352

xhint via the VAE. During denoising, the latents are updated 353

as: 354

xt = (1�m) · xhint,t +m · xt, 355

where xhint,t is the noised hint latent at timestep t: 356

xhint,t = SchedulerScaleNoise(xhint, t, ✏). 357

Thus, the hint image is noised to match the current 358

timestep’s noise level before incorporation, ensuring con- 359

sistency with the denoising process. Outside [tend, tstart], the 360

hint and mask are ignored. 361

3.3. Texture Hint Generation for Camera and Ob- 362

ject Edits 363

A number of methods have been proposed to preserve tex- 364

ture/object identity upon editing an image. A common and 365

simple technique is to copy the keys and values from a style 366

image into the newly generated image (dubbed “style pre- 367

serving edits”). For older U-Net-based systems, this is done 368

in the bottleneck layers [2]. For newer DiTs, this is done at 369

selected “vital” layers [1]. In our testing, key-value copying 370

methods are insufficient for camera/primitive moves (see 371

Fig. 6). Further, because of our primitives, we have a ge- 372

ometric representation of the scene. Here we demonstrate 373

a routine to obtain a source “hint” image xhint as well as a 374

confidence mask m that can be incorporated in the diffusion 375

process. The hint image is a rough approximation of what 376

the synthesized image should look like using known spatial 377

correspondences between primitives in the first view and 378

the second. The confidence mask indicates where we can 379

and cannot trust the hint, commonly occurring near depth 380

discontinuities. We rely on the diffusion machinery to es- 381

sentially clean up the hint, filling gaps and refining blurry 382
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Figure 3. Editable Primitives as a Structured Depth Prior for Generative Models. Our method uses 3D convex primitives as an
editable intermediate representation from which depth maps are derived. These depth maps (shown as insets in the top row) are used to
condition a pretrained depth-to-image generative model. The top row shows primitive configurations after sequential edits—translation,
scaling, deletion, and camera motion—alongside their corresponding derived depth maps. The bottom row shows the resulting synthesized
images. Unlike direct depth editing, which is unintuitive and underconstrained, manipulating primitives offers a structured, interpretable,
and geometry-aware interface for controllable image generation.

OursDrag Diffusion Move primitivesDrag pointsSource image Source primitives

Figure 4. Comparison with Drag Diffusion [43]. Given a scene (first column), we attempt to reposition objects using a recent point-based
image editing method by drawing drag handles (second column). However, drag points are ambiguous: it is unclear whether the intended
operation is translation or scaling. As a result, the output lacks geometric consistency (third column). E.g., the clock changes shape, and
pushing it deeper into the scene fails to reduce its size appropriately; fine details on the can are lost. In contrast, Generative Blocks World
infers 3D primitives (fourth column) that can be explicitly manipulated (fifth column), producing a plausible image that respects object
geometry, scale, positioning, and texture (last column).

projected textures so it looks like a real image. The result383

of our process is an image that respects the text prompt,384

source texture, and newly edited primitives/camera.385

Creating point cloud correspondences We develop a386

method that accepts point clouds at the ray-primitive inter-387

section points, a convex map integer array indicating which388

primitive was hit at each pixel, a list of per-primitive trans-389

forms (such as scale, rotate, translate), and a hyperparam-390

eter max distance for discarding correspondences. This391

procedure robustly handles camera moves because the in-392

put point clouds are representations of the same scene.393

Creating a texture hint Given a correspondence map of394

each 3D point in the new view relative to the original view,395

we can apply this correspondence to generate a hint image396

that essentially projects pixels in the old view onto the new 397

view. This is the xhint supplied to the image generation 398

model, taking into account both camera moves and primi- 399

tive edits like rotation, translation, and scaling. The point 400

cloud correspondence ensures that if a primitive moves, its 401

texture moves with it. In practice, this hint is essential for 402

good texture preservation (see Fig. 6). Correspondence and 403

hint generation take about 1-2 seconds per image; 30 de- 404

noising steps of FLUX at 512 resolution take about 3 sec- 405

onds on an H100 GPU. 406

3.4. Evaluation 407

We seek error metrics to establish (1) geometric consistency 408

between the primitives requested vs. the image that was 409
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Figure 5. Comparison with LooseControl [2]. Camera moves present serious problems for existing work. Four scenes (left side of each
pair), synthesized from the depth maps shown. In each case, the camera is moved to the right (right side of each pair), and the image is
resynthesized. Note how, for LooseControl, the number of apples changes (first pair); the level of water in the glass changes and there is
an extra ice cube (second pair); the duck changes (third pair); an extra rock appears (fourth pair). In each case, our method shows the same
scene from a different view, because the texture hint image is derived from the underlying geometry, and strongly constrains any change.

synthesized and (2) texture consistency between the source410

and edited image. For (1) we compute the AbsRel between411

the depth map supplied to the depth-to-image model (ob-412

tained by rendering the primitives) and the estimated depth413

of the synthesized image (we use the hypersim metric depth414

module from [53] to get linear depth). Consistent with stan-415

dard practice in depth estimation, we use least squares to fit416

scale and shift parameters onto the depth from RGB (letting417

the primitive depth supplied to the DM be GT).418

To evaluate texture consistency, we apply ideas from the419

novel view synthesis literature and our existing point cloud420

correspondence pipeline. Given the source RGB image421

and the synthesized RGB image (conditioned on the texture422

hint), we warp the second image back into the first image’s423

frame using our point cloud correspondence algorithm. If424

we were to synthesize an image in the first render’s view-425

point using the second render, this is the texture hint we426

would use. In error metric calculation, the first RGB image427

is considered ground truth, the warped RGB image from428

the edited synthesized image is the prediction, and the con-429

fidence mask filters out pixels that are not visible in view430

1, given view 2. This evaluation procedure falls in the cat-431

egory of cycle consistency/photometric losses that estimate432

reprojection error [16, 24, 29, 39].433

3.5. Hyperparameter selection 434

There are a number of hyperparameters associated with 435

our procedure, and we perform a grid search on a held- 436

out validation set to find the best ones. When gener- 437

ating correspondence maps between point clouds, we let 438

max distance= 0.005. In our confidence map, we di- 439

late low-confidence pixels with a score less than ⌧ = 0.01 440

by 9 pixels, which tells the image model to synthesize new 441

texture near primitive boundaries that are often uncertain. 442

We set (tstart, tend) to (1000, 500) by default, though tend 443

can be tuned per test image by the user. Applying the hint 444

for all time steps can reduce blending quality near primi- 445

tive boundaries; not applying the hint for enough time steps 446

could weaken texture consistency. Allowing some time 447

steps to not follow the hint enables desirable super reso- 448

lution behavior e.g. when bringing a primitive closer to the 449

camera. See supplementary for detailed algorithms for cre- 450

ating the hint and confidence mask. 451

Inpainting the hint After warping the source image to 452

the new view, we inpaint low-confidence regions of the 453

hint xhint before supplying it to the image model. We 454

considered several possibilities, including cv2 telea and 455

cv2 ns from the OpenCV package, as well as simply leav- 456

ing them as black pixels. We find that Voronoi inpaint- 457

ing, a variation of nearest neighbor inpainting, worked well. 458

The voronoi inpainting function performs image in- 459

7
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Method AbsRelsrc # AbsReldst # PSNR " SSIM "

Ours 0.072 0.076 18.7 0.874
LooseControl [2] 0.143 0.146 6.65 0.670

Table 1. Comparison of image reconstruction and generation
metrics between our method and LooseControl. AbsRelsrc and
AbsReldst are absolute relative errors evaluating how well the gen-
erated images adhere to the requested primitive geometry (source
and modified, respectively). PSNR and SSIM are evaluated by re-
projecting the second synthesized image back to the original cam-
era viewpoint (see Sec 3.4 and measuring texture consistency with
the source. Observe how our procedure simultaneously offers tight
geometric adherence to the primitives while preserving the source
texture. Results obtained by averaging 48 test images with random
camera moves. Because [2] does not offer primitive extraction
code, we supply our own primitives to both methods for evalua-
tion. We use K = 10 parts for this evaluation.

painting by filling in regions of low confidence in a hint im-460

age using colors from nearby high-confidence pixels, based461

on a Voronoi diagram approach.462

This process leverages a KD-tree for efficient nearest-463

neighbor searches, ensuring that each pixel adopts the color464

of the closest reliable pixel, thus preserving color consis-465

tency in the inpainted result.466

For FLUX image generation we begin with the de-467

fault settings from the diffusers FLUX controlled inpainting468

pipeline 1. We set the strength parameter (controlling469

starting noise strength) to 1.0 and guidance to 10. We470

use 30 num steps for denoising. In comparative evalua-471

tion, we use the default settings from the authors.472

4. Results473

In Fig. 4, we show how users can manipulate depth map474

inputs to depth-to-image synthesizers with our primitive475

abstractions. We can use these primitives to edit images,476

as shown in Fig. 5. Notice how we can get precise con-477

trol over the synthesized geometry while respecting tex-478

ture, which existing methods struggle to do. We quanti-479

tatively evaluate this property in Table 1, demonstrating we480

hit both goals conclusively. Existing texture preservation481

methods for multi-frame consistency typically rely on key-482

value transfer from one image to another. This, unfortu-483

nately, does not preserve details very well, only high-level484

semantics and style. We ablate the advantage of our texture485

preservation approach in Fig. 6. When there are few prim-486

itives, moving one primitive affects a big part of the scene;487

when there are a lot of primitives, we can make fine-scale488

edits. We show several such examples in Figs. 7, 8.489

1https://huggingface.co/docs/diffusers/en/api/
pipelines/control_flux_inpaint

5. Discussion 490

This work demonstrates that we can utilize 3D primitives 491

to achieve precise geometric control over image generation 492

model outputs, and even preserve high-level textures more 493

effectively than existing methods that rely on key-value 494

transfer. A central reason this works is that good primi- 495

tive decompositions offer several useful properties: they are 496

selectable, allowing intuitive manipulation of scene com- 497

ponents; they are object-linked, with boundaries that often 498

correspond to semantic parts; they are scalable, enabling 499

both coarse and fine-grained edits (with fewer and higher 500

source primitive counts); and they are accurate enough to 501

yield depth maps that support high-quality texture projec- 502

tion. Moreover, our pipeline is designed to be user-friendly: 503

since our primitive decomposition is fast, users can easily 504

choose between coarse and fine control by adjusting the 505

number of primitives, and seamlessly switch between de- 506

compositions to suit the editing task and scene context. 507

We believe we have unlocked new interactive controls 508

for image synthesis with our Generative Blocks World. 509

While our method handles problems near primitive bound- 510

aries robustly, objects with holes that are not tightly mod- 511

eled by the primitives (e.g., underneath a chair or a cof- 512

fee mug handle) are challenging in our current formula- 513

tion; additional segmentation and masking would be re- 514

quired (or simply using more primitives). Depth-of-field 515

blurring/bokeh may not get resolved or sharpened when 516

bringing out-of-focus objects into focus. Significant object 517

rotations may also fail (see Fig. 10). In an interactive work- 518

flow, manually expanding the confidence mask to include 519

problematic regions e.g., unwanted reflections that don’t 520

move with a primitive, can fix some issues. Future work 521

that applies our point correspondences within the network 522

layers themselves (e.g., in vital layers) may yield more ro- 523

bust solutions. Our method does not yet account for view- 524

dependent lighting effects and does not enforce temporal 525

consistency across frames for video synthesis. 526

Our results focus on editing generated images. While 527

we can extract texture hints from real images, our experi- 528

ments show that edited images should start from the same 529

noise tensor and prompt as the source image to achieve good 530

results. Therefore, good image inverters that work with 531

depth-conditioned diffusion transformers are needed. Ad- 532

ditionally, certain extreme edits that are at odds with the 533

text prompt are likely to cause problems (e.g., if the prompt 534

mentions an object is on the right, but a user manipulates the 535

primitives to move the object to the left). Changing the text 536

prompt could work in some circumstances (Fig. 9), or the 537

DiT will inpaint missing regions with content that doesn’t 538

harmonize well with the rest of the image. This is due to 539

the delicate link between the text prompt, hint image, initial 540

noise tensor, and depth map. 541
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