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Figure 1. Generative Blocks World. Given an input image (bottom left), we extract a set of 3D convex primitives (top left) that provide
an editable and controllable representation of the scene. These primitives are used to generate new images that respect geometry, texture,
and the text prompt. The first column shows the original input and its primitive decomposition. Subsequent columns show sequential edits:
translating the cat to the left (second column), translating it to the right (third column), moving the yarn in front of the cat and shifting
the camera toward the scene center (fourth column), and scaling up the cat’s head (burgundy primitive; fifth column). Our method enables
semantically meaningful, 3D-aware image editing through intuitive manipulation of these learned primitives.

Abstract

We describe Generative Blocks World to interact with the
scene of a generated image by manipulating simple geo-
metric abstractions. Our method represents scenes as as-
semblies of convex 3D primitives, and the same scene can
be represented by different numbers of primitives, allow-
ing an editor to move either whole structures or small de-
tails. Once the scene geometry has been edited, the im-
age is generated by a flow-based method which is condi-
tioned on depth and a texture hint. Our texture hint takes
into account the modified 3D primitives, exceeding texture-
consistency provided by existing techniques. These texture
hints (a) allow accurate object and camera moves and (b)
preserve the identity of objects. Our experiments demon-
strate that our approach outperforms prior works in visual
fidelity, editability, and compositional generalization.

1. Introduction

Modern large generative models can generate realistic-
looking images from minimal input, but they offer lim-
ited control. Recent works have shown that intrinsic scene
properties essential for rendering—such as normals, depth,
albedo, and illumination—emerge within the learned repre-
sentations of these large generative models [3, 4, 12, 52].
Yet despite these emergent capabilities, modifying geom-
etry, lighting, or viewpoint often disrupts appearance or
object identity. Traditional rendering systems offer pre-
cise control through explicit geometric representations and
physically based shading models but require extensive au-
thoring effort and technical expertise.

Our goal is to bring the control of traditional rendering to
modern generative models without the overhead of explicit
modeling. The system described here enables an author to
modify the camera viewpoint of a scene while preserving its
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content, and to relocate objects or parts while maintaining
their high-fidelity appearance (see Fig. 1). Achieving this,
however, requires addressing two fundamental challenges
in view synthesis and editing.

At a high level, these operations should be simple. For
many pixels, accurate camera moves are easy: acquire an
accurate depth map, project texture onto that map, then re-
project into the new camera. Similarly, moving objects or
parts is conceptually straightforward: project texture onto
the depth map, adjust the depth map, then reproject. But
this idealized pipeline breaks down in practice due to two
key obstacles: (i) many target pixels are not visible in the
source view, so texture must be extrapolated; and (if) edit-
ing depth maps directly is very difficult and unintuitive.

To address these challenges, we propose representing
scenes as small assemblies of meaningful parts or primi-
tives. This idea has deep roots. Roberts’ Blocks World [40]
viewed simple scenes as a handful of cuboids. Bieder-
man [6] suggested that humans recognize and reason about
objects as compositions of primitive parts. For our pur-
poses, such assemblies must approximate the scene’s depth
map well enough to enable view-consistent texture projec-
tion. Primitive decompositions have been widely studied
in computer vision for recognition, parsing, and reconstruc-
tion [17,20-22, 32, 46, 47], but their application to content
generation has been limited. Moreover, reliable primitive
fitting is a very recent phenomenon [47, 49]. Our work ex-
ploits these advances to control modern generative models,
enabling precise, structured, and editable image synthesis.

We represent scenes using convex geometric primitives
and use them to control image synthesis, allowing edits
such as camera moves, object moves, and detail adjust-
ments, while maintaining structure and appearance. As
a nod to computer vision history, we call our framework
Generative Blocks World, though our learned primitives
are richer than cuboids. Generative Blocks World decom-
poses an input image into a sparse set of convex poly-
topes using an extension of a recent convex-decomposition
procedure [11, 47]. These convex primitives provide suf-
ficient geometric accuracy to enable view-consistent tex-
ture projection. A final rendering using a pretrained depth-
conditioned Flux DiT [28] preserves textures that should
be known and inpaints missing textures. Our primitives
are accurate enough that we don’t need to train the genera-
tive depth-to-image model on the particular statistics of our
primitives.

Good primitive decompositions have very attractive
properties. They are selectable: individual primitives can
be intuitively selected and manipulated (see Fig. 1). They
are object-linked: a segmentation by primitives is close to a
segmentation by objects, meaning an editor is often able to
move an object or part by moving a primitive (Fig. 1; Fig. 3;
Fig. 4). They are accurate: the depth map from a properly

constructed primitive representation can be very close to the
original depth map (Sec. 3.1), which means primitives can
be used to build texture hints (Section 3.2) that support ac-
curate camera moves (Fig. 2; Fig. 5). They have variable
scale: one can represent the same scene with different num-
bers of primitives, allowing an editor to adjust big or small
effects (Fig. 7; Fig. 8; Fig. 12).

Contributions.

e We describe a pipeline that fuses convex primitive ab-
straction with a SOTA flow-based generator, FLUX. Our
pipeline uses a natural texture-hint procedure that sup-
ports accurate camera moves and edits at the object-level,
while preserving identity.

* We provide extensive evaluation demonstrating superior
geometric control, texture retention, and edit flexibility
relative to recent state-of-the-art baselines.

2. Related Work

Primitive Decomposition. Early vision and graphics pur-
sued parsimonious part-based descriptions, from Roberts’
Blocks World [40] and Binford’s generalized cylinders [7]
to Biederman’s geons [6]. Efforts to apply similar rea-
soning to real-world imagery have been periodically re-
visited [5, 20, 32] from various contexts and applications.
Modern neural models revive this idea: BSP-Net [8], CSG-
Net [42], and CVXNet [11] represent shapes as unions of
convex polytopes, while Neural Parts [46], SPD [58], and
subsequent works [30] learn adaptive primitive sets. Re-
cent systems extend from objects to scenes: Convex De-
composition of Indoor Scenes (CDIS) [47] and its ensem-
bling/Boolean refinement [49] fit CVXNet-like polytopes
to RGB-D images, using a hybrid strategy. CubeDiff [25]
fits panoramas inside cuboids. Our work leverages CDIS
as the backbone, but (i) improves robustness to in-the-wild
depth/pose noise and (ii) couples the primitives to a Rec-
tified Flow (RF) renderer, enabling controllable synthesis
rather than analysis alone.

Conditioned Image Synthesis. Conditional generative
networks such as Pix2Pix [23], CycleGAN [57], and
SPADE [37] pioneered layout-to-image translation. Dif-
fusion models now dominate; seminal works include Sta-
ble Diffusion [41], ControlNet [55], and T2I-Adapter [34].
Subsequent work has shown that multiple spatial controls
can be composed for restoring images [48], and recent
methods can exert local and global color edits [50]. In this
work, we use a pretrained depth-conditional FLUX model
using depth maps derived from primitives.

Point-Based Interactive Manipulation. Point-based
manipulation offers direct, intuitive control over 2D image
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attributes. DragGAN [35] allows users to deform an
object’s pose or shape by dragging handle points on a
2D generative manifold. This concept was subsequently
adapted to more general diffusion models by methods
like DragDiffusion [43], DragonDiffusion [33], Stable-
Drag [10], DiffusionHandles [36], and Dragin3D [19],
which improved robustness, controllability, and fidelity.
Diffusion Self-Guidance can exert layout control and
perform object-level edits [14]. However, these methods
fundamentally operate by deforming pixels or lack a true
understanding of 3D scene structure. They can perform
in-place pose/shape edits and even simple translations but
struggle to perform 3D-consistent manipulations, such as
moving objects within a scene or moving the camera while
respecting perspective, occlusion, and texture. In contrast,
we show promising results in such scenarios and offer
flexible control of primitives, providing both fine-grained
control when using a large number of primitives and
coarse, object-level control when using a smaller number
of primitives.

Object-Level and Scene-Level Editing. Many recent
works embed 3D priors into generative editing but focus
on single objects: StyleNeRF [18], SJC [51], DreamFu-
sion [38], Make-A-Dream [45], and 3D-Fixup [9]. Meth-
ods like Obj3DiT [31] use language to guide transforma-
tions (e.g., rotation, translation) by fine-tuning a model
on a large-scale synthetic dataset. In contrast, Generative
Blocks World generalizes to complex editing tasks that are
not easy to describe precisely in text form. An alternative
paradigm, seen in Image Sculpting [54] and OMG3D [56],
offers precise control by first reconstructing a 2D object
into an explicit 3D mesh, which is then manipulated and
re-rendered using generative models. While offering high
precision, these multi-stage pipelines can be complex and
are often bottlenecked by the initial reconstruction quality.
Our method provides a more streamlined approach by op-
erating on abstract primitives, avoiding the complexities of
direct mesh manipulation while still providing strong geo-
metric control.

Primitive-Based Scene Authoring. Recently, LooseCon-
trol [2] showed how to train LoRA weights on top of a pre-
trained Depth ControlNet, enabling box-like primitive con-
trol of image synthesis. The LoRA weights bridge the do-
main gap between box-like primitive depth maps and stan-
dard depth maps as one might obtain from, e.g., DepthAny-
thing [53]. In contrast, this paper demonstrates primitive
fits that do not require fine-tuning diffusion models because
the underlying primitive representation is highly accurate.
We similarly adopt a depth-to-image generator, but our con-
ditioning signal is structured geometry—a set of editable
primitives rather than dense maps—yielding stronger se-

mantic correspondence and causal behavior. More recently,
Build-A-Scene [13] uses the same primitive generator and
image synthesizer as LooseControl; thus, it suffers from the
same problems in depth accuracy. Generative Blocks World
differs by (i) decomposing each object into a handful of con-
vex polytopes, giving finer yet still abstract control; (ii) sup-
porting camera moves; and (iii) allowing new scenes to be
authored via primitive assembly.

3. Method

Generative Blocks World generates realistic images condi-
tioned on a parsimonious and editable geometric represen-
tation of a scene: a set of convex primitives. The process
consists of four main stages: (i) primitive extraction from
any image via convex decomposition (Sec. 3.1), (ii) gen-
erating an image conditioned on the primitives (and text
prompt), (iii) user edits the primitives and/or camera, and
(iv) generates a new image conditioned on the updated
primitives, while preserving texture from the source image
(Sec. 3.3). We describe each component in detail below.
See Fig. 2 for an overview.

3.1. Convex Decomposition for Primitive Extraction

Our primitive vocabulary is blended 3D convex polytopes
as described in [11]. CVXnet represents the union of con-
vex polytopes using indicator functions O(z) — [0, 1] that
identify whether a query point 2 € R? is inside or outside
the shape. Each convex polytope is defined by a collection
of half-planes.

A half-plane Hp,(z) = ny, - « + dj, provides the signed
distance from point x to the h-th plane, where n;, is the
normal vector and dj, is the offset parameter.

While the signed distance function (SDF) of any convex
object can be computed as the maximum of the SDFs of its
constituent planes, CVXnet uses a differentiable approxi-
mation. To facilitate gradient learning, instead of the hard
maximum, the smooth LogSumExp function is employed to
define the approximate SDF, ®(x):

®(z) = LogSumExp{d Hp(x)}

The signed distance function is then converted to an in-
dicator function C' : R? — [0, 1] using:

C(z|8) = Sigmoid(—o®(z))

The collection of hyperplane parameters for a primitive
is denoted as h = {(np, dy)}, and the overall set of param-
eters for a convex as 8 = [h, o]. While o is treated as a hy-
perparameter, the remaining parameters are learnable. The
parameter 0 controls the smoothness of the generated con-
vex polytope, while o controls the sharpness of the indicator
function transition. The soft classification boundary created
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Train Convex Decomposition Model

Source Image Extract primitives

Inference Pipeline

Edit primitives/camera

1 Primitives

b--»

DiT, g

J Confidence mask

Training-Free Generation (FLUX-Depth)

Generate Xpins Synthesize with Diffusion Model

“Girl playing with legos”

Figure 2. Pipeline Overview. Top left: We use pretrained convex decomposition models [49] to extract primitives from an input image
at multiple scales. Bottom: Users can manipulate these primitives and the camera to define a new scene layout. We render the modified
primitives into a depth map and generate a texture hint image. These serve as inputs to a pretrained depth-to-image model [28], which
requires no fine-tuning (Top right). The resulting image respects the modified geometry, preserves texture where possible, and remains

aligned with the text prompt.

by the sigmoid function facilitates training through differ-
entiable optimization. The neural architecture of our primi-
tives model is the standard ResNet-18 Encoder Ey followed
by 3 fully-connected layers that decode into the parame-
ters of the primitives Dy. While the model is lightweight,
the SOTA of primitive prediction requires a different trained
model for each primitive count K.

Recent work has adapted primitive decomposition to real
scenes (as opposed to isolated objects, such as those in
ShapeNet [47]). These methods combine neural predic-
tion with post-training refinement: an encoder-decoder net-
work predicts an initial set of convex polytopes, which is
followed by gradient-based optimization to align the prim-
itives closely to observed geometry. This approach is vi-
able because the primary supervision for primitive fitting is
a depth map (with heuristics that create 3D samples, and
auxiliary losses to avoid degenerate solutions). Note that
ground truth primitive parameters are not available (as they
could be in many other computer vision settings e.g., seg-
mentation [26]). This is why the losses encourage the prim-
itives to classify points near the depth map boundary cor-
rectly instead of directly predicting the parameters.

Rendering the primitives. We condition the RF model
on the primitive representation via a depth map, obtained
by ray-marching the SDF from the original viewpoint of the
scene. Depth conditioning abstracts away potential ‘chatter*
in the primitive representation from e.g. over-segmentation,
while simultaneously yielding flexibility in fine details

(depth maps typically lack pixel-level high-frequency de-
tails). Depth-conditioned image synthesis models are well-
established e.g. [55]. Because it’s hard to edit a depth
map, but easy to edit 3D primitives, our work adds a new
level of control to the existing image synthesis models. As
we establish quantitatively in Table 2, our primitive gener-
ator is extremely accurate, and our evaluations show that
we get very tight control over the synthesized image via our
primitives. This means that whatever domain gap there is
between depth from primitives and depth from SOTA depth
estimation networks is not significant.

Scaling to in-the-wild scenes. We collect 1.8M images
from LAION to train our primitive prediction models. To
obtain ground truth depth supervision, we use DepthAny-
thingv2 [53]. To lift a depth map D € R¥*"W to a 3D point
cloud using the pinhole camera model, each pixel (u,v)
with depth d,, , maps to a 3D point (X, Y, Z) as:

X:(u—cm).du,v7 Y:(v—cy).du,v, Z=dy,
fw fy
where (cg,c,) is the principal point (typically

W/2,H/2), and (f,,f,) are the focal lengths along
the image axes. DepthAnythingv2 supplies a metric depth
module with reasonable camera calibration parameters.
These 3D samples are required to supervise primitive
fitting. In fact, at test-time, we can directly optimize
primitive parameters using the training losses since these
3D samples are available.
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Primitive fitting details. We use the standard ResNet-
18 encoder (accepting RGBD input) followed by 3 fully-
connected layers to predict the parameters of the primi-
tives. We train different networks for different primitive
counts K € {4,6,8,10,12,24, 36,48, 60, 72}, and allow
the user to select their desired level of abstraction. Alter-
natively, the ensembling method of [49] can automatically
select the appropriate number of primitives. Depending on
the primitive count, the training process takes between 40-
100 mins on a single A40 GPU, and inference (including
generating the initial primitive prediction, refinement, and
rendering) can take 1-3 seconds per image. While tradi-
tional primitive-fitting to RGB images fits cuboids [27], we
find that polytopes with more faces and without symmetry
constraints yield more accurate fits. Thus, we use F' = 12
face polytopes. We do not use a Manhattan World loss or
Segmentation loss; the former helped on NYUv2 [44] but
not on in-the-wild LAION images and the latter showed an
approximately neutral effect in the original paper [47].

3.2. Depth-Conditioned Inpainting in Rectified
Flow Transformers

Here, we describe our image synthesis pipeline. We build
upon the SOTA FLUX, a rectified flow model [15, 28].

Forward Noising Process. In the forward process, a
clean latent representation xg (derived from an input image
via a variational autoencoder, VAE) is progressively noised
over T' timesteps to produce a sequence Xi,Xsg,...,Xr.
The noise schedule is defined by sigmas oy, typically lin-
early interpolated from 1.0 to % The forward process is
governed by:

x; =1/1—o0?xg+ o€, €~ N(0,I),

where o; controls the noise level, and € is Gaussian noise.
For conditional inputs like a depth map, the control image
is encoded into latents via the VAE and concatenated with
the noisy latents x; during the reverse process.

Adding Spatial Conditions. Older ControlNet imple-
mentations [55] train an auxiliary encoder that adds infor-
mation to decoder layers of a base frozen U-Net. Newer
implementations, including models supplied by the Black
Forest Labs developers, concatenate the latent x¢ and con-
dition (e.g., depth map) c as an input to the network, yield-
ing tighter control. FLUX.1 Depth [dev] re-trains the
RF model with the added conditioning; FLUX.1 Depth
[dev] LoRA trains LoRA layers on top of a frozen base
RF model. Both options give tight control and work well
with our primitives, though LoRA exposes an added pa-
rameter [orayeignt € [0,1] tuning how tightly the depth
map should influence synthesis. This is helpful when the
primitive abstraction is too coarse relative to the geometric
complexity of the desired scene.

Reverse Diffusion Process. The reverse process starts
from a noisy latent xr ~ N'(0,I) and iteratively denoises
to approximate xg. The DiT-RF model uses a transformer
architecture with: Double-stream layers: process image to-
kens (noisy latents and control image latents) and text to-
kens (prompt embeddings) separately with cross-attention.
Single-stream layers: jointly process all tokens to capture
interactions. The model predicts noise €y(x¢, t, ¢, p), where
c is the control image and p includes text embeddings and
pooled projections. The scheduler updates the latents:

x;_1 = SchedulerStep(x;, t, €3),

using RF techniques to optimize the denoising trajectory.

Role of Hint and Mask. A core contribution of this
work is an algorithm to generate a “hint” image to initialize
the image generation process, as well as a confidence mask
(see Sec 3.3). The hint and mask influence the generation
within timesteps teng < t < tgare, Which are hyperparame-
ters. The mask m € [0, 1] specifies regions where the hint
should guide the output. The hint is encoded into latents
Xpint Via the VAE. During denoising, the latents are updated
as:

X = (1 —m) - Xpjne,; + M- Xy,

where Xpin( ¢ 15 the noised hint latent at timestep ¢:
Xhint,t = SchedulerScaleNoise(Xnint, ¢, €).

Thus, the hint image is noised to match the current
timestep’s noise level before incorporation, ensuring con-
sistency with the denoising process. Outside [teng, tsiart], the
hint and mask are ignored.

3.3. Texture Hint Generation for Camera and Ob-
ject Edits

A number of methods have been proposed to preserve tex-
ture/object identity upon editing an image. A common and
simple technique is to copy the keys and values from a style
image into the newly generated image (dubbed “style pre-
serving edits”). For older U-Net-based systems, this is done
in the bottleneck layers [2]. For newer DiTs, this is done at
selected “vital” layers [1]. In our testing, key-value copying
methods are insufficient for camera/primitive moves (see
Fig. 6). Further, because of our primitives, we have a ge-
ometric representation of the scene. Here we demonstrate
a routine to obtain a source “hint” image X, as well as a
confidence mask m that can be incorporated in the diffusion
process. The hint image is a rough approximation of what
the synthesized image should look like using known spatial
correspondences between primitives in the first view and
the second. The confidence mask indicates where we can
and cannot trust the hint, commonly occurring near depth
discontinuities. We rely on the diffusion machinery to es-
sentially clean up the hint, filling gaps and refining blurry
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“‘Pejosi can and metal ball”

Scale primitives

Editable Primitives

Generated Result

Move primitives

Remove object Move camera

Figure 3. Editable Primitives as a Structured Depth Prior for Generative Models. Our method uses 3D convex primitives as an
editable intermediate representation from which depth maps are derived. These depth maps (shown as insets in the top row) are used to
condition a pretrained depth-to-image generative model. The top row shows primitive configurations after sequential edits—translation,
scaling, deletion, and camera motion—alongside their corresponding derived depth maps. The bottom row shows the resulting synthesized
images. Unlike direct depth editing, which is unintuitive and underconstrained, manipulating primitives offers a structured, interpretable,

and geometry-aware interface for controllable image generation.

Sour Drag points Drag Diffusion

Source primitives Move primitives

Figure 4. Comparison with Drag Diffusion [43]. Given a scene (first column), we attempt to reposition objects using a recent point-based
image editing method by drawing drag handles (second column). However, drag points are ambiguous: it is unclear whether the intended
operation is translation or scaling. As a result, the output lacks geometric consistency (third column). E.g., the clock changes shape, and
pushing it deeper into the scene fails to reduce its size appropriately; fine details on the can are lost. In contrast, Generative Blocks World
infers 3D primitives (fourth column) that can be explicitly manipulated (fifth column), producing a plausible image that respects object

geometry, scale, positioning, and texture (last column).

projected textures so it looks like a real image. The result
of our process is an image that respects the text prompt,
source texture, and newly edited primitives/camera.
Creating point cloud correspondences We develop a
method that accepts point clouds at the ray-primitive inter-
section points, a convex_map integer array indicating which
primitive was hit at each pixel, a list of per-primitive trans-
forms (such as scale, rotate, translate), and a hyperparam-
eter max_distance for discarding correspondences. This
procedure robustly handles camera moves because the in-
put point clouds are representations of the same scene.
Creating a texture hint Given a correspondence map of
each 3D point in the new view relative to the original view,
we can apply this correspondence to generate a hint image

that essentially projects pixels in the old view onto the new
view. This is the xphint supplied to the image generation
model, taking into account both camera moves and primi-
tive edits like rotation, translation, and scaling. The point
cloud correspondence ensures that if a primitive moves, its
texture moves with it. In practice, this hint is essential for
good texture preservation (see Fig. 6). Correspondence and
hint generation take about 1-2 seconds per image; 30 de-
noising steps of FLUX at 512 resolution take about 3 sec-
onds on an H100 GPU.

3.4. Evaluation

We seek error metrics to establish (1) geometric consistency
between the primitives requested vs. the image that was

ICCV
#20

397
398
399
400
401
402
403
404
405
406

407

408
409



ICCV
#20

410
411
412
413
414
415
416
417
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Initial Edited Initial Edited

Ours Primitives Depth

LooseControl

Initial Edited Initial Edited

== G L B

Figure 5. Comparison with LooseControl [2]. Camera moves present serious problems for existing work. Four scenes (left side of each
pair), synthesized from the depth maps shown. In each case, the camera is moved to the right (right side of each pair), and the image is
resynthesized. Note how, for LooseControl, the number of apples changes (first pair); the level of water in the glass changes and there is
an extra ice cube (second pair); the duck changes (third pair); an extra rock appears (fourth pair). In each case, our method shows the same
scene from a different view, because the texture hint image is derived from the underlying geometry, and strongly constrains any change.

synthesized and (2) texture consistency between the source
and edited image. For (1) we compute the AbsRel between
the depth map supplied to the depth-to-image model (ob-
tained by rendering the primitives) and the estimated depth
of the synthesized image (we use the hypersim metric depth
module from [53] to get linear depth). Consistent with stan-
dard practice in depth estimation, we use least squares to fit
scale and shift parameters onto the depth from RGB (letting
the primitive depth supplied to the DM be GT).

To evaluate texture consistency, we apply ideas from the
novel view synthesis literature and our existing point cloud
correspondence pipeline. Given the source RGB image
and the synthesized RGB image (conditioned on the texture
hint), we warp the second image back into the first image’s
frame using our point cloud correspondence algorithm. If
we were to synthesize an image in the first render’s view-
point using the second render, this is the texture hint we
would use. In error metric calculation, the first RGB image
is considered ground truth, the warped RGB image from
the edited synthesized image is the prediction, and the con-
fidence mask filters out pixels that are not visible in view
1, given view 2. This evaluation procedure falls in the cat-
egory of cycle consistency/photometric losses that estimate
reprojection error [16, 24, 29, 39].

3.5. Hyperparameter selection

There are a number of hyperparameters associated with
our procedure, and we perform a grid search on a held-
out validation set to find the best ones. When gener-
ating correspondence maps between point clouds, we let
max_distance= 0.005. In our confidence map, we di-
late low-confidence pixels with a score less than 7 = 0.01
by 9 pixels, which tells the image model to synthesize new
texture near primitive boundaries that are often uncertain.
We set (tstart, tend) to (1000, 500) by default, though tepqg
can be tuned per test image by the user. Applying the hint
for all time steps can reduce blending quality near primi-
tive boundaries; not applying the hint for enough time steps
could weaken texture consistency. Allowing some time
steps to not follow the hint enables desirable super reso-
lution behavior e.g. when bringing a primitive closer to the
camera. See supplementary for detailed algorithms for cre-
ating the hint and confidence mask.

Inpainting the hint After warping the source image to
the new view, we inpaint low-confidence regions of the
hint xp;,; before supplying it to the image model. We
considered several possibilities, including cv2_telea and
cv2_ns from the OpenCV package, as well as simply leav-
ing them as black pixels. We find that Voronoi inpaint-
ing, a variation of nearest neighbor inpainting, worked well.
The voronoi_inpainting function performs image in-
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Method | AbsRely. | AbsRelyy |, | PSNRT  SSIM 1

Ours 0.072 0.076 18.7 0.874

LooseControl [2] 0.143 0.146 6.65 0.670
Table 1. Comparison of image reconstruction and generation

metrics between our method and LooseControl. AbsRelg, and
AbsRely are absolute relative errors evaluating how well the gen-
erated images adhere to the requested primitive geometry (source
and modified, respectively). PSNR and SSIM are evaluated by re-
projecting the second synthesized image back to the original cam-
era viewpoint (see Sec 3.4 and measuring texture consistency with
the source. Observe how our procedure simultaneously offers tight
geometric adherence to the primitives while preserving the source
texture. Results obtained by averaging 48 test images with random
camera moves. Because [2] does not offer primitive extraction
code, we supply our own primitives to both methods for evalua-
tion. We use K = 10 parts for this evaluation.

painting by filling in regions of low confidence in a hint im-
age using colors from nearby high-confidence pixels, based
on a Voronoi diagram approach.

This process leverages a KD-tree for efficient nearest-
neighbor searches, ensuring that each pixel adopts the color
of the closest reliable pixel, thus preserving color consis-
tency in the inpainted result.

For FLUX image generation we begin with the de-
fault settings from the diffusers FLUX controlled inpainting
pipeline '. We set the st rength parameter (controlling
starting noise strength) to 1.0 and guidance to 10. We
use 30 num_steps for denoising. In comparative evalua-
tion, we use the default settings from the authors.

4. Results

In Fig. 4, we show how users can manipulate depth map
inputs to depth-to-image synthesizers with our primitive
abstractions. We can use these primitives to edit images,
as shown in Fig. 5. Notice how we can get precise con-
trol over the synthesized geometry while respecting tex-
ture, which existing methods struggle to do. We quanti-
tatively evaluate this property in Table |, demonstrating we
hit both goals conclusively. Existing texture preservation
methods for multi-frame consistency typically rely on key-
value transfer from one image to another. This, unfortu-
nately, does not preserve details very well, only high-level
semantics and style. We ablate the advantage of our texture
preservation approach in Fig. 6. When there are few prim-
itives, moving one primitive affects a big part of the scene;
when there are a lot of primitives, we can make fine-scale
edits. We show several such examples in Figs. 7, 8.

Inttps://huggingface.co/docs/diffusers/en/api/
pipelines/control_flux_inpaint

5. Discussion

This work demonstrates that we can utilize 3D primitives
to achieve precise geometric control over image generation
model outputs, and even preserve high-level textures more
effectively than existing methods that rely on key-value
transfer. A central reason this works is that good primi-
tive decompositions offer several useful properties: they are
selectable, allowing intuitive manipulation of scene com-
ponents; they are object-linked, with boundaries that often
correspond to semantic parts; they are scalable, enabling
both coarse and fine-grained edits (with fewer and higher
source primitive counts); and they are accurate enough to
yield depth maps that support high-quality texture projec-
tion. Moreover, our pipeline is designed to be user-friendly:
since our primitive decomposition is fast, users can easily
choose between coarse and fine control by adjusting the
number of primitives, and seamlessly switch between de-
compositions to suit the editing task and scene context.

We believe we have unlocked new interactive controls
for image synthesis with our Generative Blocks World.
While our method handles problems near primitive bound-
aries robustly, objects with holes that are not tightly mod-
eled by the primitives (e.g., underneath a chair or a cof-
fee mug handle) are challenging in our current formula-
tion; additional segmentation and masking would be re-
quired (or simply using more primitives). Depth-of-field
blurring/bokeh may not get resolved or sharpened when
bringing out-of-focus objects into focus. Significant object
rotations may also fail (see Fig. 10). In an interactive work-
flow, manually expanding the confidence mask to include
problematic regions e.g., unwanted reflections that don’t
move with a primitive, can fix some issues. Future work
that applies our point correspondences within the network
layers themselves (e.g., in vital layers) may yield more ro-
bust solutions. Our method does not yet account for view-
dependent lighting effects and does not enforce temporal
consistency across frames for video synthesis.

Our results focus on editing generated images. While
we can extract texture hints from real images, our experi-
ments show that edited images should start from the same
noise tensor and prompt as the source image to achieve good
results. Therefore, good image inverters that work with
depth-conditioned diffusion transformers are needed. Ad-
ditionally, certain extreme edits that are at odds with the
text prompt are likely to cause problems (e.g., if the prompt
mentions an object is on the right, but a user manipulates the
primitives to move the object to the left). Changing the text
prompt could work in some circumstances (Fig. 9), or the
DiT will inpaint missing regions with content that doesn’t
harmonize well with the rest of the image. This is due to
the delicate link between the text prompt, hint image, initial
noise tensor, and depth map.
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