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Abstract
We present a new approach based on the001
Personalized Federated Learning algorithm002
MeritFed that can be applied to Natural Lan-003
guage Tasks with heterogeneous data. We eval-004
uate it on the Low-Resource Machine Trans-005
lation task, using the dataset from the Large-006
Scale Multilingual Machine Translation Shared007
Task (Small Track #2) and the subset of Sami008
languages from the multilingual benchmark for009
Finno-Ugric languages. In addition to its effec-010
tiveness, MeritFed is also highly interpretable,011
as it can be applied to track the impact of each012
language used for training. Our analysis reveals013
that target dataset size affects weight distribu-014
tion across auxiliary languages, that unrelated015
languages do not interfere with the training,016
and auxiliary optimizer parameters have mini-017
mal impact. Our approach is easy to apply with018
a few lines of code, and we provide scripts for019
reproducing the experiments.1020

1 Introduction021

While 7,000+ languages are currently in use world-022

wide, most existing Natural Language Processing023

(NLP) tasks and Large Language Models (LLMs)024

cover at most 500 of them (Logacheva et al., 2020;025

ImaniGooghari et al., 2023; Lin et al., 2024). Many026

languages still possess low amount of resources,027

and a lot of NLP tasks for such languages re-028

main unsolved. These facts indicate the difficulty029

and non-triviality of using LLMs that typically030

require large amounts of data. A popular direc-031

tion of approaching low-resource languages (LRLs)032

is Machine Translation: automatic translation be-033

tween most of these low-resource languages to034

high-resource ones is more economically and so-035

cially motivated than developing language-specific036

systems (Ranathunga et al., 2023).037

To solve the tasks for LRLs, a lot of studies em-038

ploy the related languages or languages originating039

1https://anonymous.4open.science/r/MeritFed_
review-2D5B

from the same geographical and historical back- 040

ground (ImaniGooghari et al., 2023; Da Dalt et al., 041

2024; Millour et al., 2024). Despite the positive 042

effect, it usually requires empirical knowledge, and 043

many guesses and trials of different approaches 044

when choosing the best combination of languages 045

used, the most suitable amount of data, and the best 046

learning strategy (Hedderich et al., 2021). 047

New approach. To address these issues, we 048

present our approach called MeritFed to train 049

LLMs for the target language while multiple 050

datasets for different languages are available. The 051

key idea behind our method is inspired by Tupitsa 052

et al. (2024), who focus on a specific (Personalized) 053

Federated Learning formulation (Kairouz et al., 054

2021). We focus on exploring the underlying algo- 055

rithmic techniques in application to heterogeneous 056

datasets rather than the Distributed Training. 057

Our approach is more robust as it adjusts the im- 058

pact of each language (aggregation weights) during 059

training without any explicit inductive bias towards 060

language relatedness. In particular, our strategy 061

benefits from the updates from the “important” lan- 062

guages and tolerates the updates from the “not im- 063

portant” ones. This setup is extremely beneficial 064

for the interpretability of the training process. 065

In this study, we primarily focus on low-resource 066

languages. However, our approach can be applied 067

to any similar task (not necessarily in NLP). The 068

main requirement is to possess multiple heteroge- 069

neous input datasets, while the goal is to train the 070

model suitable for some target data distribution. 071

Therefore, we apply the algorithm to the Ma- 072

chine Translation task using two datasets: the sub- 073

set from the Large-Scale Multilingual Machine 074

Translation Shared Task (Small Track #2) (Wen- 075

zek et al., 2021) and the subset of Sami languages 076

from the multilingual benchmark for Finno-Ugric 077

languages (Yankovskaya et al., 2023). To test the 078

method effectively within our compute budget, we 079
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focus our study on scenarios with one target lan-080

guage and the remaining languages as auxiliary081

languages. Our approach can be further applied082

to the datasets with several target languages and083

several translation directions.084

Two research questions are addressed in this pa-085

per: (i) “Can MeritFed improve the results of the086

multilingual or single language baselines using ag-087

gregation weights?” and (ii) “How do the target088

language weights and the weights of related and089

non-related languages change across training?”.090

The contributions of the paper are as follows:091

• We present a new algorithmic framework for092

the training from heterogeneous input datasets093

and test it on the World Machine Translation094

Shared task on the Indonesian languages and095

Sami languages of the Finno-Ugric Machine096

Translation benchmark.097

• We explore how languages interact with each098

other during training, as our approach allows099

measuring the impact (which language con-100

tributes more) at each training step.101

• We perform an ablation study to analyze the102

effects of unrelated languages, training dataset103

size, and auxiliary MeritFed parameters.104

• Under certain assumptions, we rigorously105

prove that the proposed method converges to106

some neighborhood of the solution.107

2 Related Work108

In this section, we discuss the existing methods for109

low-resource language NLP tasks, especially for110

low-resource machine translation (LRMT) (Had-111

dow et al., 2022), and also give a brief overview112

of the existing methods in Personalized Federated113

Learning, and methods to estimate the impact of114

auxiliary data.115

2.1 Low-Resource Machine Translation116

Existing approaches for NLP tasks for LRLs usu-117

ally fall into the following categories: supervised or118

unsupervised, single language training or multilin-119

gual training, continuous pre-training or finetuning,120

with or without data augmentation, balanced or im-121

balanced datasets (Hedderich et al., 2021; Wang122

et al., 2021; Krasadakis et al., 2024; Goyal et al.,123

2020). This list of categories is not extensive. How-124

ever, they all aim to develop the best learning strat-125

egy given limited data.126

In the following subsections, we discuss the 127

methods developed or applied for the datasets 128

on South East Asian Languages and Finno-Urgic 129

benchmarks, the main targets of our research. 130

2.1.1 LRMT for South East Asian Languages 131

Several approaches have been developed to solve 132

the Large-scale Multilingual Machine Translation 133

task (Shared Task on WMT-21). The organizers 134

(Wenzek et al., 2021) summarize all the used ap- 135

proaches and provide the FLORES model (Goyal 136

et al., 2022) extended to 124 languages. Most of 137

the participants, Yang et al. (2021); Budiwati et al. 138

(2021); Liao et al. (2021), use a generic pre-trained 139

multilingual models like DeltaLM (Ma et al., 2021) 140

or FLORES (Goyal et al., 2022) and fine-tune it 141

correspondingly with the vast collected parallel 142

data, together with applying progressive learning 143

and iterative back-translation. Sutawika and Cruz 144

(2021) use a standard Seq2Seq Transformer model 145

without any training or architecture tricks, relying 146

mainly on the strength of the data preprocessing 147

techniques and filtering. 148

Given our focus on a setup with very limited 149

data and our available computational resources, we 150

concentrate on evaluating our specific approach. 151

Therefore, our results cannot be compared to the 152

above-mentioned methods. 153

2.1.2 LRMT for Finno-Ugric languages 154

Regarding the Finno-Ugric languages, very few 155

approaches are developed or tested on the bench- 156

mark. Tars et al. (2022) uses the standard M2M100 157

model (Fan et al., 2021) enhanced with the follow- 158

ing steps: vocabulary extension in the tokenizer, 159

data filtering, and preprocessing. Yankovskaya 160

et al. (2023) improves previous results with back- 161

translation and synthetic data as well as with the 162

sampled high-resource language pairs to reduce 163

catastrophic forgetting. Our models involve the 164

same baselines; however, our training data con- 165

sists of Sami languages (input) and Finish (output). 166

Therefore, we also cannot compare the results di- 167

rectly to the above-mentioned methods. 168

2.2 Personalized Federated Learning 169

Federated Learning (FL) (Konecnỳ et al., 2016; 170

McMahan et al., 2017) is a modern and rapidly 171

developing part of Machine Learning, considering 172

the training on the data distributed over multiple 173

clients (Kairouz et al., 2021). In the standard sce- 174

nario, the goal is to train one global model that 175
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suits multiple clients, i.e., solve standard empirical176

risk minimization. In scenarios with heterogeneous177

data, the global model can show suboptimal results178

for particular clients, which necessitates consid-179

ering Personalized Federated Learning (PFL) for-180

mulations to achieve better results on the client’s181

data while getting benefits from collaboration with182

others.183

In the training of LLMs for the target (low-184

resource) language using the data in multiple lan-185

guages, the goal is quite similar: to achieve good186

results for the target language while getting ben-187

efits from the model updates for other available188

languages. Therefore, in our work, we adjust the189

algorithmic ideas from (Tupitsa et al., 2024) to the190

training of LLMs for low-resource languages.191

There also exist multiple PFL formulations and192

methods for solving them with their own advan-193

tages and limitations, e.g., see (Fallah et al., 2020;194

Collins et al., 2021; Hanzely et al., 2020; Kulkarni195

et al., 2020; Wu and Wang, 2021). However, the196

works on PFL focus on different scenarios from197

our setup, i.e., they consider distributed training.198

2.3 Impact of Auxilary Data199

Many existing papers rely on auxiliary data, espe-200

cially when the given dataset is too small. Schröder201

and Biemann (2020) automatically assesses the202

similarity of sequence tagging datasets to identify203

beneficial auxiliary data for Multi-Task Learning204

or Transfer Learning setups. Chen et al. (2022)205

propose a joint task and data scheduling model for206

auxiliary learning by creating a mapping from task,207

feature, and label information to the schedule in a208

parameter-efficient way.209

Regarding LRMT, studies use the related lan-210

guages when little data for the target language is211

given. One of the attempts to approach each lan-212

guage differently during training is made by Huo213

et al. (2024). They dynamically allocate parameters214

of an appropriate scale to each language direction215

based on the consistency between the gradient of216

the individual language and the average gradient.217

Millour et al. (2024); Da Dalt et al. (2024) show218

that datasets on closely related languages are highly219

beneficial for applying to the target low-resource220

language. ImaniGooghari et al. (2023) also investi-221

gate the positive effects of closely related languages222

on the Glot-500 model. They analyze the impact223

of related languages via continued pre-training and224

confirm better performance for languages with their225

language family or script present in training.226

3 Methodology 227

General setup. We start with the description of 228

the general problem formulation that our approach 229

is suitable for. That is, we consider the scenario 230

when n ≥ 1 datasets {Di}ni=1 are available for 231

training, and the goal is to train the model for some 232

data distribution D using this collection of datasets. 233

More precisely, we focus on the standard learning 234

problem (Shalev-Shwartz and Ben-David, 2014): 235

minx∈Rd fD(x), where fD : Rd → R is the ex- 236

pected loss computed for the data distribution D, 237

i.e., fD := Eξ∼D[fξ(x)] with fξ : Rd → R being 238

a loss on sample ξ and Eξ∼D[·] denoting an expec- 239

tation w.r.t. ξ coming from the target distribution 240

D, and x ∈ Rd represents a vector of model param- 241

eters, i.e., weights of the network. In practice, data 242

distribution D is typically unknown. Therefore, to 243

approximate fD(x), finite dataset D̂ sampled from 244

distribution D is used. Throughout the paper, we 245

call this dataset the target one and denote the cor- 246

responding (empirical) loss as f
D̂
(x). In addition, 247

we assume that a collection of datasets {Di}ni=1 is 248

available for the training. 249

We assume that D1 is sampled from the target 250

distribution D, and we make no assumptions on 251

the other datasets. In particular, {Di}ni=2 can be 252

arbitrary heterogeneous and different from D1 and 253

D̂. However, if some of the available datasets are 254

sampled from distributions that are close to D, they 255

can be quite useful for the training. This idea serves 256

as the main motivation behind our approach. 257

Algorithmic framework. To solve the described 258

problem, we propose a generic algorithmic frame- 259

work – MeritFed (see Algorithm 1) – inspired by 260

MeritFed-SGD proposed by Tupitsa et al. (2024) 261

for solving Personalized Federated Learning prob- 262

lems. MeritFed can be seen as a “wrapper” for an 263

optimization method having update rule xt+1 = 264

OptStep(xt, g(xt), γt), where xt represents the 265

weights of the model after step t, g(xt) is the 266

stochastic (mini-batched) gradient computed at xt, 267

and γt is the learning rate. For example, when 268

the underlying method is Stochastic Gradient De- 269

scent (SGD) (Robbins and Monro, 1951), we have 270

OptStep(xt, g(xt), γt) = xt − γtg(x
t) and Algo- 271

rithm 1 reduces to MeritFed-SGD from (Tupitsa 272

et al., 2024). However, we can apply MeritFed to 273

the update rule of any stochastic first-order method, 274

e.g., Adam (Kingma and Ba, 2015) and its vari- 275

ations, AdaGrad (Streeter and McMahan, 2010; 276

Duchi et al., 2011), RMSProp (Hinton et al., 2012), 277
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Algorithm 1 MeritFed: General Algorithmic Framework for Learning from Heterogeneous Data

1: Input: Number of steps T , starting point x0 ∈ Rd, stepsizes {γt}Tt=1 (γt > 0), optimization update
rule OptStep(x, g, γ) : Rd × Rd × R → Rd, datasets {Di}ni=1, target validation dataset D̂

2: for t = 0, 1, . . . , T do
3: for all i = 1, . . . , n in parallel do
4: Compute stochastic gradient gi(xt) from dataset Di

5: end for
6: wt+1 ≈ argmin

w∈∆n
1

f
D̂

(
OptStep

(
xt,

n∑
i=1

wigi(x
t), γt

))
7: xt+1 = OptStep

(
xt,

n∑
i=1

wt+1
i gi(x

t), γt

)
8: end for

and other methods. In our experiments, we use278

Adam as OptStep(x, g, γ).279

In addition to the update rule OptStep(x, g, γ),280

MeritFed takes n input datasets {Di}ni=1 and 1281

target validation dataset D̂. At each iteration, the282

method computes (mini-batched) stochastic gra-283

dient gi(xt) using the corresponding dataset Di284

for each i = 1, . . . , n. Then, to construct the285

update direction, MeritFed searches appropriate286

aggregation weights wt+1 = (wt+1
1 , . . . , wt+1

n )⊤287

(see Line 6) and then makes a step xt+1 =288

OptStep
(
xt,
∑n

i=1w
t+1
i gi(x

t), γt
)

using the com-289

puted weighted average of the stochastic gradi-290

ents. We emphasize that the choice of aggregation291

weights wt+1 is crucial: for example, if datasets292

{Di}ni=2 came from distributions significantly dif-293

ferent from the target distribution D and we choose294

uniform weights, i.e., wt+1
1 = . . . = wt+1

n = 1/n,295

then the optimization step with the update vector296 ∑n
i=1w

t+1
i gi(x

t) can be useless (on average) in297

terms of solving the target problem. Moreover,298

if some datasets came from distributions close to299

D, it is natural to use the corresponding stochastic300

gradients with larger weights to benefit from them.301

MeritFed addresses this issue in Line 6: the302

goal is to find aggregation weights wt+1 ∈ ∆n
1 ,303

where ∆n
1 := {y ∈ Rn |

∑n
i=1 yi = 1, yi ≥304

0 ∀ i = 1, . . . , n} is the n-dimensional probabil-305

ity simplex, such that the loss f
D̂

on the target306

validation dataset D̂ is minimized after the step307

OptStep
(
xt,
∑n

i=1w
t+1
i gi(x

t), γt
)

that depends308

on wt+1. If D̂ is sufficiently large, then f
D̂

can309

be seen as a good approximation of fD (Shalev-310

Shwartz et al., 2009), and optimizing f
D̂

leads to311

sufficiently good solution for fD. In other words,312

given stochastic gradients gi(x
t) computed from313

different datasets {Di}ni=1, MeritFed tries to find314

the best-weighted average of them to make an opti- 315

mization step. Following Tupitsa et al. (2024), we 316

apply several steps of Stochastic Mirror Descent 317

(SMD) (Nemirovskij and Yudin, 1983) to solve the 318

problem in Line 6 approximately. 319

Application to NLP. The described approach can 320

be applied to the training of LLMs for LRLs. In 321

this case, {Di}ni=1 correspond to the input datasets 322

in n different languages. In particular, D1 is the 323

training dataset for the target language2 and D̂ is 324

the target validation dataset for the same language. 325

The remaining datasets {Di}ni=2 are for other lan- 326

guages. Some of these languages can be related to 327

the target one, but, in general, we allow the usage 328

of datasets in significantly different languages as 329

well: MeritFed automatically adjusts aggregation 330

weights and assigns higher weights to more bene- 331

ficial languages. Therefore, aggregation weights 332

wt+1 can be used to measure the impact of selected 333

languages on the model’s training for the target lan- 334

guage. In other words, we extend the training target 335

language dataset and prevent drifting towards the 336

solution for other languages. 337

4 Experiments 338

In this section, we apply the methodology to learn 339

low-resource languages with the help of related 340

languages. We also discuss the data used, the base- 341

lines, and the evaluation metrics. 342

4.1 Datasets 343

To test the developed method, we need to consider 344

datasets with related languages that either belong 345

to the same language family or are geographically 346

2One can interpret all possible texts in the target language
as some distribution D. In this interpretation, D1 can be seen
as some dataset sampled from language D.
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Method Inari Sami Skolt Sami South Sami North Sami

Score Steps Score Steps Score Steps Score Steps

CPAll 51.39 ± 0.05 30K 44.90 ± 0.12 25K 11.60 ± 0.29 23K 39.78 ± 0.08 69K
CPNoT 50.14 ± 0.04 31K 43.40 ± 0.13 25K 11.09 ± 0.24 23K 39.30 ± 0.18 65K

MeritFed 52.08 ± 0.01 12K 50.27 ± 0.17 12K 13.26 ± 0.17 2.5K 38.526 ± 1.39 30K

Table 1: Mean SpBLEU scores and the number of steps required to reach them for baselines and MeritFed within
Finno-Samic low-resource languages.

Method Tagalog Javanese

Small Medium Large Small Medium Large

Score Steps Score Steps Score Steps Score Steps Score Steps Score Steps

CPAll 29.24 ± 0.06 21K 30.99 ± 0.04 40K 33.89 ± 0.15 124K 19.43 ± 0.14 12K 20.05 ± 0.12 25K 20.97 ± 0.13 87K
CPNoT 28.72 ± 0.16 15K 30.50 ± 0.12 42K 33.74 ± 0.19 129K 19.46 ± 0.12 12K 19.95 ± 0.12 25K 21.19 ± 0.09 89K

MeritFed 29.73 ± 0.04 14K 31.42 ± 0.07 14K 33.53 ± 0.27 47K 19.74 ± 0.03 2K 20.23 ± 0.11 3K 21.44 ± 0.13 8K

Table 2: Mean SpBLEU scores and the number of steps required to reach them for baselines and MeritFed within
the different data sizes of Javanese and Tagalog languages.

related, which we expect to be “helpful” during the347

training procedure. Therefore, we select a sub-348

set from the Large-Scale Multilingual Machine349

Translation Shared Task (Small Track #2) (Wen-350

zek et al., 2021) and the subset of Sami languages351

from the multilingual benchmark for Finno-Ugric352

languages (Yankovskaya et al., 2023). We describe353

each dataset in detail in the following paragraphs.354

South East Asian languages Dataset. For the355

first round of experiments, we select one of the356

small tracks, Large-Scale Multilingual Machine357

Translation Shared Task, comprising translation358

pairs between fairly related languages and En-359

glish and not requiring substantial computational360

resources at training time. We stick to Javanese,361

Indonesian, Malay, Tagalog, and Tamil as input lan-362

guages and English as output. As target languages,363

we utilize Javanese and Tagalog as the smallest364

language pairs in the dataset. We perform our ex-365

periments on multiple dataset scales: 80K (small),366

150K (medium), and 500K (large). Our primary367

goal is to test the method; therefore, we do not368

perform experiments on the whole dataset, leaving369

this to future work. For additional experiments, we370

utilize the Hungarian dataset from Small Track #1.371

All the dataset statistics are provided in Table 4 for372

the initial dataset and for the datasets created for373

our experiments.374

Finno-Samic Languages Dataset. Regarding375

the dataset compiled from the Finno-Ugric bench-376

mark (Yankovskaya et al., 2023), we stick to377

the Sami languages as the only option matching378

our criteria: parallel training datasets of differ-379

ent sizes with the same output language (Finnish) 380

for those pairs, parallel development and test 381

datasets of good quality. Unfortunately, such data 382

is available only for Finno-Samic languages3, such 383

as tartuNLP/finno-ugric-benchmark North Sami, 384

South Sami, Inari Sami, Skolt Sami. The dataset 385

statistics are presented in Table 5. In future ex- 386

periments, we plan to extend the datasets to other 387

languages and directions from the benchmark. 388

4.2 Baselines 389

For our baselines, we consider fine-tuning to the tar- 390

get language both with and without various forms 391

of prior continual pretraining: 392

• FTAll — Fine-tuning to all languages includ- 393

ing the target language; 394

• FTNoT — Fine-tuning to all languages except 395

the target language; 396

• FTOnlyT — Fine-tune to the target language 397

only; 398

• CPAll — Continuous Pretraining to all lan- 399

guages, followed by additional fine-tuning to 400

the target language; 401

• CPNoT — Continuous Pretraining to all lan- 402

guages but the target, followed by additional 403

fine-tuning to the target language. 404

3https://huggingface.co/datasets/tartuNLP/
finno-ugric-benchmark,
https://huggingface.co/datasets/tartuNLP/
finno-ugric-train

5

https://huggingface.co/datasets/tartuNLP/finno-ugric-benchmark
https://huggingface.co/datasets/tartuNLP/finno-ugric-benchmark
https://huggingface.co/datasets/tartuNLP/finno-ugric-train
https://huggingface.co/datasets/tartuNLP/finno-ugric-train


0 1000 2000 3000 4000 5000 6000 7000
Step

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t

Small

0 2000 4000 6000 8000 10000
Step

Medium

0 2000 4000 6000 8000 10000
Step

Large

0 2000 4000 6000 8000
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
ei

gh
t

0 2000 4000 6000 8000 10000 12000 14000
Step

0 5000 10000 15000 20000 25000
Step

Javanese

Tagalog

Javanese Indonesian Malay Tamil Tagalog

Figure 1: Weights distribution for South East Asian languages. Target languages and data sizes are in captions.

We use the M2M100 model with 418M parameters405

as our base model (Fan et al., 2020). For Finno-406

Ugric languages, special language tokens are added407

and learned since the model was not pretrained for408

those languages. More training details and configu-409

rations are provided in Appendix A.410

4.3 Evaluation411

We use SpBLEU metrics in our evaluation as412

in Sutawika and Cruz (2021), utilizing Sacre-413

BLEU (Post, 2018). The generation parameters are414

adopted from Xie et al. (2021), employing beam415

search with 4 beams, and the temperature set to 1.416

5 Results and Discussion417

Tables 1 and 2 show that MeritFed is indeed help-418

ful during training: our approach achieves better419

performance for most setups and languages. for Ja-420

vanese and Tagalog languages (small and medium)421

and for Sami languages of comparable sizes (South,422

Scolt, and Inari). We report scores for approaches423

without Continuous Pretraining in Appendix B, as424

they are always worse than with CP.425

Impact of Aggregation Weights. We can see426

that the methods assign higher weights to the tar-427

get language at first, followed by a drop, while428

other weights increase. Therefore, Javanese bene-429

fits more from the Indonesian language, while Taga- 430

log’s, higher-weighted languages are Indonesian 431

and Malay. Interestingly, while spoken in South 432

East Asia, the Tamil language does not belong to 433

the same language family as the others. This fact is 434

reflected in Figure 1: Tamil always contributes less 435

than other languages. For Sami languages, North 436

Sami seems always to be the most beneficial. 437

No Overfitting. An important observation is that 438

the algorithm helps to prevent the model from over- 439

fitting: the weight of the target language decreases 440

once the model learns the small amount of data 441

available for the target language; additional lan- 442

guages serve as regularization to keep the model 443

converging. Probably, that partially explains the 444

non-zero weights of Tamil, which does not belong 445

to the same language family, although being spoken 446

in South East Asia. 447

Unrelated Language. To check the hypothesis 448

that unrelated language serves as regularization, we 449

conducted an additional experiment and added the 450

Hungarian language from the Finno-Ugric family 451

to training. As shown in Figure 3, its weights are 452

also non-zero. Moreover, the SpBLEU scores re- 453

mained nearly consistent across all MD parameters 454

and Adaptive Batch configurations, supporting the 455

regularization role of additional languages. 456
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Size of the Target Language Dataset. For457

Tagalog-large and North Sami, the algorithm re-458

lies on the target language dataset more than on459

additional languages and does not outperform the460

Continuous Pretraining baseline. On the contrary,461

for small and medium datasets, the algorithm needs462

from 2 to 10 times fewer main gradient steps to out-463

perform the baselines.464

We assume that this happens because the amount465

of data from the target language is enough, and466

the algorithm keeps assigning high weights to the467

target language and trains the model on the tar-468

get language only. Another possible reason for469

the inferior performance could be excessive gra-470

dient steps involving non-target languages. This471

might “distract” the model and fail to provide sig-472

nificant benefits. Since at each step, we compute473

the stochastic gradients for other languages, too,474

the method does not pass the whole dataset of the475

target language, given the computational resources476

for the experiment. Therefore, the method does not477

utilize all potentially useful information from the478

target language.479
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Figure 4: Weights distribution for languages with target
Indonesian on small subset.

This hypothesis is supported by an additional ex- 480

periment on the Indonesian language as the target 481

language with the biggest dataset to see the distri- 482

bution of the weights for a longer number of steps 483

(∼ 50K). From Figure 4, we observe the evolution 484

of corresponding aggregation weights: it keeps 485

growing during the training, which indicates its sig- 486

nificantly higher importance on the model quality 487

than other languages. Once the model learns the 488

dataset better, the weight of the Indonesian slightly 489

decreases and gets stuck, while the weight of the 490

Malay starts to grow. We assume that these ob- 491

servations might be useful for further experiments: 492

languages that stop contributing to the algorithm 493

convergence can be “dropped” during training. 494

Adaptive Batch Experiments. We hypothesize 495

that leveraging high-resource languages could im- 496

prove gradient approximation by providing more 497

samples. Based on this, we develop an Adaptive 498

Batch procedure. This method allocates the total 499

batch size (512 in our experiments) and samples 500

batch size from the total size for each language 501

proportionally to the percentage of each language 502
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Figure 5: Weights for target language (Javanese-small)
with different Mirror Descent parameters.

present in the dataset. Thus, high-resource lan-503

guages receive larger batch sizes. To optimize con-504

vergence, we set batch size limits, with a lower505

bound of 32 and an upper bound of 128, as shown506

to be effective in previous studies (Keskar et al.,507

2017; Bengio, 2012).508

However, our results indicate that the Adaptive509

Batch procedure is rarely beneficial. We believe510

this is due to the downside of better gradient ap-511

proximation. Our method suggests that assigning512

higher weight to high-resource languages due to513

their well-estimated gradients may hinder the learn-514

ing of the target language. This is illustrated in515

Figure 5, where adding an Adaptive Batch leads to516

a lower weight for the target language.517

Mirror Descent Parameters Impact. We con-518

duct experiments with various MeritFed settings,519

adjusting the Mirror Descent learning rate to 0.1520

and 0.01 and the number of iterations to 5 or 100.521

These experiments are performed on the small sub-522

set of the South East Asian dataset, using Javanese523

as the target language.524

As shown in Table 3, the Mirror Descent pa-525

rameters have little impact, with no clear trend526

emerging4. For 5 iterations, a higher learning rate,527

and no Adaptive Batch, the algorithm performs528

better when no unrelated language is present. How-529

ever, this changes when an unrelated language is530

included. For 100 iterations, a lower learning rate,531

4We conjecture that (Stochastic) Mirror Descent struggles
to solve the auxiliary problem from Line 6 with sufficiently
good accuracy since it can be viewed as a variant of SGD
for problems with non-Euclidean prox-structure and SGD is
known to perform poorly in NLP tasks (Zhang et al., 2020).
Investigation of other alternatives (e.g., MD version of Adam)
is a prominent direction for future research.

MD
Iterations

Learning
Rate

Adaptive
Batch

SpBLEU

Relevant +Irrelevant

5
0.1

- 19.735 19.786
+ 19.674 19.620

0.01
- 19.724 19.724
+ 19.671 19.810

100
0.1

- 19.702 19.645
+ 19.568 19.591

0.01
- 19.754 19.719
+ 19.739 19.639

Table 3: Scores and Settings Grouped by Mirror Descent
iterations for the Javanese-small dataset.

and no Adaptive Batch, the model consistently 532

yields better results. Based on those observations, 533

we have chosen 5 MD iterations with a learning 534

rate of 0.1 for all experiments due to its high per- 535

formance and faster computation times. 536

Theoretical Results. We prove that under certain 537

assumptions on the underlying optimizer OptStep, 538

MeritFed converges to the neighborhood of the 539

solution of the target problem when (i) the learning 540

rate is small enough, (ii) D̂ is sufficiently large 541

such that f
D̂

is close to fD, and (iii) the auxiliary 542

problem in Line 6 is solved with a good accuracy. 543

In Appendix D, we provide missing theoretical 544

details (including the proofs) and show that SGD, 545

RMSProp, AdaGrad-Norm satisfy our assumptions. 546

6 Conclusion 547

In this paper, we implement the MeritFed algo- 548

rithm from the Personalised Federated Learning to 549

the Low-Resource Machine Translation task. We 550

show that it can achieve better results than tradi- 551

tional approaches and requires 2 to 10 times fewer 552

gradient steps than baselines (e.g., 8K vs. 85K, 12K 553

vs. 23K). MeritFed also allows us to observe the 554

weight distribution between the target and related 555

languages: Javanese benefits more from the Indone- 556

sian language, while for Tagalog, the most impor- 557

tant languages are Indonesian and Malay. Different 558

weights for different languages also prevent the 559

model from overfitting: after learning the target 560

language dataset, its weights are dropped down 561

while other weights start growing. Another take- 562

away is about the target dataset size: the bigger 563

the dataset is, the more the algorithm keeps rely- 564

ing on it rather than on the auxiliary languages. 565

This might result in worse model performance and 566

“distract” the model from convergence. 567
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Limitations568

• We report results only on Low-Resource569

MT, while a wide variety of NLP tasks are570

available. We leave further investigation of571

MeritFed to other NLP tasks for future work.572

• We report results only on M2M100, while573

numerous LLMs are available. An alterna-574

tive model with the MeritFed algorithm ap-575

plied could further improve the results. The576

research focuses on the algorithm application577

to the LRMT task and not on an exhaustive578

search of all LLM models.579

• We limit our dataset in terms of size and lan-580

guage variety because of high computational581

costs and limited resources available.582

• Our setup with the limited amount of lan-583

guages and training data used is not designed584

to directly compare with the existing ap-585

proaches.586

• We retain all languages during training, even587

those that do not contribute, which affects the588

efficiency of the training procedure.589

Ethical Statement590

In our research, we utilize the M2M100 model,591

which has been pre-trained on a diverse MT cor-592

pus, including user-generated content. The datasets593

we use for additional model training have already594

been presented in WMT-21 Shared Task and Finno-595

Ugric Benchmark. Although we expect them to596

be filtered from harmful content, it is important to597

recognize that some biases may still persist in the598

model outputs.599

This acknowledgment does not undermine the600

validity of our methods. We have designed our601

techniques to be flexible, allowing them to be ap-602

plied to alternative pre-trained models that have603

undergone more rigorous debiasing processes. To604

the best of our knowledge, aside from the challenge605

of mitigating inherent biases, our work does not606

raise any additional ethical concerns.607
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A Dataset and Model Details 901

In addition to dataset scaling, we also add a preprocessing step: from a deeper look into the data, we 902

can see that some translations contain code snippets, HTML, and pairs containing different addresses 903

and numbers in the input language and output language. To avoid such data, we filter the sentences in 904

the training set so that (i) input and output length in tokens is not less than 5 tokens and not larger than 905

256 tokens, as only a negligible portion of the data exceeded this limit; (ii) we keep sentences with the 906

numbers matching in both input and output; (iii) we keep alphanumeric sentences with basic punctuation 907

only. We also check that both datasets we apply do not contain personally identifying information or 908

offensive content. 909

We used M2M100 as a base model (Fan et al., 2021), MIT Licensed. In CP setting, we pretrained all 910

models on all languages for a maximum of 10 epochs, with the best-performing checkpoint selected for 911

later fine-tuning. Fine-tuning was conducted for up to 60 epochs, and the best-performing checkpoint 912

was reported. The MeritFed model was trained until the score stopped improving, with a maximum 913

computation time of four days. 914

Training parameters included a fixed batch size of 64 and a learning rate of 3e-5. We used a Cosine 915

Annealing Scheduler with a minimum learning rate of 1e-5. The baseline optimizer was Adam, with 916

β1 = 0.9 and β2 = 0.98, in line with previous studies (Xie et al., 2021). 917

Our implementation primarily relied on PyTorch (Paszke et al., 2019) and Transformers (Wolf et al., 918

2020) libraries. All our artifacts are licensed under Apache 2.0. 919

Input Language Total
Filtered Train

Val Test
Small Medium Large

Indonesian 54M 37K 74K 259K 1K 1K
Malay 13M 26K 53K 185K 1K 1K
Tagalog 2M 10K 20K 70K 1K 1K
Tamil 13M 5K 10K 35K 1K 1K
Javanese 3M 776 1.5K 5K 1K 1K

Table 4: Dataset statistics for South East Asian languages. Total denotes the original dataset size in sequences,
Filtered small, medium and large train are the subsets used for experiments.

Input Language Train Val Test

North Sami 61,559 200 500
Inari Sami 8,750 200 500
Skolt Sami 1,998 200 500
South Sami 1,734 200 500

Table 5: Dataset statistics for Finno-Samic languages.
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B Extended Baseline Results920

In this section, we report the results with more baseline settings:921

Method Tagalog Java

79K 155K 555K 79K 128K 555K

Score Steps Score Steps Score Steps Score Steps Score Steps Score Steps

CPAll 29.24 ± 0.06 21K 30.99 ± 0.04 40K 33.89 ± 0.15 124K 19.43 ± 0.14 12K 20.05 ± 0.12 25K 20.97 ± 0.13 87K
CPNoT 28.72 ± 0.16 15K 30.50 ± 0.12 42K 33.74 ± 0.19 129K 19.46 ± 0.12 12K 19.95 ± 0.12 25K 21.19 ± 0.09 89K
FTOnlyT 28.69 ± 0.10 8K 30.48 ± 0.05 44K 33.88 ± 0.07 52K 19.23 ± 0.02 500 19.69 ± 0.01 1K 20.75 ± 0.10 3.5K
FTAll 24.78 ± 0.02 12K 26.53 ± 0.17 25K 30.02 ± 0.03 79K 19.26 ± 0.02 12K 19.28 ± 0.07 25K 19.92 ± 0.06 85K
FTNoT 20.45 ± 0.08 7K 20.41 ± 0.07 11K 20.34 ± 0.09 53K 18.73 ± 0.02 12K 18.80 ± 0.04 25K 18.94 ± 0.09 85K
MeritFed 29.73 ± 0.04 14K 31.42 ± 0.07 14K 33.53 ± 0.27 47K 19.74 ± 0.03 2K 20.23 ± 0.11 3K 21.44 ± 0.13 8K

Table 6: Mean SpBLEU scores and the number of steps required to reach them for all baselines and MeritFed
within the different data sizes of Javanese and Tagalog languages

Method SMA SMS SMN SME

Score Steps Score Steps Score Steps Score Steps

CPAll 11.60 ± 0.29 23K 44.90 ± 0.12 25K 51.39 ± 0.05 30K 39.78 ± 0.08 69K
CPNoT 11.09 ± 0.24 23K 43.40 ± 0.13 25K 50.14 ± 0.04 31K 39.30 ± 0.18 65K
FTOnlyT 9.44 ± 0.20 1.5K 38.83 ± 0.31 2K 48.70 ± 0.14 8K 39.26 ± 0.33 53K
FTAll 5.56 ± 0.29 21K 34.11 ± 0.23 23K 44.62 ± 0.10 23K 33.57 ± 2.34 12K
FTNoT 2.38 ± 0.09 16K 11.62 ± 0.37 23K 16.63 ± 0.35 16K 10.16 ± 0.16 2K
MeritFed 13.26 ± 0.17 2.5K 50.27 ± 0.17 12K 52.08 ± 0.01 12K 38.526 ± 1.39 30K

Table 7: Mean SpBLEU scores and the number of steps required to reach them for all baselines and MeritFed
within Finno-Samic low-resource languages
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C Illustrative Experiment with Mean Estimation Problem 922

In this section, we provide an illustrative experiment with the mean estimation problem. That is, the goal 923

is to solve the following minimization problem: 924

min
x∈Rd

{
fD(x) := Eξ∼D[∥x− ξ∥2]

}
, 925

where D := N (0, I) is a standard Gaussian distribution. One can show that the optimal value equals 926

Eξ∼D∥ξ∥2 = d, which is attained at x∗ = 0. Next, we consider three datasets: D1 is sampled from 927

the target distribution D, D2 is sampled from close distribution N (µ1, I), where µ = 0.0001 and 928

1 := (1, . . . , 1)⊤Rd, and D3 is sampled from quite different distribution N (e, I), where e is some 929

randomly precomputed unit vector. The sizes of the input dataset are: |D1| = 20, |D2| = 1000, 930

|D3| = 1000. Therefore, this situation resembles training for the low-resource language, when two 931

high-resource languages are available. We take mini-batch of 10% for each dataset to compute gi(x
t) 932

in MeritFed and use simple SGD as OptStep. Target validation dataset D̂ is sampled from D (same 933

distribution as for D1) and has size |D̂| = 100 (though only mini-batch of 10 samples from D̂ is used at 934

each iteration to perform a computation of aggregation weight wt+1). To solve the problem in Line 6, we 935

run MD with learning rate 10. 936
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Figure 6: Mean Estimation: µ = 0.0001, MD learning rate = 10.

The results are presented in Figure 6. We see that the weight for the first and the third datasets decrease 937

during the training, while the weight for the second dataset increases and remains the largest one. Such a 938

behavior is natural since the batchsize for the target dataset is much smaller than for the second dataset (2 939

and 100 respectively) and since the second dataset comes from very close distribution to the target one 940

it is more beneficial to use slightly biased but less noisy updates from the second dataset than unbiased 941

but noisy updates from the first dataset. As for the third dataset, its weight decreases since it comes from 942

completely different distribution. 943

Overall, the result of this experiment are quite consistent with the ones we obtained for Javanese 944

language where the weight for the target language also becomes the smallest after certain number of steps 945

and the highest weight is assigned to close but different language (Indonesian), see Figure 1. 946
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D Theoretical Results: Complete Statements and Proofs947

D.1 Preliminaries948

In this section, we provide the details on the theoretical convergence results for MeritFed. For notational949

convenience, we assume that Di comes from distribution Di and denote the corresponding expected loss950

function as fi for all i = 1, . . . , n. Therefore, according to the introduced notation f1 and fD denote the951

same loss function. Similarly to the setup considered by Tupitsa et al. (2024), we denote the set of indices952

such that Di = D1: G := {i ∈ {1, . . . , n} | Di = D1}. In other words, for every i ∈ G dataset Di comes953

from the target distribution and, thus, should be beneficial for the training.954

Next, we make the following standard assumption about the stochastic gradients.955

Assumption 1. For all i ∈ G the stochastic gradient gi(x) is an unbiased estimator of ∇fi(x) with956

bounded variance, i.e., Eξi∼Di
[gi(x)] = ∇fi(x) and for some σ ≥ 0957

Eξi∼Di

[
∥gi(x)−∇fi(x)∥2

]
≤ σ2. (1)958

Let wideal denote a weight vector containing equal non-zero weights only for the datasets from the959

target distribution. If Assumption 1 holds, then due to the independence of {gi(x)}i∈G960

Eξi

[∥∥∥∥ n∑
i=1

wideal
i gi(x)−∇f1(x)

∥∥∥∥2
]
= Eξi

∥∥∥∥∥ 1
|G|
∑
i∈G

gi(x)−∇f1(x)

∥∥∥∥∥
2
 ≤ σ2

|G| ≡ σ2
∗. (2)961

We also assume that the objective is L-smooth962

Assumption 2. f1 is L-smooth, i.e., ∀ x, y ∈ Rd963

f1(x) ≤ f1(y) + ⟨∇f1(y), x− y⟩+ L
2 ∥x− y∥2. (3)964

For the sake of brevity, we will also use the following notation:965

xt+1(w) = OptStep

(
xt,

n∑
i=1

wigi(x
t), γt

)
.966

D.2 Generic Scheme of the Proof967

The proof for MeritFed-SGD from (Tupitsa et al., 2024) is based on the assumption that the auxiliary968

problem can be solved with δ error:969

E
[
f1(x

t+1)|xt, ξt
]
− min

w∈∆n
1

f1
(
xt+1(w)

)
≤ δ, (4)970

and the following inequality971

min
w∈∆n

1

f1
(
xt+1(w)

)
≤ f1(x

t+1(wideal)), (5)972

which holds by the definition of the minimum. These two inequalities together imply973

E
[
f1(x

t+1)|xt
]
≤ E

[
f1(x

t+1(wideal))|xt
]
+ δ. (6)974

The rest of the proof for MeritFed-SGD follows the same scheme as for SGD that uses
∑n

i=1w
ideal
i gi(x) as975

the stochastic gradient, i.e., as for the method xt+1 = xt − γ
∑n

i=1w
ideal
i gi(x

t) = xt − γ
|G|
∑

i∈G gi(x
t).976

We noticed, that convergence result of MeritFed envelope can be obtained in the case when the analysis977

of the method being enveloped uses only two subsequent points and relies on the analysis of the inequality978

E[f1(xt+1)] ≤ E[f1(xt)] + ∆t, where ∆t is some additional iteration-dependent term. Then, using (6),979

one can show that MeritFed version of the method decreases expected function value not less then the980

ideal update at each iteration (up to the error term of solving the problem in Line 6). In the next two981

subsections, we provide the results for MeritFed-RMSProp and MeritFed-AdaGrad-Norm.982
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D.3 Special Case: RMSProp 983

In this subsection, we consider RMSProp as OptStep, i.e., 984

OptStep(xt, gt, γt) = xt − γt
bt
gt, bt =

√
β2b2t−1 + (1− β2)(gt)2 + ϵ, 985

where all arithmetical operations (multiplication, division, summation, taking the square/square root) are 986

coordinate-wise. We emphasize that RMSProp can be seen as Adam without momentum (β1 = 0). 987

We base our proof on the one from (Zaheer et al., 2018), that additionally uses the following assumption. 988

Assumption 3. Each component of the stochastic gradient gi(x) for i ∈ G is bounded, i.e., 989∥∥∥[gi(x)]j∥∥∥ ≤ G. (7) 990

Theorem 1. Let Assumptions 1, 2, 3 hold. If Line 6 is solved with error δ ≥ 0 (see (4)), then 991

MeritFed-RMSProp with γt = γ ≤ ϵ
2L and β2 ≥ 1− ϵ2

16G2 after T iterations satisfy 992

min
t=0,...,T−1

E∥∇f1(x
t)∥2 ≤ 2(

√
β2G+ ϵ)×

[(
f1
(
x0
)
− f1(x

∗)
)

γT
+ σ2

∗

(
γG

√
1− β2
ϵ2

+
Lγ2

2ϵ2

)
+

δ

γ

]
. 993

Proof. We start with the following inequality from the page 13 of (Zaheer et al., 2018) 994

E[f1(xt+1(wideal))|xt] ≤ f1(x
t)− γt

2
(√

β2G+ ϵ
)∥∥∇f1(x

t)
∥∥2 + (γtG

√
1− β2
ϵ2

+
Lγ2t
2ϵ2

)
σ2
∗ 995

in a slightly adjusted form. In fact, this inequality holds for any xt and ideally aggregated gradients 996
n∑

i=1
wideal
i gi(x

t). Applying (6), we get 997

E
[
f1(x

t+1)|xt
]
≤ f1(x

t)− γt

2
(√

β2G+ ϵ
)∥∥∇f1(x

t)
∥∥2 + (γtG

√
1− β2
ϵ2

+
Lγ2t
2ϵ2

)
σ2
∗ + δ. 998

Following the same steps of the rest of the proof from (Zaheer et al., 2018), we obtain 999

1

T

T−1∑
t=0

E
∥∥∇f1

(
xt
)∥∥2 ≤ 2(

√
β2G+ ϵ)×

[(
f1
(
x0
)
− f1(x

∗)
)

γT
+ σ2

∗

(
γG

√
1− β2
ϵ2

+
Lγ2

2ϵ2

)
+

δ

γ

]
, 1000

where γt = γ ≤ ϵ
2L is used. It remains to notice that min

t=0,...,T−1
E∥∇f1(x

t)∥2 ≤ 1
T

T−1∑
t=0

E
∥∥∇f1

(
xt
)∥∥2. 1001

1002

D.4 Special Case: AdaGrad-Norm 1003

In this subsection, we consider AdaGrad-Norm (Ward et al., 2019) as OptStep, i.e., 1004

OptStep(xt, gt, γt) = xt − γt
bt+1

gt, bt+1 =
√
b2t + ∥gt∥2. 1005

We base our proof on the one from (Ward et al., 2019), that additionally uses the following assumption. 1006

Assumption 4. Gradients ∇fi(x) are uniformly bounded for i ∈ G: 1007

∥∇fi(x)∥ ≤ G. (8) 1008

Theorem 2. Let Assumptions 1, 2, 4 hold. If Line 6 is solved with error δ ≥ 0 (see (4)), then 1009

MeritFed-AdaGrad-Norm with after T iterations satisfy 1010

min
t≤T

(
E
[
∥∇f1(x

t)∥
4
3

]) 3
2 ≤

(
2b0
T

+
4(G+ σ∗)√

T

)
CF , 1011

where

CF =
δT

γ
+

f1(x
0)− f1(x

∗)

γ
+

4σ∗ + γL

2
log

(
20T

(
σ2
∗ +G2

)
b20

+ 10

)
.
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Proof. Notating g̃t = 1
|G|
∑

i∈G gi(x
t) and b̃t+1 =

√
b2t + ∥g̃t∥2 we rewrite the first line of the main proof1012

from (Ward et al., 2019) as1013

f1(x
t+1(wideal))− f1(x

t)

γ
≤ −⟨∇f1(x

t), g̃t⟩
b̃t+1

+
γL

2b̃2t+1

∥g̃t∥21014

= −∥∇f1(x
t)∥2

b̃t+1

+
⟨∇f1(x

t),∇f1(x
t)− g̃t⟩

b̃t+1

+
γL∥g̃t∥2

2b̃2t+1

.1015

Applying (4) and (5), we get the following inequality:1016

f1(x
t+1)− δ − f1(x

t)

γ
≤ −∥∇f1(x

t)∥2

bt+1
+

⟨∇f1(x
t),∇f1(x

t)− gt⟩
bt+1

+
γL∥gt∥2

2b2t+1

.1017

Then, following the same steps as in the main proof from (Ward et al., 2019), we derive1018

min
t≤T

(
E
[
∥∇f1(x

t)∥
4
3

]) 3
2 ≤

(
2b0
T

+
4(G+ σ∗)√

T

)
CF ,1019

where

CF =
δT

γ
+

f1(x
0)− f1(x

∗)

γ
+

4σ∗ + γL

2
log

(
20T

(
σ2
∗ +G2

)
b20

+ 10

)
.

This finishes the proof.1020
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