
Monte Carlo Neural PDE Solver

Anonymous Author(s)
Affiliation
Address
email

Abstract

Training neural PDE solver in an unsupervised manner is essential in scenarios1

with limited available or high-quality data. However, the performance and effi-2

ciency of existing methods are limited by the properties of numerical algorithms3

integrated during the training stage (like FDM and PSM), which require careful4

spatiotemporal discretization to obtain reasonable accuracy, especially in cases with5

high-frequency components and long periods. To overcome these limitations, we6

propose Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised7

neural solvers via a Monte Carlo view, which regards macroscopic phenomena as8

ensembles of random particles. MCNP Solver naturally inherits the advantages of9

the Monte Carlo method (MCM), which is robust against spatial-temporal varia-10

tions and can tolerate coarse time steps compared to other unsupervised methods.11

In practice, we develop one-step rollout and Fourier Interpolation techniques that12

help reduce computational costs or errors arising from time and space, respec-13

tively. Furthermore, we design a multi-scale framework to improve performance14

in long-time simulation tasks. In theory, we characterize the approximation error15

and robustness of the MCNP Solver on convection-diffusion equations. Numerical16

experiments on diffusion and Navier-Stokes equations demonstrate significant17

accuracy improvements compared to other unsupervised baselines in cases with18

highly variable fields and long-time simulation settings.19

1 Introduction20

Neural PDE solvers, which leverage neural networks as surrogate models to approximate the solutions21

of PDEs, are emerging as a new paradigm for simulating physical systems with the development of22

deep learning [33, 31, 23, 12]. Along this direction, several studies have proposed diverse network23

architectures for neural PDE solvers [30, 33, 5]. These solvers can be trained using supervised [33, 30]24

or unsupervised approaches [59, 54, 32], employing pre-generated data or PDE information to25

construct training targets, respectively. The unsupervised training approach is essential for AI-based26

PDE solvers, particularly in scenarios with limited available or high-quality data. To address this,27

some studies [54, 32] borrow techniques from classical numerical solvers to construct training targets.28

For instance, the low-rank decomposition network (LordNet) [54] and physics-informed neural29

operator (PINO) [32] integrate finite difference method (FDM) and pseudo-spectral methods (PSM)30

with neural networks during the training stage, respectively. However, FDM and PSM require fine31

meshes or time steps for stable simulations in general. Therefore, the performance and efficiency of32

these neural PDE solvers are also limited by the discretization of time and space, particularly when33

handling highly spatial-temporal variations and simulating physical systems over long periods.34

To this end, we propose Monte Carlo Neural PDE Solver (MCNP Solver) for training neural solvers35

from a Monte Carlo perspective, which regards macroscopic phenomena as ensembles of random36

movements of microscopic particles [62]. Consequently, for a PDE system with probabilistic repre-37

sentation, MCNP Solver constructs its solutions as training targets via Monte Carlo approximation.38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Compared to other unsupervised neural solvers, such as LordNet [54] and PINO [32], MCNP Solver39

naturally inherits the advantages of MCM. On the one hand, MCNP Solver can tolerate coarse40

time steps [11, 39], thereby reducing training costs and accumulated errors arising from temporal41

discretization. On the other hand, it can efficiently handle high-frequency spatial fields due to the42

derivative-free property of MCM [37, 1]. Moreover, the boundary conditions are automatically43

encoded into the stochastic process of particles [2, 34], eliminating the need to introduce extra loss44

terms to satisfy such constraints. In addition to inheriting the benefits of MCM, we also develop45

one-step rollout and Fourier Interpolation techniques to improve performance and efficiency from46

the perspective of time and space. Furthermore, we design a multi-scale framework to improve the47

accuracy and robustness of the MCNP Solver in long-time simulation tasks.48

Compared to traditional MCM, MCNP Solver enjoys a significantly faster inference speed once49

trained. Additionally, traditional MCM requires sampling excess particles to achieve high-precision50

results, which can lead to severe computational and memory issues. However, thanks to the involve-51

ment of neural networks, the MCNP Solver does not necessitate sampling as many particles per epoch52

during training. According to our experimental observations, the model can converge as expected53

using gradient descent with only a few particles.54

In this paper, we conduct in-depth analyses of the MCNP Solver’s performance theoretically and55

experimentally. In summary, we make the following contributions:56

1. We introduce MCNP Solver, a novel Monte Carlo-based unsupervised approach for training neural57

solvers applicable to PDE systems that allow probabilistic representation. Additionally, we develop58

several techniques to enhance performance and efficiency, such as Fourier Interpolation, one-step59

rollout, and multi-scale prediction.60

2. Theoretically, we compare the approximation error and robustness of two kinds of neural PDE61

solvers concerning variations in spatial conditions, temporal discretization steps, and diffusive62

coefficients. Our theoretical results reveal that MCNP Solver is more robust against the spatial-63

temporal variants when solving convection-diffusion equations.64

3. Our experiments on the diffusion and Navier-Stokes equation (NSE) show significant improvements65

in accuracy compared to other unsupervised neural solvers for simulating tasks with complex spatial-66

temporal variants and long-time simulation. Furthermore, the MCNP Solver can obtain comparable67

or even better results than supervised neural solvers.68

2 Related Work69

Neural PDE Solver Neural PDE solvers have been proposed to learn mappings between functional70

spaces, such as mapping a PDE’s initial condition to its solution [33]. Works like DeepONet [33] and71

its variants [15, 52, 57, 26] encode the initial conditions and queried locations using branch and trunk72

networks, respectively. Additionally, Fourier Neural Operator (FNO) [31] and its variants [29, 45, 56]73

explore learning the operator in Fourier space, an efficient approach for handling different frequency74

components. Several studies have employed graph neural networks [30, 5] or transformers [6, 28]75

as the backbone models of neural solvers to adapt to complex geometries. However, these methods76

require the supervision of ground-truth data generated via accurate numerical solvers, which can be77

time-consuming in general. To this end, some studies aim to train the neural PDE solvers without78

the supervision of data [59, 32, 54, 19]. For example, [59] proposed PI-DeepONets, which utilize79

the PDE residuals to train DeepONets in an unsupervised way. Similarly, [19] proposed Meta-80

Auto-Decoder, a meta-learning approach to learn families of PDEs in the unsupervised regime.81

Furthermore, LordNet [54] and PINO [32] borrow techniques from FDM and PSM, and utilize the82

corresponding residuals as training loss, respectively. Compared to these unsupervised methods, the83

MCNP Solver incorporates physics information through the Feynman-Kac law, representing a Monte84

Carlo perspective. This approach allows the solver to efficiently manage diffusion terms, exhibit85

robustness against spatial-temporal variants, and be suitable for long-time simulations.86

Physics-Informed Neural Networks (PINNs) PINNs have been proposed to solve PDE systems87

by approximating solutions using the PDE residuals, which involve point-to-point mapping between88

spatial-temporal points and solution values. They are widely employed for solving forward or inverse89

problems [46, 8, 22, 66]. Recently, PINNs have made significant progress in addressing scientific90

problems based on PDEs, including NSEs [47, 20, 36], Schrödinger equations [18, 27], Allen Cahn91

2

equations [38, 21], and more. Instead of constructing the loss function directly via the PDE residuals,92

some works utilize the probabilistic representation to train neural networks [17, 14, 63], which can93

efficiently handle high-dimensional or fractional PDEs [16, 50, 14, 49, 41]. Furthermore, some94

studies design loss functions based on other numerical methods, such as the finite volume method [4],95

finite element method [40, 42], and energy-based method [61]. Notably, the aforementioned PINN96

methods require retraining neural networks when encountering a PDE with new initial conditions,97

which can be time-consuming. Moreover, the studies [3, 48] consider PDE families with varying98

initial conditions while requiring corresponding conditions can be represented by a low-dimensional99

vector. In this paper, we aim to learn operators between functional spaces that can generalize to100

different PDE conditions over a distribution. When applying Feynman-Kac laws to this new scenario,101

we encounter several computational challenges arising from corresponding tasks, such as higher102

generalization requirements, long-time simulations, and the non-linearity of PDEs. Therefore, we103

propose Fourier Interpolation, one-step rollout, and multi-scale prediction to overcome these issues.104

More detailed discussions of these Feynman-Kac-based PINNs can be seen in Appendix D.105

3 Methodology106

3.1 Preliminary107

In this paper, we consider the general convection-diffusion equation defined as follows:108

∂u

∂t
= β[u](x, t) · ∇u+ κ∆u+ f(x, t), u(x, 0) = u0(x), (1)

where x ∈ Ω ⊂ Rd and t denote the d-dimensional spatial variable and the time variable, respectively,109

β[u](x, t) ∈ Rd is a vector-valued mapping from u to Rd, κ ∈ R+ is the diffusion parameter, and110

f(x, t) ∈ R denotes the force term. Many well-known PDEs, such as Burgers’ equation, NSE, can111

be viewed as a special form of Eq. 1.112

For such PDEs with the form as Eq. 1, the Feynman-Kac formula provides the relationship between113

the PDEs and corresponding probabilistic representation [43, 44, 16]. In detail, we can use the time114

inversion (i.e., ũ(x, t) = u(x, T − t), f̃(x, t) = f(x, T − t)) to the PDE as:115

∂ũ

∂t
= −β[ũ](x, t) · ∇ũ− κ∆ũ− f̃(x, t), ũ(x, T) = u0(x). (2)

Applying the Feynman-Kac formula [35] to the terminal value problem Eq. 2, we have116

ũ0(x) = E

[
ũT (ξ̃T) +

∫ T

0

f̃(ξ̃s, s)ds

]
, (3)

where ξ̃s ∈ Rd is a random process starting at x, and moving from 0 to T , which satisfies:117

dξ̃s = β[ũ](ξ̃s, s)ds+
√
2κdBs, ξ̃0 = x, (4)

where Bs is the d-dimensional standard Brownian motion. Applying time inversion t → T − t to118

Eq. 3 and letting ξ be the inversion of ξ̃, we have119

uT (x) = E

[
u0(ξ0) +

∫ T

0

f(ξs, s)ds

]
. (5)

Furthermore, apart from Eq. 1, some other PDEs can also be handled via the Feynman-Kac formula120

after certain processing, like wave equations [9] and spatially varying diffusion equations [51].121

3.2 Monte Carlo Neural PDE Solver122

Given a PDE with the form of Eq. 1 and a distribution of the initial conditions D0, the target of MCNP123

Solver is to learn a functional mapping Gθ with parameter θ which can simulate the subsequent fields124

for all initial fields u0 ∼ D0 at time t ∈ [0, T]. In detail, the inputs and outputs of Gθ are given as:125

Gθ : D0 × [0, T] → D[0,T],

(u0, t) 7→ ut,
(6)

3

𝒖𝒖𝟎𝟎

𝒕𝒕 + 𝜟𝜟𝒕𝒕

𝒕𝒕
𝒖𝒖𝒕𝒕

𝒖𝒖𝒕𝒕+𝜟𝜟𝒕𝒕

Fourier
Interpolation

�𝒖𝒖𝒕𝒕

MCNP

C

A B

A: Random walk B: Project C: Query and Average

MCNP

Figure 1: Illustration of the neural Monte Carlo loss. We construct the training loss via the relationship
between ut and ut+∆t given by the Feynman-Kac law. A: random walk according to Eq. 11, and denote the M
particles starting at the grid point x as {ξm

s }Mm=1; B: when ξm
s moving from t+∆t to t, project each ξm

t to
the nearest coordinate point ξ̂

m

t in the high resolution coordinate system; C: query the value of each ξ̂
m

t via ût

and average ût(ξ̂
m

t) as
∑M

m=1 ût(ξ̂
m

t). Please note that the high-resolution ût is obtained from ut via Fourier
interpolation. Then, the neural Monte Carlo loss at x is given by: ∥Gθ(u0, t)(x)−

∑M
m=1 ût(ξ̂

m

t)∥22.

where D[0,T] denotes the joint distribution of the field after t = 0. Unlike other supervised operator126

learning algorithms [27, 33, 5], MCNP Solver aims to learn the operator in an unsupervised way,127

i.e., only utilize the physics information provided by PDEs. To this end, MCNP Solver considers128

training the solver via the relationship between ut and ut+∆t (where 0 ≤ t < t+∆t ≤ T) derived129

by the aforementioned probabilistic representation. Considering Eq. 5, an expected neural operator130

Gθ should satisfy the following equation:131

Gθ(u0, t+∆t)(x) = Eξ

[
Gθ(u0, t)(ξt) +

∫ t+∆t

t

f(ξs, s)ds

]
, (7)

where ξs(s ∈ [t, t+∆t]) is the inverse version of stochastic process in Eq. 4 as follows:132

dξs = −β[u](ξs, s)ds−
√
2κdBs, ξt+∆t = x. (8)

Regarding Eq. 7 as the optimization objective, the neural Monte Carlo loss can be written as follows:133

LMC(Gθ|u0, t,∆t) =

∥∥∥∥∥Gθ(u0, t+∆t)(x)− Eξ

[
Gθ(u0, t)(ξt) +

∫ t+∆t

t

f(ξs, s)ds

]∥∥∥∥∥
2

2

. (9)

Equipped with the loss function Eq. 9, we sample the initial states u0 from D0 and the time t from134

[0, T] each epoch, and the MCNP loss LMCNP is given as follows:135

LMCNP = Eu0∼D0
[Linit(Gθ|u0) + λEt∼[0,T][LMC(Gθ|u0, t,∆t)]], (10)

where λ ∈ R+ is a hyper-parameter, and Linit(Gθ|u0) ≜ ∥Gθ(u0, 0)−u0∥22 denotes the loss at t = 0.136

3.3 Implementation Details of MCNP Solver137

In this section, we introduce some important implementation details for MCNP Solver. We illustrate138

the framework and training process of MCNP Solver in Fig. 1 and the overall algorithm in Appendix139

A. We design one-step rollout and Fourier Interpolation trick to reduce the computational cost and140

error from the perspectives of time and space, respectively. Moreover, we conduct the multi-scale141

framework to improve the long-time simulation ability of MCNP Solver.142

Temporal Discretization and One-Step Rollout When simulating the stochastic process in Eq. 8,143

we utilize the classical Euler–Maruyama method [58] to approximate corresponding SDEs, .i.e,144

ξt = ξt+∆t + β[u](ξt+∆t, t+∆t)∆t+
√
2κ∆Bt, ξt+∆t = x. (11)

4

The stochastic integral of the force f in Eq. 7 is approximated via the Euler method, which aligns145

with [16]. Unlike other Feynman-Kac-based methods [16, 41] conducting random walks in Eq. 8146

with multi-steps, we utilize one-step rollout technique to simulate SDEs, i.e., at each t+∆t, MCNP147

Solver generates new particles from x, and moves them back to t according to Eq. 11. The one-step148

rollout trick can enforce all ξt+∆t starting at x share the same β[u](x, t+∆t) during the simulation149

of SDEs and thus, reduce the computational cost, especially for the scenario when the calculation150

cost of β is expensive. For instance, when the drift β term depends on solution u, we have to utilize151

MCNP Solver to calculate β accordingly. Moreover, in the NSE conducted in this paper, the mapping152

u → β represents the transformation from the vorticity field to the velocity field, which involves a153

numerical integration over an entire domain.154

Random Walks and Boundary Conditions Eq. 3 and Eq. 4 describe the random walks driven by155

stochastic processes of corresponding PDEs. For PDEs with periodical boundary conditions, particles156

should be pulled back according to the periodical law when walking out of the domain Ω. For157

Dirichlet boundary conditions, the random walk of particles should stop once they reach the boundary.158

Compared to other unsupervised neural PDE solvers, MCNP Solver encodes the boundary conditions159

naturally into the random walks of particles and thus does not need additional soft constraints in the160

loss function. Furthermore, for PDEs with the fractional Laplacian −(−∆)αu, where α ∈ (0, 2), we161

only need to replace the Brownian motion with the α-stable Lévy process [24, 65, 64].162

Spatial Discretization and Fourier Interpolation In this paper, we are interested in the evolution163

of PDEs at fixed grids {xp}Pp=1 ∈ Ω. Consequently, the inputs and outputs of the solver Gθ are164

solution values at P coordinate points. Please note that in Eq .7, the particles ξt need to query the165

value of Gθ(u0, t) when approximating Gθ(u0, t+∆t). To efficiently obtain the querying results, we166

project the locations of particles ξt to their nearest neighbor grids in practice. To reduce projection167

errors, we utilize the Fourier transform to interpolate the fields ut = Gθ(u0, t) to the high-resolution168

one ût before the projection. It is worth mentioning that the Fourier Interpolation technique can169

help the neural solver achieve high-accuracy training signals without the calls of solvers on the170

high-resolution PDE fields, thereby reducing the training cost.171

Multi-Scale Framework for Long-Time Simulation When handling tasks with long temporal172

intervals, we design the following multi-scale framework to make the training process more robust.173

In detail, we divide the long-time interval [0, T] into K coarse subintervals, i.e., {[Tk, Tk+1]}K−1
k=0 ,174

with T0 = 0, TK = T and Tk+1 − Tk = ∆T . Accordingly, we adopt K neural solvers {Gθk}
K−1
k=0175

with independent parameter θk to approximate the solution in [Tk, Tk+1], respectively. In the training176

stage, the loss function for long-time simulation is given as follows:177

LLong
MCNP = Eu0∼D0

[
K−1∑
k=0

Linit(Gθk |uTk
) + λ

K−1∑
k=0

Et∼[Tk,Tk+1][LMC(Gθk |uTk
, t,∆t)]

]
. (12)

Here, uTk
= Gθk−1

(uTk−1
,∆T) can be calculated recursively with uT0

= u0, and Linit(Gθk |uTk
) ≜178

∥Gθk(uTk
, 0)− sg[uTk

]∥22 denotes the initialization loss for Gθk , where sg[·] denotes the stop-gradient179

operator. In the inference stage, when predicting the PDE field with the initialization u0 at t =180

Tk + ∆t(0 < ∆t < ∆T), we first rollout with coarse step ∆T to obtain uTk
, and then adopt the181

finer step to give the prediction of ut as Gθk(uTk
,∆t). Due to the independent parameterization and182

stop-gradient operator, the proposed multi-scale framework can prevent the prediction at time t′ from183

producing harmful effects on the former time t < t′ in the optimization stage. Our experiments reveal184

that it can improve the performance on long-time simulation tasks where the PDE fields change185

dramatically over time (e.g., turbulent flow simulation).186

4 Theoretical Results187

In this section, we study the theoretical properties of MCNP Solver when simulating the convection-188

diffusion equation, and the proof can be seen in Appendix B. In detail, we consider the periodical189

convection-diffusion equation defined as follows:190

∂u

∂t
= κ∆u+ βt, x ∈ [0, 2π], t ∈ [0, T], β ∈ R. (13)

5

In the following main theorem, we consider the error of one-step rollout targets provided in PSM and191

MCM when training neural PDE solvers, respectively.192

Theorem 4.1 Let ut(x) be solution of the convection-diffusion equation in the form of Eq. 13,193

and assume the exact solution at time t can be expressed by the Fourier basis, i.e., ut(x) =194 ∑N
n=1 an sin(nx). Let Gθ be the neural PDE solver, and its prediction on ut(x) can be written195

as Gθ(u0, t)(x) =
∑N

n=1(an + δn) sin(nx), where δn denotes the residual of coefficient on each196

Fourier basis. Let H and M denote the gird size after Fourier Interpolation and sampling num-197

bers in neural Monte Carlo loss. Let uPSM
t+∆t(x) and uMCM

t+∆t (x) be the one-step labels starting from198

Gθ(u0, t)(x), given by PSM and MCM, respectively. Assume ∆tu and ut(x) are Lipschitz functions199

with respect to t and x, respectively, i.e.:200

|∆t1u(x)−∆t2u(x)| ≤ Lt
∆u|t1 − t2|, |ut(x1)− ut(x2)| ≤ Lx

u|x1 − x2|. (14)
Then, we have201

1)
∣∣uPSM

t+∆t(x)− ut+∆t(x)
∣∣ ≤ κLt

∆u∆t2

2︸ ︷︷ ︸
EPSM

1

+

N∑
n=1

|δn(κn2∆t− 1)|︸ ︷︷ ︸
EPSM

2

;202

2) With probability at least 1− (2Lx
u)

2κ∆t
Mϵ2 , we have203 ∣∣uMCM

t+∆t (x)− ut+∆t(x)
∣∣ ≤ 1

2H

N∑
n=1

|nan|︸ ︷︷ ︸
EMCM

1

+

N∑
n=1

|δn|︸ ︷︷ ︸
EMCM

2

+ ϵ︸︷︷︸
EMCM

3

(15)

In the PSM, error terms EPSM
1 and EPSM

2 arise from the temporal discretization and the perturbation204

of Gθ(u0, t), respectively. Additionally, the error term EPSM
2 increases with the rate of n2, where205

n2 comes from the second order derivative of sin(nx). To mitigate the error induced by the PSM,206

one has to decrease ∆t, which inevitably necessitates additional calls to classical or neural solvers.207

Conversely, for MCM, the error term EMCM
1 originates from the Fourier Interpolation trick, which208

can be controlled by increasing the interpolation rate. This operation does not consume much time209

because it does not require extra solver calls. Moreover, the error caused by the residual δn (EMCM
2)210

remains stable as n grows due to the derivative-free property of MCM. It is worth noting that while211

EMCM
3 can be controlled by the number of samples M , an excessive number of particles is not212

required in practice. Unlike deterministic biases introduced by other error terms, EMCM
3 stems from213

the variance of random processes and can be regarded as a type of stochastic label noise. Some214

studies [7, 10] have found that such stochastic label noise can aid generalization and even counteract215

inherent biases. Therefore, we assert that, compared to PSM, the neural Monte Carlo method can216

tolerate coarser time steps and spatial variations when solving convection-diffusion equations.217

5 Experiments218

In this section, we conduct numerical experiments to evaluate the proposed MCNP Solver on two219

tasks: 1D diffusion equations and 2D NSEs. Implementation details are introduced in Appendix E.220

We utilize the FNO [31] as the backbone network, with more detailed discussions in Appendix C. We221

evaluate the model performance for all tasks via the relative ℓ2 error on 200 test PDE samples. We222

repeat each experiment with three random seeds in {0, 1, 2} and report the mean value and variance.223

All experiments are implemented on an NVIDIA A100 GPU.224

5.1 1D Diffusion Equation225

In this section, we conduct experiments on periodical 1D diffusion equation defined as follows:226

∂u(x, t)

∂t
= κ∆u(x, t), x ∈ [0, 1], t ∈ [0, 5]. (16)

The initial states u(x, 0) are generated from the functional space FN ≜ {
∑N

n=1 an sin(2πnx) :227

an ∼ U(0, 1)}, where U(0, 1) denotes the uniform distribution over (0, 1), and N represents the228

maximum frequency of the functional space.229

6

Table 1: 1D diffusion equation with varying N and κ. Relative errors (%) and computational costs for
baseline methods and MCNP Solver.

Model κ = 0.01 κ = 0.02 Time Params

N = 6 N = 12 N = 6 N = 12 Train (H) Infer (S) # (M)

PSM NAN* NAN NAN NAN – 0.028 –
PSM+ 0.000448 0.00132 NAN NAN – 0.554 –
MCM 5.574± 0.009 12.615± 0.056 29.991± 0.183 83.442± 0.234 – 0.034 –
FNO 1.125± 0.183 5.930± 7.468 3.662± 0.265 23.926± 14.775 0.194 0.00145 0.152
PINO 1.075± 0.208 3.563± 0.684 5.275± 2.328 26.735± 17.878 0.206 0.00145 0.152

PI-DeepONet 16.224± 1.165 112.630± 18.945 113.212± 25.875 NAN 2.451 0.00126 0.153
MCNP 1.056± 0.194 1.511± 0.090 3.727± 1.587 6.575± 1.948 0.116 0.00145 0.152

* Here we unitize NAN to represent the results whose relative error is larger than 200%.

Experimental Settings In this setting, κ represents the heat transfer rate, with larger κ values230

indicating faster temporal variation rates. N can be regarded as a measure of spatial complexity,231

where larger values correspond to a higher proportion of high-frequency signals. We select two232

different κ in {0.01, 0.02} and N in {6, 12}, respectively, to evaluate the performance of different233

methods in handling temporal-spatial variations. We divide the spatial domain [0, 1] into 64 grid234

elements for all experiments.235

Baselines We introduce the baselines conducted on 1D diffusion equations, including: i). PSM: A236

traditional numerical methods. We divide the time interval into 100 uniform lattices and utilize the237

2nd Runge-Kutta method for temporal revolution. ii). PSM+: PSM with a fine step size. We divide238

the time interval into 2000 uniform lattices. iii). MCM: a traditional numerical method based on239

the probabilistic representation of PDEs. We set the sampling numbers as 105. iv). FNO: Training240

with 1000 pre-generated data, calculating from the analytic solution of Eq. 16. v). PINO [32]: An241

unsupervised neural operator based on PSM. We divide the time interval into 100 uniform lattices.242

vi). PI-DeepONet [59]: an unsupervised neural operator based on PINN loss and DeepONets. For243

MCNP Solver, we set the sampling numbers and the time step ∆t as 64 and 0.2, respectively. We244

interpolate the spatial domain into 1024 elements in the Fourier Interpolation trick.245

Results Table 1 presents each method’s performance and computational cost on the 1D diffusion246

equation. Among all unsupervised neural PDE solvers, including PI-DeepONet and PINO, the MCNP247

Solver performs best on all tasks, particularly for cases with large spatial or temporal variations.248

Despite PINO obtaining comparable results on the simplest tasks (i.e., κ = 0.01 and N = 6), its error249

rapidly increases on tasks with κ = 0.02 or N = 12, which is consistent with our theoretical results.250

The results of PI-DeepONet indicate that the PINN loss cannot efficiently handle high-frequency251

components, which has also been observed in previous literature [25, 60]. Compared to the supervised252

method FNO, MCNP Solver obtains comparable results on the tasks when N = 6 while significantly253

outperforming it when N = 12, which indicates that more data is required for FNO when handling254

complex spatial variants. As for classical solvers, PSM fails on all tasks because it requires a fine255

grid to prevent blowing up, which explains why MCNP Solver can beat PINO. Although PSM+256

achieves spectral accuracy on the tasks with κ = 0.01, it still fails to achieve meaningful results when257

κ = 0.02. Moreover, it is more than 380 times slower than other neural solvers due to the refined258

step size, highlighting one of the main motivations for AI-based PDE studies. MCM’s performance is259

limited by the variance inherent in Monte Carlo simulation, even sampling 105 particles. However,260

this stochastic label noise arising from the Monte Carlo simulation does not cause apparent harm261

to the MCNP Solver due to the involvement of neural networks, which is in line with the studies of262

label noise [7, 10]. In practice, the sampling numbers in MCNP Solver are only set as 64 per epoch,263

and the neural network can converge as expected with gradient descent during training.264

5.2 2D Navier-Stokes Equation265

In this experiment, we simulate the vorticity field for 2D incompressible flows in a periodic domain266

Ω = [0, 1]× [0, 1], whose vortex equation is given as follows:267

∂ω

∂t
= −(u · ∇)ω + ν∆ω + f(x), ω = ∇× u, (17)

7

Table 2: 2D NSE with varying ν and T . Relative errors (%) and computational costs for baseline methods and
MCNP Solver.

Model Varying ν Time Params

ν = 10−3 ν = 10−4 ν = 10−5 Train (H) Infer (S) # (M)

T = 10

PSM 0.309 NAN NAN – 0.039 –
PSM+ 0.103 0.136 1.521 – 0.758 –
FNO 1.421± 0.068 5.155± 0.290 7.594± 0.091 0.934 0.00255 5.319
PINO 1.192± 0.043 5.730± 0.046 8.952± 0.125 0.958 0.00255 5.319

MCNP 1.773± 0.117 4.440± 0.157 6.539± 0.384 0.964 0.00432 4.730

T = 15

PSM 0.389 NAN NAN – 0.058 –
PSM+ 0.137 0.168 NAN – 1.133 –
FNO 1.391± 0.054 5.407± 0.103 8.429± 0.048 1.636 0.00258 7.238
PINO 2.161± 0.193 19.655± 5.971 24.185± 3.947 1.703 0.00258 7.238

MCNP 2.195± 0.142 6.553± 0.384 8.677± 0.350 1.458 0.00635 7.095

A B

Figure 2: Simulation of 2D NSE. The ground-truth solution versus the prediction of a learned MCNP Solver
for an example in the test set at t = 10, with the viscosity terms ν = 10−3 (A) and ν = 10−5 (B), respectively.

where f(x) = 0.1 sin (2π (x1 + x2)) + 0.1 cos (2π (x1 + x2)) is the forcing function, and ν ∈ R+268

represents the viscosity term. The initial vorticity is generated from the Gaussian random field269

N
(
0, 73/2(−∆+ 49I)−2.5

)
with periodic boundaries.270

Experimental Setups The viscosity term ν can be regarded as a measure of the temporal-spatial271

complexity of NSE. As ν decreases, the nonlinear term (u · ∇)ω gradually governs the motion of272

fluids, increasing the difficulty of simulation. To evaluate the performance of handling different273

degrees of turbulence, we conduct the experiments with ν in {10−3, 10−4, 10−5}, respectively. We274

choose two different T in {10, 15} to test the long-time simulation ability of each method. We divide275

the domain Ω into 64× 64 grid elements.276

Baselines We introduce the baselines conducted on 2D NSEs, including:1 i). PSM: We divide the277

time interval into 100 (150) uniform lattices for T = 10 (15) and utilize the Crank–Nicolson scheme278

for temporal revolution. ii). PSM+: We divide the time interval into 2000 (3000) uniform lattices279

for T = 10 (15). iii). FNO: Training with 1000 pre-generated data, taking 0.624 hours for data280

generation. iv). PINO: We divide the time interval into 100 and 150 uniform lattices for T = 10 and281

15, respectively. For MCNP Solver, we set the sampling numbers and step size ∆t to 16 and 0.1,282

respectively. We interpolate the spatial domain into 256× 256 elements in the Fourier Interpolation283

trick. The ∆T in the multi-scale framework is set to 5 for all tasks.284

Results Table 2 presents each method’s performance and computational cost on the 2D NSEs. As285

the viscosity term ν decreases, simulating the flow becomes more challenging for all methods due to286

increased turbulence, as shown in Fig. 2. Compared to PINO, MCNP Solver achieves comparable287

results on ν = 10−3 while outperforming it when ν = 10−4 and 10−5, indicating that MCNP Solver288

is more accurate on turbulent flow simulation. Furthermore, MCNP Solver has advantages and289

disadvantages compared to the supervised baseline FNO. On the one hand, MCNP Solver can learn290

from more training samples due to its data-free regime. On the other hand, the FNO directly uses291

1For PI-DeepONets [59], they only conduct experiments on time-independent PDE in 2D situations in their
paper. Furthermore, MCM cannot directly simulate the nonlinear NSE because the unknown velocity ut+∆t is
required during the simulation of SDE trajectories ξt+∆t → ξt.

8

the ground-truth data as training labels for all t ∈ [0, T], thus avoiding accumulated errors arising292

from the calls of the solver during the training stage like other unsupervised methods. As a result,293

MCNP Solver and FNO achieve better results on most tasks when T = 10 and 15, respectively. As294

for classical solvers, PSM only obtains meaningful results when ν = 10−3, confirming that both295

PSM and PINO are not robust to coarser time steps. PSM+ achieves the lowest error rate on most296

tasks but requires almost 180 ∼ 300 times more inference time than other neural solvers.297

5.3 Ablation Study298

We performed several ablation studies of MCNP Solver on NSE (ν = 10−5, T = 15) to understand299

the contribution of each model component. MCNP-OR replaces the one-step rollout technique with300

two-step when simulating the SDEs. MCNP-FI and MCNP-MS represent the MCNP Solver without301

the Fourier Interpolation and multi-scale trick, respectively. MCNP-MC replaces the neural Monte302

Carlo loss with the PSM loss, which aligns with the loss function in PINO. Table 3 reports the results303

and training costs. MCNP-OR obtains comparable results with MCNP while spending 44% additional304

training time. Compared to MCNP with MCNP-FI, the Fourier Interpolation trick can significantly305

improve the accuracy of MCNP while introducing little extra computational cost. The reason is that306

the rate-determining step in the training stage is the optimization of neural solvers, and the Fourier307

Interpolation trick does not involve any calls of solvers. Compared to MCNP with MCNP-MS, we308

can see that the multi-scale framework plays a vital role in improving the long-time simulation ability309

of MCNP. Additionally, this architecture can reduce the training time because each sub-network is310

relatively lightweight. Finally, the gap between MCNP and MCNP-MC reveals the advantages of311

Monte Carlo loss compared to the PSM loss, which is more robust against spatial-temporal variations312

in turbulence simulation tasks.

Table 3: Ablation Studies of each model component in MCNP Solver. Relative error (%) and training time
for each method on the NSE tasks with ν = 10−5 and T = 15.

MCNP MCNP-OR MCNP-FI MCNP-MS MCNP-MC

Error (%) 8.677± 0.350 8.874± 0.150 15.561± 0.596 24.107± 1.104 14.110± 1.789
Time (H) 1.458 2.097 1.431 2.164 1.072

313

5.4 Additional Numerical Results314

We also conduct experiments to evaluate the MCNP Solver’s ability to handle different boundary315

conditions, fractional Laplacian, and irregular grids, as detailed in Appendix C.316

6 Conclusion and Discussion317

Conclusion In this paper, we propose the MCNP Solver, which leverages the Feynman-Kac formula318

to train neural PDE solvers in an unsupervised manner. Theoretically, we characterize the approxima-319

tion error and robustness of the MCNP Solver on convection-diffusion equations. Numerical analyses320

demonstrate the MCNP Solver’s ability to adapt to complex spatiotemporal variations and long-time321

simulations on diffusion equations and NSEs.322

Limitations This paper has several limitations: (1) The theoretical results are lacking when β is not323

constant, and the gradient flow of the MCNP Solver during the training stage requires further analysis.324

(2) Some PDEs are not suitable for the Feynman-Kac formula and therefore do not fall within the325

scope of the MCNP Solver, such as third or higher-order PDEs (involving high-order operators like326

uxxx). (3) The accuracy of the MCNP Solver cannot outperform numerical solvers when disregarding327

inference time, which is also a major drawback for other existing neural solvers [55, 13]. As discussed328

in [55], AI-based methods lack precision compared to classical methods while achieving reasonable329

accuracy and offering great potential for efficient parameter studies.330

Future Work In addition to addressing the limitations, we suggest several directions for future331

research: (1) Extend the proposed MCNP Solver to broader scenarios, such as high-dimensional PDEs332

and optimal control problems; (2) Utilize techniques from out-of-distribution generalization [53] to333

improve the generalization ability of MCNP Solver.334

9

References335

[1] Juan A. Acebrón and Marco A. Ribeiro. A monte carlo method for solving the one-dimensional telegraph336

equations with boundary conditions. Journal of Computational Physics, 305:29–43, 2016.337

[2] W. F. Bauer. The monte carlo method. Journal of the Society for Industrial and Applied Mathematics,338

6(4):438–451, 1958.339

[3] Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving parametric families of high-340

dimensional kolmogorov partial differential equations via deep learning. Advances in Neural Information341

Processing Systems, 33:16615–16627, 2020.342

[4] Deniz A Bezgin, Steffen J Schmidt, and Nikolaus A Adams. A data-driven physics-informed finite-volume343

scheme for nonclassical undercompressive shocks. Journal of Computational Physics, 437:110324, 2021.344

[5] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In345

International Conference on Learning Representations, 2022.346

[6] Shuhao Cao. Choose a transformer: Fourier or galerkin. In A. Beygelzimer, Y. Dauphin, P. Liang, and347

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.348

[7] Pengfei Chen, Guangyong Chen, Junjie Ye, Jingwei Zhao, and Pheng-Ann Heng. Noise against noise:349

stochastic label noise helps combat inherent label noise. In International Conference on Learning350

Representations, 2021.351

[8] Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce data.352

Nature communications, 12(1):1–13, 2021.353

[9] Robert Dalang, Carl Mueller, and Roger Tribe. A feynman-kac-type formula for the deterministic354

and stochastic wave equations and other pde’s. Transactions of the American Mathematical Society,355

360(9):4681–4703, 2008.356

[10] Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.357

Advances in Neural Information Processing Systems, 34:27449–27461, 2021.358

[11] Francis X Giraldo and Beny Neta. A comparison of a family of eulerian and semi-lagrangian finite element359

methods for the advection-diffusion equation. WIT Transactions on The Built Environment, 30, 1997.360

[12] Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed neural361

operators. arXiv preprint arXiv:2207.05748, 2022.362

[13] Tamara G. Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schönlieb. Can363

physics-informed neural networks beat the finite element method?, 2023.364

[14] Ling Guo, Hao Wu, Xiaochen Yu, and Tao Zhou. Monte carlo fpinns: Deep learning method for forward365

and inverse problems involving high dimensional fractional partial differential equations. Computer366

Methods in Applied Mechanics and Engineering, 400:115523, 2022.367

[15] Patrik Simon Hadorn. Shift-deeponet: Extending deep operator networks for discontinuous output functions.368

ETH Zurich, Seminar for Applied Mathematics, 2022.369

[16] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using370

deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.371

[17] Jihun Han, Mihai Nica, and Adam R Stinchcombe. A derivative-free method for solving elliptic partial372

differential equations with deep neural networks. Journal of Computational Physics, 419:109672, 2020.373

[18] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic schrödinger374

equation. Nature Chemistry, 12(10):891–897, 2020.375

[19] Xiang Huang, Zhanhong Ye, Hongsheng Liu, Shi Bei Ji, Zidong Wang, Kang Yang, Yang Li, Min Wang,376

Haotian CHU, Fan Yu, Bei Hua, Lei Chen, and Bin Dong. Meta-auto-decoder for solving parametric377

partial differential equations. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,378

editors, Advances in Neural Information Processing Systems, 2022.379

[20] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets): Physics-380

informed neural networks for the incompressible navier-stokes equations. Journal of Computational381

Physics, 426:109951, 2021.382

[21] Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, and Martin V383

Butz. Composing partial differential equations with physics-aware neural networks. In International384

Conference on Machine Learning, pages 10773–10801. PMLR, 2022.385

[22] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.386

Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.387

[23] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew388

Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications389

to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.390

10

[24] Tomasz J Kozubowski, Mark M Meerschaert, and Krzysztof Podgorski. Fractional laplace motion.391

Advances in applied probability, 38(2):451–464, 2006.392

[25] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing393

possible failure modes in physics-informed neural networks. Advances in Neural Information Processing394

Systems, 34:26548–26560, 2021.395

[26] Jae Yong Lee, SungWoong CHO, and Hyung Ju Hwang. HyperdeepONet: learning operator with396

complex target function space using the limited resources via hypernetwork. In The Eleventh International397

Conference on Learning Representations, 2023.398

[27] Hong Li, Qilong Zhai, and Jeff ZY Chen. Neural-network-based multistate solver for a static schrödinger399

equation. Physical Review A, 103(3):032405, 2021.400

[28] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ operator401

learning. arXiv preprint arXiv:2205.13671, 2022.402

[29] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with403

learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209, 2022.404

[30] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew405

Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations.406

arXiv preprint arXiv:2003.03485, 2020.407

[31] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,408

Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential409

equations. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,410

May 3-7, 2021. OpenReview.net, 2021.411

[32] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Aziz-412

zadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential413

equations. arXiv preprint arXiv:2111.03794, 2021.414

[33] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear415

operators via deeponet based on the universal approximation theorem of operators. Nature Machine416

Intelligence, 3(3):218–229, 2021.417

[34] Sylvain Maire and Etienne Tanré. Monte carlo approximations of the neumann problem. In Monte Carlo418

Methods Appl., 2012.419

[35] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.420

[36] Nils Margenberg, Dirk Hartmann, Christian Lessig, and Thomas Richter. A neural network multigrid421

solver for the navier-stokes equations. Journal of Computational Physics, 460:110983, 2022.422

[37] Guillermo Marshall. Monte carlo methods for the solution of nonlinear partial differential equations.423

Computer Physics Communications, 56(1):51–61, 1989.424

[38] Revanth Mattey and Susanta Ghosh. A novel sequential method to train physics informed neural networks425

for allen cahn and cahn hilliard equations. Computer Methods in Applied Mechanics and Engineering,426

390:114474, 2022.427

[39] Chloé Mimeau and Iraj Mortazavi. A review of vortex methods and their applications: From creation to428

recent advances. Fluids, 6(2):68, 2021.429

[40] Sebastian K Mitusch, Simon W Funke, and Miroslav Kuchta. Hybrid fem-nn models: Combining artificial430

neural networks with the finite element method. Journal of Computational Physics, 446:110651, 2021.431

[41] Nikolas Nüsken and Lorenz Richter. Interpolating between bsdes and pinns–deep learning for elliptic and432

parabolic boundary value problems. arXiv preprint arXiv:2112.03749, 2021.433

[42] Panos Pantidis and Mostafa E Mobasher. Integrated finite element neural network (i-fenn) for non-local434

continuum damage mechanics. Computer Methods in Applied Mechanics and Engineering, 404:115766,435

2023.436

[43] Etienne Pardoux and Shige Peng. Backward stochastic differential equations and quasilinear parabolic437

partial differential equations. In Stochastic partial differential equations and their applications, pages438

200–217. Springer, 1992.439

[44] Etienne Pardoux and Shanjian Tang. Forward-backward stochastic differential equations and quasilinear440

parabolic pdes. Probability Theory and Related Fields, 114(2):123–150, 1999.441

[45] Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural operators.442

Transactions on Machine Learning Research, 2023.443

[46] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep444

learning framework for solving forward and inverse problems involving nonlinear partial differential445

equations. Journal of Computational physics, 378:686–707, 2019.446

11

[47] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity447

and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.448

[48] Carl Remlinger, Joseph Mikael, and Romuald Elie. Robust Operator Learning to Solve PDE. working449

paper or preprint, April 2022.450

[49] Lorenz Richter and Julius Berner. Robust sde-based variational formulations for solving linear pdes via451

deep learning. In International Conference on Machine Learning, pages 18649–18666. PMLR, 2022.452

[50] Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic pdes using the453

tensor train format. In International Conference on Machine Learning, pages 8998–9009. PMLR, 2021.454

[51] Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. Grid-free monte carlo for pdes with455

spatially varying coefficients. ACM Transactions on Graphics (TOG), 41(4):1–17, 2022.456

[52] Jacob H Seidman, Georgios Kissas, Paris Perdikaris, and George J. Pappas. NOMAD: Nonlinear manifold457

decoders for operator learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,458

editors, Advances in Neural Information Processing Systems, 2022.459

[53] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards460

out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.461

[54] Wenlei Shi, Xinquan Huang, Xiaotian Gao, Xinran Wei, Jia Zhang, Jiang Bian, Mao Yang, and Tie-Yan462

Liu. Lordnet: Learning to solve parametric partial differential equations without simulated data. arXiv463

preprint arXiv:2206.09418, 2022.464

[55] Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas Rademacher, Uwe465

Iben, and Peter Maass. Deep learning methods for partial differential equations and related parameter466

identification problems, 2022.467

[56] Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.468

In The Eleventh International Conference on Learning Representations, 2023.469

[57] Simone Venturi and Tiernan Casey. Svd perspectives for augmenting deeponet flexibility and interpretability.470

Computer Methods in Applied Mechanics and Engineering, 403:115718, 2023.471

[58] J. Vom Scheidt. Kloeden, p. e.; platen, e., numerical solution of stochastic differential equations. berlin etc.,472

springer-verlag 1992. xxxvi, 632 pp., 85 figs., dm 118,oo. isbn 3-540-54062-8 (applications of mathematics473

23). ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik474

und Mechanik, 74(8):332–332, 1994.475

[59] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial476

differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.477

[60] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel478

perspective. Journal of Computational Physics, 449:110768, 2022.479

[61] Yizheng Wang, Jia Sun, Wei Li, Zaiyuan Lu, and Yinghua Liu. Cenn: Conservative energy method480

based on neural networks with subdomains for solving variational problems involving heterogeneous and481

complex geometries. Computer Methods in Applied Mechanics and Engineering, 400:115491, 2022.482

[62] Li-Ming Yang. Kinetic theory of diffusion in gases and liquids. i. diffusion and the brownian motion.483

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pages 94–116,484

1949.485

[63] Rui Zhang, Peiyan Hu, Qi Meng, Yue Wang, Rongchan Zhu, Bingguang Chen, Zhi-Ming Ma, and Tie-Yan486

Liu. Drvn (deep random vortex network): A new physics-informed machine learning method for simulating487

and inferring incompressible fluid flows. Physics of Fluids, 34(10):107112, 2022.488

[64] Xicheng Zhang. Stochastic functional differential equations driven by lévy processes and quasi-linear489

partial integro-differential equations. The Annals of Applied Probability, 22(6):2505–2538, 2012.490

[65] Xicheng Zhang. Stochastic lagrangian particle approach to fractal navier-stokes equations. Communications491

in Mathematical Physics, 311(1):133–155, 2012.492

[66] Qingqing Zhao, David B. Lindell, and Gordon Wetzstein. Learning to solve pde-constrained inverse493

problems with graph networks. In ICML, 2022.494

12

	Introduction
	Related Work
	Methodology
	Preliminary
	Monte Carlo Neural PDE Solver
	Implementation Details of MCNP Solver

	Theoretical Results
	Experiments
	1D Diffusion Equation
	2D Navier-Stokes Equation
	Ablation Study
	Additional Numerical Results

	Conclusion and Discussion

