

Generative Blocks World: Moving Things Around in Pictures

Anonymous ICCV submission

Paper ID 20

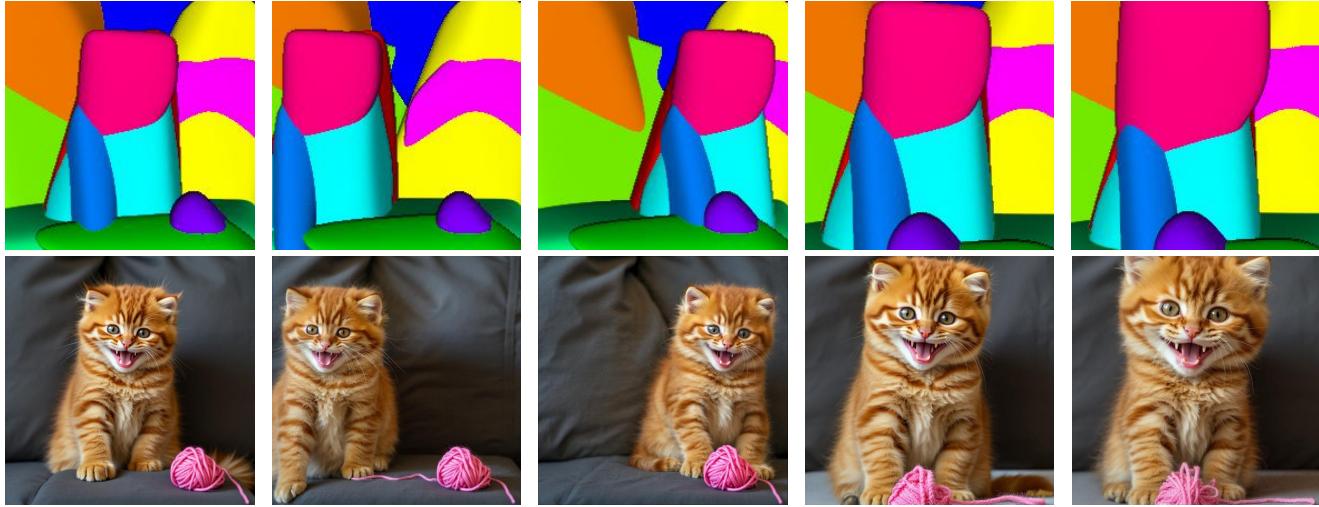


Figure 1. **Generative Blocks World.** Given an input image (bottom left), we extract a set of 3D convex primitives (top left) that provide an editable and controllable representation of the scene. These primitives are used to generate new images that respect geometry, texture, and the text prompt. The first column shows the original input and its primitive decomposition. Subsequent columns show sequential edits: translating the cat to the left (second column), translating it to the right (third column), moving the yarn in front of the cat and shifting the camera toward the scene center (fourth column), and scaling up the cat's head (burgundy primitive; fifth column). Our method enables semantically meaningful, 3D-aware image editing through intuitive manipulation of these learned primitives.

Abstract

001 We describe *Generative Blocks World* to interact with the
 002 scene of a generated image by manipulating simple geo-
 003 metric abstractions. Our method represents scenes as as-
 004 semblies of convex 3D primitives, and the same scene can
 005 be represented by different numbers of primitives, allow-
 006 ing an editor to move either whole structures or small de-
 007 tails. Once the scene geometry has been edited, the im-
 008 age is generated by a flow-based method which is condi-
 009 tioned on depth and a texture hint. Our texture hint takes
 010 into account the modified 3D primitives, exceeding texture-
 011 consistency provided by existing techniques. These texture
 012 hints (a) allow accurate object and camera moves and (b)
 013 preserve the identity of objects. Our experiments demon-
 014 strate that our approach outperforms prior works in visual
 015 fidelity, editability, and compositional generalization.

1. Introduction

016 Modern large generative models can generate realistic-
 017 looking images from minimal input, but they offer lim-
 018 ited control. Recent works have shown that intrinsic scene
 019 properties essential for rendering—such as normals, depth,
 020 albedo, and illumination—emerge within the learned repre-
 021 sentations of these large generative models [3, 4, 12, 52].
 022 Yet despite these emergent capabilities, modifying geo-
 023 metry, lighting, or viewpoint often disrupts appearance or
 024 object identity. Traditional rendering systems offer pre-
 025 cise control through explicit geometric representations and
 026 physically based shading models but require extensive au-
 027 thoring effort and technical expertise.

028 Our goal is to bring the control of traditional rendering to
 029 modern generative models without the overhead of explicit
 030 modeling. The system described here enables an author to
 031 modify the camera viewpoint of a scene while preserving its
 032

033 content, and to relocate objects or parts while maintaining
034 their high-fidelity appearance (see Fig. 1). Achieving this,
035 however, requires addressing two fundamental challenges
036 in view synthesis and editing.

037 At a high level, these operations should be simple. For
038 many pixels, accurate camera moves are easy: acquire an
039 accurate depth map, project texture onto that map, then re-
040 project into the new camera. Similarly, moving objects or
041 parts is conceptually straightforward: project texture onto
042 the depth map, adjust the depth map, then reproject. But
043 this idealized pipeline breaks down in practice due to two
044 key obstacles: (i) many target pixels are not visible in the
045 source view, so texture must be extrapolated; and (ii) edit-
046 ing depth maps directly is very difficult and unintuitive.

047 To address these challenges, we propose representing
048 scenes as small assemblies of meaningful parts or primi-
049 tives. This idea has deep roots. Roberts’ *Blocks World* [40]
050 viewed simple scenes as a handful of cuboids. Bieder-
051 man [6] suggested that humans recognize and reason about
052 objects as compositions of primitive parts. For our pur-
053 poses, such assemblies must approximate the scene’s depth
054 map well enough to enable view-consistent texture projec-
055 tion. Primitive decompositions have been widely studied
056 in computer vision for recognition, parsing, and reconstruc-
057 tion [17, 20–22, 32, 46, 47], but their application to content
058 generation has been limited. Moreover, reliable primitive
059 fitting is a very recent phenomenon [47, 49]. Our work ex-
060 ploits these advances to control modern generative models,
061 enabling precise, structured, and editable image synthesis.

062 We represent scenes using convex geometric primitives
063 and use them to control image synthesis, allowing edits
064 such as camera moves, object moves, and detail adjust-
065 ments, while maintaining structure and appearance. As
066 a nod to computer vision history, we call our framework
067 **Generative Blocks World**, though our learned primitives
068 are richer than cuboids. Generative Blocks World decom-
069 poses an input image into a sparse set of convex poly-
070 topes using an extension of a recent convex-decomposition
071 procedure [11, 47]. These convex primitives provide suf-
072 ficient geometric accuracy to enable view-consistent tex-
073 ture projection. A final rendering using a pretrained depth-
074 conditioned Flux DiT [28] preserves textures that should
075 be known and inpaints missing textures. Our primitives
076 are accurate enough that we don’t need to train the genera-
077 tive depth-to-image model on the particular statistics of our
078 primitives.

079 Good primitive decompositions have very attractive
080 properties. They are *selectable*: individual primitives can
081 be intuitively selected and manipulated (see Fig. 1). They
082 are *object-linked*: a segmentation by primitives is close to a
083 segmentation by objects, meaning an editor is often able to
084 move an object or part by moving a primitive (Fig. 1; Fig. 3;
085 Fig. 4). They are *accurate*: the depth map from a properly

086 constructed primitive representation can be very close to the
087 original depth map (Sec. 3.1), which means primitives can
088 be used to build texture hints (Section 3.2) that support ac-
089 curate camera moves (Fig. 2; Fig. 5). They have *variable*
090 *scale*: one can represent the same scene with different num-
091 bers of primitives, allowing an editor to adjust big or small
092 effects (Fig. 7; Fig. 8; Fig. 12).

Contributions.

- We describe a pipeline that fuses convex primitive ab-
straction with a SOTA flow-based generator, FLUX. Our
pipeline uses a natural texture-hint procedure that sup-
ports accurate camera moves and edits at the object-level,
while preserving identity.
- We provide extensive evaluation demonstrating superior
geometric control, texture retention, and edit flexibility
relative to recent state-of-the-art baselines.

2. Related Work

Primitive Decomposition. Early vision and graphics pur-
sued parsimonious part-based descriptions, from Roberts’
Blocks World [40] and Binford’s generalized cylinders [7]
to Biederman’s geons [6]. Efforts to apply similar rea-
soning to real-world imagery have been periodically re-
visited [5, 20, 32] from various contexts and applications.
Modern neural models revive this idea: BSP-Net [8], CSG-
Net [42], and CVXNet [11] represent shapes as unions of
convex polytopes, while Neural Parts [46], SPD [58], and
subsequent works [30] learn adaptive primitive sets. Re-
cent systems extend from objects to scenes: Convex De-
composition of Indoor Scenes (CDIS) [47] and its ensem-
bling/Boolean refinement [49] fit CVXNet-like polytopes
to RGB-D images, using a hybrid strategy. CubeDiff [25]
fits panoramas inside cuboids. Our work leverages CDIS
as the backbone, but (i) improves robustness to in-the-wild
depth/pose noise and (ii) couples the primitives to a Rec-
tified Flow (RF) renderer, enabling controllable synthesis
rather than analysis alone.

Conditioned Image Synthesis. Conditional generative
networks such as Pix2Pix [23], CycleGAN [57], and
SPADE [37] pioneered layout-to-image translation. Diffu-
sion models now dominate; seminal works include Sta-
ble Diffusion [41], ControlNet [55], and T2I-Adapter [34].
Subsequent work has shown that multiple spatial controls
can be composed for restoring images [48], and recent
methods can exert local and global color edits [50]. In this
work, we use a pretrained depth-conditional FLUX model
using depth maps derived from primitives.

Point-Based Interactive Manipulation. Point-based
manipulation offers direct, intuitive control over 2D image

134 attributes. DragGAN [35] allows users to deform an
 135 object’s pose or shape by dragging handle points on a
 136 2D generative manifold. This concept was subsequently
 137 adapted to more general diffusion models by methods
 138 like DragDiffusion [43], DragonDiffusion [33], Stable-
 139 Drag [10], DiffusionHandles [36], and Dragin3D [19],
 140 which improved robustness, controllability, and fidelity.
 141 Diffusion Self-Guidance can exert layout control and
 142 perform object-level edits [14]. However, these methods
 143 fundamentally operate by deforming pixels or lack a true
 144 understanding of 3D scene structure. They can perform
 145 in-place pose/shape edits and even simple translations but
 146 struggle to perform 3D-consistent manipulations, such as
 147 moving objects within a scene or moving the camera while
 148 respecting perspective, occlusion, and texture. In contrast,
 149 we show promising results in such scenarios and offer
 150 flexible control of primitives, providing both fine-grained
 151 control when using a large number of primitives and
 152 coarse, object-level control when using a smaller number
 153 of primitives.

154 **Object-Level and Scene-Level Editing.** Many recent
 155 works embed 3D priors into generative editing but focus
 156 on single objects: StyleNeRF [18], SJC [51], DreamFu-
 157 sion [38], Make-A-Dream [45], and 3D-Fixup [9]. Meth-
 158 ods like Obj3DiT [31] use language to guide transfor-
 159 mations (e.g., rotation, translation) by fine-tuning a model
 160 on a large-scale synthetic dataset. In contrast, Generative
 161 Blocks World generalizes to complex editing tasks that are
 162 not easy to describe precisely in text form. An alternative
 163 paradigm, seen in Image Sculpting [54] and OMG3D [56],
 164 offers precise control by first reconstructing a 2D object
 165 into an explicit 3D mesh, which is then manipulated and
 166 re-rendered using generative models. While offering high
 167 precision, these multi-stage pipelines can be complex and
 168 are often bottlenecked by the initial reconstruction quality.
 169 Our method provides a more streamlined approach by op-
 170 erating on abstract primitives, avoiding the complexities of
 171 direct mesh manipulation while still providing strong geo-
 172 metric control.

173 **Primitive-Based Scene Authoring.** Recently, LooseCon-
 174 trol [2] showed how to train LoRA weights on top of a pre-
 175 trained Depth ControlNet, enabling box-like primitive con-
 176 trol of image synthesis. The LoRA weights bridge the do-
 177 main gap between box-like primitive depth maps and stan-
 178 dard depth maps as one might obtain from, e.g., DepthAny-
 179 thing [53]. In contrast, this paper demonstrates primitive
 180 fits that do not require fine-tuning diffusion models because
 181 the underlying primitive representation is highly accurate.
 182 We similarly adopt a depth-to-image generator, but our con-
 183 ditioning signal is *structured geometry*—a set of editable
 184 primitives rather than dense maps—yielding stronger se-

185 mantic correspondence and causal behavior. More recently,
 186 Build-A-Scene [13] uses the same primitive generator and
 187 image synthesizer as LooseControl; thus, it suffers from the
 188 same problems in depth accuracy. Generative Blocks World
 189 differs by (i) decomposing each object into a handful of con-
 190 vex polytopes, giving finer yet still abstract control; (ii) sup-
 191 porting camera moves; and (iii) allowing new scenes to be
 192 *authored* via primitive assembly.

3. Method

193 Generative Blocks World generates realistic images condi-
 194 tioned on a parsimonious and editable geometric represen-
 195 tation of a scene: a set of convex primitives. The process
 196 consists of four main stages: (i) primitive extraction from
 197 any image via convex decomposition (Sec. 3.1), (ii) gener-
 198 ating an image conditioned on the primitives (and text
 199 prompt), (iii) user edits the primitives and/or camera, and
 200 (iv) generates a new image conditioned on the updated
 201 primitives, while preserving texture from the source image
 202 (Sec. 3.3). We describe each component in detail below.
 203 See Fig. 2 for an overview.

3.1. Convex Decomposition for Primitive Extraction

205 Our primitive vocabulary is blended 3D convex polytopes
 206 as described in [11]. CVXnet represents the union of con-
 207 vex polytopes using indicator functions $O(x) \rightarrow [0, 1]$ that
 208 identify whether a query point $x \in \mathbb{R}^3$ is inside or outside
 209 the shape. Each convex polytope is defined by a collection
 210 of half-planes.

211 A half-plane $H_h(x) = n_h \cdot x + d_h$ provides the signed
 212 distance from point x to the h -th plane, where n_h is the
 213 normal vector and d_h is the offset parameter.

214 While the signed distance function (SDF) of any convex
 215 object can be computed as the maximum of the SDFs of its
 216 constituent planes, CVXnet uses a differentiable approxi-
 217 mation. To facilitate gradient learning, instead of the hard
 218 maximum, the smooth LogSumExp function is employed to
 219 define the approximate SDF, $\Phi(x)$:

$$\Phi(x) = \text{LogSumExp}\{\delta H_h(x)\}$$

221 The signed distance function is then converted to an in-
 222 dicator function $C : \mathbb{R}^3 \rightarrow [0, 1]$ using:

$$C(x|\beta) = \text{Sigmoid}(-\sigma\Phi(x))$$

223 The collection of hyperplane parameters for a primitive
 224 is denoted as $h = \{(n_h, d_h)\}$, and the overall set of param-
 225 eters for a convex as $\beta = [h, \sigma]$. While σ is treated as a hy-
 226 perparameter, the remaining parameters are learnable. The
 227 parameter δ controls the smoothness of the generated con-
 228 vex polytope, while σ controls the sharpness of the indicator
 229 function transition. The soft classification boundary created

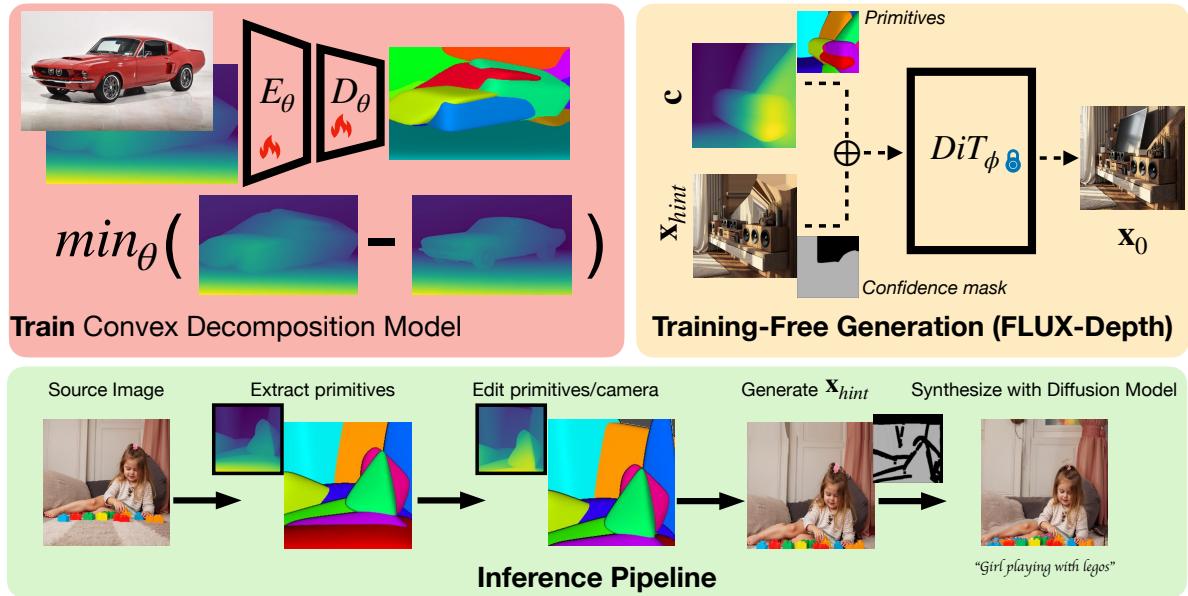


Figure 2. **Pipeline Overview.** **Top left:** We use pretrained convex decomposition models [49] to extract primitives from an input image at multiple scales. **Bottom:** Users can manipulate these primitives and the camera to define a new scene layout. We render the modified primitives into a depth map and generate a texture hint image. These serve as inputs to a pretrained depth-to-image model [28], which requires no fine-tuning (**Top right**). The resulting image respects the modified geometry, preserves texture where possible, and remains aligned with the text prompt.

230 by the sigmoid function facilitates training through differentiable optimization. The neural architecture of our primitives
 231 model is the standard ResNet-18 Encoder E_θ followed
 232 by 3 fully-connected layers that decode into the parameters
 233 of the primitives D_θ . While the model is lightweight,
 234 the SOTA of primitive prediction requires a different trained
 235 model for each primitive count K .
 236

237 Recent work has adapted primitive decomposition to real
 238 scenes (as opposed to isolated objects, such as those in
 239 ShapeNet [47]). These methods combine neural prediction
 240 with post-training refinement: an encoder-decoder net-
 241 work predicts an initial set of convex polytopes, which is
 242 followed by gradient-based optimization to align the
 243 primitives closely to observed geometry. This approach is
 244 viable because the primary supervision for primitive fitting is
 245 a depth map (with heuristics that create 3D samples, and
 246 auxiliary losses to avoid degenerate solutions). Note that
 247 ground truth primitive parameters are not available (as they
 248 could be in many other computer vision settings e.g., seg-
 249 mentation [26]). This is why the losses encourage the
 250 primitives to classify points near the depth map boundary cor-
 251 rectly instead of directly predicting the parameters.

252 **Rendering the primitives.** We condition the RF model
 253 on the primitive representation via a depth map, obtained
 254 by ray-marching the SDF from the original viewpoint of the
 255 scene. Depth conditioning abstracts away potential ‘chatter’
 256 in the primitive representation from e.g. over-segmentation,
 257 while simultaneously yielding flexibility in fine details

(depth maps typically lack pixel-level high-frequency de-
 258 tails). Depth-conditioned image synthesis models are well-
 259 established e.g. [55]. Because **it’s hard to edit a depth**
 260 **map, but easy to edit 3D primitives**, our work adds a new
 261 level of control to the existing image synthesis models. As
 262 we establish quantitatively in Table 2, our primitive gener-
 263 ator is extremely accurate, and our evaluations show that
 264 we get very tight control over the synthesized image via our
 265 primitives. This means that whatever domain gap there is
 266 between depth from primitives and depth from SOTA depth
 267 estimation networks is not significant.

268 **Scaling to in-the-wild scenes.** We collect 1.8M images
 269 from LAION to train our primitive prediction models. To
 270 obtain ground truth depth supervision, we use DepthAny-
 271 thingv2 [53]. To lift a depth map $D \in \mathbb{R}^{H \times W}$ to a 3D point
 272 cloud using the pinhole camera model, each pixel (u, v)
 273 with depth $d_{u,v}$ maps to a 3D point (X, Y, Z) as:

$$X = \frac{(u - c_x) \cdot d_{u,v}}{f_x}, \quad Y = \frac{(v - c_y) \cdot d_{u,v}}{f_y}, \quad Z = d_{u,v} \quad 275$$

276 where (c_x, c_y) is the principal point (typically
 277 $W/2, H/2$), and (f_x, f_y) are the focal lengths along
 278 the image axes. DepthAnythingv2 supplies a metric depth
 279 module with reasonable camera calibration parameters.
 280 These 3D samples are required to supervise primitive
 281 fitting. In fact, at test-time, we can directly optimize
 282 primitive parameters using the training losses since these
 283 3D samples are available.

Primitive fitting details. We use the standard ResNet-18 encoder (accepting RGBD input) followed by 3 fully-connected layers to predict the parameters of the primitives. We train different networks for different primitive counts $K \in \{4, 6, 8, 10, 12, 24, 36, 48, 60, 72\}$, and allow the user to select their desired level of abstraction. Alternatively, the ensembling method of [49] can automatically select the appropriate number of primitives. Depending on the primitive count, the training process takes between 40-100 mins on a single A40 GPU, and inference (including generating the initial primitive prediction, refinement, and rendering) can take 1-3 seconds per image. While traditional primitive-fitting to RGB images fits cuboids [27], we find that polytopes with more faces and without symmetry constraints yield more accurate fits. Thus, we use $F = 12$ face polytopes. We do not use a Manhattan World loss or Segmentation loss; the former helped on NYUv2 [44] but not on in-the-wild LAION images and the latter showed an approximately neutral effect in the original paper [47].

3.2. Depth-Conditioned Inpainting in Rectified Flow Transformers

Here, we describe our image synthesis pipeline. We build upon the SOTA FLUX, a rectified flow model [15, 28].

Forward Noising Process. In the forward process, a clean latent representation \mathbf{x}_0 (derived from an input image via a variational autoencoder, VAE) is progressively noised over T timesteps to produce a sequence $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$. The noise schedule is defined by sigmas σ_t , typically linearly interpolated from 1.0 to $\frac{1}{T}$. The forward process is governed by:

$$\mathbf{x}_t = \sqrt{1 - \sigma_t^2} \mathbf{x}_0 + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

where σ_t controls the noise level, and ϵ is Gaussian noise. For conditional inputs like a depth map, the control image is encoded into latents via the VAE and concatenated with the noisy latents \mathbf{x}_t during the reverse process.

Adding Spatial Conditions. Older ControlNet implementations [55] train an auxiliary encoder that adds information to decoder layers of a base frozen U-Net. Newer implementations, including models supplied by the Black Forest Labs developers, concatenate the latent \mathbf{x}_t and condition (e.g., depth map) \mathbf{c} as an input to the network, yielding tighter control. FLUX.1 Depth [dev] re-trains the RF model with the added conditioning; FLUX.1 Depth [dev] LoRA trains LoRA layers on top of a frozen base RF model. Both options give tight control and work well with our primitives, though LoRA exposes an added parameter $lora_{weight} \in [0, 1]$ tuning how tightly the depth map should influence synthesis. This is helpful when the primitive abstraction is too coarse relative to the geometric complexity of the desired scene.

Reverse Diffusion Process. The reverse process starts from a noisy latent $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and iteratively denoises to approximate \mathbf{x}_0 . The DiT-RF model uses a transformer architecture with: *Double-stream layers*: process image tokens (noisy latents and control image latents) and text tokens (prompt embeddings) separately with cross-attention. *Single-stream layers*: jointly process all tokens to capture interactions. The model predicts noise $\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}, \mathbf{p})$, where \mathbf{c} is the control image and \mathbf{p} includes text embeddings and pooled projections. The scheduler updates the latents:

$$\mathbf{x}_{t-1} = \text{SchedulerStep}(\mathbf{x}_t, t, \epsilon_\theta), \quad 344$$

using RF techniques to optimize the denoising trajectory. 345

Role of Hint and Mask. A core contribution of this work is an algorithm to generate a “hint” image to initialize the image generation process, as well as a confidence mask (see Sec 3.3). The hint and mask influence the generation within timesteps $t_{\text{end}} \leq t \leq t_{\text{start}}$, which are hyperparameters. The mask $\mathbf{m} \in [0, 1]$ specifies regions where the hint should guide the output. The hint is encoded into latents \mathbf{x}_{hint} via the VAE. During denoising, the latents are updated as:

$$\mathbf{x}_t = (1 - \mathbf{m}) \cdot \mathbf{x}_{\text{hint},t} + \mathbf{m} \cdot \mathbf{x}_t, \quad 355$$

where $\mathbf{x}_{\text{hint},t}$ is the noised hint latent at timestep t : 356

$$\mathbf{x}_{\text{hint},t} = \text{SchedulerScaleNoise}(\mathbf{x}_{\text{hint}}, t, \epsilon). \quad 357$$

Thus, the hint image is *noised* to match the current timestep’s noise level before incorporation, ensuring consistency with the denoising process. Outside $[t_{\text{end}}, t_{\text{start}}]$, the hint and mask are ignored. 358
359
360
361

3.3. Texture Hint Generation for Camera and Object Edits

A number of methods have been proposed to preserve texture/object identity upon editing an image. A common and simple technique is to copy the keys and values from a style image into the newly generated image (dubbed “style preserving edits”). For older U-Net-based systems, this is done in the bottleneck layers [2]. For newer DiTs, this is done at selected “vital” layers [1]. In our testing, key-value copying methods are insufficient for camera/primitive moves (see Fig. 6). Further, because of our primitives, we have a geometric representation of the scene. Here we demonstrate a routine to obtain a source “hint” image \mathbf{x}_{hint} as well as a confidence mask \mathbf{m} that can be incorporated in the diffusion process. The hint image is a rough approximation of what the synthesized image should look like using known spatial correspondences between primitives in the first view and the second. The confidence mask indicates where we can and cannot trust the hint, commonly occurring near depth discontinuities. We rely on the diffusion machinery to essentially clean up the hint, filling gaps and refining blurry 362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

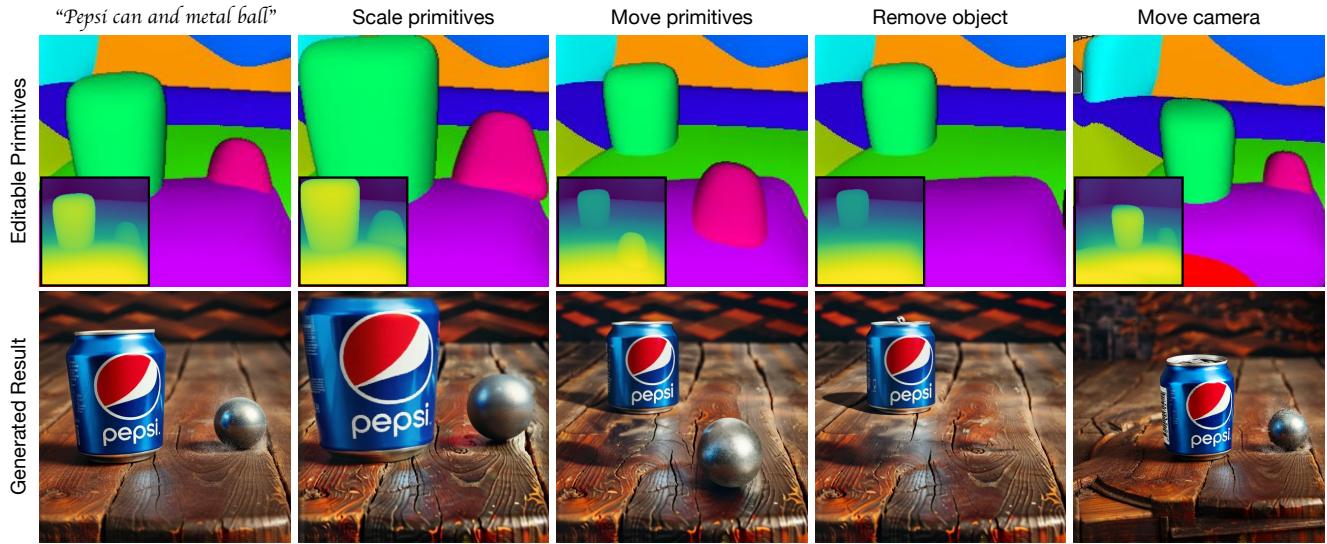


Figure 3. **Editable Primitives as a Structured Depth Prior for Generative Models.** Our method uses 3D convex primitives as an editable intermediate representation from which depth maps are derived. These depth maps (shown as insets in the top row) are used to condition a pretrained depth-to-image generative model. The top row shows primitive configurations after sequential edits—translation, scaling, deletion, and camera motion—alongside their corresponding derived depth maps. The bottom row shows the resulting synthesized images. Unlike direct depth editing, which is unintuitive and underconstrained, manipulating primitives offers a structured, interpretable, and geometry-aware interface for controllable image generation.

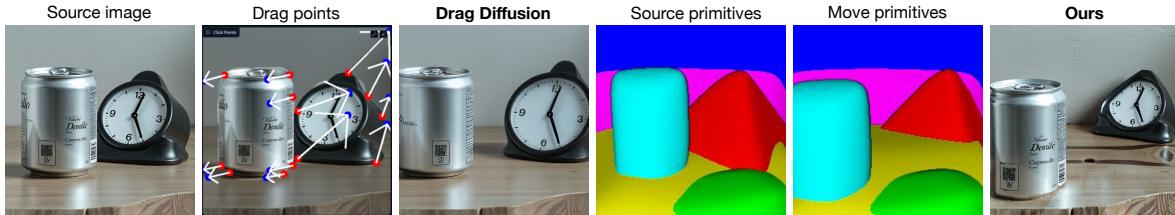


Figure 4. **Comparison with Drag Diffusion [43].** Given a scene (first column), we attempt to reposition objects using a recent point-based image editing method by drawing drag handles (second column). However, drag points are ambiguous: it is unclear whether the intended operation is translation or scaling. As a result, the output lacks geometric consistency (third column). E.g., the clock changes shape, and pushing it deeper into the scene fails to reduce its size appropriately; fine details on the can are lost. In contrast, Generative Blocks World infers 3D primitives (fourth column) that can be explicitly manipulated (fifth column), producing a plausible image that respects object geometry, scale, positioning, and texture (last column).

383 projected textures so it looks like a real image. The result
384 of our process is an image that respects the text prompt,
385 source texture, and newly edited primitives/camera.

386 **Creating point cloud correspondences** We develop a
387 method that accepts point clouds at the ray-primitive inter-
388 section points, a `convex_map` integer array indicating which
389 primitive was hit at each pixel, a list of per-primitive trans-
390 forms (such as scale, rotate, translate), and a hyperparameter
391 `max_distance` for discarding correspondences. This
392 procedure robustly handles camera moves because the in-
393 put point clouds are representations of the same scene.

394 **Creating a texture hint** Given a correspondence map of
395 each 3D point in the new view relative to the original view,
396 we can apply this correspondence to generate a hint image

397 that essentially projects pixels in the old view onto the new
398 view. This is the \mathbf{x}_{hint} supplied to the image generation
399 model, taking into account both camera moves and primitive
400 edits like rotation, translation, and scaling. The point
401 cloud correspondence ensures that if a primitive moves, its
402 texture moves with it. In practice, this hint is essential for
403 good texture preservation (see Fig. 6). Correspondence and
404 hint generation take about 1-2 seconds per image; 30 de-
405 noising steps of FLUX at 512 resolution take about 3 sec-
406 onds on an H100 GPU.

3.4. Evaluation

407 We seek error metrics to establish (1) geometric consistency
408 between the primitives requested vs. the image that was
409

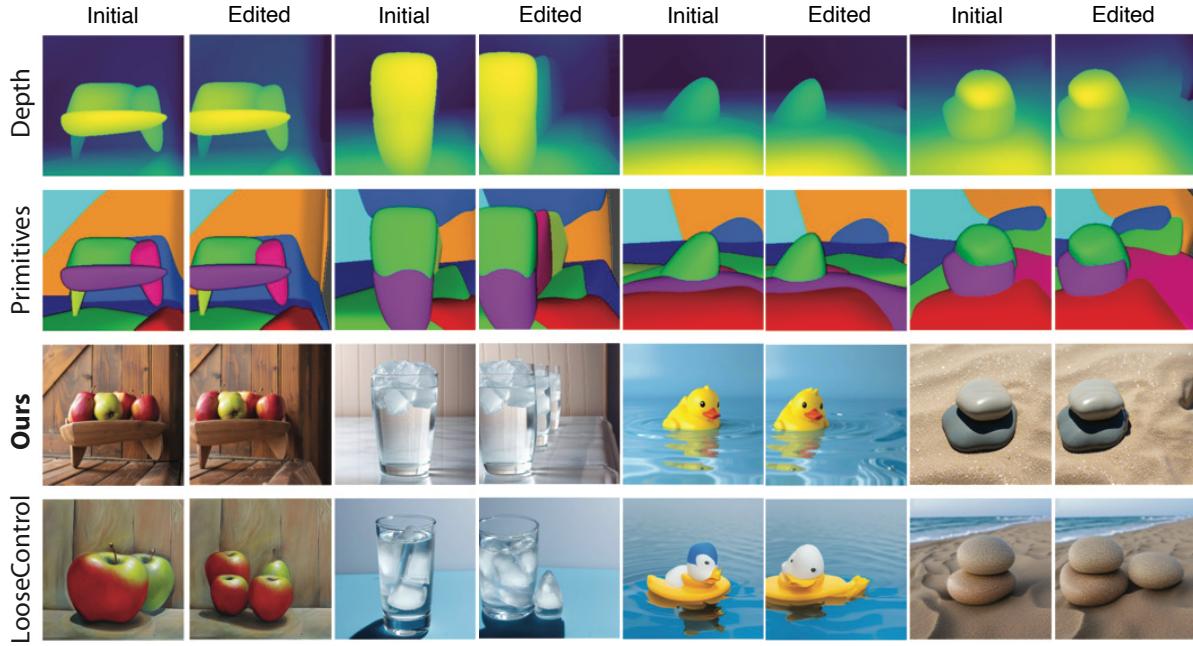


Figure 5. **Comparison with LooseControl [2].** Camera moves present serious problems for existing work. Four scenes (left side of each pair), synthesized from the depth maps shown. In each case, the camera is moved to the right (right side of each pair), and the image is resynthesized. Note how, for LooseControl, the number of apples changes (first pair); the level of water in the glass changes and there is an extra ice cube (second pair); the duck changes (third pair); an extra rock appears (fourth pair). In each case, our method shows the same scene from a different view, because the texture hint image is derived from the underlying geometry, and strongly constrains any change.

410 synthesized and (2) texture consistency between the source
 411 and edited image. For (1) we compute the AbsRel between
 412 the depth map supplied to the depth-to-image model (ob-
 413 tained by rendering the primitives) and the estimated depth
 414 of the synthesized image (we use the hypersim metric depth
 415 module from [53] to get linear depth). Consistent with stan-
 416 dard practice in depth estimation, we use least squares to fit
 417 scale and shift parameters onto the depth from RGB (letting
 418 the primitive depth supplied to the DM be GT).

419 To evaluate texture consistency, we apply ideas from the
 420 novel view synthesis literature and our existing point cloud
 421 correspondence pipeline. Given the source RGB image
 422 and the synthesized RGB image (conditioned on the texture
 423 hint), we warp the second image back into the first image's
 424 frame using our point cloud correspondence algorithm. If
 425 we were to synthesize an image in the first render's view-
 426 point using the second render, this is the texture hint we
 427 would use. In error metric calculation, the first RGB image
 428 is considered ground truth, the warped RGB image from
 429 the edited synthesized image is the prediction, and the con-
 430 fidence mask filters out pixels that are not visible in view
 431 1, given view 2. This evaluation procedure falls in the cat-
 432 egory of cycle consistency/photometric losses that estimate
 433 reprojection error [16, 24, 29, 39].

3.5. Hyperparameter selection

434 There are a number of hyperparameters associated with
 435 our procedure, and we perform a grid search on a held-
 436 out validation set to find the best ones. When gener-
 437 ating correspondence maps between point clouds, we let
 438 `max_distance`= 0.005. In our confidence map, we dilate
 439 low-confidence pixels with a score less than $\tau = 0.01$
 440 by 9 pixels, which tells the image model to synthesize new
 441 texture near primitive boundaries that are often uncertain.
 442 We set (t_{start}, t_{end}) to (1000, 500) by default, though t_{end}
 443 can be tuned per test image by the user. Applying the hint
 444 for all time steps can reduce blending quality near primi-
 445 tive boundaries; not applying the hint for enough time steps
 446 could weaken texture consistency. Allowing some time
 447 steps to not follow the hint enables desirable super reso-
 448 lution behavior e.g. when bringing a primitive closer to the
 449 camera. See supplementary for detailed algorithms for cre-
 450 ating the hint and confidence mask.

451 **Inpainting the hint** After warping the source image to
 452 the new view, we inpaint low-confidence regions of the
 453 hint x_{hint} before supplying it to the image model. We
 454 considered several possibilities, including `cv2.telea` and
 455 `cv2_ns` from the OpenCV package, as well as simply leav-
 456 ing them as black pixels. We find that Voronoi inpaint-
 457 ing, a variation of nearest neighbor inpainting, worked well.
 458 The `voronoi_inpainting` function performs image in-

Method	AbsRel _{src} ↓	AbsRel _{dst} ↓	PSNR ↑	SSIM ↑
Ours	0.072	0.076	18.7	0.874
LooseControl [2]	0.143	0.146	6.65	0.670

Table 1. Comparison of image reconstruction and generation metrics between our method and LooseControl. **AbsRel_{src}** and **AbsRel_{dst}** are absolute relative errors evaluating how well the generated images adhere to the requested primitive geometry (source and modified, respectively). PSNR and SSIM are evaluated by re-projecting the second synthesized image back to the original camera viewpoint (see Sec 3.4 and measuring texture consistency with the source. Observe how our procedure simultaneously offers tight geometric adherence to the primitives while preserving the source texture. Results obtained by averaging 48 test images with random camera moves. Because [2] does not offer primitive extraction code, we supply our own primitives to both methods for evaluation. We use $K = 10$ parts for this evaluation.

painting by filling in regions of low confidence in a hint image using colors from nearby high-confidence pixels, based on a Voronoi diagram approach.

This process leverages a KD-tree for efficient nearest-neighbor searches, ensuring that each pixel adopts the color of the closest reliable pixel, thus preserving color consistency in the inpainted result.

For **FLUX image generation** we begin with the default settings from the diffusers FLUX controlled inpainting pipeline¹. We set the `strength` parameter (controlling starting noise strength) to 1.0 and `guidance` to 10. We use 30 `num_steps` for denoising. In comparative evaluation, we use the default settings from the authors.

4. Results

In Fig. 4, we show how users can manipulate depth map inputs to depth-to-image synthesizers with our primitive abstractions. We can use these primitives to edit images, as shown in Fig. 5. Notice how we can get precise control over the synthesized geometry while respecting texture, which existing methods struggle to do. We quantitatively evaluate this property in Table 1, demonstrating we hit both goals conclusively. Existing texture preservation methods for multi-frame consistency typically rely on key-value transfer from one image to another. This, unfortunately, does not preserve details very well, only high-level semantics and style. We ablate the advantage of our texture preservation approach in Fig. 6. When there are few primitives, moving one primitive affects a big part of the scene; when there are a lot of primitives, we can make fine-scale edits. We show several such examples in Figs. 7, 8.

¹https://huggingface.co/docs/diffusers/en/api/pipelines/control_flux_inpaint

5. Discussion

This work demonstrates that we can utilize 3D primitives to achieve precise geometric control over image generation model outputs, and even preserve high-level textures more effectively than existing methods that rely on key-value transfer. A central reason this works is that good primitive decompositions offer several useful properties: they are selectable, allowing intuitive manipulation of scene components; they are object-linked, with boundaries that often correspond to semantic parts; they are scalable, enabling both coarse and fine-grained edits (with fewer and higher source primitive counts); and they are accurate enough to yield depth maps that support high-quality texture projection. Moreover, our pipeline is designed to be user-friendly: since our primitive decomposition is fast, users can easily choose between coarse and fine control by adjusting the number of primitives, and seamlessly switch between decompositions to suit the editing task and scene context.

We believe we have unlocked new interactive controls for image synthesis with our Generative Blocks World. While our method handles problems near primitive boundaries robustly, objects with holes that are not tightly modeled by the primitives (e.g., underneath a chair or a coffee mug handle) are challenging in our current formulation; additional segmentation and masking would be required (or simply using more primitives). Depth-of-field blurring/bokeh may not get resolved or sharpened when bringing out-of-focus objects into focus. Significant object rotations may also fail (see Fig. 10). In an interactive workflow, manually expanding the confidence mask to include problematic regions e.g., unwanted reflections that don't move with a primitive, can fix some issues. Future work that applies our point correspondences within the network layers themselves (e.g., in vital layers) may yield more robust solutions. Our method does not yet account for view-dependent lighting effects and does not enforce temporal consistency across frames for video synthesis.

Our results focus on editing generated images. While we can extract texture hints from real images, our experiments show that edited images should start from the same noise tensor and prompt as the source image to achieve good results. Therefore, good image inverters that work with depth-conditioned diffusion transformers are needed. Additionally, certain extreme edits that are at odds with the text prompt are likely to cause problems (e.g., if the prompt mentions an object is on the right, but a user manipulates the primitives to move the object to the left). Changing the text prompt could work in some circumstances (Fig. 9), or the DiT will inpaint missing regions with content that doesn't harmonize well with the rest of the image. This is due to the delicate link between the text prompt, hint image, initial noise tensor, and depth map.

542

References

543 [1] Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchikov, Kfir Aberman, Dani Lischinski, and Daniel Cohen-Or. 544 Stable flow: Vital layers for training-free image editing. In *Proceedings of the Computer Vision and Pattern Recognition 545 Conference (CVPR)*, pages 7877–7888, 2025. 5, 12, 14, 20

546 [2] Shariq Farooq Bhat, Niloy Mitra, and Peter Wonka. Loosecontrol: Lifting controlnet for generalized depth conditioning. 547 In *ACM SIGGRAPH 2024 Conference Papers*, New York, 548 NY, USA, 2024. Association for Computing Machinery. 3, 549 5, 7, 8

550 [3] Anand Bhattacharjee, Daniel McKee, Derek Hoiem, and David 551 Forsyth. Stylegan knows normal, depth, albedo, and more. 552 In *Advances in Neural Information Processing Systems*, 36: 553 73082–73103, 2023. 1

554 [4] Anand Bhattacharjee, James Soole, and David A Forsyth. 555 Stylitgan: Image-based relighting via latent control. In *Proceedings of the IEEE/CVF Conference on Computer Vision and 556 Pattern Recognition*, pages 4231–4240, 2024. 1

557 [5] Anand Bhattacharjee, Konpat Preechakul, and Alexei A. Efros. 558 Visual jenga: Discovering object dependencies via counterfactual 559 inpainting, 2025. 2

560 [6] I Biederman. Recognition by components : A theory of 561 human image understanding. *Psychological Review*, (94):115– 562 147, 1987. 2

563 [7] TO Binford. Visual perception by computer. In *IEEE Conf. 564 on Systems and Controls*, 1971. 2

565 [8] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: 566 Generating compact meshes via binary space partitioning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and 567 Pattern Recognition (CVPR)*, 2020. 2

568 [9] Yen-Chi Cheng, Krishna Kumar Singh, Jae Shin Yoon, 569 Alexander Schwing, Liangyan Gui, Matheus Gadelha, Paul 570 Guerrero, and Nanxuan Zhao. 3D-Fixup: Advancing Photo 571 Editing with 3D Priors. In *Proceedings of the SIGGRAPH 572 Conference Papers*. ACM, 2025. 3

573 [10] Yutao Cui, Xiaotong Zhao, Guozhen Zhang, Shengming 574 Cao, Kai Ma, and Limin Wang. Stabledrag: Stable dragging 575 for point-based image editing. In *European Conference on 576 Computer Vision*, pages 340–356. Springer, 2024. 3

577 [11] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien 578 Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. Cvxnet: 579 Learnable convex decomposition. In *Proceedings of the 580 IEEE/CVF Conference on Computer Vision and Pattern 581 Recognition (CVPR)*, 2020. 2, 3

582 [12] Xiaodan Du, Nicholas Kolkin, Greg Shakhnarovich, and 583 Anand Bhattacharjee. Generative models: What do they know? 584 do they know things? let's find out! *arXiv preprint 585 arXiv:2311.17137*, 2023. 1

587 [13] Abdelrahman Eldekokey and Peter Wonka. Build-a-scene: 588 Interactive 3d layout control for diffusion-based image 589 generation. In *The Thirteenth International Conference on 590 Learning Representations*, 2025. 3

593 [14] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and 594 Aleksander Holynski. Diffusion self-guidance for controllable 595 image generation. 2023. 3

598 [15] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim 599 Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik 600 Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified 601 flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024. 5

602 [16] Qihang Fang, Yafei Song, Keqiang Li, Li Shen, Huaiyu Wu, 603 Gang Xiong, and Liefeng Bo. Evaluate geometry of radiance 604 fields with low-frequency color prior. In *Proceedings of the 605 Thirty-Eighth AAAI Conference on Artificial Intelligence and 606 Thirty-Sixth Conference on Innovative Applications of Artificial 607 Intelligence and Fourteenth Symposium on Educational 608 Advances in Artificial Intelligence*. AAAI Press, 2024. 7

609 [17] David F. Fouhey, Abhinav Gupta, and Martial Hebert. Data- 610 driven 3d primitives for single image understanding. In *Proceedings of the IEEE International Conference on Computer 611 Vision (ICCV)*, 2013. 2

612 [18] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. 613 Stylernerf: A style-based 3d aware generator for high- 614 resolution image synthesis. In *International Conference on 615 Learning Representations*, 2022. 3

616 [19] Weiran Guang, Xiaoguang Gu, Mengqi Huang, and Zhen- 617 dong Mao. Dragin3d: Image editing by dragging in 3d space. 618 In *Proceedings of the Computer Vision and Pattern Recognition 619 Conference (CVPR)*, pages 21502–21512, 2025. 3

620 [20] Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks 621 world revisited: Image understanding using qualitative 622 geometry and mechanics. In *European Conference on 623 Computer Vision (ECCV)*, 2010. 2

624 [21] Varsha Hedau, Derek Hoiem, and David Forsyth. Thinking 625 inside the box: using appearance models and context based 626 on room geometry. In *Proceedings of the 11th European 627 Conference on Computer Vision: Part VI*, page 224–237, 628 Berlin, Heidelberg, 2010. Springer-Verlag.

629 [22] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recov- 630 ering surface layout from an image. *International Journal of 631 Computer Vision*, 75(1):151–172, 2007. 2

632 [23] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A 633 Efros. Image-to-image translation with conditional adver- 634 sarial networks. In *Proceedings of the IEEE conference on 635 computer vision and pattern recognition*, pages 1125–1134, 636 2017. 2

637 [24] Yoonwoo Jeong, Jinwoo Lee, Seokyeong Lee, Doyup Lee, 638 and Minhyuk Sung. NVS-Adapter: Plug-and-play novel 639 view synthesis from a single image. In *Proceedings of the 640 European Conference on Computer Vision (ECCV)*, 2024. 7

641 [25] Nikolai Kalischek, Michael Oechsle, Fabian Manhardt, 642 Philipp Henzler, Konrad Schindler, and Federico Tombari. 643 Cubediff: Repurposing diffusion-based image models for 644 panorama generation, 2025. 2

645 [26] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, 646 Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White- 647 head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and 648 Ross Girshick. Segment anything. In *2023 IEEE/CVF Interna- 649 tional Conference on Computer Vision (ICCV)*, pages 650 3992–4003, 2023. 4

651 [27] Florian Kluger, Hanno Ackermann, Eric Brachmann, 652 Michael Ying Yang, and Bodo Rosenhahn. Cuboids revis- 653 654 655

656 ited: Learning robust 3d shape fitting to single rgb images.
657 In *Proceedings of the IEEE Conference on Computer Vision*
658 and *Pattern Recognition (CVPR)*, 2021. 5

659 [28] Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. 2, 4, 5

660 [29] Feifei Li, Qi Song, Chi Zhang, Hui Shuai, and Rui Huang.
661 Pol: Pixel of interest for novel view synthesis assisted scene
662 coordinate regression. *arXiv preprint arXiv:2502.04843*,
663 2025. 7

664 [30] Haolin Liu, Yujian Zheng, Guanying Chen, Shuguang Cui,
665 and Xiaoguang Han. Towards high-fidelity single-view
666 holistic reconstruction of indoor scenes. In *European Con-
667 ference on Computer Vision*, pages 429–446. Springer, 2022.
668 2

669 [31] Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Krishna, Aniruddha Kembhavi, and Tanmay Gupta. Object
670 3dit: Language-guided 3d-aware image editing. *Advances in Neural Information Processing Systems*, 36:3497–3516,
671 2023. 3

672 [32] Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A.
673 Efros, and Mathieu Aubry. Differentiable Blocks World:
674 Qualitative 3D Decomposition by Rendering Primitives. In
675 *NeurIPS*, 2023. 2

676 [33] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
677 Jian Zhang. Dragondiffusion: Enabling drag-style manipu-
678 lation on diffusion models. *arXiv preprint arXiv:2307.02421*,
679 2023. 3

680 [34] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
681 Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning
682 adapters to dig out more controllable ability for text-to-image
683 diffusion models. *Proceedings of the AAAI Conference on
684 Artificial Intelligence*, 38(5):4296–4304, 2024. 2

685 [35] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie
686 Liu, Abhimitra Meka, and Christian Theobalt. Drag your
687 gan: Interactive point-based manipulation on the generative
688 image manifold. In *ACM SIGGRAPH 2023 conference pro-
689 ceedings*, pages 1–11, 2023. 3

690 [36] Karran Pandey, Paul Guerrero, Matheus Gadelha, Yannick
691 Hold-Geoffroy, Karan Singh, and Niloy J. Mitra. Diffusion
692 handles enabling 3d edits for diffusion models by lifting ac-
693 tivations to 3d. In *2024 IEEE/CVF Conference on Computer
694 Vision and Pattern Recognition (CVPR)*, pages 7695–7704,
695 2024. 3

696 [37] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
697 Zhu. Semantic image synthesis with spatially-adaptive nor-
698 malization. In *Proceedings of the IEEE Conference on Com-
699 puter Vision and Pattern Recognition*, 2019. 2

700 [38] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
701 hall. Dreamfusion: Text-to-3d using 2d diffusion. In *Pro-
702 ceedings of the International Conference on Learning Re-
703 presentations (ICLR)*. OpenReview.net, 2023. 3

704 [39] Yuxin Qin, Xinlin Li, Linan Zu, and Ming Liang Jin. Novel
705 view synthesis with depth priors using neural radiance fields
706 and cyclegan with attention transformer. *Symmetry*, 17(1),
707 2025. 7

708 [40] L. G. Roberts. *Machine Perception of Three-Dimensional
709 Solids*. PhD thesis, MIT, 1963. 2

710 [41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
711 Patrick Esser, and Björn Ommer. High-resolution image
712 synthesis with latent diffusion models. In *Proceedings of
713 the IEEE/CVF Conference on Computer Vision and Pattern
714 Recognition (CVPR)*, pages 10674–10684, 2022. 2

715 [42] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
716 Kalogerakis, and Subhransu Maji. Csgnet: Neural shape
717 parser for constructive solid geometry. In *The IEEE Confer-
718 ence on Computer Vision and Pattern Recognition (CVPR)*,
719 2018. 2

720 [43] Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Han-
721 shu Yan, Wenqing Zhang, Vincent YF Tan, and Song Bai.
722 Dragdiffusion: Harnessing diffusion models for interactive
723 point-based image editing. In *Proceedings of the IEEE/CVF
724 Conference on Computer Vision and Pattern Recognition*,
725 pages 8839–8849, 2024. 3, 6

726 [44] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
727 Fergus. Indoor segmentation and support inference from
728 rgbd images. In *Proceedings of the 12th European Confer-
729 ence on Computer Vision - Volume Part V*, page 746–760,
730 Berlin, Heidelberg, 2012. Springer-Verlag. 5

731 [45] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi,
732 Lizhuang Ma, and Dong Chen. Make-it-3d: High-fidelity
733 3d creation from a single image with diffusion prior. In
734 *Proceedings of the IEEE/CVF International Conference on
735 Computer Vision (ICCV)*, pages 22819–22829, 2023. 3

736 [46] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.
737 Efros, and Jitendra Malik. Learning shape abstractions by
738 assembling volumetric primitives. In *Computer Vision and
739 Pattern Recognition (CVPR)*, 2017. 2

740 [47] Vaibhav Vavilala and David Forsyth. Convex decomposi-
741 tion of indoor scenes. In *2023 IEEE/CVF International Confer-
742 ence on Computer Vision (ICCV)*, pages 9142–9152, 2023.
743 2, 4, 5

744 [48] Vaibhav Vavilala, Rahul Vasanth, and David Forsyth. De-
745 noising monte carlo renders with diffusion models, 2024. 2

746 [49] Vaibhav Vavilala, Florian Kluger, Seemandhar Jain, Bodo
747 Rosenhahn, Anand Bhattad, and David Forsyth. Improved
748 convex decomposition with ensembling and boolean primi-
749 tives, 2025. 2, 4, 5

750 [50] Vaibhav Vavilala, Faaris Shaik, and David Forsyth. Dequan-
751 tization and color transfer with diffusion models. In *2025
752 IEEE/CVF Winter Conference on Applications of Computer
753 Vision (WACV)*, pages 9630–9639, 2025. 2

754 [51] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,
755 and Greg Shakhnarovich. Score jacobian chaining: Lift-
756 ing pretrained 2d diffusion models for 3d generation. In
757 *2023 IEEE/CVF Conference on Computer Vision and Pat-
758 tern Recognition (CVPR)*, pages 12619–12629, 2023. 3

759 [52] Xiaoyan Xing, Konrad Groh, Sezer Karaoglu, Theo Gevers,
760 and Anand Bhattad. Luminet: Latent intrinsics meets dif-
761 fusion models for indoor scene relighting. In *Proceedings
762 of the Computer Vision and Pattern Recognition Conference*,
763 pages 442–452, 2025. 1

764 [53] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
765 gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
766 thing v2. In *Advances in Neural Information Processing Sys-
767 tems*, 2025. 2

768

769

770 *tems*, pages 21875–21911. Curran Associates, Inc., 2024. 3,
771 4, 7

772 [54] Jiraphon Yenphraphai, Xichen Pan, Sainan Liu, Daniele
773 Panozzo, and Saining Xie. Image sculpting: Precise ob-
774 ject editing with 3d geometry control. In *Proceedings of*
775 *the IEEE/CVF Conference on Computer Vision and Pattern*
776 *Recognition*, pages 4241–4251, 2024. 3

777 [55] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
778 conditional control to text-to-image diffusion models. In
779 *2023 IEEE/CVF International Conference on Computer Vi-*
780 *sion (ICCV)*, pages 3813–3824, 2023. 2, 4, 5

781 [56] Ruiqi Zhao, Zechuan Zhang, Zongxin Yang, and Yi Yang.
782 3d object manipulation in a single image using generative
783 models, 2025. 3

784 [57] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
785 Efros. Unpaired image-to-image translation using cycle-
786 consistent adversarial networks. In *Proceedings of the IEEE*
787 *international conference on computer vision*, 2017. 2

788 [58] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.
789 Layoutnet: Reconstructing the 3d room layout from a sin-
790 gle rgb image. In *Proceedings of the IEEE Conference on*
791 *Computer Vision and Pattern Recognition (CVPR)*, 2018. 2