

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 AD-REASONING: MULTIMODAL GUIDELINE-GUIDED REASONING FOR ALZHEIMER'S DISEASE DIAGNOSIS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Accurate diagnosis of Alzheimer's disease (AD) requires combining multimodal
012 data with established clinical guidelines. However, most deep learning models
013 operate as black boxes, offering limited interpretability and weak alignment with
014 medical standards. We propose AD-Reasoning, a framework for multimodal AD
015 diagnosis that integrates structural MRIs and diverse clinical data with guideline-
016 guided reasoning. A rule engine ensures NIA-AA diagnostic criteria, while rein-
017 forcement fine-tuning with domain-informed rewards promotes clinically consis-
018 tent and transparent decision-making. Evaluated on the AD-MultiSense dataset,
019 AD-Reasoning achieves state-of-the-art diagnostic accuracy and demonstrates im-
020 proved interpretability compared with recent baselines. This work highlights a
021 clinically grounded solution that connects large language models with medical
022 expertise, advancing interpretable and guideline-compliant AD diagnosis.

024 1 INTRODUCTION

026 The rapid advancement of artificial intelligence (AI) has profoundly impacted neurodegenerative
027 disease research, showing great promise in medical data analysis and diagnostic applications Ra-
028 jpurkar et al. (2022); Park et al. (2023). In the context of Alzheimer's disease (AD), many ex-
029 isting studies focus on single-modal data, most commonly structural magnetic resonance imaging
030 (sMRI) Frisoni et al. (2010); Jang & Hwang (2022) or individual clinical assessments Öhman et al.
031 (2021). Although such approaches can be effective within specific domains, they often offer a narrow
032 view that overlooks AD's complex and multifactorial pathology. In reality, AD spans a wide range
033 of physiological and behavioral manifestations: brain atrophy patterns visible in sMRI, cognitive
034 decline quantified by neuropsychological tests (e.g., MMSE), genetic risk factors such as APOE- ϵ 4,
035 cerebrospinal fluid (CSF) biomarkers (e.g., Abeta42, pTau), as well as demographic information,
036 comorbidities, and lab findings Lautner et al. (2014). This heterogeneity underscores the limitations
037 of single-modality models, which may yield incomplete or biased diagnostic conclusions. To ad-
038 dress this, comprehensive multimodal integration is essential for a more holistic understanding and
039 accurate characterization of AD Venugopalan et al. (2021).

040 Recent advances have explored multimodal fusion for AD diagnosis, integrating information from
041 neuroimaging, clinical assessments, genetic markers, and biochemical indicators Chen et al. (2024);
042 Zhou et al. (2023). Although these approaches enhance diagnostic performance, they typically func-
043 tion as black-box models, yielding only binary labels or scalar scores without offering transparent
044 reasoning or detailed justification. These shortcomings become particularly critical in complex clin-
045 ical scenarios, e.g., differentiating AD from overlapping neurodegenerative conditions. The absence
046 of interpretable and text-based diagnostic rationales hinders clinical adoption, as physicians require
047 not only accurate decisions but also an understanding of the underlying evidence to inform treatment
048 and build trust in AI-assisted tools.

049 Multimodal large language models (MLLMs) OpenAI (2023); Grattafiori et al. (2024) have recently
050 emerged as a powerful paradigm, demonstrating strong capabilities in cross-modal representation
051 alignment and generative reasoning. In the medical domain, early efforts have applied MLLMs to
052 unimodal tasks, such as automated sMRI reporting Bai et al. (2024), clinical text summarization,
053 or single-modality image captioning. However, these models are typically constrained to surface-
level physiological descriptions within individual modalities, falling short of producing coherent
diagnostic narratives grounded in multimodal clinical evidence. Crucially, they lack the ability to

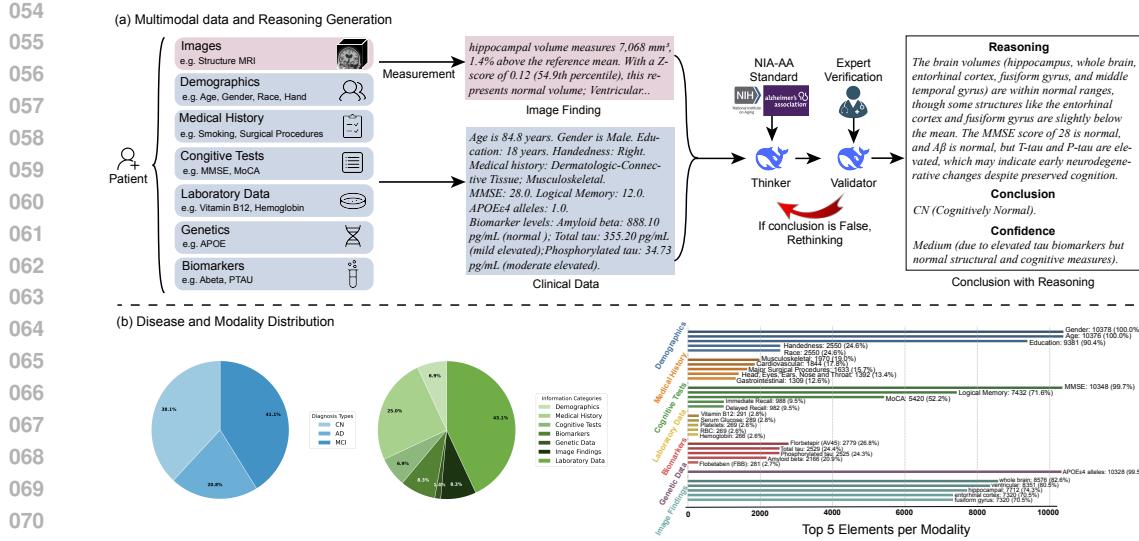


Figure 1: Our AD-MultiSense dataset. (a) Construction pipeline: Disease-level reports are generated via evidence-augmented reasoning, using DeepSeek-v3 under clinical guidelines with self-refinement for diagnostic validity. (b) Data statistics: The dataset covers CN, MCI, and AD cases, spanning seven modalities (demographics/history/cognition/labs/genetics/biomarkers/sMRI).

perform disease-level reasoning, e.g., distinguishing overlapping pathologies or integrating diverse risk factors, based on synergistic understanding across imaging, clinical, and molecular data. A unified MLLM framework that can synthesize heterogeneous patient data into interpretable, multi-disease diagnostic narratives remains an open and critical challenge.

To bridge this gap, we introduce AD-Reasoning, a novel MLLM framework tailored for interpretable reasoning and diagnosis of Alzheimer’s disease. Given a patient’s sMRI and six categories of clinical data, including demographics, medical history, cognitive assessments, laboratory tests, genetic risk factors, and CSF biomarkers, AD-Reasoning generates clinically grounded diagnostic narratives that integrate heterogeneous evidence. To tackle the challenge of aligning heterogeneous inputs from imaging and diverse clinical sources, we design a modality-aware encoder that projects all modalities into a shared latent space while preserving semantic fidelity. We further introduce a multimodal fusion layer that explicitly models cross-modal interactions and adaptively estimates the contribution of each modality. This design enables the model to focus on salient clinical cues, facilitating more accurate differential diagnosis and comorbidity reasoning. In addition, diagnostic narratives should be not only accurate but also consistent with clinical guidelines and expert logic. To this end, we introduce a domain-specific reinforcement learning (RL) stage, leveraging Group Relative Policy Optimization (GRPO) and a clinical consistency reward that encourages the model to generate trustworthy and guideline-aligned explanations.

Our main contributions are as follows:

- **AD-MultiSense Dataset:** We build the first AD-specific multimodal question-answer (QA) dataset combining sMRI with six clinical modalities, totaling 10,378 entries from 2,619 subjects. QA pairs span both physiological understanding and diagnostic reasoning, validated via NIA-AA criteria and expert-in-the-loop sampling.
- **AD-Reasoning Framework:** We propose a unified multimodal reasoning model that features a modality-harmonized encoder, a cross-modal fusion and reasoning layer for comorbidity-aware inference, and a domain-aligned reinforcement fine-tuning scheme that enhances interpretability and clinical consistency.
- **State-of-the-art Performance:** Our *AD-Reasoning* achieves strong results on AD diagnosis, comorbidity differentiation, and interpretable report generation, validated across large-scale multisite cohorts.

108 **2 RELATED WORKS**

110
 111 **MLLM for Medical Diagnosis** The diagnostic potential of MLLMs stems from their proficiency in
 112 handling varied inputs, such as text Haltaufderheide & Ranisch (2024), images Chen et al. (2023),
 113 tabular data Fang et al. (2024). Early approaches were modality-specific, focusing on clinical
 114 text Van Veen et al. (2024), medical imaging Tian et al. (2023), or single biomarkers Elsborg &
 115 Salvatore (2023). Despite this progress, AD research remains siloed, with sMRI analysis largely
 116 separated from critical clinical information like cognitive tests, genetics, and biomarkers Yao et al.
 117 (2023). While emerging multimodal frameworks tackle general diagnostic fusion Kumar et al.
 118 (2024), none are designed for AD’s distinct challenge: the essential integration of sMRI findings
 119 with multifaceted clinical data to achieve comorbidity-sensitive diagnosis. In contrast, our
 120 AD-Reasoning introduces a unified MLLM that performs cross-modal interaction and contribution-
 121 aware fusion, enabling structured and stage-aware reasoning aligned with clinical criteria.

122 **RL for Medical Diagnosis** Group Relative Policy Optimization (GRPO) Shao et al. (2024) enhances
 123 reinforcement fine-tuning by normalizing rewards across response groups, demonstrating superiority
 124 over PPO Schulman et al. (2017) in text Hu (2025) and vision-language tasks Li et al. (2025).
 125 Recent medical applications deploy GRPO for unimodal objectives like radiology reporting Dai
 126 et al. (2025). Its utility for intricate multimodal Alzheimer’s Disease (AD) diagnosis, however,
 127 remains unexamined, particularly regarding: (1) reward design: Existing functions (e.g., Jaccard
 128 similarity) fail to capture clinical validity in AD diagnostics. (2) multimodal grounding: Limited
 129 work integrates GRPO with multimodal data fusion. (3) reasoning verification: Absence of NIA-
 130 AA-aligned reward mechanisms for diagnostic chains. We pioneer GRPO adaptation for AD via a
 131 clinical consistency reward function, explicitly optimized for 1) adherence to NIA-AA diagnostic
 132 criteria, 2) accuracy in comorbidity reasoning and, 3) faithfulness to multimodal evidence chains.
 133 This ensures generated diagnostic reports are both statistically robust and clinically verifiable.

134 **3 METHODOLOGY**

135 **3.1 AD-MULTISENSE DATASET**

136
 137 **Multimodal Data Collection** To enable MLLMs to perform both physiological understanding and
 138 diagnostic reasoning over heterogeneous medical data, we construct a multimodal dataset that con-
 139 forms to established clinical logic. Raw data are collected from the ADNI Petersen et al. (2010)
 140 and AIBL Ellis et al. (2009) cohorts, covering a wide spectrum of patient characteristics and disease
 141 stages. For each subject, we acquire sMRI scans alongside six types of clinical data encompassing
 142 demographic, cognitive, and biochemical information. After aligning data across modalities and
 143 visit timepoints, we curate a total of 10,378 multimodal samples from 2,619 unique subjects. Each
 144 sample reflects a consistent physiological state at a specific visit, enabling clinically valid reasoning
 145 over disease progression.

146 To enhance clinical interpretability, quantitative measurements are systematically converted into
 147 standardized textual reports. For sMRI analysis, we calculate age-adjusted z -scores for struc-
 148 tural volumes (e.g., hippocampal/ventricular) using population norms, with textual descriptors
 149 generated based on established thresholds: bilateral hippocampus atrophy is reported as “mild”
 150 ($1 \leq |z| < 1.5$), “moderate” ($1.5 \leq |z| < 2$), “significant” ($2 \leq |z| < 3$) or “profound” ($|z| \geq 3$).
 151 Similarly, laboratory data undergoes z -score normalization against age/sex-matched cohorts, though
 152 only clinically significant abnormalities ($|z| > 2.0$) are included in final reports. Biomarkers are con-
 153 sistently interpreted with contextual information, and each value is accompanied by reference-based
 154 interpretation, e.g., “Amyloid beta: 858.30 pg/mL (normal).” This quantitative-to-textual transfor-
 155 mation bridges raw biomarker measurements with clinically meaningful narratives, enabling natural
 156 language reasoning about pathological changes while preserving data fidelity. Dataset statistics are
 157 visualized in Fig. 1(b), and implementation details, including z -score normalization and templated
 158 text construction, are provided in Appendix A.

159 **Reasoning Generation** Based on these raw data, we construct multimodal QA pairs from disease-
 160 level diagnostic reasoning, with the entire process shown in Fig. 1(a). The process begins by query-
 161 ing the *Thinker* model (DeepSeek-V3) using a structured diagnostic prompt template:

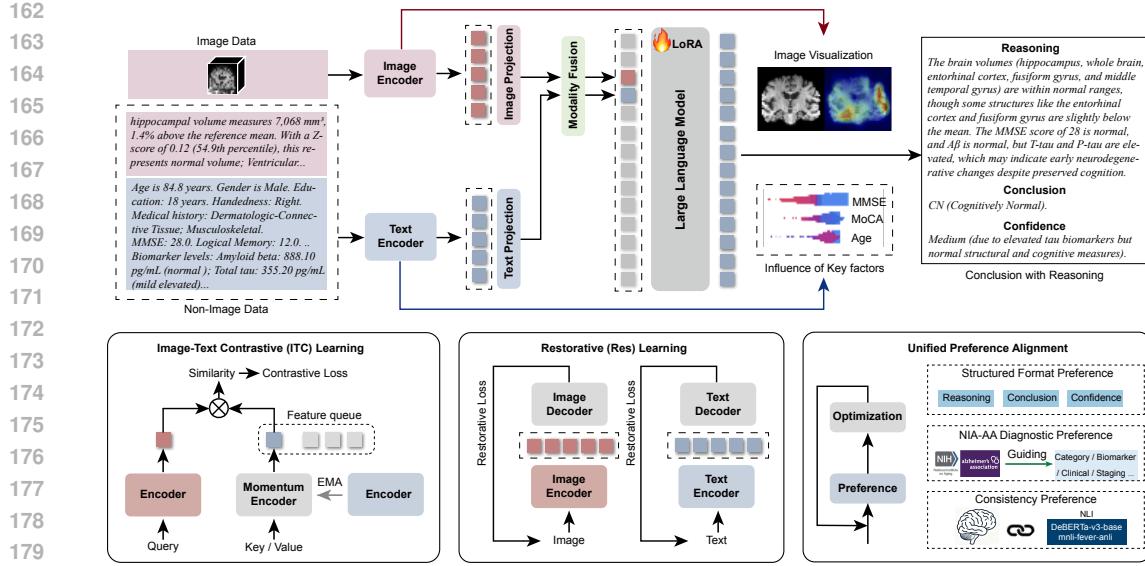


Figure 2: AD-Reasoning framework. Pretraining aligns sMRI and clinical data representations via encoders, SFT tunes LLMs using diagnostic rationales and RFT optimizes with GRPO for NIA-AA compliant structured outputs.

182
183
184
185
186
187 SYSTEM_PROMPT: "You are an Alzheimer's specialist. Analyze
188 the data and provide:
189 1. Reasoning
190 2. Final diagnosis: CN/MCI/Dementia
191 3. Confidence level: High/Medium/Low
192 Format:
193 Reasoning: [analysis]
194 Diagnosis: [CN/MCI/Dementia]
195 Confidence: [High/Medium/Low]"

196 This is an initial response $\langle R_0, C_0 \rangle = \text{Thinker}(M, P_d)$, where R_0 denotes the reasoning chain, C_0 is the preliminary diagnosis, M represents multimodal inputs (i.e., sMRIs and clinical data), and P_d is the diagnosis prompt.

197 The *Validator* module evaluates C_0 against ground truth diagnoses. When mismatches occur, the
198 system triggers rethinking cycles: the Thinker regenerates reasoning using refinement prompts (P_r)
199 constructed from explicit NIA-AA criteria dictionaries. These dictionaries map clinical findings to
200 diagnostic rules, enabling targeted feedback. This iterative process continues for up to N cycles (i.e.,
201 2), with random expert sampling providing quality control.

202 For cases where diagnosis remains incorrect after N iterations, the prompts with correct diagnosis
203 (P_c) is explicitly provided to the Thinker, instructing it to correct its reasoning and conclusion
204 accordingly. The Thinker then produces final reasoning R^F and diagnosis C^F , formatted into training
205 pairs $\langle M \circ P_d, R^F \circ C^F \rangle$ for supervised fine-tuning.

208 3.2 AD-REASONING FRAMEWORK

210 3.2.1 MODEL ARCHITECTURE

212 The proposed AD-Reasoning framework primarily consists of modality-specific encoders and pro-
213 jectors, a Multimodal Fusion Layer (MFL), and a Large Language Model (LLM), with its overall
214 architecture illustrated in Fig. 2. Given the raw data of structural MRI scans $\mathbf{X}_V \in \mathbb{R}^{1 \times D \times H \times W}$
215 and clinical text data $\mathbf{X}_T \in \mathbb{R}^L$, they are first processed by their respective modality-specific en-
coders for feature extraction. The encoded features are then fed into modality-specific projectors to

transform them into a shared dimension d for alignment and compatibility with the textual embedding space of the LLM. This process facilitates seamless integration between multimodal features and textual tokens, formulated as:

$$\mathbf{V}_{\text{sMRI}} = g_V(f_V(\mathbf{X}_V)) \in \mathbb{R}^d, \quad \mathbf{T}_{\text{Clinical}} = g_T(f_T(\mathbf{X}_T)) \in \mathbb{R}^d, \quad (1)$$

where \mathbf{V}_{sMRI} denotes projected visual features from structural MRI, $\mathbf{T}_{\text{Clinical}}$ denotes projected clinical text features. f_V, f_T denotes modality-specific encoders (image and text) and g_V, g_T denotes modality-specific projectors.

3.2.2 MULTIMODAL FUSION LAYER (MFL)

To enable comprehensive interaction between neuroimaging and clinical modalities, we introduce an MFL comprising a Bidirectional Cross-Attention (BCA) mechanism. The projected features \mathbf{V}_{sMRI} and $\mathbf{T}_{\text{Clinical}}$ are first processed by the BCA mechanism, where each modality alternately serves as Query and Key/Value to compute cross-attention:

$$\mathbf{A}_{V \rightarrow T} = \text{Attention}(\mathbf{T}_{\text{Clinical}}, \mathbf{V}_{\text{sMRI}}, \mathbf{V}_{\text{sMRI}}), \quad (2)$$

$$\mathbf{A}_{T \rightarrow V} = \text{Attention}(\mathbf{V}_{\text{sMRI}}, \mathbf{T}_{\text{Clinical}}, \mathbf{T}_{\text{Clinical}}). \quad (3)$$

This bidirectional attention captures complex neuro-clinical dependencies, allowing visual features to inform clinical interpretation and vice versa. The attention outputs are combined with residual connections to preserve modality-specific information:

$$\mathbf{T}_V = \mathbf{V}_{\text{sMRI}} + \mathbf{A}_{T \rightarrow V}, \quad \mathbf{T}_T = \mathbf{T}_{\text{Clinical}} + \mathbf{A}_{V \rightarrow T}. \quad (4)$$

3.2.3 LARGE LANGUAGE MODEL INTEGRATION

The final multimodal features \mathbf{T}_V and \mathbf{T}_T replace the placeholders `<sMRI>` and `<clinical>` in the input prompt templates. An example prompt for AD diagnosis is:

“Given the structural MRI `<sMRI>` and clinical profile `<clinical>`, what is the most probable diagnosis and supporting evidence?”

The resulting input sequence $\mathbf{T}_{\text{input}} = \{\mathbf{T}_Q, \mathbf{T}_V, \mathbf{T}_T, \mathbf{T}_A\}$ is fed into the LLM, where \mathbf{T}_Q denotes tokenized question derived from diagnostic templates and \mathbf{T}_A denotes target answer tokens from AD diagnostic QA datasets.

The LLM parameters remain frozen during training, with only LoRA adapters updated to specialize the model for AD reasoning tasks.

3.2.4 TRAINING STRATEGY

We employ a three-stage training strategy for AD-Reasoning, which includes Pre-training (PT), Supervised Fine-Tuning (SFT), and Reinforcement Fine-Tuning (RFT), to progressively enhance its ability to perceive the physiological representations of each modality and integrate multimodal information for interpretable Alzheimer’s disease reasoning and diagnosis.

Pre-training (PT). To establish foundational understanding and align feature representations across imaging and non-imaging clinical data, we first conduct pre-training using AD-relevant multimodal data. During this stage, the image encoder (processing sMRI) and text encoder (processing clinical data) are trainable, while projectors and LLM parameters remain inactive at this stage. The optimization focuses exclusively on representation learning and alignment.

We employ the image-text contrastive (ITC) loss Radford et al. (2021) to align image features h_I and text features h_T generated by the image and text encoders. The ITC loss \mathcal{L}_{itc} maximizes similarity for positive image-text pairs while suppressing negative pairs, implemented through normalized cross-entropy over all pairwise similarities. We implement momentum encoders updated via exponential moving average (EMA) following BLIP Li et al. (2022) and ALBEF Li et al. (2021). Specifically, the parameters of momentum image/text encoders (ξ) are updated as $\xi \leftarrow m_c \cdot \xi + (1 - m_c) \cdot \theta$, where $m_c = 0.995$ is the momentum coefficient and θ denotes the parameters of the corresponding online encoders. All momentum encoders operate without gradient backpropagation. This EMA-based strategy ensures feature consistency within the dynamically updated data and knowledge

	Method	BLEU	METEOR	ROUGE	BERT	ACC (%)	AUC (%)	SEN (%)	SPE (%)
270 271 272 273 274 275 276	LLaVA-1.5-7B	0.0112	0.1456	0.1023	0.7924	73.85	68.92	60.14	80.37
	LLaVA-Med	0.0144	0.1618	0.1168	0.8016	76.21	71.43	62.75	83.42
	Med-PaLM-M	0.0218	0.2031	0.1331	0.8181	79.92	75.76	66.63	85.85
	CN vs. CI M3d-LaMed	0.0341	0.1756	0.1435	0.8128	82.37	78.95	69.84	86.21
	AD-Reasoning w/o PT	0.1873	0.2792	0.2424	0.8636	87.25	83.12	71.28	91.37
	AD-Reasoning w/o RFT	0.2015	0.2982	0.2617	0.8725	90.46	87.63	80.75	94.28
	AD-Reasoning (ours)	0.2183	0.3212	0.2851	0.8926	93.33	91.83	88.67	95.00
277 278 279 280 281	LLaVA-1.5-7B	0.0108	0.1387	0.0984	0.7821	70.15	65.28	61.42	74.85
	LLaVA-Med	0.0138	0.1518	0.1068	0.7916	72.24	68.76	65.57	77.36
	Med-PaLM-M	0.0208	0.1931	0.1231	0.8081	75.13	72.14	68.41	80.25
	CN vs. MCI M3d-LaMed	0.0331	0.1656	0.1335	0.8028	78.02	74.97	70.79	81.64
	AD-Reasoning w/o PT	0.1824	0.2717	0.2369	0.8570	88.37	84.96	84.92	87.41
	AD-Reasoning w/o RFT	0.1961	0.2893	0.2544	0.8667	91.28	89.07	88.45	90.33
	AD-Reasoning (ours)	0.2123	0.3125	0.2783	0.8852	92.82	90.09	88.60	93.50

Table 1: Comparison of AD-Reasoning and baselines in terms of reasoning and diagnostic performance for Alzheimer’s disease.

queues by decoupling momentum encoder optimization from the online model training. To prevent abrupt shifts in feature distribution, the queues are exclusively maintained using outputs from the momentum encoder.

Our restorative learning module is designed to enhance the global semantic understanding by incorporating fine-grained visual and textual information. That is, the feature extraction is augmented by a reconstruction learning branch, which includes an image decoder to reconstruct the original image from the representation and minimizes the pixel-level distance between the original image x_I and the reconstructed image x'_I : $\mathcal{L}_{res}^I = \mathbb{E}_{x_I} \mathcal{D}_I(x_I, x'_I)$, where $\mathcal{D}_I(x_I, x'_I)$ presents the distance function that measures similarity between x_I and x'_I , e.g., Mean Square Error (MSE), or L1 norm. We use MSE following the common setting He et al. (2022). For the textual component, we apply a similar approach. A text decoder is trained to minimize the token-level distance between the original text x_T and the reconstructed text x'_T : $\mathcal{L}_{res}^T = \mathbb{E}_{x_T} \mathcal{D}_T(x_T, x'_T)$, where $\mathcal{D}_T(x_T, x'_T)$ is the distance function measuring text similarity, such as the commonly-used cross-entropy loss.

The overall pre-training objective combines both alignment and reconstruction losses:

$$\mathcal{L}_{PT} = \mathcal{L}_{itc} + \lambda_{res} (\mathcal{L}_{res}^I + \mathcal{L}_{res}^T) \quad (5)$$

where \mathcal{L}_{itc} denotes image-text contrastive loss for feature alignment, \mathcal{L}_{res}^I denotes image reconstruction loss (MSE), \mathcal{L}_{res}^T denotes text reconstruction loss (cross-entropy), λ_{res} denotes weighting coefficient for reconstruction objectives.

Supervised Fine-Tuning (SFT). Building upon the aligned feature representations, we conduct SFT using diagnostic QA pairs for AD reasoning. During this stage, image and text encoders are frozen, and the projection layers and LLM LoRA modules are trainable. The optimization objective maximizes response generation likelihood:

$$\mathcal{L}_{SFT} = -\mathbb{E}_{(\mathbf{T}_Q, \mathbf{V}_{sMRI}, \mathbf{T}_{Clinical}, \mathbf{T}_A) \sim \mathcal{D}} \cdot \sum_{t=1}^T \log \pi_\theta(y_t | \mathbf{T}_Q, \mathbf{V}_{sMRI}, \mathbf{T}_{Clinical}, y_{<t}), \quad (6)$$

where $\pi_\theta(y_t | \cdot)$ denotes the conditional probability of generating the t -th token y_t , given the prompt tokens \mathbf{T}_Q , modality features (\mathbf{V}_{sMRI} and $\mathbf{T}_{Clinical}$), and the previously generated tokens $y_{<t}$. \mathbf{V}_{sMRI} denotes visual features from structural MRI and $\mathbf{T}_{Clinical}$ encompasses all clinical texts. \mathbf{T}_Q denotes question tokens and \mathbf{T}_A denotes answer tokens.

Reinforcement Fine-Tuning (RFT). To unlock the potential of the constructed dataset and enhance diagnostic reasoning capabilities, we perform Reinforcement Fine-Tuning (RFT) using Group Relative Policy Optimization (GRPO) under the RL with Verifiable Rewards (RLVR) framework. The trainable components remain consistent with the SFT stage, with the optimization objective:

$$\max_{\pi_\theta} \mathbb{E}_{\mathbf{A} \sim \pi_\theta(\mathbf{Q})} [R_{RLVR}(\mathbf{Q}, \mathbf{A})] = \left[R(\mathbf{Q}, \mathbf{A}) - \beta \text{KL} [\pi_\theta(\mathbf{A} | \mathbf{Q}) \| \pi_{ref}(\mathbf{A} | \mathbf{Q})] \right] \quad (7)$$

where π_θ is the policy and π_{ref} is the SFT-tuned reference. R denotes the verifiable reward function, while the KL divergence term penalizes deviation from clinically validated responses, with β controlling the regularization strength.

324
325
326
327
328
329
330
331

Method	CN vs. CI				CN vs. MCI			
	ACC	AUC	SEN	SPE	ACC	AUC	SEN	SPE
BERT	84.31	79.42	85.87	86.48	82.55	77.35	82.67	84.42
RoBERTa	86.89	84.41	82.97	85.03	85.63	81.42	80.93	83.84
Longformer	87.92	85.76	80.49	82.27	85.24	84.71	78.42	79.37
IRENE	86.03	77.95	89.14	65.82	84.18	75.25	87.35	63.27
AD-Trans	87.67	75.89	65.91	85.47	85.61	73.79	63.67	84.32
Alifuse	87.23	79.51	90.71	73.67	85.98	76.57	88.92	70.39
Ours	93.33	91.83	88.67	95.00	92.82	90.09	88.60	93.50

Table 2: Diagnostic performance (%) comparison between our AD-Reasoning and classification approaches for Alzheimer’s disease. (Best in bold)

332
333
334
335

For AD diagnosis where responses exhibit high clinical specificity, GRPO directly compares responses within candidate groups $\{o_1, \dots, o_G\}$. Reward normalization uses: $\tilde{r}_i = \frac{r_i - \mu_r}{\sigma_r + \epsilon}$, where μ_r and σ_r are group reward statistics. This prioritizes clinically coherent responses without requiring separate critic models.

342
343
344

The composite reward $R = R_F + R_{\text{NIA-AA}} + R_{\text{consistency}}$ ensures diagnostic accuracy and structural consistency:

345

1) *Structured Format Reward (R_F)*: Enforces compliance with AD diagnostic templates:

346

Reasoning: [analysis]
Diagnosis: [CN/MCI/Dementia]
Confidence: [High/Medium/Low]

350

$R_F = 1.0$ only when all three tags are present and Confidence contains valid value.

351
352
353
354
355

2) *NIA-AA Diagnostic Reward ($R_{\text{NIA-AA}}$)*: Provides comprehensive clinical assessment through a multi-dimensional scoring framework that evaluates diagnostic accuracy against established NIA-AA standards. The reward integrates three core components:

356

$$R_{\text{NIA-AA}} = 0.4 \cdot R_{\text{cat}} + 0.3 \cdot R_{\text{bio}} + 0.3 \cdot R_{\text{feat}}. \quad (8)$$

357

Diagnostic Category Alignment (R_{cat}) ensures precise classification into standardized diagnostic categories (CN, MCI, Dementia) through keyword matching and exclusion criteria validation. This component evaluates both the presence of appropriate diagnostic terminology and the absence of contradictory indicators.

362
363
364
365

Biomarker Consistency Assessment (R_{bio}) quantifies the coverage and contextual accuracy of essential AD biomarkers ($A\beta$, tTau, pTau). The scoring incorporates both mention frequency and pathological status characterization (normal/abnormal patterns) based on established clinical thresholds.

366
367
368

Clinical Feature Comprehensiveness (R_{feat}) evaluates the depth of cognitive domain analysis across memory, executive function, visuospatial abilities, and language domains. The scoring rewards not only feature inclusion but also detailed characterization within specific subdomains.

370
371
372

This structured approach ensures rigorous adherence to NIA-AA diagnostic protocols while maintaining computational efficiency through weighted component integration. Detailed scoring algorithms are provided in Appendix B.

373
374
375
376
377

3) *Reasoning Consistency Reward ($R_{\text{consistency}}$)*: To ensure logical coherence between diagnostic reasoning and final conclusions, we introduce a reasoning consistency reward in the overall reward structure. This component evaluates the alignment between the analysis in the Reasoning section and the diagnostic conclusion:

$$R_{\text{consistency}} = \text{NLI}(\text{Reasoning} \rightarrow \text{Diagnosis}) \quad (9)$$

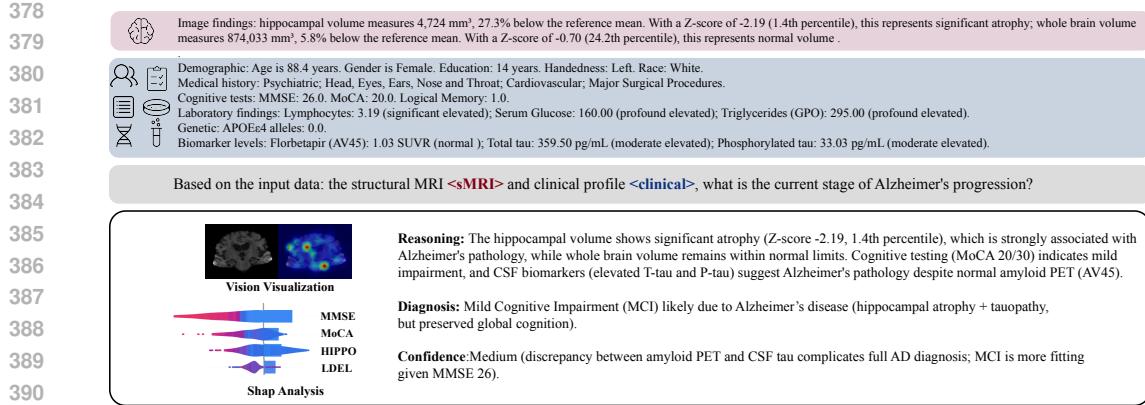


Figure 3: Inference example of AD-reasoning.

391
 392
 393 where NLI denotes Natural Language Inference He et al. (2021), implemented using a pre-trained
 394 entailment model that scores the degree to which the reasoning text supports the diagnostic conclu-
 395 sion. The reward $R_{\text{consistency}} \in \{0, 0.5, 1.0\}$ corresponds to contradiction, neutral/weak entailment,
 396 and strong entailment, respectively. This prevents logical inconsistencies where, for example, the
 397 reasoning describes normal biomarker profiles but concludes with "Dementia," ensuring that diag-
 398 nóstic conclusions are well-supported by the preceding clinical analysis.

399
 400 This enhanced reward structure ensures comprehensive alignment with NIA-AA diagnostic stan-
 401 dards while maintaining computational efficiency and logical coherence. The format reward R_F
 402 guarantees structural integrity, $R_{\text{NIA-AA}}$ evaluates clinical content validity, and $R_{\text{consistency}}$ ensures
 403 logical alignment between analysis and conclusions.

4 EXPERIMENTS

404 We conduct all experiments on a server equipped with four NVIDIA RTX 3090 24GB GPUs. For
 405 the LLM, we choose LLaMA 3.2-1B et al. (2024) and integrate the LoRA modules Hu et al. (2022)
 406 with a rank of 8 for fine-tuning. For the visual modality, a 3D Vision Transformer Dosovitskiy et al.
 407 (2020) is used with input size $128 \times 128 \times 128$ and patch size $16 \times 16 \times 16$. For the textual modality,
 408 we use a Longformer Transformer Beltagy et al. (2020). The PT, SFT and RFT stages are each
 409 trained for 100 epochs, while the RFT stage is trained using the open-source Trainer framework.

410 The effectiveness of multi-disease reasoning and diagnosis is evaluated from two sides. 1) The
 411 descriptive accuracy of the generated diagnostic text is assessed using natural language generation
 412 (NLG) metrics, including BLEU, METEOR, ROUGE, and BERT. 2) The classification accuracy of
 413 Alzheimer disease categories in the responses is evaluated using diagnosis accuracy (ACC), Area
 414 Under Curve (AUC), sensitivity (SEN), and specificity (SPE).

415 Following established clinical guidelines McKhann et al. (2011); Dubois et al. (2007); Jack Jr et al.
 416 (2018), we evaluate our model on two classification tasks. The first task distinguishes cognitively
 417 normal (NC) individuals from those with cognitive impairment (CI), including both mild cognitive
 418 impairment (MCI) and Alzheimer's disease (AD). The second one focuses on differentiating NC
 419 from MCI, which is a critical stage for the early identification of AD. We split the dataset *subject-wise*
 420 into training, validation, and test sets with proportions of 70%, 10%, and 20%, respectively.
 421 All structural MRI scans underwent standardized preprocessing, including skull stripping Isensee
 422 et al. (2019) to remove non-brain tissues and intensity normalization to harmonize voxel value
 423 distributions across scanners.

4.1 QUANTITATIVE ANALYSIS

424 Given the absence of multimodal models specialized for AD integrating neuroimaging and compre-
 425 hensive clinical data, we adapt comparative frameworks by measuring sMRI volumes and generating

descriptions, representing clinical profiles as structured text narratives. Table 1 benchmarks AD-Reasoning against four state-of-the-art MLLMs: LLaVA-1.5-7B Liu et al. (2023), LLaVA-Med Li et al. (2023), Med-PaLM-M Tu et al. (2024) and M3D-LaMed Bai et al. (2024). These models represent the current frontier in medical multimodal reasoning.

As shown in Table 2, to evaluate the performance of our model, we select three prominent text-only baselines(e.g., BERT Devlin et al. (2018), Roberta Liu (2019), and Longformer Beltagy et al. (2020)) and three recent transformer-based models that fuse multimodal information for classification(e.g., IRENE Zhou et al. (2023), AD-Trans Yu et al. (2024), and Alifuse Chen et al. (2024)).

The results demonstrate that AD-Reasoning outperforms these leading models, excelling not only in natural language generation but also in clinical evaluation. This indicates the superior capability of AD-Reasoning in both descriptive and diagnostic reasoning tasks in multi-disease scenarios. Furthermore, Table 1 also presents ablation studies to investigate the impact of physiological-level pre-training and RFT-based post-training on the model’s performance. The results show that removing either component leads to a noticeable decline in performance. Specifically, the findings highlight two key insights: 1) Pre-training enables the model to extract and align high-quality, modality-specific representations while preserving fine-grained information through restoration loss, establishing a robust foundation for cross-modal reasoning. 2) The RFT stage based on GRPO further unleashes the potential of the constructed data and enhances the model’s multi-disease diagnostic performance, enabling deeper and more effective cross-modal reasoning.

4.2 QUALITATIVE ANALYSIS AND ABLATION STUDY

AD-Reasoning demonstrates a robust ability to integrate and analyze data from multiple modalities to arrive at comprehensive diagnoses. This integration allows for mutual corroboration among the modalities, enhancing diagnostic accuracy, as shown in Fig. 3. AD-Reasoning effectively synthesizes information from sMRI and clinical non-image data to diagnose alzheimer’s disease conditions. Each modality provides unique insights that collectively strengthen the diagnostic conclusion. The model frequently employs terms, e.g., “indicates” and “associated with”, highlighting its capability to identify and utilize evidence from each modality to substantiate the final diagnosis. This approach demonstrates AD-Reasoning’s proficiency in extracting relevant features from each dataset, ensuring that the diagnostic reasoning is well-founded and comprehensive. To enhance interpretability, we apply Shapley analysis Lundberg & Lee (2017) on test sets to identify the most influential numerical features in diagnostic decisions, and implement the method from Chefer et al. (2021) to visualize attention heatmaps in the visual encoder. More details can be found in Appendix C.

The ablation studies in Table 3 demonstrate the effectiveness of both contrastive and restorative learning modules in the pre-training, as well as the necessity of complete modality integration. The integration of \mathcal{L}_{itc} and \mathcal{L}_{res} significantly enhances the results, validating our initial intention to design these mechanisms to facilitate modality fusion and adjust the contribution levels of different modalities for various diseases. The presence of all modalities results in the best performance. Removing any single modality leads to reduced scores. This underscores the importance of multimodal integration for optimal outcomes.

5 CONCLUSION

In this paper, we propose a novel framework, AD-Reasoning, which represents a significant advancement in multimodal reasoning for Alzheimer’s Disease diagnosis. By integrating structural MRI with comprehensive clinical data (demographics, medical history, cognitive tests, lab results, genetics, and biomarkers), AD-Reasoning overcomes the limitations of unimodal approaches and enables holistic neuro-clinical assessment. The novel AD-MultiSense dataset facilitates precise diagnostic reasoning through quantitative-to-textual transformation and NIA-AA guided refinement. The clinical-guided fusion mechanism ensures context-aware interpretation of neuroimaging findings, while Reinforcement Fine-Tuning with Group Relative Policy Optimization and NIA-AA verifiable rewards enhances diagnostic precision and reliability. Extensive validation demonstrates AD-Reasoning’s superior performance in both neurophysiological understanding and differential diagnosis, highlighting its potential for real-world clinical applications, including early detection and progression monitoring in cognitive disorders.

486 REFERENCES
487

488 Fan Bai, Yuxin Du, Tiejun Huang, Max Q-H Meng, and Bo Zhao. M3d: Advancing 3d medical
489 image analysis with multi-modal large language models. *arXiv preprint arXiv:2404.00578*, 2024.

490 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
491 *arXiv preprint arXiv:2004.05150*, 2020.

492 Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In
493 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
494 pp. 782–791, June 2021.

495 Qiuwei Chen, Xinyue Hu, Zirui Wang, and Yi Hong. Medblip: Bootstrapping language-image pre-
496 training from 3d medical images and texts. *arXiv preprint arXiv:2305.10799*, 2023.

497 Qiuwei Chen, Xinyue Hu, Zirui Wang, and Yi Hong. Alifuse: Aligning and fusing multi-modal
498 medical data for computer-aided diagnosis. *BIBM*, 2024.

499 Wei Dai, Peilin Chen, Chanakya Ekbote, and Paul Pu Liang. Qoq-med: Building multimodal clinical
500 foundation models with domain-aware grp training. *arXiv preprint arXiv:2506.00711*, 2025.

501 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
502 bidirectional transformers for language understanding. *arXiv:1810.04805*, 2018.

503 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
504 Unterthiner, Mostafa Dehghani, et al. An image is worth 16x16 words: Transformers for image
505 recognition at scale. *arXiv:2010.11929*, 2020.

506 Bruno Dubois, Howard H Feldman, Gregory Jacova, et al. Research criteria for the diagnosis of
507 alzheimer’s disease: revising the nincds–adrda criteria. *The Lancet Neurology*, 6(8):734–746,
508 2007.

509 Kathryn A Ellis, Ashley I Bush, David Darby, et al. The australian imaging, biomarkers and lifestyle
510 (abil) study of aging: methodology and baseline characteristics of 1112 individuals recruited for
511 a longitudinal study of alzheimer’s disease. *International psychogeriatrics*, 21(4):672–687, 2009.

512 Jonas Elsborg and Marco Salvatore. Using llms and explainable ml to analyze biomarkers at single-
513 cell level for improved understanding of diseases. *Biomolecules*, 13(10):1516, 2023.

514 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

515 Xi Fang, Weijie Xu, Fiona Anting Tan, Jian Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
516 Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models (llms) on tab-
517 ular data: Prediction, generation, and understanding—a survey. *arXiv preprint arXiv:2402.17944*,
518 2024.

519 Giovanni B Frisoni, Nick C Fox, Clifford R Jack Jr, Philip Scheltens, and Paul M Thompson. The
520 clinical use of structural mri in alzheimer disease. *Nature reviews neurology*, 6(2):67–77, 2010.

521 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
522 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
523 of models. *arXiv preprint arXiv:2407.21783*, 2024.

524 Joschka Haltaufderheide and Robert Ranisch. The ethics of chatgpt in medicine and healthcare: a
525 systematic review on large language models (llms). *NPJ digital medicine*, 7(1):183, 2024.

526 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
527 autoencoders are scalable vision learners. In *Proceedings of IEEE/CVF CVPR*, pp. 16000–16009,
528 2022.

529 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
530 pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*,
531 2021.

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 542

543 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 544 preprint *arXiv:2501.03262*, 2025.

545 Fabian Isensee, Marianne Schell, Irada Pflueger, Gianluca Brugnara, David Bonekamp, Ulf Neu-
 546 berger, Antje Wick, Heinz-Peter Schlemmer, Sabine Heiland, Wolfgang Wick, et al. Automated
 547 brain extraction of multisequence mri using artificial neural networks. *Human brain mapping*, 40
 548 (17):4952–4964, 2019.

549 Clifford R Jack Jr, David A Bennett, Jason Blennow, et al. Nia-aa research framework: toward a
 550 biological definition of alzheimer’s disease. *Alzheimer’s & dementia*, 14(4):535–562, 2018.
 551

552 Jinseong Jang and Dosik Hwang. M3t: three-dimensional medical image classifier using multi-plane
 553 and multi-slice transformer. In *Proceedings of IEEE/CVF CVPR*, pp. 20718–20729, 2022.

554 Sachin Kumar, Sita Rani, Shivani Sharma, and Hong Min. Multimodality fusion aspects of medical
 555 diagnosis: A comprehensive review. *Bioengineering*, 11(12):1233, 2024.

556

557 Ronald Lautner, Sebastian Palmqvist, Niklas Mattsson, Ulf Andreasson, Anders Wallin, Erik
 558 Pålsson, Joel Jakobsson, Sanna-Kaisa Herukka, Rikard Owenius, Bob Olsson, et al. Apolipoprotein
 559 e genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for alzheimer dis-
 560 ease. *JAMA psychiatry*, 71(10):1183–1191, 2014.

561 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 562 mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision as-
 563 sistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 564 28541–28564, 2023.

565 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 566 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 567 distillation. *NeurIPS*, 34:9694–9705, 2021.

568

569 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 570 training for unified vision-language understanding and generation. In *International Conference
 571 on Machine Learning*, pp. 12888–12900. PMLR, 2022.

572 Xuying Li, Zhuo Li, Yuji Kosuga, and Victor Bian. Optimizing safe and aligned language genera-
 573 tion: A multi-objective grpo approach. *arXiv preprint arXiv:2503.21819*, 2025.

574

575 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 576 in neural information processing systems*, 36:34892–34916, 2023.

577 Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint
 578 arXiv:1907.11692*, 364, 2019.

579

580 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In *Advances
 581 in Neural Information Processing Systems 30*, pp. 4765–4774. Curran Associates, Inc., 2017.

582 Guy M McKhann, David S Knopman, Howard Chertkow, Bradley T Hyman, Clifford R Jack Jr,
 583 Claudia H Kawas, William E Klunk, Walter J Koroshetz, Jennifer J Manly, Richard Mayeux,
 584 et al. The diagnosis of dementia due to alzheimer’s disease: recommendations from the national
 585 institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s
 586 disease. *Alzheimer’s & dementia*, 7(3):263–269, 2011.

587 Fredrik Öhman, Jason Hassenstab, David Berron, Michael Schöll, and Kathryn V Papp. Current
 588 advances in digital cognitive assessment for preclinical alzheimer’s disease. *Alzheimer’s & De-
 589 mentia: Diagnosis, Assessment & Disease Monitoring*, 13(1):e12217, 2021.

590 OpenAI. Gpt-4 technical report, 2023.

591

592 Seong Ho Park, Kyunghwa Han, Hye Young Jang, Ji Eun Park, June-Goo Lee, Dong Wook Kim,
 593 and Jaesoon Choi. Methods for clinical evaluation of artificial intelligence algorithms for medical
 diagnosis. *Radiology*, 306(1):20–31, 2023.

594 Ronald Carl Petersen, Paul S Aisen, Laurel A Beckett, Michael C Donohue, Anthony Collins Gamst,
 595 Danielle J Harvey, et al. Alzheimer’s disease neuroimaging initiative (adni): clinical characteri-
 596 zation. *Neurology*, 74(3):201–209, 2010.

597 Alec Radford, Jong Wook Kim, Chris Hallacy, and et al. Learning transferable visual models from
 598 natural language supervision. In *International conference on machine learning*, pp. 8748–8763.
 599 PMLR, 2021.

600 Pranav Rajpurkar, Emma Chen, Oishi Banerjee, and Eric J Topol. Ai in health and medicine. *Nature
 601 medicine*, 28(1):31–38, 2022.

602 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 603 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

604 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 605 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 606 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

607 Dianzhe Tian, Shitao Jiang, Lei Zhang, Xin Lu, and Yiyao Xu. The role of large language models
 608 in medical image processing: a narrative review. *Quantitative Imaging in Medicine and Surgery*,
 609 14(1):1108, 2023.

610 Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang,
 611 Andrew Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai.
 612 *Nejm Ai*, 1(3):Aloa2300138, 2024.

613 Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian
 614 Bluethgen, Anuj Pareek, Małgorzata Polacin, Eduardo Pontes Reis, Anna Seehofnerová, et al.
 615 Adapted large language models can outperform medical experts in clinical text summarization.
 616 *Nature medicine*, 30(4):1134–1142, 2024.

617 Janani Venugopalan, Li Tong, Hamid Reza Hassanzadeh, and May D Wang. Multimodal deep
 618 learning models for early detection of alzheimer’s disease stage. *Scientific reports*, 11(1):3254,
 619 2021.

620 Zhaomin Yao, Hongyu Wang, Wencheng Yan, Zheling Wang, Wenwen Zhang, Zhiguo Wang, and
 621 Guoxu Zhang. Artificial intelligence-based diagnosis of alzheimer’s disease with brain mri im-
 622 ages. *European Journal of Radiology*, 165:110934, 2023.

623 Qi Yu, Qian Ma, Lijuan Da, Jiahui Li, Mengying Wang, Andi Xu, Zilin Li, Wenyuan Li, Alzheimer’s
 624 Disease Neuroimaging Initiative, et al. A transformer-based unified multimodal framework for
 625 alzheimer’s disease assessment. *Computers in Biology and Medicine*, 180:108979, 2024.

626 Hong-Yu Zhou, Yizhou Yu, Chengdi Wang, Shu Zhang, Yuanxu Gao, Jia Pan, Jun Shao, Guangming
 627 Lu, Kang Zhang, and Weimin Li. A transformer-based representation-learning model with unified
 628 processing of multimodal input for clinical diagnostics. *Nature Biomedical Engineering*, pp. 1–
 629 13, 2023.

630

636 A VISION DESCRIPTION GENERATION

637 The vision description generation module transforms quantitative neuroimaging measurements into
 638 clinically interpretable natural language descriptions. This transformation employs a multi-step
 639 analytical process that contextualizes individual volumetric data within population-based reference
 640 distributions. For each brain structure of interest, the system first establishes an age and gender-
 641 matched reference cohort derived from cognitively normal subjects. This cohort is stratified into
 642 decade-wide age groups (50-59, 60-69, 70-79, 80-89 years) with separate distributions maintained
 643 for male and female populations.

644 Three core metrics are computed to quantify deviations from normative values. The Z-score repre-
 645 sents standard deviation units from the reference mean, calculated as

$$646 Z = (V_{subject} - \mu_{ref}) / \sigma_{ref} \quad (10)$$

648 where $V_{subject}$ is the observed volume, μ_{ref} is the reference mean, and σ_{ref} is the reference standard deviation. The percentile rank indicates the proportion of healthy individuals with smaller volumes, derived from the cumulative distribution function of the reference population. The percentage difference expresses relative deviation as

$$649 \quad 650 \quad 651 \quad 652 \quad 653 \quad 654 \quad 655 \quad 656 \quad 657 \quad 658 \quad 659 \quad 660 \quad 661 \quad 662 \quad 663 \quad 664 \quad 665 \quad 666 \quad 667 \quad 668 \quad 669 \quad 670 \quad 671 \quad 672 \quad 673 \quad 674 \quad 675 \quad 676 \quad 677 \quad 678 \quad 679 \quad 680 \quad 681 \quad 682 \quad 683 \quad 684 \quad 685 \quad 686 \quad 687 \quad 688 \quad 689 \quad 690 \quad 691 \quad 692 \quad 693 \quad 694 \quad 695 \quad 696 \quad 697 \quad 698 \quad 699 \quad 700 \quad 701 \quad \Delta\% = (V_{subject} - \mu_{ref}) / \mu_{ref} \times 100, \quad (11)$$

providing an intuitive measure of volumetric change.

Clinical severity classifications incorporate structure-specific pathological directionality. For atrophy-sensitive structures including the hippocampus, entorhinal cortex, fusiform gyrus, middle temporal gyrus, and whole brain, we apply the criteria in Table 4:

Table 4: Clinical interpretation of Z-scores for brain structures

Z-score Range	Clinical Interpretation
$Z < -3$	Profound atrophy
$-3 \leq Z < -2$	Significant atrophy
$-2 \leq Z < -1.5$	Moderate atrophy
$-1.5 \leq Z < -1$	Mild atrophy
$-1 \leq Z \leq 1$	Normal volume
$1 < Z \leq 1.5$	Mild enlargement
$1.5 < Z \leq 2$	Moderate enlargement
$2 < Z \leq 3$	Significant enlargement
$Z > 3$	Profound enlargement

These thresholds align with established radiological practice while maintaining statistical rigor.

Natural language generation follows a standardized template that synthesizes these quantitative metrics into clinically actionable interpretations for all six structures. Each description includes four key elements: 1) the absolute volumetric measurement, 2) percentage difference from the reference mean, 3) Z-score with corresponding percentile rank, and 4) clinical severity assessment. The template dynamically adapts terminology based on pathological directionality, using "below" and "atrophy" for cortical structures versus "above" and "enlargement" for ventricles. This approach ensures consistent reporting while maintaining clinical relevance across diverse brain structures.

Table 5: Representative vision descriptions for brain structures

Structure	Generated Description
Ventricles	Ventricular volume measures $42,500 \text{ mm}^3$, 32.5% above the reference mean ($32,070 \pm 2,850 \text{ mm}^3$). With a Z-score of 3.65 (99.9 th percentile), this represents significant enlargement.
Hippocampus	Hippocampal volume measures $2,850 \text{ mm}^3$, 28.2% below the reference mean ($3,970 \pm 350 \text{ mm}^3$) for this demographic. The Z-score of -3.21 (0.1 th percentile) indicates significant atrophy.
Whole Brain	Whole brain volume measures $950,000 \text{ mm}^3$, 8.7% below the reference mean ($1,040,000 \pm 45,000 \text{ mm}^3$). The Z-score of -2.00 (2.3 th percentile) demonstrates mild atrophy.
Entorhinal Cortex	Entorhinal cortex volume is $2,350 \text{ mm}^3$, 35.1% below reference values. The Z-score of -3.02 (0.1 th percentile) is consistent with significant atrophy.
Fusiform Gyrus	Fusiform gyrus volume measures $18,600 \text{ mm}^3$, 15.3% below the reference mean ($21,970 \pm 1,850 \text{ mm}^3$). With a Z-score of -1.82 (3.4 th percentile), this suggests mild atrophy.
Middle Temporal Gyrus	Middle temporal gyrus volume measures $17,600 \text{ mm}^3$, 22.7% below the reference mean ($22,750 \pm 2,100 \text{ mm}^3$). The Z-score of -2.45 (0.7 th percentile) demonstrates significant atrophy.

Table 5 presents representative outputs of the vision description generation system for all six brain structures. These structured interpretations provide clinicians with immediately actionable information by contextualizing quantitative measurements within population norms. The comprehensive coverage of ventricles, hippocampal formation, global brain volume, and temporal lobe structures enables a holistic assessment of neurodegenerative patterns. The framework's modular design permits seamless integration of additional brain regions while maintaining standardized reporting protocols across neuroimaging evaluations.

Figure 5 presents a comparative analysis of six key brain structure volumes across diagnostic groups: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease dementia (AD/Dementia). Violin and box plots demonstrate significant volumetric differences in all structures that effectively discriminate between diagnostic categories. Most notably, ventricular volume

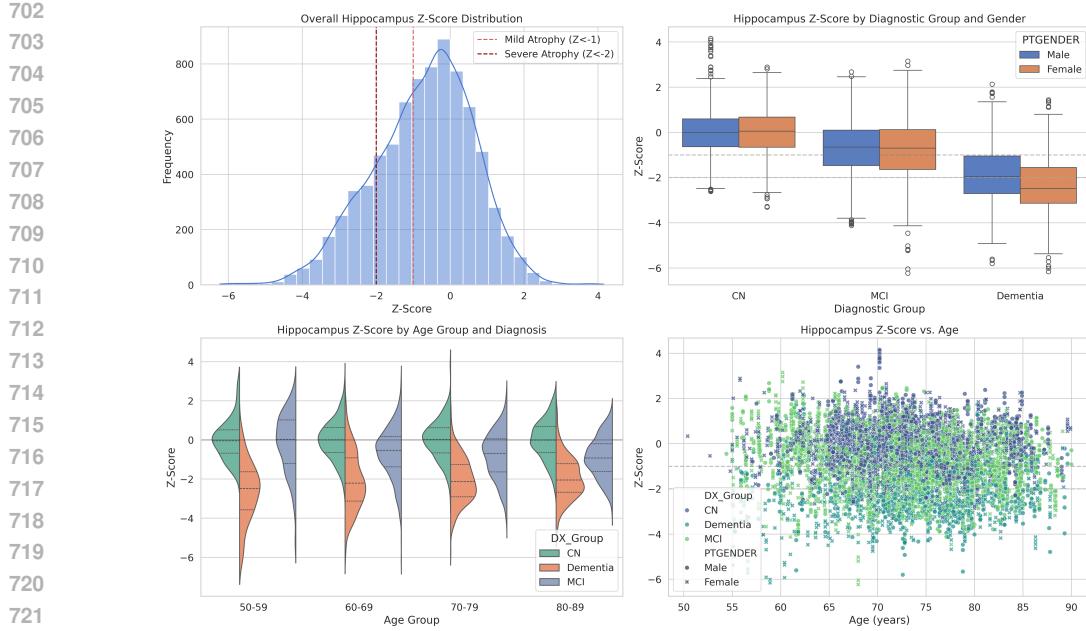


Figure 4: Distribution of hippocampal Z-scores across demographic and clinical dimensions.

exhibits progressive enlargement across the CN → MCI → AD continuum, while hippocampal, entorhinal, and mid-temporal volumes show corresponding stepwise reductions. Fusiform and whole brain volumes similarly decrease with disease progression. The distributions reveal three critical patterns: 1) AD patients consistently demonstrate the most pronounced atrophy (or ventricular expansion), 2) MCI subjects exhibit intermediate values with greater distributional overlap with both CN and AD groups, and 3) CN individuals maintain the highest preserved volumes. These z-score distributions provide robust imaging biomarkers that collectively differentiate diagnostic categories, with ventricular and hippocampal measures showing the most distinct group separation.

Figure 4 presents a comprehensive analysis of hippocampal volume Z-scores, normalized to age- and gender-matched cognitively normal references. Panel A shows the overall distribution with clinically significant thresholds at $Z = -1$ and $Z = -2$, revealing a right-skewed distribution indicative of hippocampal atrophy in the cohort. The boxplot analysis in Panel B demonstrates progressive Z-score reduction across the diagnostic continuum (CN → MCI → Dementia), with females exhibiting consistently lower Z-scores than males within each diagnostic category ($\Delta Z = [\text{gender-diff}]$, $p \leq 0.001$).

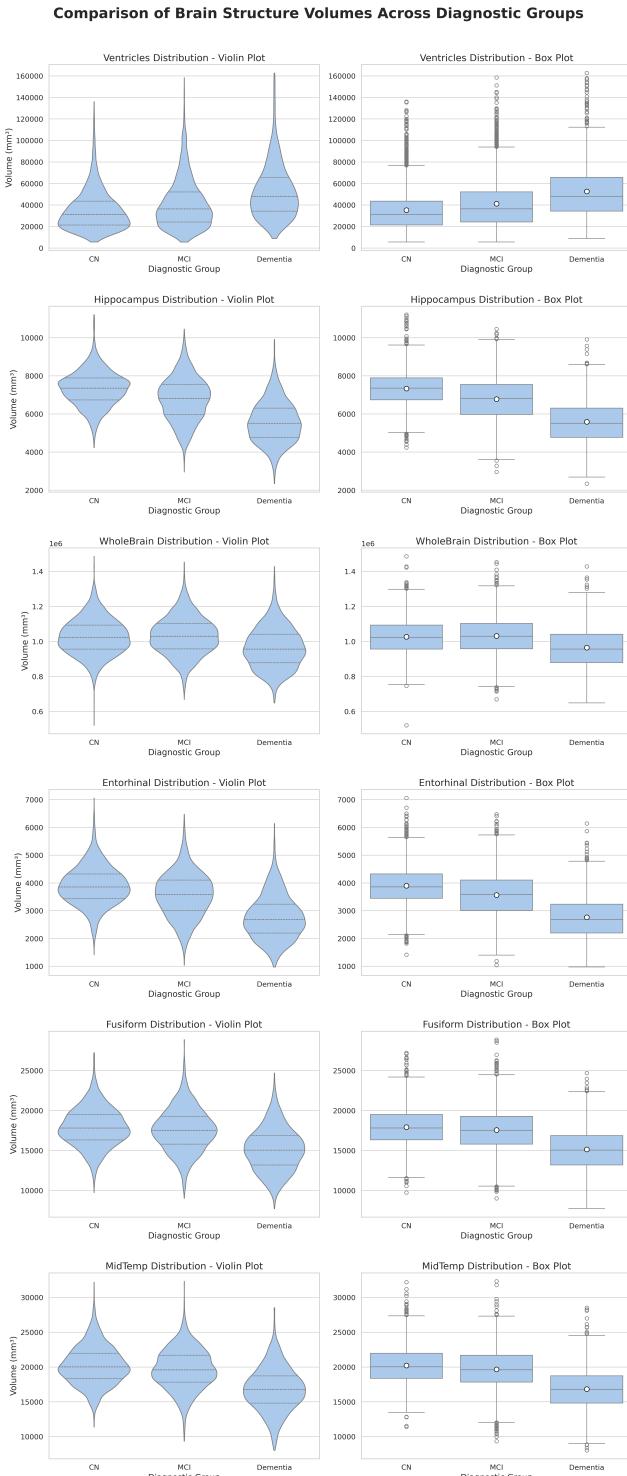
Panel C illustrates the interaction between aging and neurodegeneration, where dementia patients show substantially lower Z-scores across all age groups, particularly in the 70-79 cohort. The scatterplot in Panel D confirms the expected age-related decline in hippocampal volumes ($r = [\text{correlation-value}]$, $p \leq [\text{p-value}]$), while highlighting the diagnostic separation maintained across the age spectrum. The horizontal reference lines at $Z = -1$ and $Z = -2$ provide clinical context for interpreting individual data points.

B NIA-AA DIAGNOSTIC REWARD FUNCTION SPECIFICATION

The NIA-AA diagnostic reward function provides a comprehensive assessment framework for evaluating Alzheimer's disease diagnostic reports generated by our model. This multi-dimensional scoring system ensures clinical accuracy and adherence to established NIA-AA diagnostic standards through three core components with weighted integration:

$$R_{\text{NIA-AA}} = 0.4 \cdot R_{\text{category}} + 0.3 \cdot R_{\text{biomarker}} + 0.3 \cdot R_{\text{feature}} \quad (12)$$

756



757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

Figure 5: Volumetric distributions of six brain structures across diagnostic groups. Left column: Violin plots showing density distributions and quartiles. Right column: Box plots with white circles indicating means. Structures shown (top to bottom): Ventricles, Hippocampus, WholeBrain, Entorhinal, Fusiform, and MidTemp. CN = Cognitively Normal (n=2732), MCI = Mild Cognitive Impairment (n=3150), Dementia = Alzheimer's Disease Dementia (n=1349). Note progressive ventricular enlargement and hippocampal/entorhinal atrophy across the CN→MCI→AD continuum.

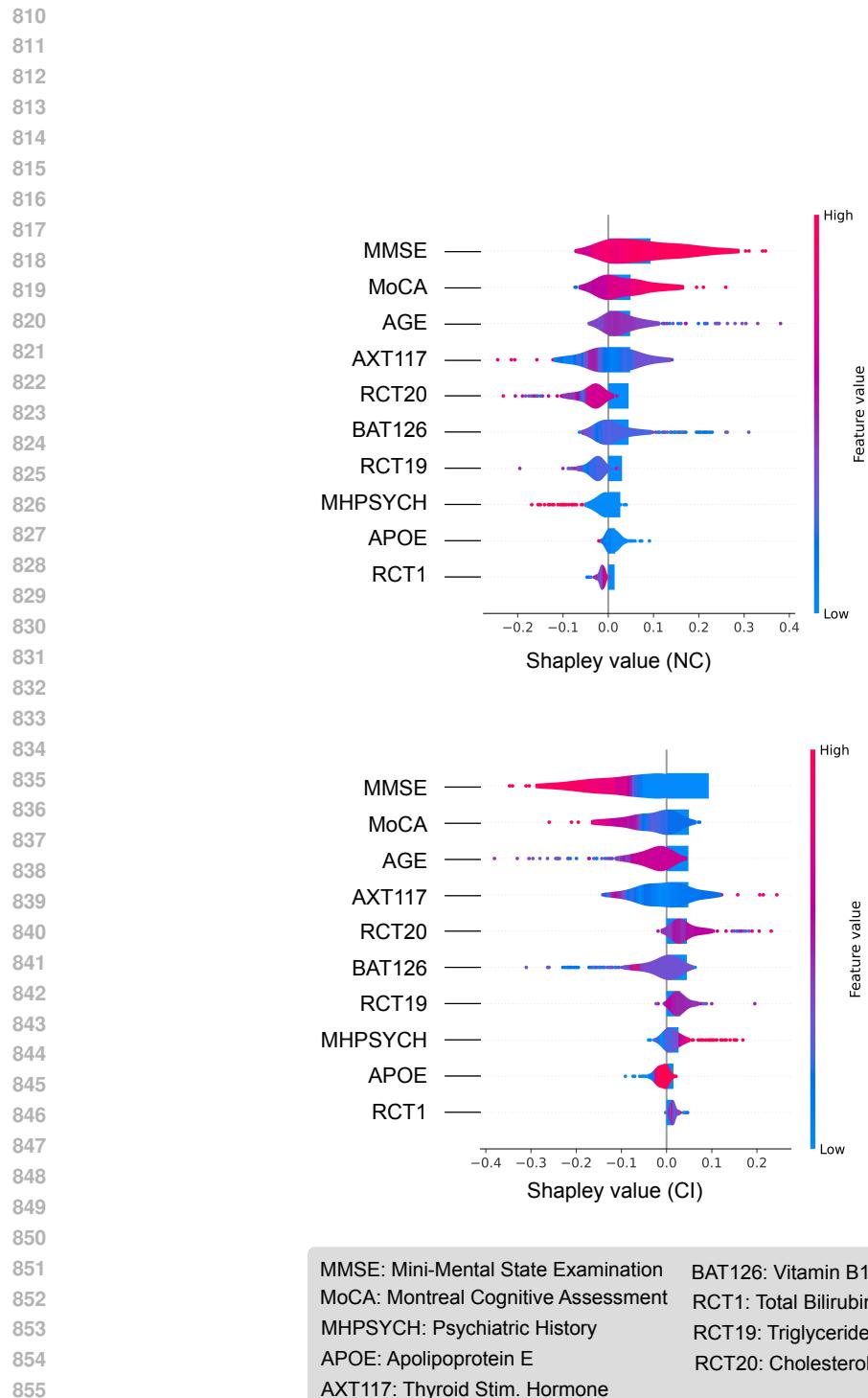


Figure 6: Shapley analysis.

864 B.1 DIAGNOSTIC CATEGORY MATCHING (R_{CATEGORY})
865866 The diagnostic category component evaluates the accuracy of diagnostic classification through
867 multi-tiered keyword validation. This 40%-weighted component ensures precise alignment with
868 standard diagnostic categories (CN, MCI, Dementia) while penalizing contradictory terminology.869 The scoring incorporates inclusion validation and exclusion penalty mechanisms:
870

872
$$R_{\text{category}} = \mathbb{I}_{\text{inclusion}} \cdot (1 - \mathbb{I}_{\text{exclusion}}) + R_{\text{staging}} \quad (13)$$

873

874 where $\mathbb{I}_{\text{inclusion}}$ validates presence of category-appropriate keywords, $\mathbb{I}_{\text{exclusion}}$ penalizes contra-
875 dictory terminology, and R_{staging} provides additional scoring for dementia stage assessment.877 B.2 BIOMARKER CONSISTENCY ($R_{\text{BIOMARKER}}$)
878879 The biomarker consistency component (30% weight) evaluates both coverage and pathological char-
880 acterization of core AD biomarkers ($A\beta$, pTau, tTau). The assessment employs clinical importance
881 weighting and status consistency validation.882 The scoring formula integrates mention frequency and status accuracy:
883

884
$$R_{\text{biomarker}} = \sum_{b \in \mathcal{B}} w_b \cdot (\alpha \cdot \mathbb{I}_{\text{mention}}(b) + \beta \cdot \mathbb{I}_{\text{status}}(b)) \quad (14)$$

885

886 where $\mathcal{B} = A\beta, p\text{Tau}, t\text{Tau}$ represents the biomarker set, w_b denotes clinical weights ($w_{A\beta} = 0.4$,
887 $w_{p\text{Tau}} = 0.3$, $w_{t\text{Tau}} = 0.3$), $\mathbb{I}_{\text{mention}}$ detects biomarker presence, and $\mathbb{I}_{\text{status}}$ evaluates pathological
888 status consistency.889 Status assessment utilizes pattern recognition for normal/abnormal classification:
890

891
$$\mathbb{I}_{\text{status}}(b) = \frac{\sum_{p \in P_b^{\text{normal}}} \mathbb{I}(p) + \sum_{p \in P_b^{\text{abnormal}}} \mathbb{I}(p)}{|P_b^{\text{normal}} \cup P_b^{\text{abnormal}}|} \quad (15)$$

892

893 where P_b represents status-indicative patterns for biomarker b .
894895 B.3 CLINICAL FEATURE COVERAGE (R_{FEATURE})
896897 Clinical feature assessment (30% weight) evaluates cognitive domain coverage across memory,
898 executive function, visuospatial abilities, and language domains. The scoring incorporates both
899 breadth of coverage and descriptive specificity with clinical significance weighting.900 The comprehensive scoring framework:
901

902
$$R_{\text{feature}} = \sum_{f \in \mathcal{F}} w_f \cdot (\gamma \cdot \mathbb{I}_{\text{domain}}(f) + \delta \cdot \mathbb{I}_{\text{specificity}}(f)) \quad (16)$$

903

904 where $\mathcal{F} = \text{memory, executive, visuospatial, language}$ represents cognitive domains, w_f denotes
905 clinical significance weights, $\mathbb{I}_{\text{domain}}$ evaluates primary domain coverage, and $\mathbb{I}_{\text{specificity}}$ assesses
906 subdomain characterization depth.907 Domain-specific weighting reflects clinical importance in AD diagnosis:
908

909
$$w_f = \begin{cases} 0.4 & \text{memory} \\ 0.3 & \text{executive function} \\ 0.2 & \text{visuospatial abilities} \\ 0.1 & \text{language} \end{cases} \quad (17)$$

910

918 B.4 TEXT PROCESSING PIPELINE
919920 The reward function employs a robust text processing workflow including format sanitization, case
921 normalization, and clinical tokenization. Structured field extraction utilizes regular expression pat-
922 terns:

923

924
$$\text{Diagnosis} = \text{extract}(\text{response}, \langle \text{diagnosis} \rangle . * ? \langle / \text{diagnosis} \rangle) \quad (18)$$

925

926

927
$$\text{Reasoning} = \text{extract}(\text{response}, \langle \text{reasoning} \rangle . * ? \langle / \text{reasoning} \rangle) \quad (19)$$

928

929 This algorithmic framework ensures rigorous adherence to NIA-AA diagnostic protocols while
930 maintaining computational efficiency through weighted component integration. The implemen-
931 tation provides clinically meaningful reward signals that guide the reinforcement learning process
932 toward generating accurate, comprehensive, and logically consistent AD diagnostic reports.

933

934 C SHAPLEY ANALYSIS
935936 Shapley analysis Lundberg & Lee (2017) is performed on the test sets to identify the clinical numeri-
937 cal features that most significantly influenced the model’s diagnostic decisions (Fig. 6). The MMSE
938 score consistently ranks among the most influential features. Thyroid Stimulating Hormone, Vi-
939 tamin B12 levels, and the presence of APOE4 alleles are selected consistently among the top ten
940 factors. These findings align with clinical studies that emphasize the strong association of MMSE
941 scores and other key biomarkers with cognitive impairment and AD diagnosis.

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971