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ABSTRACT

Recent work (Nguyen et al., 2021) has uncovered a striking phenomenon in large-
capacity neural networks: they contain blocks of contiguous hidden layers with
highly similar representations. This block structure has two seemingly contra-
dictory properties: on the one hand, its constituent layers have highly similar
dominant first principal components (PCs), but on the other hand, their represen-
tations, and their common first PC, are highly dissimilar across different random
seeds. Our work seeks to reconcile these discrepant properties by investigating
the origin of the block structure in relation to the data and training methods. By
analyzing properties of the dominant PCs, we find that the block structure arises
from dominant datapoints — a small group of examples that share similar im-
age statistics (e.g. background color). However, the set of dominant datapoints,
and the precise shared image statistic, can vary across random seeds. Thus, the
block structure reflects meaningful dataset statistics, but is simultaneously unique
to each model. Through studying hidden layer activations and creating synthetic
datapoints, we demonstrate that these simple image statistics dominate the repre-
sentational geometry of the layers inside the block structure. We also explore how
the phenomenon evolves through training, finding that the block structure takes
shape early in training, but the underlying representations and the corresponding
dominant datapoints continue to change substantially. Finally, we study the inter-
play between the block structure and different training mechanisms, introducing
a targeted intervention to eliminate the block structure, as well as examining the
effects of pretraining and Shake-Shake regularization.

1 INTRODUCTION

Many modern successes of deep neural networks have used simple rules to systematically increase
model capacity, often through scaling architecture depth and width (Tan & Le, 2019). These large
capacity models typically also maintain strong performance even in tasks with small amounts of
training data. This has led to their widespread use across different many applications, including
data-scarce, high-stakes settings such as medical imaging (Wang et al., 2016; Liu et al., 2017).

However, recent work has shown that the representational structures of these large capacity models
exhibit distinctive properties that are not present in shallower/narrower networks. Specifically, when
using linear centered kernel alignment (CKA) (Kornblith et al., 2019) to measure similarity between
hidden representations of neural network layers, Nguyen et al. (2021) find that a large set of con-
tiguous layers that share highly similar representations. This is visible as a clear block structure in
the heatmap of pairwise linear CKA similarities between layers (see Figure 1a). This block structure
phenomenon is robust, appearing both in models trained on natural image datasets and in models
trained on medical imaging datasets (Figure 1b).

The emergence of the block structure as model capacity increases does not merely indicate a change
in relationships among layer representations; it is also associated with changes in the properties of
individual representations. As shown in Figure 2a, layer representation inside the block structure
have dominant first principal components (PCs) that explain the majority of variance in activations,
whereas the first PCs of representations of layers outside the block structure, or in networks without
block structure, explain far less variance. But counterintuitively, although layer representations and
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Figure 1: (a): Block structure arises in wide and deep networks. Heatmaps show similarity between layer
representations, measured with linear CKA, for models of varying widths and depths trained on CIFAR-10.
As models become wider or deeper, “blocks” of consecutive layers share similar representations. (b): Block
structure arises on many datasets. Models trained on CIFAR-100 and the medical histopathology dataset
Patch Camelyon show similar behavior to those in panel (a).
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Figure 2: (a): The first principal component of representations inside the block structure explains the
majority of the variance in representations. Top: Linear CKA similarity heatmaps for networks that do
and do not exhibit block structure. Bottom: Fraction of variance in representations explained by first principal
component. See Appendix B for more networks. (b): Representations inside the block structure are highly
unique to each seed. 2 leftmost panels show similarity of representations within networks trained with 2
different random seeds. Rightmost panel shows similarity between the 2 networks.

their dominant first PCs are similar across the layers that make up the block structure, they are highly
dissimilar across random seeds, as shown in Figure 2b. Such representational inconsistencies have
been linked to overfitting and poor generalization (Morcos et al., 2018).

The prevalence of the block structure, and this discrepancy in its properties, motivate a pressing
fundamental question — is the block structure a sign of overfitting to idiosyncrasies of the data and
training process, or does it pick up meaningful signals? In this paper, we uncover answers to this
question, investigating the origin of the block structure in relation to the data and training methods,
and reconciling its contradictory behaviors. Specifically, our findings are as follows:

• The dominant first principal components of the layers that make up the block structure arise from
a small number of dominant datapoints that share similar characteristics (e.g., background color).

• But the set of dominant datapoints and their common characteristics can vary across training runs,
leading to the observed block structure dissimilarities across random seeds.

• Like the block structure phenomenon, dominant datapoints can only be found in large capacity
neural networks. We show that if these dominant datapoints are excluded from the dataset used
for representational analysis, the block structure effect disappears.

• We find that dominant datapoints strongly activate the hidden layers corresponding to the block
structure. By constructing synthetic examples based off of their shared image characteristics, we
show that these characteristics are indeed responsible for the high activation norms.

• The block structure emerges early in training, but early block structures have different representa-
tions and yield different dominant datapoints than the final block structure at the end of training.

• We study whether it is possible to eliminate the block structure without interfering with general-
ization using a novel principal component regularization method. We also show that alternative
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training mechanisms such as transfer learning and Shake-Shake regularization can reduce the
block structure and yield more consistent representations across different training runs.

2 RELATED WORK

Previous work has studied certain propensities of deep neural networks in the standard training set-
ting, such as their simplicity bias (Huh et al., 2021; Valle-Perez et al., 2018; Nakkiran et al., 2019),
texture bias (Baker et al., 2018; Geirhos et al., 2018; Hermann et al., 2019) and reliance on spu-
rious correlations (McCoy et al., 2019; Geirhos et al., 2020; Ribeiro et al., 2016; Jo & Bengio,
2017; Hosseini & Poovendran, 2018). Inspired by the findings of Nguyen et al. (2021) that deep
and wide networks learn many layers with very similar representations, we seek to characterize
the kind of signals these layers may overfit to. Additionally, our work also explores how this sig-
nal varies over the course of training instead of focusing on a single, final model. To do so, we
analyze the behavior of the internal representations of models of varied depths and widths, using
methods for measuring similarity of neural network hidden representations (Kornblith et al., 2019;
Raghu et al., 2017; Morcos et al., 2018). Besides shedding light on model training procedures (Got-
mare et al., 2018; Neyshabur et al., 2020), features (Resnick et al., 2019; Thompson et al., 2019;
Hermann & Lampinen, 2020), and dynamics (Maheswaranathan et al., 2019), representational anal-
ysis has also furthered understanding of network internals in applications of deep learning, such as
medicine (Raghu et al., 2019) and machine translation (Bau et al., 2019).

Our work is also related to previous attempts to understand the properties of overparameterized
models (Zhang et al., 2016). Most theoretical work in this area has focused on linear models, mod-
els with random features, or kernel settings (Belkin et al., 2018; Hastie et al., 2019; Liang et al.,
2020; Bartlett et al., 2020), all of which lack intermediate features, or involves networks without
nonlinearities (Advani et al., 2020). Our results suggest that the behavior of intermediate features of
practical neural networks changes dramatically with increasing overparameterization, in ways that
are not obvious from previous analysis.

3 EXPERIMENTAL SETUP AND BACKGROUND

Measuring Representation Similarity with CKA: Centered kernel alignment (CKA) (Kornblith
et al., 2019; Cortes et al., 2012) addresses several challenges in measuring similarity between neural
network hidden representations including (i) their large size; (ii) neuronal alignment between dif-
ferent layers; and (iii) features being distributed across multiple neurons in a layer. Like Nguyen
et al. (2021), we use the minibatch implementation of linear CKA with a batch size of 256 sampled
without replacement from the test dataset, and accumulate statistics over 10 epochs to allow the
minibatch estimator to converge.

More concretely, given k minibatches of n examples, and two layers having p1 neurons
and p2 neurons each, minibatch CKA takes as inputs k pairs of centered activation matrices
(X1,Y1), . . . , (Xk,Yk) where Xi ∈ Rn×p1 and Yi ∈ Rn×p2 reflect the activations of these layers
to the same minibatches. It produces a scalar similarity score between 0 and 1 by averaging HSIC
scores over minibatches:

CKAminibatch =
1
k

∑k
i=1 HSIC1(XiX

T
i ,YiY

T
i )√

1
k

∑k
i=1 HSIC1(XiXT

i ,XiXT
i )

√
1
k

∑k
i=1 HSIC1(YiY T

i ,YiY T
i )

, (1)

where HSIC1 is the unbiased estimator from Song et al. (2012). The result is an estimator of CKA
that converges to the same value regardless of the batch size.

We compute CKA between all layer representations, including before and after batch normaliza-
tion, activations, and residual connections. In experiments that involve tracking how a model’s in-
ternal properties (principal components of activations, representation similarity, etc.) change across
epochs, we set batch normalization layers to be in training mode, to reduce the difficulty of adapting
to batch statistics of the test set when the model has not converged.

The Block Structure Phenomenon: Nguyen et al. (2021) use linear CKA to compute the represen-
tation similarity for all pairs of layers within the same model and visualizes the result as a heatmap
(with x and y axes indexing the layers from input to output). They find a contiguous range of hidden
layers with very high representation similarity (yellow squares on heatmaps in Figure 1a) in very
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deep or wide models, and call this phenomenon the block structure. The block structure arises in net-
works that are large relative to the size of the training set — although small networks do not exhibit
block structure when trained on CIFAR-10, they do exhibit block structure on smaller datasets.

Representations of the layers that comprise the block structure exhibit different representational
geometry than other layers. For layers inside the block structure, the first principal component
explains a large fraction of the variance in representations; this is not the case for the rest of the layers
or for networks without the block structure (Nguyen et al., 2021). We replicate this observation in
Figure 2a. The substantial similarity between layers inside the block structure reflects a high degree
of alignment of their first principal components, as can be seen from the following decomposition
of linear CKA for centered activation matrices X ∈ Rn×p1 , Y ∈ Rn×p2 :

CKA(XXT,Y Y T) =

∑p1

i=1

∑p2

j=1 λ
i
Xλ

j
Y 〈ui

X ,u
j
Y 〉2√∑p1

i=1(λ
i
X)2

√∑p2

j=1(λ
j
Y )

2
(2)

where ui
X ∈ Rn and ui

Y ∈ Rn are the ith normalized principal components of X and Y , and λiX and
λiY are the amounts of variance that these principal components explain (Kornblith et al., 2019). As
the fraction of variance explained by the first principal component of each representation approaches
1, CKA becomes a measure of the squared cosine similarity between first principal components
〈u1

X ,u
1
Y 〉2. Nguyen et al. (2021) conclude that the block structure preserves and propagates a

dominant first principal component across many hidden layers.

Datasets & Models: Our setup closely follows that of Nguyen et al. (2021) and analyzes ResNets of
varying depths and widths, trained on common image classification datasets CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009), as well as the medical imaging dataset Patch Camelyon (Veeling et al.,
2018). These datasets are chosen to reflect the image statistics found in different domains, and we
observe that they all easily induce a block structure in reasonably sized ResNets.

The ResNet architecture design follows Zagoruyko & Komodakis (2016), with the layers distributed
evenly between three stages — each marked by a different feature map size — and the number of
channels is doubled after each stage. To scale the model depth and width, we increase the number
of layers and channels respectively. In experiments involving Shake-Shake regularization (Gastaldi,
2017), the network is modified to have 3 branches that are combined in a stochastic fashion. More
information on hyperparameters can be found in Appendix A.

4 DOMINANT DATAPOINTS AND HOW THEY SHAPE THE BLOCK STRUCTURE

4.1 DATAPOINTS THAT ACTIVATE THE FIRST PRINCIPAL COMPONENTS

Motivated by previous evidence that the block structure propagates a dominant principal component
across its constituent layers, we attempt to interpret the signal carried by this PC by examining the
distribution of values after projecting all test examples onto the first PC of each layer’s activations.
We find that the distribution is bimodal: while most values are concentrated within a certain range
(in terms of magnitude), there exist some that are orders of magnitude bigger (Figure 3).

We call these datapoints with large projections dominant datapoints, and find that they are consistent
across the range of layers making up the block structure, as seen from each column of images in
Figure 3 showing the dominant datapoints for two different layers in the same block structure. This
explains why the first principal components of different layer activations inside the block structure
are highly similar (Figure 2a), an observation made earlier in (Nguyen et al., 2021). Moreover, this
dominant datapoint phenomenon is present only in networks that also exhibit a block structure. As
shown in Appendix Figure C.1, in networks without block structure, projections on the first principal
component are unimodally distributed and the corresponding datapoints differ between layers.

Dominant datapoints are visually similar. In the left column of Figure 3, we observe that all data-
points have a blue background, although the precise shade of blue varies. However, the background
colors that the first principal component picks up on depend on the random seed used to train the
model. The right column of Figure 3 shows the corresponding properties of an architecturally iden-
tical model trained from a different seed, where the dominant datapoints share white backgrounds
instead. Refer to Appendix C for visualizations of dominant images found in other tasks (CIFAR-
100, Patch Camelyon) and model architectures (wide ResNet). We find that besides background
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Figure 3: Visualization of the distribution of projected values onto the first principal component by test
inputs. There exist a small number of datapoints that yield significantly larger projected values than the rest
and dominate the first principal component of the network. Here we show examples of those dominant images
for two different seeds of ResNet-164 (1×) (columns). Each seed’s dominant images share similar background
colors, but these background colors differ between seeds. Further visualization of dominant datapoints across
different layers — for instance, layers 250 and 500 in this case — show that they are consistent across layers
making up the block structure. See Appendix C for analysis of other models and tasks.
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Figure 4: Removing a small number of dominant datapoints eliminates the block structure. Plots show
the effect of removing examples with the largest projections on the first PC of layer 300 of ResNet-164 (1 ×)
models. Columns reflect different numbers of examples removed; rows reflect models trained from different
seeds. Within each group, the top left plot shows linear CKA heatmaps, the bottom left shows the fraction of
variance explained by the first PC, and the images reflect the new examples with the largest projection on the
first PC after data removal.

color, the dominant datapoints can also reflect other simple image patterns that are prevalent in the
dataset, such as the appearance of large dark spots in histopathologic scans (Appendix Figure C.3).

Finally, the block structure observed in linear CKA heatmaps arises solely from dominant datapoints.
As seen in Figure 4, when the 10% most dominant datapoints are excluded from evaluation, the block
structure is completely eliminated in all 3 training runs of ResNet-164 (1×) that we examined, and
the fraction of variance explained by the first PCs is substantially reduced. For one seed, removing
only the 1% most dominant datapoints is already enough to achieve this effect. Thus, the block
structure is completely determined by the dominant images, and is sensitive to the frequency of the
dataset statistics that they capture. We investigate the effect of removing dominant datapoints on
CKA heatmaps computed with nonlinear kernels in Appendix Figure J.3.
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Figure 5: Datapoints that dominate the first principal components of the block structure also strongly
activate the corresponding layers. We explore the relationship between dominant datapoints and activation
norms for ResNet-164 (1×) trained on CIFAR-10 (top row) and ResNet-80 (1×) trained on Patch Camelyon
data (bottom row). For layers inside the block structure (left column), dominant datapoints (inset) produce much
larger activation norms than the median of a randomly selected minibatch (middle column). Moreover, within
these layers, the norms of the activations of different datapoints are highly correlated with the magnitudes of
their projections on the first principal component (right column).

4.2 DOMINANT DATAPOINTS HAVE LARGE ACTIVATION NORMS

Having discovered dominant datapoints by projecting onto the first principal component of the un-
derlying representations, we next explore their implications on other properties of the internal rep-
resentations, such as through layer activations. We investigate what happens to the activations of a
dominant example as it propagates through the network, and observe that it strongly activates the
parts of the network with a visible block structure. Figure 5 shows two dominant datapoints, for a
ResNet trained on CIFAR-10 that has a preference for white background images (top row), and for
another ResNet trained on Patch Camelyon that responds to clear pink backgrounds (bottom row).
Both models contain the block structure in their internal representations, and we find that in the
corresponding layers, the activations of the dominant datapoints are substantially bigger than the
median activations of the minibatches they are a part of.

4.3 CASE STUDY: IMAGE BACKGROUNDS AS A DOMINANT DATASET PROPERTY

As background colors appear to be a common dataset characteristic that is picked up by many large-
capacity models, we provide further evidence, through data and training manipulations, to confirm
that this is a real property of the hidden representations that emerges only with overparameterization.

First, we attempt to illustrate the connection between specific background colors, which vary across
random seeds, and the layer activations. To approximate this data statistic, we repeat only the top
left pixel in each image across the entire dimensions of the image, obtaining solid color images.
These synthetic images indeed yield even larger activations compared to the dominant images they
are taken from, and different initializations of architecturally identical networks respond to different
synthetic images. For instance, given the ResNet-164 (1×) model that has dominant datapoints
containing a blue background (Figure 3), its hidden layers are further activated when all image
pixels are replaced with the same shade of blue, but a solid white image produces considerably
smaller activations (Figure 6). In the same figure, we observe the opposite trend for another ResNet-
164 (1×) seed, which has been shown to pick up on white backgrounds (see Figure 3). Refer to
Appendix E for similar analysis on the Patch Camelyon dataset.

Intervention: Color Augmentation: Given earlier insights, a natural intervention to prevent the
network from potentially picking up background color signal is adding color augmentation. This
includes randomly dropping color channels and jittering brightness, contrast, saturation, and hue of
training images (Howard, 2013; Szegedy et al., 2015). As shown in Figure 7, training with this data
augmentation reduces the block structure effect in large capacity models as expected.
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Figure 6: Solid color images strongly activate intermediate layers. Rows show models with the same ar-
chitecture (ResNet-164 (1×)) that are trained from different random initializations. The first model’s dominant
datapoints consist of images with blue backgrounds (see inset images), whereas the second network prefers
white background images. We then observe that layers of the first model are strongly activated by solid blue
images, but not solid white images, whereas the second model shows the opposite pattern. Layers of both mod-
els are strongly activated by their respective dominant datapoints (red lines), but other solid colors (e.g., green)
do not yield strong activations in either. To improve readability of the plot, we plot only the representations at
the end of each ResNet block. See Appendix E for similar findings on Patch Camelyon models.
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Figure 7: Simply adding color augmenta-
tion helps reduce the block structure ef-
fect. Having established that the activations
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large-capacity models pick up on common
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periment with color dropping and color jit-
tering during training to counter this effect.
Indeed, color augmentation minimizes the
block structure appearance in the internal
representations.

5 EVOLUTION OF THE BLOCK STRUCTURE DURING TRAINING

In the previous section, we characterize the signals the block structure propagates across its layers,
and explore their implications on other aspects of the network internals. Informed by these findings,
we next explore what happens to the block structure and the dominant images over time, from
initialization until the model converges, and how this process varies across different training runs.

Figure 8 shows the evolution of the internal representations of a ResNet-110 (1×) model as it is
trained for 300 epochs on CIFAR-10, and tracks how similar each checkpoint is to the final model.
We observe that some structure in the CKA heatmap is already present by the first epoch, and the
heatmap undergoes little qualitative change past epoch 20 (top set of plots). However, when we
inspect the corresponding dominant datapoints and compare the hidden representations between
intermediate checkpoints and the final model (bottom rows of plots), we find that the block structure
does not always carry the same information. Instead, the representations, and corresponding groups
of dominant datapoints, only stabilize much later in training. We observe similar behavior for other
models in Appendix F, and note that the differences in block structure representations across random
seeds already take shape near the start of training as well. Overall these findings suggest that the
uniqueness of the block structure representations in large-capacity models can be attributed to both
initialization parameters and the image minibatches the models receive throughout training.

To further explore the link between dominant datapoints and fluctuations in network representations,
in Appendix Figure F.4, we track the magnitude of the projected value on the first PC of a single
dominant datapoint found at the end of training, and find that the value plummets at epochs when the
internal representation structure diverges from that of the fully trained model (i.e., epochs 0, 120 and
240). At these epochs, the dominant datapoint does not produce large activations either (bottom set
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Figure 8: Block structure phenomenon arises early during training, but the corresponding dominant
datapoints continue to change substantially. We compute the CKA between all pairs of layers within a
ResNet-110 (1×) model at different stages of training, and find that the shape of the block structure is defined
early in training (top row). However, comparing these different model checkpoints to the fully-trained model
reveals that the block structure representations at different epochs are considerably dissimilar to the final rep-
resentations, especially during the first half of the training process (middle row). The dominant datapoints also
vary significantly over the course of training, even after the block structure is clearly visible in the heatmaps
(bottom row). See Appendix F for similar plots with greater granularity, different seeds and architectures.

of plots). This illustrates the significance of the observed variations in dominant datapoints through
the training of large-capacity models.

6 BLOCK STRUCTURE AND TRAINING MECHANISMS

Having observed how the internal representation structures — more specifically the dominant PCs
of the layer representations — could vary significantly over the course of training, we turn to ex-
amining the interplay between the block structure and the training mechanism. Even though the
block structure arises naturally with standard training, previous work has suggested that the block
structure may be an indication of redundant modules in the corresponding networks (Nguyen et al.,
2021). Thus, it is natural to ask whether it is possible to train large-capacity models that do not have
a block structure, and how such models perform compared to those with block structures.

Since the block structure reflects the similarity of a dominant first principal component, propagated
across a wide range of hidden layers (see Section 3), we study whether regularizing the first principal
components of layer activations would eliminate the block structure. More specifically, we estimate
the fraction of variance explained by the first principal component of each layer using power iter-
ation and penalize it in the loss when it exceeds 20%. We provide full implementation details in
Appendix G. The resulting heatmap, in Figure 9 top right, shows that not only does this eliminate
the block structure from the internal representations, but surprisingly there is also no detrimental
effect on performance (Appendix Table G.1). We even observe small accuracy improvements on
CIFAR-100 and in the low-data regime, as shown in Appendix Table G.1.

Other standard training practices that are commonly used to boost performance are also effective
at reducing or eliminating the block structure effect. Shake-Shake regularization (Gastaldi, 2017)
eliminates the block structure for all of the network sizes that we examine (Figure 9, bottom left),
whereas transfer learning (Figure 9, bottom right) and training with smaller batch sizes (Appendix H)
appear to reduce the appearance of the block structure, although blocks are still discernible in the
largest models that we trained. In addition to regularizing the block structure, these training methods
also produce more similar representations across different training runs of the same architecture
configuration (Appendix Figure I.1).

Overall, our findings suggest that it is possible to obtain good generalization accuracy in networks
with and without block structure. We observe that learning processes that reduce the dominance of
the first PC of the representations provide slightly higher accuracies than standard training. However,
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Figure 9: Training with principal component regularization, transfer learning and Shake-Shake regu-
larization helps to eliminate the block structure. We directly regularize the first PC of each layer activations
given that this component explains a large fraction of variance in block structure representations, and find that
this eliminates the block structure. Full algorithm details can be found in Appendix G. Shake-Shake regular-
ization (Gastaldi, 2017) has a similar effect. We also find that transfer learning reduces the appearance of the
block structure, although it is still present in the largest network we trained. These results demonstrate that the
block structure phenomenon is dependent on the training mechanism (see Appendix I for implications of these
training methods on representations across random seeds).

some caution is warranted in interpreting these performance benefits: it may be difficult to causally
determine the connection between the block structure and performance, as any training intervention
targeting the block structure may have other distinct ramifications that also affect performance.

7 DISCUSSION

Scope and Limitations: Our work primarily focuses on the behavior of large-capacity networks
trained on relatively small datasets. This is motivated by domains such as medical imaging where
data is expensive relative to the cost of training a large model, and the high-stakes nature makes it
important to understand the model’s behavior. Additional future exploration is necessary to study
state-of-the-art settings in e.g. NLP, which use much bigger and heterogeneous datasets.

Conclusion: The block structure phenomenon uncovered in previous work (Nguyen et al., 2021)
reveals significant differences in the representational structures of overparameterized neural net-
works and shallower/narrower ones. However, it also exhibits some contradicting behaviors —
being unique to each network while propagating a dominant PC across a wide range of layers —
that suggest the underlying representations could either overfit to noise artifacts or capture rele-
vant signals in the data. Our work seeks to provide an explanation for this discrepancy. We find
that despite the inconsistency of the block structure across different training runs, it arises not from
noise, but real and simple dataset statistics such as background color. We further discover a small
set of dominant datapoints (with large activation norms) that are responsible for the block structure.
These datapoints emerge early in training and vary across epochs, as well as across random seeds.
We show how different training procedures, including color augmentation, transfer learning, Shake-
Shake regularization, and a novel principal component regularizer, can reduce the influence of these
dominant datapoints, eliminating the block structure and leading to more consistent representations
across training runs. This work motivates interesting open questions such as exploring how dom-
inant datapoints are manifested in other domains and applications of deep learning, and applying
principal component regularization to distribution shift and self-supervision problems.

REPRODUCIBILITY STATEMENT

Our experiments are performed on standard datasets and architectures that are publicly available.
We provide information regarding training hyperparameters in Appendix A and implementation
details for the principal component regularizer in Appendix G. We plan to release source code for
reproducing our results upon acceptance of the paper.
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Appendix
A TRAINING DETAILS

For wide ResNets, we look at models with depths of 14, 20, 26, and 38, and width multipliers of 1, 2,
4, 8 and 10. For deep ResNets, we experiment with depths 32, 44, 56, 110 and 164. In CIFAR-100
experiments, the block structure only appears at a greater depth so we also include depths 218 and
224 in our investigation. For Patch Camelyon datasets, we find that depth 80 is enough to induce
a block structure in the internal representations. All ResNets follow the architecture design in (He
et al., 2016; Zagoruyko & Komodakis, 2016).

Unless otherwise specified, we train all the models using SGD with momentum of 0.9 for 300
epochs, together with a cosine decay learning rate schedule and batch size of 128. Learning rate is
tuned with values [0.005, 0.01, 0.001] and L2 regularization strength with values [0.001, 0.005]. For
CIFAR-10 and CIFAR-100 experiments, we apply standard CIFAR-10 data augmentation consisting
of random flips and translations of up to 4 pixels. With Patch Camelyon, we use random crops of
size 32x32, together with random flips, to obtain the training data. At test time, the networks are
evaluated on central crops of the original images. For CKA analysis, each architecture is trained
with 10 different seeds and evaluated on the full test set of the corresponding domain.
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B BLOCK STRUCTURE AND THE FIRST PRINCIPAL COMPONENT

10 20 30

10

20

30

La
ye

r

Cos. similarity of first PCs

10 20 30
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 v

ar
ia

nc
e

Variance explained
by first PC

10 20 30

10

20

30
La

ye
r

CKA

10 20 30
Layer

10

20

30

La
ye

r

ResNet-38 (10×)

CKA without first PC

50 100

50

100

Cos. similarity of first PCs

50 100
0.00

0.25

0.50

0.75

1.00
Variance explained

by first PC

50 100

50

100

CKA

50 100
Layer

50

100

ResNet-110 (1×)

CKA without first PC

20 40

20

40

Cos. similarity of first PCs

20 40
0.00

0.25

0.50

0.75

1.00
Variance explained

by first PC

20 40

20

40

CKA

20 40
Layer

20

40

ResNet-44 (1×)

CKA without first PC

10 20 30

10

20

30

Cos. similarity of first PCs

10 20 30
0.00

0.25

0.50

0.75

1.00
Variance explained

by first PC

10 20 30

10

20

30

CKA

10 20 30
Layer

10

20

30

ResNet-38 (2×)

CKA without first PC

Figure B.1: The relationship between block structure and the first principal component. Each column
represents a different architecture. In ResNet-110 (1×) and ResNet-38 (10×), we observe a block structure in
the CKA plot (top row), and find that the first principal component explains a large fraction of the variance in the
layers that comprise the block structure (second row). We also observe that the cosine similarity of the first PCs
(third row) resembles the CKA plot, and removing the first PC before computing CKA substantially attenuates
the block structure (bottom row). By contrast, in ResNet-44 (1×) and ResNet-38 (2×), which have no block
structure, the first PC explains only a small fraction of the variance, and the CKA plot does not resemble the
cosine similarity between the first PCs, but instead resembles CKA computed without the first PCs.
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C ADDITIONAL VISUALIZATIONS OF DOMINANT DATAPOINTS
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Figure C.1: Dominant datapoints are not present in networks without block structure. The topmost row
shows representational similarity heatmaps from two networks without block structure. The rows below show
histograms of the projected values on the first PC, as well as images with the largest projections. Note that
the distributions of projected values are unimodal, unlike the bimodal distributions observed in networks with
a block structure (Figure 3). In addition, the datapoints with the highest projected values are highly dissimilar
between layers.
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Figure C.2: Visualization of the distribution of projected values onto the first principal component by
test inputs, for ResNet-224 (1×) trained on CIFAR-100. Top row shows histograms of the projected values
on the first PC. Bottom rows show images with the largest projections on the first PC. See Figure 3 for a similar
plot for ResNet-164 (1×) trained on CIFAR-10.
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Figure C.3: Visualization of the distribution of projected values onto the first principal component by
test inputs, for ResNet-80 (1×) trained on Patch Camelyon. Top row shows histograms of the projected
values on the first PC. Bottom rows show images with the largest projections on the first PC. See Figure 3 for a
similar plot for ResNet-164 (1×) trained on CIFAR-10.
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Figure C.4: Visualization of the distribution of projected values onto the first principal component by
test inputs, for ResNet-26 (8×) trained on Patch Camelyon. Top row shows histograms of the projected
values on the first PC. Bottom rows show images with the largest projections on the first PC. See Figure 3 for a
similar plot for ResNet-164 (1×) trained on CIFAR-10.
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D BLOCK STRUCTURE ON OUT-OF-DISTRIBUTION DATA
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Figure D.1: Appearance of block structure depends on the data on which representations are computed.
We plot CKA heatmaps for models of varying depths (top rows) and widths (bottom rows) trained on CIFAR-
10, evaluated on different datasets ordered by the degree of out-of-distribution. We observe that the block
structure representation are robust to small distribution shifts in the data, as evident from CKAs computed on
CIFAR-10 corrupted dataset (which adds perturbations to the original CIFAR-10 data) and CIFAR-100 dataset
(which contains mutually exclusive classes but undergoes the same data collection procedure as CIFAR-10).
However, larger shifts, such as from CIFAR-10 to Patch Camelyon, produce significantly different representa-
tional structures.

E DOMINANT EXAMPLES AND LAYER ACTIVATIONS
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Figure E.1: Solid color images strongly activate layers making up the block structure when trained on
Patch Camelyon. Top row shows dominant examples for a ResNet-80 (1×) model trained on Patch Camelyon
dataset. The CKA heatmap in the bottom left shows the location of the block structure in the internal represen-
tations of the model. We observe that the dominant images share a pink background. When we feed a synthetic
image filled with this background color into the network, we observe that it yields even larger activations com-
pared to the original image, for layers making up the block structure (i.e., after layer 200). See also Figure 6
for a similar plot for models trained on CIFAR-10 dataset.
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F EVOLUTION OF THE BLOCK STRUCTURE
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Figure F.1: Fine-grained analysis of the evolution of the block structure in a ResNet-110 (1×) model.
This plot shows the evolution of block structure for the same network as in Figure 8, but with greater temporal
granularity. As in Figure 8, we find that the shape of the block structure is defined early in training (top row).
However, comparing these different model checkpoints to the final, fully-trained model reveals that the block
structure representations at different epochs are considerably dissimilar, especially during the first half of the
training process (middle row). The corresponding dominant datapoints also vary over training, even after the
block structure is clearly visible in the within-checkpoint similarity heatmaps (bottom row).
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Figure F.2: Fine-grained analysis of the evolution of the block structure in a different ResNet-110 (1×)
model. This plot shows the evolution of block structure for a network that is architecturally identical to the
one in Figure 8, but trained with a different seed. For this training run, the final shape of the block structure is
established slightly later in training (top row), and similarity between early checkpoints and the last checkpoint
is very low (middle row). Analysis of the dominant data points shows that they change substantially over the
course of training (bottom row), and continue to vary long after the shape of the block structure ceases to change
in the within-checkpoint similarity heatmaps.
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Figure F.3: Evolution of the block structure over the course of training for a ResNet-164 (1×) model. We
compute the CKA between all pairs of layers within a ResNet-38 (10×) model at different stages of training,
and find that the internal representations already contain a block structure at epoch 10. Comparing these
different model checkpoints to the final, fully-trained model reveals that the block structure representations
at different epochs are considerably dissimilar, especially during the first half of the training process.
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Figure F.4: Example of how the magnitudes of layer activations and the projected values onto the first
principal component for a dominant image vary across different epochs, for a ResNet-164 (1×). Given a
dominant datapoint for a ResNet-164 (1×) model, we track the magnitude of its projected value onto the first
principal component of the block structure representations (top left), as well as its activation norms at each layer
in the network (bottom set of plots), over time. Notice the correspondence between these 2 metrics, especially
when their values drop at epochs 0 (initialization), 120 and 240. This is also aligned with the measurement of
CKAs across different epochs (see Figure F.3, where we find that the model checkpoints at these 3 epochs are
highly dissimilar from the final model in terms of the hidden representations). See Appendix Figure F.6 for the
corresponding visualization of a dominant example of a wide ResNet (ResNet-38 (10×)).
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Figure F.5: Evolution of the block structure over the course of training for a ResNet-38 (10×) model. We
compute the CKA between all pairs of layers within a ResNet-38 (10×) model at different stages of training,
and find that the internal representations already contain a block structure at epoch 10. Comparing these
different model checkpoints to the final, fully-trained model reveals that the block structure representations
at different epochs are considerably dissimilar, especially during the first half of the training process. See also
Figure F.3 for a similar plot for a deep ResNet (ResNet-164 (1×)).
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Figure F.6: Example of how the activation magnitude and the projected values onto the first principal
component for a dominant image vary across different epochs, for ResNet-38 (10×). Given a dominant
datapoint for a ResNet-38 (10×) model, we track the magnitude of its projected value onto the first principal
component of the block structure representations (top left), as well as its activation norms at each layer in the
network (bottom set of plots), over time. We observe that before the block structure representations stabilize and
show more similarity with those in the fully trained model (i.e., epoch 90, see Figure F.5 above), the dominant
image yields a small value when projected onto the first principal component, and also doesn’t strongly activate
the layers inside the block structure. This is aligned with the observation made in Figure F.4 for ResNet-164
(1×).
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Figure F.7: Evolution of the first principal components of layer representations over the first 100 steps
of training. At every step of training, we measure the proportion of variance explained by the first principal
component in each layer of a ResNet-110 (1×) network. At around step 30, the first principal component
begins to explain the majority of the variance in the layer representations.
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G TRAINING WITH PRINCIPAL COMPONENT REGULARIZATION

To regularize the first principal component, we first compute the amount of variance that it explains
using power iteration (Miyato et al., 2018). At training step, t, we compute the batch of n convo-
lutional feature maps with height h and width w containing c channels Mt ∈ Rn×h×w×c, flatten
the spatial dimensions to the channels dimension to create a matrix of size Xt ∈ Rn×p where
p = h×w× c, and subtract its column means to obtain a centered matrix X̃t. We randomly initial-
ize the stored eigenvector u0 ∈ Rp at the beginning of training. At each training step, we perform a
single step of power iteration initialized from the previous eigenvector:

vt = X̃T
t X̃tut−1 (3)

λt = ‖vt‖2 (4)
ut = vt/λt. (5)

λt approximates the top eigenvalue of X̃T
t X̃t and thus the amount of variance explained by the

first principal component of the representation. The proportion of variance explained is given by
λt/‖X̃t‖2F. We incorporate the regularizer as an additive term in the loss:

Lpc reg(λt, X̃;α, δ) = αmax(λt/‖X̃t‖2F − δ, 0), (6)
where α is the strength of the regularizer and δ is the threshold proportion of variance explained at
which it is imposed. In our experiments, we tune α as a hyperparameter with values in [0.1, 1, 10],
and set δ = 0.2 based on our analysis of the first principal components of models without the block
structure. To speed up the training process, we only apply the regularizer to ReLU layers starting
from the second stage, where block structure is often found.

Depth Width Accuracy (%)
(standard training)

Accuracy (%)
(PC regularization)

CIFAR-10 subsampled (6% of the full dataset):
56 1 77.8 ± 0.429 79.2 ± 0.188
26 8 80.1 ± 0.354 81.1 ± 0.185
26 10 80.3 ± 0.306 81.2 ± 0.194
38 8 80.2 ± 0.362 80.9 ± 0.264
38 10 80.3 ± 0.412 81.4 ± 0.350

CIFAR-10:
110 1 94.3 ± 0.078 94.4 ± 0.063
164 1 94.4 ± 0.075 94.5 ± 0.063

26 10 95.8 ± 0.087 96.0 ± 0.051
38 8 95.7 ± 0.091 95.8 ± 0.080
38 10 95.7 ± 0.157 95.9 ± 0.067

CIFAR-100:
218 1 74.1 ± 0.310 75.1 ± 0.132
224 1 74.0 ± 0.350 75.2 ± 0.131

38 8 79.8 ± 0.149 80.6 ± 0.306
38 10 80.5 ± 0.174 81.1 ± 0.241

Table G.1: Comparison of performance of large capacity models on CIFAR-10 and CIFAR-100, with and
without principal component regularization. We observe that our proposed principal component regularizer
consistently yields accuracy improvements for large capacity models that contain the block structure. The
performance gains are particularly significant in the case of CIFAR-100 and subsampled CIFAR-10 datasets.
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H EFFECT OF BATCH SIZE ON THE BLOCK STRUCTURE
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Figure H.1: Using very small batch sizes during training reduces the appearance of the block structure.
The top row shows the block structure effect in a range of very deep and wide networks, trained with
standard batch size = 128. We experiment with a drastically smaller batch size of 16 (bottom row)
and find that the block structure is now highly reduced, especially in deep models.
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I IMPACT OF TRANSFER LEARNING AND SHAKE-SHAKE REGULARIZATION
ON SIMILARITY OF LAYERS INSIDE THE BLOCK STRUCTURE

250

500

S
ee

d 
1

La
ye

r

0 500
Seed 3
Layer

250

500

S
ee

d 
2

La
ye

r

0 500
Seed 2
Layer

0 500
Seed 1
Layer

250

500

S
ee

d 
3

La
ye

r

250

500

0 500
Seed 3
Layer

250

500

0 500
Seed 1
Layer

250

500

0 500
Seed 2
Layer

500

1000

0 1000
Seed 3
Layer

500

1000

0 1000
Seed 1
Layer

500

1000

0 1000
Seed 2
Layer

0 1
CKA

Standard Training Transfer Learning Shake-Shake Regularization

Figure I.1: Training with transfer learning and Shake-Shake regularization yields models that are more
similar across different training runs. Each group of plots shows CKA between layers of models with the
same architecture but different initializations (off the diagonal) or within a single model (on the diagonal). In
the standard training case, representations across models are highly dissimilar, especially in the block structure
region. In contrast, when we use transfer learning and Shake-Shake regularization, comparisons across seeds
show more similarity in corresponding layers. The same observation can be made for models trained with
principal component regularization (see Appendix Figure I.2).

250

500

S
ee

d 
1

La
ye

r

0 500
Seed 3
Layer

250

500

S
ee

d 
2

La
ye

r

0 500
Seed 2
Layer

0 500
Seed 1
Layer

250

500

S
ee

d 
3

La
ye

r

250

500

0 500
Seed 3
Layer

250

500

0 500
Seed 1
Layer

250

500

0 500
Seed 2
Layer

0 1
CKA

Standard Training Principal Component Regularization

Figure I.2: Training with principal component regularization yields models that are more similar across
different training runs. Each group of plots shows CKA between layers of models with the same architecture
but different initializations (off the diagonal) or within a single model (on the diagonal). Similar to the obser-
vation made in Figure I.1, while representations across models are highly dissimilar in the standard training
case, models trained with principal component regularization from different random initializations show more
representational similarity in corresponding layers.
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J BLOCK STRUCTURE UNDER DIFFERENT KERNELS

As previously identified by (Nguyen et al., 2021), the block structure is a phenomenon the linear
CKA heatmaps of large (wide or deep) networks. In this section, we investigate whether the block
structure phenomenon also arises in CKA heatmaps computed with other kernels, and also examine
the effect of removing the dominant datapoints (identified by the magnitudes of their projections on
the first principal component, as in Section 4.1) upon these CKA heatmaps.

To compute CKA heatmaps under alternative kernels, we again use minibatch CKA. The approach
in Eq. 1 can be easily adapted to nonlinear kernels by replacing XiX

T
i and YiY

T
i the linear Gram

matrices formed by minibatch i, with minibatch kernel matrices Ki ∈ Rn×n and K ′i ∈ Rn×n.
The elements of these minibatch kernel matrices are the kernels between pairs of examples in the
minibatches, i.e., Kilm = k(Xil,: ,Xim,:) and K ′lm = k′(Yil,: ,Yim,:). Like linear minibatch CKA,
nonlinear minibatch CKA is computed by averaging HSIC1 across minibatches:

CKAminibatch =
1
k

∑k
i=1 HSIC1(Ki,K

′
i)√

1
k

∑k
i=1 HSIC1(Ki,Ki)

√
1
k

∑k
i=1 HSIC1(K ′i,K

′
i)
. (7)

We investigate the behavior of CKA under the linear kernel klinear(x,y) = xTy, the cosine kernel
kcos(x,y) = xTy/(‖x‖‖y‖), and the RBF kernel krbf(x,y;σ) = exp(−‖x − y‖2/(2σ2)). For
each layer, we measure the median Euclidean distance d̃ between examples in each layer and set
σ = cd̃ with c ∈ {0.2, 0.5, 1, 2, 5, 10} of that median Euclidean distance. To reduce variance when
computing RBF CKA with small c, we use a minibatch size of 1000 for these experiments.

Figure J.1 shows the appearance of CKA heatmaps of a narrow, shallow network (ResNet-38 1×,
top), a wide network (ResNet-38 10×, middle), and a deep network (ResNet-164 1×, bottom). Al-
though heatmaps computed for a small network (ResNet-38 1×) look qualitatively similar regardless
of kernels, both wide (ResNet-38 10×) and deep (ResNet-164 1×) networks exhibit significant dif-
ferences.
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Figure J.1: Appearance of representation heatmaps in wide and deep networks, but not narrow/shallow
networks, depends on the choice of kernel. Rows reflect different models and columns reflect different ker-
nels. For RBF kernels, the parameter indicates the fraction of the median distance between examples (computed
separately for each layer) that is used as the standard deviation of the kernel.

Because differences in representational similarity heatmaps ultimately reflect differences in the un-
derlying kernel matrices, in Figure J.2, we show kernel matrices of individual layers taken from
inside the block structure of each network on random minibatches where the examples have been
sorted in descending values of the first principal component. All kernels are sensitive to dominant
datapoints, but in different ways and to different degrees. Linear kernel matrices are dominated by
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the similarity between dominant datapoints. The cosine kernel ignores activation norms, and finds
high similarity within groups of dominant and non-dominant datapoints but low similarity between
groups. The RBF kernel effectively considers all far away points to be equally dissimilar, and thus
indicates that dominant datapoints are dissimilar to all other datapoints, including other dominant
datapoints, which are typically far in Euclidean distance (because, while aligned in direction, they
have different norms).

Note that the prevalence of dominant datapoints can differ across models and initializations, as
previously demonstrated in Figure 4. The dominant datapoints are clearly visible as a block in the
top-left corner of the cosine kernel matrix. For ResNet-38 10×, there are 14 in the minibatch of 128
examples that is shown, but for ResNet-164 (1×), there are only 2.
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Figure J.2: Kernels based on dot products, cosine similarity, or Euclidean distance are sensitive to dom-
inant datapoints. Plots show kernel matrices for a randomly sampled minibatch of 128 examples, computed
from a layer inside the block structure, for models that exhibit one. Examples are sorted in descending value of
the first principal component of the raw activations; top rows and left columns reflect dominant datapoints.

What is the effect of removing dominant datapoints upon CKA similarity heatmaps computed with
these other kernels? In Figure J.3, we show that, once the dominant datapoints are removed from
large networks, we again see only differences among CKA heatmaps computed with different ker-
nels, in line with the results observed for shallow networks in Figure J.1. There are no longer large
blocks of many consecutive similar layers in any of the heatmaps. Across all choices of kernel that
we have investigated, when blocks appear in CKA heatmaps, they can be eliminated by eliminating
the dominant datapoints.
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Figure J.3: Removing dominant datapoints eliminates both blocks and differences among kernels in
CKA representational similarity heatmaps. We remove the top k% of examples according to the magnitudes
of their projections on the first PC in layer 76 for ResNet-38 10× and layer 276 for ResNet-164 1×. Because
14/128 datapoints are dominant in the minibatch kernel matrix shown in Figure J.2, we provide results for
removing 20% of datapoints for that network, although they look only modestly different from the results
obtained by removing 10% of datapoints.
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