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ABSTRACT

Accurate diagnosis of Alzheimer’s disease (AD) requires combining multimodal
data with established clinical guidelines. However, most deep learning models
operate as black boxes, offering limited interpretability and weak alignment with
medical standards. We propose AD-Reasoning, a framework for multimodal AD
diagnosis that integrates structural MRIs and diverse clinical data with guideline-
guided reasoning. A rule engine ensures NIA-AA diagnostic criteria, while rein-
forcement fine-tuning with domain-informed rewards promotes clinically consis-
tent and transparent decision-making. Evaluated on the AD-MultiSense dataset,
AD-Reasoning achieves state-of-the-art diagnostic accuracy and demonstrates im-
proved interpretability compared with recent baselines. This work highlights a
clinically grounded solution that connects large language models with medical
expertise, advancing interpretable and guideline-compliant AD diagnosis.

1 INTRODUCTION

The rapid advancement of artificial intelligence (AI) has profoundly impacted neurodegenerative
disease research, showing great promise in medical data analysis and diagnostic applications Ra-
jpurkar et al. (2022); Park et al. (2023). In the context of Alzheimer’s disease (AD), many ex-
isting studies focus on single-modal data, most commonly structural magnetic resonance imaging
(sMRI) Frisoni et al. (2010); Jang & Hwang (2022) or individual clinical assessments Öhman et al.
(2021). Although such approaches can be effective within specific domains, they often offer a narrow
view that overlooks AD’s complex and multifactorial pathology. In reality, AD spans a wide range
of physiological and behavioral manifestations: brain atrophy patterns visible in sMRI, cognitive
decline quantified by neuropsychological tests (e.g., MMSE), genetic risk factors such as APOE-ϵ4,
cerebrospinal fluid (CSF) biomarkers (e.g., Abeta42, pTau), as well as demographic information,
comorbidities, and lab findings Lautner et al. (2014). This heterogeneity underscores the limitations
of single-modality models, which may yield incomplete or biased diagnostic conclusions. To ad-
dress this, comprehensive multimodal integration is essential for a more holistic understanding and
accurate characterization of AD Venugopalan et al. (2021).

Recent advances have explored multimodal fusion for AD diagnosis, integrating information from
neuroimaging, clinical assessments, genetic markers, and biochemical indicators Chen et al. (2024);
Zhou et al. (2023). Although these approaches enhance diagnostic performance, they typically func-
tion as black-box models, yielding only binary labels or scalar scores without offering transparent
reasoning or detailed justification. These shortcomings become particularly critical in complex clin-
ical scenarios, e.g., differentiating AD from overlapping neurodegenerative conditions. The absence
of interpretable and text-based diagnostic rationales hinders clinical adoption, as physicians require
not only accurate decisions but also an understanding of the underlying evidence to inform treatment
and build trust in AI-assisted tools.

Multimodal large language models (MLLMs) OpenAI (2023); Grattafiori et al. (2024) have recently
emerged as a powerful paradigm, demonstrating strong capabilities in cross-modal representation
alignment and generative reasoning. In the medical domain, early efforts have applied MLLMs to
unimodal tasks, such as automated sMRI reporting Bai et al. (2024), clinical text summarization,
or single-modality image captioning. However, these models are typically constrained to surface-
level physiological descriptions within individual modalities, falling short of producing coherent
diagnostic narratives grounded in multimodal clinical evidence. Crucially, they lack the ability to
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Figure 1: Our AD-MultiSense dataset. (a) Construction pipeline: Disease-level reports are gen-
erated via evidence-augmented reasoning, using DeepSeek-v3 under clinical guidelines with self-
refinement for diagnostic validity. (b) Data statistics: The dataset covers CN, MCI, and AD cases,
spanning seven modalities (demographics/history/cognition/labs/genetics/biomarkers/sMRI).

perform disease-level reasoning, e.g., distinguishing overlapping pathologies or integrating diverse
risk factors, based on synergistic understanding across imaging, clinical, and molecular data. A
unified MLLM framework that can synthesize heterogeneous patient data into interpretable, multi-
disease diagnostic narratives remains an open and critical challenge.

To bridge this gap, we introduce AD-Reasoning, a novel MLLM framework tailored for interpretable
reasoning and diagnosis of Alzheimer’s disease. Given a patient’s sMRI and six categories of clinical
data, including demographics, medical history, cognitive assessments, laboratory tests, genetic risk
factors, and CSF biomarkers, AD-Reasoning generates clinically grounded diagnostic narratives
that integrate heterogeneous evidence. To tackle the challenge of aligning heterogeneous inputs
from imaging and diverse clinical sources, we design a modality-aware encoder that projects all
modalities into a shared latent space while preserving semantic fidelity. We further introduce a
multimodal fusion layer that explicitly models cross-modal interactions and adaptively estimates
the contribution of each modality. This design enables the model to focus on salient clinical cues,
facilitating more accurate differential diagnosis and comorbidity reasoning. In addition, diagnostic
narratives should be not only accurate but also consistent with clinical guidelines and expert logic.
To this end, we introduce a domain-specific reinforcement learning (RL) stage, leveraging Group
Relative Policy Optimization (GRPO) and a clinical consistency reward that encourages the model
to generate trustworthy and guideline-aligned explanations.

Our main contributions are as follows:

• AD-MultiSense Dataset: We build the first AD-specific multimodal question-answer (QA)
dataset combining sMRI with six clinical modalities, totaling 10,378 entries from 2,619
subjects. QA pairs span both physiological understanding and diagnostic reasoning, vali-
dated via NIA-AA criteria and expert-in-the-loop sampling.

• AD-Reasoning Framework: We propose a unified multimodal reasoning model that
features a modality-harmonized encoder, a cross-modal fusion and reasoning layer for
comorbidity-aware inference, and a domain-aligned reinforcement fine-tuning scheme that
enhances interpretability and clinical consistency.

• State-of-the-art Performance: Our AD-Reasoning achieves strong results on AD diagno-
sis, comorbidity differentiation, and interpretable report generation, validated across large-
scale multisite cohorts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

MLLM for Medical Diagnosis The diagnostic potential of MLLMs stems from their proficiency in
handling varied inputs, such as text Haltaufderheide & Ranisch (2024), images Chen et al. (2023),
tabular data Fang et al. (2024). Early approaches were modality-specific, focusing on clinical
text Van Veen et al. (2024), medical imaging Tian et al. (2023), or single biomarkers Elsborg &
Salvatore (2023). Despite this progress, AD research remains siloed, with sMRI analysis largely
separated from critical clinical information like cognitive tests, genetics, and biomarkers Yao et al.
(2023). While emerging multimodal frameworks tackle general diagnostic fusion Kumar et al.
(2024), none are designed for AD’s distinct challenge: the essential integration of sMRI find-
ings with multifaceted clinical data to achieve comorbidity-sensitive diagnosis. In contrast, our
AD-Reasoning introduces a unified MLLM that performs cross-modal interaction and contribution-
aware fusion, enabling structured and stage-aware reasoning aligned with clinical criteria.

RL for Medical Diagnosis Group Relative Policy Optimization (GRPO) Shao et al. (2024) enhances
reinforcement fine-tuning by normalizing rewards across response groups, demonstrating superiority
over PPO Schulman et al. (2017) in text Hu (2025) and vision-language tasks Li et al. (2025).
Recent medical applications deploy GRPO for unimodal objectives like radiology reporting Dai
et al. (2025). Its utility for intricate multimodal Alzheimer’s Disease (AD) diagnosis, however,
remains unexamined, particularly regarding: (1) reward design: Existing functions (e.g., Jaccard
similarity) fail to capture clinical validity in AD diagnostics. (2) multimodal grounding: Limited
work integrates GRPO with multimodal data fusion. (3) reasoning verification: Absence of NIA-
AA-aligned reward mechanisms for diagnostic chains. We pioneer GRPO adaptation for AD via a
clinical consistency reward function, explicitly optimized for 1) adherence to NIA-AA diagnostic
criteria, 2) accuracy in comorbidity reasoning and, 3) faithfulness to multimodal evidence chains.
This ensures generated diagnostic reports are both statistically robust and clinically verifiable.

3 METHODOLOGY

3.1 AD-MULTISENSE DATASET

Multimodal Data Collection To enable MLLMs to perform both physiological understanding and
diagnostic reasoning over heterogeneous medical data, we construct a multimodal dataset that con-
forms to established clinical logic. Raw data are collected from the ADNI Petersen et al. (2010)
and AIBL Ellis et al. (2009) cohorts, covering a wide spectrum of patient characteristics and disease
stages. For each subject, we acquire sMRI scans alongside six types of clinical data encompassing
demographic, cognitive, and biochemical information. After aligning data across modalities and
visit timepoints, we curate a total of 10,378 multimodal samples from 2,619 unique subjects. Each
sample reflects a consistent physiological state at a specific visit, enabling clinically valid reasoning
over disease progression.

To enhance clinical interpretability, quantitative measurements are systematically converted into
standardized textual reports. For sMRI analysis, we calculate age-adjusted z-scores for struc-
tural volumes (e.g., hippocampal/ventricular) using population norms, with textual descriptors
generated based on established thresholds: bilateral hippocampus atrophy is reported as “mild”
(1 ≤ |z| < 1.5), “moderate” (1.5 ≤ |z| < 2), “significant” (2 ≤ |z| < 3) or “profound” (|z| ≥ 3).
Similarly, laboratory data undergoes z-score normalization against age/sex-matched cohorts, though
only clinically significant abnormalities (|z| > 2.0) are included in final reports. Biomarkers are con-
sistently interpreted with contextual information, and each value is accompanied by reference-based
interpretation, e.g., ”Amyloid beta: 858.30 pg/mL (normal).” This quantitative-to-textual transfor-
mation bridges raw biomarker measurements with clinically meaningful narratives, enabling natural
language reasoning about pathological changes while preserving data fidelity. Dataset statistics are
visualized in Fig. 1(b), and implementation details, including z-score normalization and templated
text construction, are provided in Appendix A.

Reasoning Generation Based on these raw data, we construct multimodal QA pairs from disease-
level diagnostic reasoning, with the entire process shown in Fig. 1(a). The process begins by query-
ing the Thinker model (DeepSeek-V3) using a structured diagnostic prompt template:
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Figure 2: AD-Reasoning framework. Pretraining aligns sMRI and clinical data representations via
encoders, SFT tunes LLMs using diagnostic rationales and RFT optimizes with GRPO for NIA-AA
compliant structured outputs.

SYSTEM PROMPT: "You are an Alzheimer’s specialist. Analyze
the data and provide:
1. Reasoning
2. Final diagnosis: CN/MCI/Dementia
3. Confidence level: High/Medium/Low
Format:
Reasoning: [analysis]
Diagnosis: [CN/MCI/Dementia]
Confidence: [High/Medium/Low]"

This is an initial response ⟨R0, C0⟩ = Thinker(M,Pd), where R0 denotes the reasoning chain, C0

is the preliminary diagnosis, M represents multimodal inputs (i.e., sMRIs and clinical data), and Pd

is the diagnosis prompt.

The Validator module evaluates C0 against ground truth diagnoses. When mismatches occur, the
system triggers rethinking cycles: the Thinker regenerates reasoning using refinement prompts (Pr)
constructed from explicit NIA-AA criteria dictionaries. These dictionaries map clinical findings to
diagnostic rules, enabling targeted feedback. This iterative process continues for up to N cycles (i.e.,
2), with random expert sampling providing quality control.

For cases where diagnosis remains incorrect after N iterations, the prompts with correct diagnosis
(Pc) is explicitly provided to the Thinker, instructing it to correct its reasoning and conclusion ac-
cordingly. The Thinker then produces final reasoning RF and diagnosis CF , formatted into training
pairs ⟨M ◦ Pd, R

F ◦ CF ⟩ for supervised fine-tuning.

3.2 AD-REASONING FRAMEWORK

3.2.1 MODEL ARCHITECTURE

The proposed AD-Reasoning framework primarily consists of modality-specific encoders and pro-
jectors, a Multimodal Fusion Layer (MFL), and a Large Language Model (LLM), with its overall
architecture illustrated in Fig. 2. Given the raw data of structural MRI scans XV ∈ R1×D×H×W

and clinical text data XT ∈ RL, they are first processed by their respective modality-specific en-
coders for feature extraction. The encoded features are then fed into modality-specific projectors to
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transform them into a shared dimension d for alignment and compatibility with the textual embed-
ding space of the LLM. This process facilitates seamless integration between multimodal features
and textual tokens, formulated as:

VsMRI = gV (fV (XV)) ∈ Rd, TClinical = gT (fT (XT)) ∈ Rd, (1)

where VsMRI denotes projected visual features from structural MRI, TClinical denotes projected clin-
ical text features. fV , fT denotes modality-specific encoders (image and text) and gV , gT denotes
modality-specific projectors.

3.2.2 MULTIMODAL FUSION LAYER (MFL)

To enable comprehensive interaction between neuroimaging and clinical modalities, we introduce an
MFL comprising a Bidirectional Cross-Attention (BCA) mechanism. The projected features VsMRI
and TClinical are first processed by the BCA mechanism, where each modality alternately serves as
Query and Key/Value to compute cross-attention:

AV→T = Attention(TClinical,VsMRI,VsMRI), (2)
AT→V = Attention(VsMRI,TClinical,TClinical). (3)

This bidirectional attention captures complex neuro-clinical dependencies, allowing visual features
to inform clinical interpretation and vice versa. The attention outputs are combined with residual
connections to preserve modality-specific information:

TV = VsMRI +AT→V , TT = TClinical +AV→T . (4)

3.2.3 LARGE LANGUAGE MODEL INTEGRATION

The final multimodal features TV and TT replace the placeholders <sMRI> and <clinical> in
the input prompt templates. An example prompt for AD diagnosis is:

“Given the structural MRI <sMRI> and clinical profile <clinical>, what is the most
probable diagnosis and supporting evidence?”

The resulting input sequence Tinput = {TQ,TV ,TT ,TA} is fed into the LLM, where TQ denotes
tokenized question derived from diagnostic templates and TA denotes target answer tokens from
AD diagnostic QA datasets.

The LLM parameters remain frozen during training, with only LoRA adapters updated to specialize
the model for AD reasoning tasks.

3.2.4 TRAINING STRATEGY

We employ a three-stage training strategy for AD-Reasoning, which includes Pre-training (PT),
Supervised Fine-Tuning (SFT), and Reinforcement Fine-Tuning (RFT), to progressively enhance
its ability to perceive the physiological representations of each modality and integrate multimodal
information for interpretable alzheimer’s disease reasoning and diagnosis.

Pre-training (PT). To establish foundational understanding and align feature representations across
imaging and non-imaging clinical data, we first conduct pre-training using AD-relevant multimodal
data. During this stage, the image encoder (processing sMRI) and text encoder (processing clin-
ical data) are trainable, while projectors and LLM parameters remain inactive at this stage. The
optimization focuses exclusively on representation learning and alignment.

We employ the image-text contrastive (ITC) loss Radford et al. (2021) to align image features hI

and text features hT generated by the image and text encoders. The ITC loss Litc maximizes similar-
ity for positive image-text pairs while suppressing negative pairs, implemented through normalized
cross-entropy over all pairwise similarities. We implement momentum encoders updated via expo-
nential moving average (EMA) following BLIP Li et al. (2022) and ALBEF Li et al. (2021). Specifi-
cally, the parameters of momentum image/text encoders (ξ) are updated as ξ ← mc ·ξ+(1−mc) ·θ,
where mc = 0.995 is the momentum coefficient and θ denotes the parameters of the corresponding
online encoders. All momentum encoders operate without gradient backpropagation. This EMA-
based strategy ensures feature consistency within the dynamically updated data and knowledge
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Method BLEU METEOR ROUGE BERT ACC (%) AUC (%) SEN (%) SPE (%)

CN vs. CI

LLaVA-1.5-7B 0.0112 0.1456 0.1023 0.7924 73.85 68.92 60.14 80.37
LLaVA-Med 0.0144 0.1618 0.1168 0.8016 76.21 71.43 62.75 83.42
Med-PaLM-M 0.0218 0.2031 0.1331 0.8181 79.92 75.76 66.63 85.85
M3d-LaMed 0.0341 0.1756 0.1435 0.8128 82.37 78.95 69.84 86.21
AD-Reasoning w/o PT 0.1873 0.2792 0.2424 0.8636 87.25 83.12 71.28 91.37
AD-Reasoning w/o RFT 0.2015 0.2982 0.2617 0.8725 90.46 87.63 80.75 94.28
AD-Reasoning (ours) 0.2183 0.3212 0.2851 0.8926 93.33 91.83 88.67 95.00

CN vs. MCI

LLaVA-1.5-7B 0.0108 0.1387 0.0984 0.7821 70.15 65.28 61.42 74.85
LLaVA-Med 0.0138 0.1518 0.1068 0.7916 72.24 68.76 65.57 77.36
Med-PaLM-M 0.0208 0.1931 0.1231 0.8081 75.13 72.14 68.41 80.25
M3d-LaMed 0.0331 0.1656 0.1335 0.8028 78.02 74.97 70.79 81.64
AD-Reasoning w/o PT 0.1824 0.2717 0.2369 0.8570 88.37 84.96 84.92 87.41
AD-Reasoning w/o RFT 0.1961 0.2893 0.2544 0.8667 91.28 89.07 88.45 90.33
AD-Reasoning (ours) 0.2123 0.3125 0.2783 0.8852 92.82 90.09 88.60 93.50

Table 1: Comparison of AD-Reasoning and baselines in terms of reasoning and diagnostic perfor-
mance for Alzheimer’s disease.

queues by decoupling momentum encoder optimization from the online model training. To pre-
vent abrupt shifts in feature distribution, the queues are exclusively maintained using outputs from
the momentum encoder.

Our restorative learning module is designed to enhance the global semantic understanding by incor-
porating fine-grained visual and textual information. That is, the feature extraction is augmented
by a reconstruction learning branch, which includes an image decoder to reconstruct the original
image from the representation and minimizes the pixel-level distance between the original image xI

and the reconstructed image x′
I : LI

res = ExI
DI(xI , x

′
I), where DI(xI , x

′
I) presents the distance

function that measures similarity between xI and x′
I , e.g., Mean Square Error (MSE), or L1 norm.

We use MSE following the common setting He et al. (2022). For the textual component, we apply a
similar approach. A text decoder is trained to minimize the token-level distance between the original
text xT and the reconstructed text x′

T : LT
res = ExT

DT (xT , x
′
T ), where DT (xT , x

′
T ) is the distance

function measuring text similarity, such as the commonly-used cross-entropy loss.

The overall pre-training objective combines both alignment and reconstruction losses:

LPT = Litc + λres
(
LI
res + LT

res

)
(5)

where Litc denotes image-text contrastive loss for feature alignment, LI
res denotes image recon-

struction loss (MSE), LT
resdenotes text reconstruction loss (cross-entropy), λres denotes weighting

coefficient for reconstruction objectives.

Supervised Fine-Tuning (SFT). Building upon the aligned feature representations, we conduct
SFT using diagnostic QA pairs for AD reasoning. During this stage, image and text encoders are
frozen, and the projection layers and LLM LoRA modules are trainable. The optimization objective
maximizes response generation likelihood:

LSFT = −E(TQ,VsMRI,TClinical,TA)∼D ·
T∑

t=1

log πθ

(
yt | TQ,VsMRI,TClinical, y<t

)
, (6)

where πθ(yt|·) denotes the conditional probability of generating the t-th token yt, given the prompt
tokens TQ, modality features (VsMRI and TClinical), and the previously generated tokens y<t. VsMRI
denotes visual features from structural MRI and TClinical encompasses all clinical texts. TQ denotes
question tokens and TA denotes answer tokens.

Reinforcement Fine-Tuning (RFT). To unlock the potential of the constructed dataset and enhance
diagnostic reasoning capabilities, we perform Reinforcement Fine-Tuning (RFT) using Group Rel-
ative Policy Optimization (GRPO) under the RL with Verifiable Rewards (RLVR) framework. The
trainable components remain consistent with the SFT stage, with the optimization objective:

max
πθ

EA∼πθ(Q) [RRLVR(Q,A)] =

[
R(Q,A)− β KL [πθ(A | Q)∥πref(A | Q)]

]
(7)

where πθ is the policy and πref is the SFT-tuned reference. R denotes the verifiable reward func-
tion, while the KL divergence term penalizes deviation from clinically validated responses, with β
controlling the regularization strength.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CN vs. CI CN vs. MCI

Method ACC AUC SEN SPE ACC AUC SEN SPE

BERT 84.31 79.42 85.87 86.48 82.55 77.35 82.67 84.42
RoBerta 86.89 84.41 82.97 85.03 85.63 81.42 80.93 83.84
Longformer 87.92 85.76 80.49 82.27 85.24 84.71 78.42 79.37
IRENE 86.03 77.95 89.14 65.82 84.18 75.25 87.35 63.27
AD-Trans 87.67 75.89 65.91 85.47 85.61 73.79 63.67 84.32
Alifuse 87.23 79.51 90.71 73.67 85.98 76.57 88.92 70.39
Ours 93.33 91.83 88.67 95.00 92.82 90.09 88.60 93.50

Table 2: Diagnostic performance (%) comparison be-
tween our AD-Reasoning and classification approaches
for Alzheimer’s disease. (Best in bold)

Task ACC AUC SEN SPE

(a) Loss Terms

Litc 89.23 84.87 95.12 79.84
Litc + LI

res + LT
res 93.33 91.83 88.67 95.00

(b) Feature Terms

Image 71.24 54.76 95.33 12.31
Clinical 88.83 82.69 96.91 67.42
Image + Clinical 93.33 91.83 88.67 95.00

(c) Guideline Terms

IWG-2 92.93 90.58 90.12 87.33
NIA-AA 93.33 91.83 88.67 95.00

Table 3: Ablation results (%) on the
test set.

For AD diagnosis where responses exhibit high clinical specificity, GRPO directly compares re-
sponses within candidate groups {o1, . . . , oG}. Reward normalization uses: r̃i = ri−µr

σr+ϵ , where µr

and σr are group reward statistics. This prioritizes clinically coherent responses without requiring
separate critic models.

The composite reward R = RF + RNIA-AA + Rconsistency ensures diagnostic accuracy and structural
consistency:

1) Structured Format Reward (RF ): Enforces compliance with AD diagnostic templates:

Reasoning: [analysis]
Diagnosis: [CN/MCI/Dementia]
Confidence: [High/Medium/Low]

RF = 1.0 only when all three tags are present and Confidence contains valid value.

2) NIA-AA Diagnostic Reward (RNIA-AA): Provides comprehensive clinical assessment through a
multi-dimensional scoring framework that evaluates diagnostic accuracy against established NIA-
AA standards. The reward integrates three core components:

RNIA-AA = 0.4 ·Rcat + 0.3 ·Rbio + 0.3 ·Rfeat. (8)

Diagnostic Category Alignment (Rcat) ensures precise classification into standardized diagnostic
categories (CN, MCI, Dementia) through keyword matching and exclusion criteria validation. This
component evaluates both the presence of appropriate diagnostic terminology and the absence of
contradictory indicators.

Biomarker Consistency Assessment (Rbio) quantifies the coverage and contextual accuracy of es-
sential AD biomarkers (Aβ, tTau, pTau). The scoring incorporates both mention frequency and
pathological status characterization (normal/abnormal patterns) based on established clinical thresh-
olds.

Clinical Feature Comprehensiveness (Rfeat) evaluates the depth of cognitive domain analysis
across memory, executive function, visuospatial abilities, and language domains. The scoring re-
wards not only feature inclusion but also detailed characterization within specific subdomains.

This structured approach ensures rigorous adherence to NIA-AA diagnostic protocols while main-
taining computational efficiency through weighted component integration. Detailed scoring algo-
rithms are provided in Appendix B.

3) Reasoning Consistency Reward (Rconsistency): To ensure logical coherence between diagnostic
reasoning and final conclusions, we introduce a reasoning consistency reward in the overall reward
structure. This component evaluates the alignment between the analysis in the Reasoning section
and the diagnostic conclusion:

Rconsistency = NLI(Reasoning→ Diagnosis) (9)
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Image findings: hippocampal volume measures 4,724 mm³, 27.3% below the reference mean. With a Z-score of -2.19 (1.4th percentile), this represents significant atrophy; whole brain volume 
measures 874,033 mm³, 5.8% below the reference mean. With a Z-score of -0.70 (24.2th percentile), this represents normal volume .
. 
Demographic: Age is 88.4 years. Gender is Female. Education: 14 years. Handedness: Left. Race: White.
Medical history: Psychiatric; Head, Eyes, Ears, Nose and Throat; Cardiovascular; Major Surgical Procedures.
Cognitive tests: MMSE: 26.0. MoCA: 20.0. Logical Memory: 1.0.
Laboratory findings: Lymphocytes: 3.19 (significant elevated); Serum Glucose: 160.00 (profound elevated); Triglycerides (GPO): 295.00 (profound elevated).
Genetic: APOEε4 alleles: 0.0. 
Biomarker levels: Florbetapir (AV45): 1.03 SUVR (normal ); Total tau: 359.50 pg/mL (moderate elevated); Phosphorylated tau: 33.03 pg/mL (moderate elevated).

Based on the input data: the structural MRI <sMRI> and clinical profile <clinical>, what is the current stage of Alzheimer's progression? 

Reasoning: The hippocampal volume shows significant atrophy (Z-score -2.19, 1.4th percentile), which is strongly associated with
Alzheimer's pathology, while whole brain volume remains within normal limits. Cognitive testing (MoCA 20/30) indicates mild 
impairment, and CSF biomarkers (elevated T-tau and P-tau) suggest Alzheimer's pathology despite normal amyloid PET (AV45).

Diagnosis: Mild Cognitive Impairment (MCI) likely due to Alzheimer’s disease (hippocampal atrophy + tauopathy, 
but preserved global cognition).

Confidence:Medium (discrepancy between amyloid PET and CSF tau complicates full AD diagnosis; MCI is more fitting 
given MMSE 26).  

MMSE
MoCA
HIPPO
LDEL

Shap Analysis

Vision Visualization

Figure 3: Inference example of AD-reasoning.

where NLI denotes Natural Language Inference He et al. (2021), implemented using a pre-trained
entailment model that scores the degree to which the reasoning text supports the diagnostic conclu-
sion. The reward Rconsistency ∈ {0, 0.5, 1.0} corresponds to contradiction, neutral/weak entailment,
and strong entailment, respectively. This prevents logical inconsistencies where, for example, the
reasoning describes normal biomarker profiles but concludes with ”Dementia,” ensuring that diag-
nostic conclusions are well-supported by the preceding clinical analysis.

This enhanced reward structure ensures comprehensive alignment with NIA-AA diagnostic stan-
dards while maintaining computational efficiency and logical coherence. The format reward RF

guarantees structural integrity, RNIA-AA evaluates clinical content validity, and Rconsistency ensures
logical alignment between analysis and conclusions.

4 EXPERIMENTS

We conduct all experiments on a server equipped with four NVIDIA RTX 3090 24GB GPUs. For
the LLM, we choose LLaMA 3.2-1B et al. (2024) and integrate the LoRA modules Hu et al. (2022)
with a rank of 8 for fine-tuning. For the visual modality, a 3D Vision Transformer Dosovitskiy et al.
(2020) is used with input size 128×128×128 and patch size 16×16×16. For the textual modality,
we use a Longformer Transformer Beltagy et al. (2020). The PT, SFT and RFT stages are each
trained for 100 epochs, while the RFT stage is trained using the open-source Trainer framework.

The effectiveness of multi-disease reasoning and diagnosis is evaluated from two sides. 1) The
descriptive accuracy of the generated diagnostic text is assessed using natural language generation
(NLG) metrics, including BLEU, METEOR, ROUGE, and BERT. 2) The classification accuracy of
Alzheimer disease categories in the responses is evaluated using diagnosis accuracy (ACC), Area
Under Curve (AUC), sensitivity (SEN), and specificity (SPE).

Following established clinical guidelines McKhann et al. (2011); Dubois et al. (2007); Jack Jr et al.
(2018), we evaluate our model on two classification tasks. The first task distinguishes cognitively
normal (NC) individuals from those with cognitive impairment (CI), including both mild cognitive
impairment (MCI) and Alzheimer’s disease (AD). The second one focuses on differentiating NC
from MCI, which is a critical stage for the early identification of AD. We split the dataset subject-
wise into training, validation, and test sets with proportions of 70%, 10%, and 20%, respectively.
All structural MRI scans underwent standardized preprocessing, including skull stripping Isensee
et al. (2019) to remove non-brain tissues and intensity normalization to harmonize voxel value dis-
tributions across scanners.

4.1 QUANTITATIVE ANALYSIS

Given the absence of multimodal models specialized for AD integrating neuroimaging and compre-
hensive clinical data, we adapt comparative frameworks by measuring sMRI volumes and generating
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descriptions, representing clinical profiles as structured text narratives. Table 1 benchmarks AD-
Reasoning against four state-of-the-art MLLMs: LLaVA-1.5-7B Liu et al. (2023), LLaVA-Med Li
et al. (2023), Med-PaLM-M Tu et al. (2024) and M3D-LaMed Bai et al. (2024). These models
represent the current frontier in medical multimodal reasoning.

As shown in Table 2, to evaluate the performance of our model, we select three prominent text-only
baselines(e.g., BERT Devlin et al. (2018), Roberta Liu (2019), and Longformer Beltagy et al. (2020))
and three recent transformer-based models that fuse multimodal information for classification(e.g.,
IRENE Zhou et al. (2023), AD-Trans Yu et al. (2024), and Alifuse Chen et al. (2024)).

The results demonstrate that AD-Reasoning outperforms these leading models, excelling not only
in natural language generation but also in clinical evaluation. This indicates the superior capability
of AD-Reasoning in both descriptive and diagnostic reasoning tasks in multi-disease scenarios. Fur-
thermore, Table 1 also presents ablation studies to investigate the impact of physiological-level pre-
training and RFT-based post-training on the model’s performance. The results show that removing
either component leads to a noticeable decline in performance. Specifically, the findings highlight
two key insights: 1) Pre-training enables the model to extract and align high-quality, modality-
specific representations while preserving fine-grained information through restoration loss, estab-
lishing a robust foundation for cross-modal reasoning. 2) The RFT stage based on GRPO further
unleashes the potential of the constructed data and enhances the model’s multi-disease diagnostic
performance, enabling deeper and more effective cross-modal reasoning.

4.2 QUALITATIVE ANALYSIS AND ABLATION STUDY

AD-Reasoning demonstrates a robust ability to integrate and analyze data from multiple modalities
to arrive at comprehensive diagnoses. This integration allows for mutual corroboration among the
modalities, enhancing diagnostic accuracy, as shown in Fig. 3. AD-Reasoning effectively synthe-
sizes information from sMRI and clinical non-image data to diagnose alzheimer’s disease conditions.
Each modality provides unique insights that collectively strengthen the diagnostic conclusion. The
model frequently employs terms, e.g.,“indicates” and “associated with”, highlighting its capability
to identify and utilize evidence from each modality to substantiate the final diagnosis. This approach
demonstrates AD-Reasoning’s proficiency in extracting relevant features from each dataset, ensur-
ing that the diagnostic reasoning is well-founded and comprehensive. To enhance interpretability,
we apply Shapley analysis Lundberg & Lee (2017) on test sets to identify the most influential nu-
merical features in diagnostic decisions, and implement the method from Chefer et al. (2021) to
visualize attention heatmaps in the visual encoder. More details can be found in Appendix C.

The ablation studies in Table 3 demonstrate the effectiveness of both contrastive and restorative
learning modules in the pre-training, as well as the necessity of complete modality integration. The
integration of Litcand Lres significantly enhances the results, validating our initial intention to de-
sign these mechanisms to facilitate modality fusion and adjust the contribution levels of different
modalities for various diseases. The presence of all modalities results in the best performance. Re-
moving any single modality leads to reduced scores. This underscores the importance of multimodal
integration for optimal outcomes.

5 CONCLUSION

In this paper, we propose a novel framework, AD-Reasoning, which represents a significant ad-
vancement in multimodal reasoning for Alzheimer’s Disease diagnosis. By integrating structural
MRI with comprehensive clinical data (demographics, medical history, cognitive tests, lab results,
genetics, and biomarkers), AD-Reasoning overcomes the limitations of unimodal approaches and
enables holistic neuro-clinical assessment. The novel AD-MultiSense dataset facilitates precise di-
agnostic reasoning through quantitative-to-textual transformation and NIA-AA guided refinement.
The clinical-guided fusion mechanism ensures context-aware interpretation of neuroimaging find-
ings, while Reinforcement Fine-Tuning with Group Relative Policy Optimization and NIA-AA veri-
fiable rewards enhances diagnostic precision and reliability. Extensive validation demonstrates AD-
Reasoning’s superior performance in both neurophysiological understanding and differential diag-
nosis, highlighting its potential for real-world clinical applications, including early detection and
progression monitoring in cognitive disorders.
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A VISION DESCRIPTION GENERATION

The vision description generation module transforms quantitative neuroimaging measurements into
clinically interpretable natural language descriptions. This transformation employs a multi-step
analytical process that contextualizes individual volumetric data within population-based reference
distributions. For each brain structure of interest, the system first establishes an age and gender-
matched reference cohort derived from cognitively normal subjects. This cohort is stratified into
decade-wide age groups (50-59, 60-69, 70-79, 80-89 years) with separate distributions maintained
for male and female populations.

Three core metrics are computed to quantify deviations from normative values. The Z-score repre-
sents standard deviation units from the reference mean, calculated as

Z = (Vsubject − µref )/σref (10)
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where Vsubject is the observed volume, µref is the reference mean, and σref is the reference stan-
dard deviation. The percentile rank indicates the proportion of healthy individuals with smaller vol-
umes, derived from the cumulative distribution function of the reference population. The percentage
difference expresses relative deviation as

∆% = (Vsubject − µref )/µref × 100, (11)
providing an intuitive measure of volumetric change.

Clinical severity classifications incorporate structure-specific pathological directionality. For
atrophy-sensitive structures including the hippocampus, entorhinal cortex, fusiform gyrus, middle
temporal gyrus, and whole brain, we apply the criteria in Table 4:

Table 4: Clinical interpretation of Z-scores for brain structures
Z-score Range Clinical Interpretation

Z < −3 Profound atrophy
−3 ≤ Z < −2 Significant atrophy
−2 ≤ Z < −1.5 Moderate atrophy
−1.5 ≤ Z < −1 Mild atrophy
−1 ≤ Z ≤ 1 Normal volume
1 < Z ≤ 1.5 Mild enlargement
1.5 < Z ≤ 2 Moderate enlargement
2 < Z ≤ 3 Significant enlargement
Z > 3 Profound enlargement

These thresholds align with established radiological practice while maintaining statistical rigor.

Natural language generation follows a standardized template that synthesizes these quantitative met-
rics into clinically actionable interpretations for all six structures. Each description includes four
key elements: 1) the absolute volumetric measurement, 2) percentage difference from the refer-
ence mean, 3) Z-score with corresponding percentile rank, and 4) clinical severity assessment. The
template dynamically adapts terminology based on pathological directionality, using ”below” and
”atrophy” for cortical structures versus ”above” and ”enlargement” for ventricles. This approach
ensures consistent reporting while maintaining clinical relevance across diverse brain structures.

Table 5: Representative vision descriptions for brain structures
Structure Generated Description

Ventricles Ventricular volume measures 42,500 mm3, 32.5% above the reference mean (32,070 ± 2,850 mm3).
With a Z-score of 3.65 (99.9th percentile), this represents significant enlargement.

Hippocampus Hippocampal volume measures 2,850 mm3, 28.2% below the reference mean (3,970 ± 350 mm3) for
this demographic. The Z-score of -3.21 (0.1th percentile) indicates significant atrophy.

Whole Brain Whole brain volume measures 950,000 mm3, 8.7% below the reference mean (1,040,000 ± 45,000
mm3). The Z-score of -2.00 (2.3th percentile) demonstrates mild atrophy.

Entorhinal Cortex Entorhinal cortex volume is 2,350 mm3, 35.1% below reference values. The Z-score of -3.02 (0.1th

percentile) is consistent with significant atrophy.

Fusiform Gyrus Fusiform gyrus volume measures 18,600 mm3, 15.3% below the reference mean (21,970 ± 1,850
mm3). With a Z-score of -1.82 (3.4th percentile), this suggests mild atrophy.

Middle Temporal Gyrus Middle temporal gyrus volume measures 17,600 mm3, 22.7% below the reference mean (22,750 ±
2,100 mm3). The Z-score of -2.45 (0.7th percentile) demonstrates significant atrophy.

Table 5 presents representative outputs of the vision description generation system for all six brain
structures. These structured interpretations provide clinicians with immediately actionable infor-
mation by contextualizing quantitative measurements within population norms. The comprehensive
coverage of ventricles, hippocampal formation, global brain volume, and temporal lobe structures
enables a holistic assessment of neurodegenerative patterns. The framework’s modular design per-
mits seamless integration of additional brain regions while maintaining standardized reporting pro-
tocols across neuroimaging evaluations.

Figure 5 presents a comparative analysis of six key brain structure volumes across diagnostic groups:
cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease dementia
(AD/Dementia). Violin and box plots demonstrate significant volumetric differences in all struc-
tures that effectively discriminate between diagnostic categories. Most notably, ventricular volume
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Figure 4: Distribution of hippocampal Z-scores across demographic and clinical dimensions.

exhibits progressive enlargement across the CN→MCI→AD continuum, while hippocampal, en-
torhinal, and mid-temporal volumes show corresponding stepwise reductions. Fusiform and whole
brain volumes similarly decrease with disease progression. The distributions reveal three critical
patterns: 1) AD patients consistently demonstrate the most pronounced atrophy (or ventricular ex-
pansion), 2) MCI subjects exhibit intermediate values with greater distributional overlap with both
CN and AD groups, and 3) CN individuals maintain the highest preserved volumes. These z-score
distributions provide robust imaging biomarkers that collectively differentiate diagnostic categories,
with ventricular and hippocampal measures showing the most distinct group separation.

Figure 4 presents a comprehensive analysis of hippocampal volume Z-scores, normalized to age-
and gender-matched cognitively normal references. Panel A shows the overall distribution with
clinically significant thresholds at Z = -1 and Z = -2, revealing a right-skewed distribution indicative
of hippocampal atrophy in the cohort. The boxplot analysis in Panel B demonstrates progressive Z-
score reduction across the diagnostic continuum (CN→MCI→Dementia), with females exhibiting
consistently lower Z-scores than males within each diagnostic category (∆Z = [gender-diff], p ≤
0.001).

Panel C illustrates the interaction between aging and neurodegeneration, where dementia patients
show substantially lower Z-scores across all age groups, particularly in the 70-79 cohort. The scatter-
plot in Panel D confirms the expected age-related decline in hippocampal volumes (r = [correlation-
value], p ≤ [p-value]), while highlighting the diagnostic separation maintained across the age spec-
trum. The horizontal reference lines at Z = -1 and Z = -2 provide clinical context for interpreting
individual data points.

B NIA-AA DIAGNOSTIC REWARD FUNCTION SPECIFICATION

The NIA-AA diagnostic reward function provides a comprehensive assessment framework for eval-
uating Alzheimer’s disease diagnostic reports generated by our model. This multi-dimensional scor-
ing system ensures clinical accuracy and adherence to established NIA-AA diagnostic standards
through three core components with weighted integration:

RNIA-AA = 0.4 ·Rcategory + 0.3 ·Rbiomarker + 0.3 ·Rfeature (12)
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Figure 5: Volumetric distributions of six brain structures across diagnostic groups. Left column:
Violin plots showing density distributions and quartiles. Right column: Box plots with white cir-
cles indicating means. Structures shown (top to bottom): Ventricles, Hippocampus, WholeBrain,
Entorhinal, Fusiform, and MidTemp. CN = Cognitively Normal (n=2732), MCI = Mild Cognitive
Impairment (n=3150), Dementia = Alzheimer’s Disease Dementia (n=1349). Note progressive ven-
tricular enlargement and hippocampal/entorhinal atrophy across the CN→MCI→AD continuum.
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Shapley value (NC)

Shapley value (CI)

MMSE

MoCA

AGE

AXT117
RCT20

BAT126

RCT19

MHPSYCH
APOE

RCT1

MMSE

MoCA

AGE

AXT117
RCT20

BAT126

RCT19

MHPSYCH
APOE

RCT1

MMSE: Mini-Mental State Examination
MoCA: Montreal Cognitive Assessment

AXT117: Thyroid Stim. Hormone
RCT20: Cholesterol

BAT126: Vitamin B12

RCT19: TriglyceridesMHPSYCH: Psychiatric History 
APOE: Apolipoprotein E

RCT1: Total Bilirubin

Figure 6: Shapley analysis.
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B.1 DIAGNOSTIC CATEGORY MATCHING (RCATEGORY)

The diagnostic category component evaluates the accuracy of diagnostic classification through
multi-tiered keyword validation. This 40%-weighted component ensures precise alignment with
standard diagnostic categories (CN, MCI, Dementia) while penalizing contradictory terminology.

The scoring incorporates inclusion validation and exclusion penalty mechanisms:

Rcategory = Iinclusion · (1− Iexclusion) +Rstaging (13)

where Iinclusion validates presence of category-appropriate keywords, Iexclusion penalizes contra-
dictory terminology, and Rstaging provides additional scoring for dementia stage assessment.

B.2 BIOMARKER CONSISTENCY (RBIOMARKER)

The biomarker consistency component (30% weight) evaluates both coverage and pathological char-
acterization of core AD biomarkers (Aβ, pTau, tTau). The assessment employs clinical importance
weighting and status consistency validation.

The scoring formula integrates mention frequency and status accuracy:

Rbiomarker =
∑
b∈B

wb · (α · Imention(b) + β · Istatus(b)) (14)

where B = Aβ, pTau, tTau represents the biomarker set, wb denotes clinical weights (wAβ = 0.4,
wpTau = 0.3, wtTau = 0.3), Imention detects biomarker presence, and Istatus evaluates pathological
status consistency.

Status assessment utilizes pattern recognition for normal/abnormal classification:

Istatus(b) =

∑
p ∈ P normal

b I(p) +
∑

p∈P abnormal
b

I(p)
|P normal

b ∪ P abnormal
b |

(15)

where Pb represents status-indicative patterns for biomarker b.

B.3 CLINICAL FEATURE COVERAGE (RFEATURE)

Clinical feature assessment (30% weight) evaluates cognitive domain coverage across memory,
executive function, visuospatial abilities, and language domains. The scoring incorporates both
breadth of coverage and descriptive specificity with clinical significance weighting.

The comprehensive scoring framework:

Rfeature =
∑
f∈F

wf · (γ · Idomain(f) + δ · Ispecificity(f)) (16)

where F = memory, executive, visuospatial, language represents cognitive domains, wf denotes
clinical significance weights, Idomain evaluates primary domain coverage, and Ispecificity assesses
subdomain characterization depth.

Domain-specific weighting reflects clinical importance in AD diagnosis:

wf =


0.4 memory
0.3 executive function
0.2 visuospatial abilities
0.1 language

(17)
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B.4 TEXT PROCESSING PIPELINE

The reward function employs a robust text processing workflow including format sanitization, case
normalization, and clinical tokenization. Structured field extraction utilizes regular expression pat-
terns:

Diagnosis = extract(response, ⟨diagnosis⟩.∗?⟨/diagnosis⟩) (18)

Reasoning = extract(response, ⟨reasoning⟩.∗?⟨/reasoning⟩) (19)

This algorithmic framework ensures rigorous adherence to NIA-AA diagnostic protocols while
maintaining computational efficiency through weighted component integration. The implementa-
tion provides clinically meaningful reward signals that guide the reinforcement learning process
toward generating accurate, comprehensive, and logically consistent AD diagnostic reports.

C SHAPLEY ANALYSIS

Shapley analysis Lundberg & Lee (2017) is performed on the test sets to identify the clinical numeri-
cal features that most significantly influenced the model’s diagnostic decisions (Fig. 6). The MMSE
score consistently ranks among the most influential features. Thyroid Stimulating Hormone, Vi-
tamin B12 levels, and the presence of APOE4 alleles are selected consistently among the top ten
factors. These findings align with clinical studies that emphasize the strong association of MMSE
scores and other key biomarkers with cognitive impairment and AD diagnosis.
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