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Matthäus Kleindessner †

Amazon Web Services
Tübingen, Germany

Abstract

When serving a single base LLM with several different LoRA adapters simulta-
neously, the adapters cannot simply be merged with the base model’s weights as
the adapter swapping would create overhead and requests using different adapters
could not be batched. Rather, the LoRA computations have to be separated from
the base LLM computations, and in a multi-device setup the LoRA adapters can be
sharded in a way that is well aligned with the base model’s tensor parallel execu-
tion, as proposed in S-LoRA. However, the S-LoRA sharding strategy encounters
some communication overhead, which may be small in theory, but can be large in
practice. In this paper, we propose to constrain certain LoRA factors to be block-
diagonal, which allows for an alternative way of sharding LoRA adapters that does
not require any additional communication for the LoRA computations. We demon-
strate in extensive experiments that our block-diagonal LoRA approach is similarly
parameter efficient as standard LoRA (i.e., for a similar number of parameters it
achieves similar downstream performance) and that it leads to significant end-to-
end speed-up over S-LoRA. For example, when serving on eight A100 GPUs, we
observe up to 1.79x (1.23x) end-to-end speed-up with 0.87x (1.74x) the number of
adapter parameters for Llama-3.1-70B, and up to 1.63x (1.3x) end-to-end speed-up
with 0.86x (1.73x) the number of adapter parameters for Llama-3.1-8B.

1 Introduction

Low-Rank Adaptation (LoRA) [10] is one of the most prominent methods for parameter-efficient
fine-tuning: rather than fine-tuning all of a model’s weights, we only tune a small number of
parameters in low-rank factorizations to be added to the model’s weight matrices. Concretely, if
W ∈ Rdin×dout denotes a weight matrix in the model to be fine-tuned, we replace W by W +AB,
where A ∈ Rdin×r, B ∈ Rr×dout with r ≪ min{din, dout} are the low-rank factors that are fine-
tuned, while the parameters in W are frozen. If there is only one LoRA adapter (i.e., one A and B
per weight matrix W ) trained for one task, after fine-tuning A and B we can actually replace W by
W +AB and thus merge the adapter with the base model’s weights. This has the nice effect that the
LoRA adapter does not introduce any additional inference latency compared to the base model (or any
fully fine-tuned variant of it). However, if we want to serve the same base model with various different
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Figure 1: Downstream performance versus run-time trade-off plots for BD-LoRA (our proposed
approach) and S-LoRA [28] when serving Llama-3.1-8B with LoRA adapters of varying rank
(numbers in the plots). Downstream performance is perplexity on OpenOrca (top plot; lower is better)
or the mean performance over eight classification / regression tasks in the GLUE benchmark (bottom
plot; higher is better). Run-time is end-to-end latency when serving on eight A100 GPUs and
querying with requests of batch size 1 and 1024 input tokens to generate 128 output tokens. For a
certain downstream performance, BD-LoRA is significantly faster than S-LoRA (since it requires
similar compute and memory movement but no communication), that is BD-LoRA strictly Pareto-
dominates S-LoRA in these plots.

LoRA adapters (e.g., to serve different users on different tasks), adapter merging may be inefficient
as every time we changed to a new adapter, we would have to subtract the old LoRA weights and add
the new ones. Furthermore, it does not allow for batched inference unless all requests within a batch
use the same LoRA adapter. Hence, in multi-LoRA serving we do not aim to replace the matrix W ,
but instead replace the computation of XW , for some input X , by XW + XAB. The S-LoRA
paper [28] introduces techniques to do so efficiently for large language models (LLMs) based on the
transformer architecture [34] and provides a system for the scalable serving of up to thousands of
LoRA adapters. In particular, S-LoRA introduces a tensor parallelism (TP) strategy to shard A and B
over multiple devices (e.g., GPUs, ML accelerators) and parallelize the computation of XAB.

The S-LoRA TP strategy is well aligned with the Megatron-LM [29] TP strategy used to shard the
base LLM. However, it requires additional communication on top of the communication required for
the base model. In theory, this communication overhead is small if the rank of the LoRA adapters is
small. But while Hu et al. [10] originally show that LoRA adapters with larger ranks are not more
accurate than the ones with small rank, the more recent rsLoRA paper [13] demonstrates that LoRA
with the right scaling factor does benefit from larger ranks. More importantly, as we will see in our
evaluations of the S-LoRA implementation in the popular vLLM serving framework [14], in practice,
the communication overhead of S-LoRA is significant even when the rank is small.

We propose to modify LoRA’s architecture and to constrain certain LoRA factors to be block-diagonal,
which allows for an alternative to the S-LoRA tensor parallelism strategy. With our TP strategy
we can parallelize the computation of XAB without any additional communication on top of the
communication required for the base model. Our approach can be interpreted as adding independent
LoRA adapters to every shard of the base model’s weights. Of course, our block-diagonality
constraint reduces the LoRA adapter’s expressiveness (in particular, our modified architecture is
not mathematically equivalent to standard LoRA), but we show in extensive experiments that for a
similar number of effective (i.e., non-zero) parameters, both standard LoRA / S-LoRA and our block-
diagonal variant (termed BD-LoRA in the following) achieve very similar downstream performance
(often BD-LoRA actually outperforms standard LoRA). At the same time, for a similar number of
effective parameters, both S-LoRA and BD-LoRA require similar compute and memory resources, but
since BD-LoRA does not require any communication, overall it is significantly faster than S-LoRA.
Hence, BD-LoRA strictly Pareto-dominates S-LoRA in downstream performance versus run-time
trade-off plots as shown in Figure 1. In these plots, when comparing end-to-end latency at a certain
downstream performance (and favoring S-LoRA by requiring BD-LoRA to have better or equal
downstream performance for a pair of comparison), we observe end-to-end speed-ups of 1.27x - 1.51x
for Llama-3.1-8B served on eight A100 GPUs. In our other experiments, where we compare run-time
at a similar number of parameters, we observe end-to-end speed-ups of up to 1.79x (1.23x) with
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0.87x (1.74x) number of adapter parameters for Llama-3.1-70B on eight A100 GPUs, 1.63x (1.3x)
with 0.86x (1.73x) number of adapter parameters for Llama-3.1-8B on eight A100 GPUs, 1.27x with
1.03x number of adapter parameters for Llama-3.1-8B on four A100 GPUs, and 1.36x (1.27x) with
0.86x (1.73x) number of adapter parameters for Llama-3.1-8B on eight less powerful A10G GPUs.

To measure run-time we implemented BD-LoRA inference in the popular open-source vLLM serving
framework [14], which provides an implementation of the S-LoRA tensor parallelism strategy. A
slightly updated version of our BD-LoRA serving code is available as a draft pull request at
https://github.com/vllm-project/vllm/pull/28136. Our BD-LoRA training code has
been merged into Huggingface PEFT (see https://github.com/huggingface/peft/tree/m
ain/examples/bdlora_finetuning).

2 Background on LoRA, rsLoRA and S-LoRA

Low-Rank Adaptation (LoRA) [10] makes model fine-tuning much more efficient by freezing
model weights and instead only tuning a small number of parameters in low-rank factors to be
added to the pre-trained weight matrices as described in Section 1. Hu et al. [10] only focus on
transformer language models and add LoRA adapters only to the attention weight matrices, but the
technique can be applied to any linear layer in arbitrary neural networks. In our main experiments
we add LoRA adapters to both attention and MLP weight matrices similarly to other papers on
LoRA [e.g., 5, 13, 44], but we also run some experiments with attention or MLP weight matrices only.

Rank-stabilized LoRA (rsLoRA) During training, low-rank adapters are parameterized as γrAB
for γr ∈ R+, where Hu et al. [10] suggest to set γr = α

r for some hyperparameter α that does not
depend on the rank r, to reduce the effect of r on the product AB and help with hyperparameter
transfer across different values of r. Kalajdzievski [13] shows theoretically that the scaling factor
should rather be α√

r
as this is the only scaling factor that ensures stable adapter learning as r →∞.

Furthermore, Kalajdzievski [13] demonstrates empirically that with this scaling factor fine-tuning
results improve as r increases (up to r = 2048). This is in contrast to Hu et al. [10], who report
similar results for r = 8 and r = 64 and conclude that often a very small rank would be sufficient. We
verified that with rsLoRA scaling downstream performance monotonically improves with r whereas
with standard scaling it does not (cf. Appendix E.3) and hence use rsLoRA scaling.

S-LoRA [28] is a system designed for the scalable serving of up to thousands of different LoRA
adapters with the same base LLM. This is achieved by exploiting several techniques. Crucially,
in contrast to the original LoRA paper, in S-LoRA the adapter weights are not merged, but the
computational graph is adapted to compute XW +XAB instead of XW . S-LoRA stores adapter
weights in the main memory and only loads the LoRA adapters required for the next batch into the
device memory, where a unified paging mechanism jointly manages both KV cache and adapter
weights. Optimized kernels align with the paging mechanism to gather adapter weights and perform
LoRA computations, allowing to batch LoRA computations with different ranks and sequence lengths.
Finally, S-LoRA introduces a tensor parallelism strategy to parallelize LoRA computations over
multiple devices. In this paper, we propose to alter S-LoRA’s TP strategy after imposing a constraint
on the LoRA adapters, allowing us to completely eliminate the TP strategy’s communication overhead.
The other techniques used by S-LoRA are not affected by our alteration to the sharding strategy.

We use the basic version of the MLP module in the transformer architecture to present the S-LoRA
sharding strategy. It is a single hidden-layer MLP comprising two weight matrices W1 ∈ RdH×dI

and W2 ∈ RdI×dH interleaved by an element-wise non-linearity σ, that is input X ∈ RS×dH is
transformed to σ(XW1)W2, where dH is the LLM’s hidden dimension, dI is the LLM’s intermediate
dimension and S is the number of tokens (i.e., batch size × sequence length). As illustrated in the top
part of Figure 2, the Megatron-LM TP strategy shards W1 column-wise and W2 row-wise (different
shards go to different devices). Assuming a copy of X resides on every device, after processing
weight shards independently on every device, a single all-reduce operation is sufficient to obtain
a copy of the MLP’s output on every device. The bottom part of Figure 2 illustrates the S-LoRA
sharding strategy, which builds on top of the Megatron-LM TP strategy. It shards both LoRA factors
in the adapter for W1, denoted by A1 ∈ RdH×r and B1 ∈ Rr×dI , column-wise, and shards the
LoRA factors in the adapter for W2, denoted by A2 ∈ RdI×r and B2 ∈ Rr×dH , row-wise and
column-wise, respectively. Here and in the following r represents the rank of the LoRA adapters.
The S-LoRA sharding strategy requires an all-gather operation after the multiplication of the shards
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Figure 2: The TP strategy proposed in S-LoRA [28, Figure 4] to parallelize the LoRA computations
(lower block). It aligns well with the Megatron-LM TP strategy for the base model (upper block), but
requires additional all-gather and all-reduce operations (red boxes). Different colors represent tensor
shards residing on different devices. The figure applies to both attention and MLP modules and does
not show operations not relevant for the S-LoRA sharding strategy (e.g., element-wise operations).

of A1 with X (i.e., after matmul 3 in Figure 2) and an all-reduce operation after the multiplication
of the shards of A2 with the respective input X ′ (i.e., after matmul 5). A final all-gather operation
(after matmul 6) is fused with the all-reduce operation of the Megatron-LM TP strategy for the base
model by adding outputs of the LoRA computations and the base model computations on each device
before the base model’s all-reduce. This fused all-gather operation does not create any additional
communication cost. Hence, for the basic MLP module considered here the S-LoRA TP strategy
adds two communication operations on top of the communication required for the base LLM.

For GLU variants of the MLP module [27] that involve three weight matrices and transform X

to (σ(XW1) ⊗ Ŵ1)W2, with ⊗ denoting element-wise multiplication, as used in Llama [32], the
S-LoRA sharding strategy is adapted in the obvious way with Ŵ1 and its LoRA factors going through
the same computations as W1, A1 and B1. In that case the communication overhead of S-LoRA is
two all-gather and one all-reduce. Similarly, when sharding the attention module, the query / key /
value projections are treated as W1 and the output projection is treated as W2, and the communication
overhead of S-LoRA for the attention module is three all-gather3 and one all-reduce operations.

According to Sheng et al. [28], for one attention module, the additional communication cost is
5(N−1)rS

N , where N is the number of devices. Compared to the cost of 2(N−1)dHS
N required for the

base LLM, this additional cost is negligible if r ≪ dH , but can be significant if r is somewhat large
(e.g., for r = 256 as users requested in issue #2847 in vLLM and dH = 4096 as in Llama-3.1-8B,
the communication overhead is > 15%). More importantly, the cost estimate of Sheng et al. [28]
does not take into account the start time for initiating a communication operation [2]. As a result, the
communication overhead of S-LoRA is significant even when the rank is small (as we will see in our
experiments in Section 5).

3 Block-diagonal LoRA

With block-diagonal LoRA (BD-LoRA), we propose a variant of LoRA and an alternative to the
S-LoRA tensor parallelism strategy that completely eliminates S-LoRA’s communication overhead.
The key principle of our approach is that a column-sharded input X multiplied by a block-diagonal
matrix W 4, where every block sits on one device, yields a column-sharded output without requiring

3In practice, like it is done in vLLM, the computations for W1 and Ŵ1 or query / key / value projections can
be merged, and then one does not need two or three all-gather operations, but only one all-gather operation of
twice or thrice the size.

4We use the term “block-diagonal” as defined in [7], which does not require W to be square or symmetric.
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Figure 3: The TP strategy in our proposed BD-LoRA method. Unlike S-LoRA depicted in Figure 2,
in BD-LoRA the LoRA factors B1 and A2 are constrained to be block-diagonal matrices. Our design
eliminates the all-gather and all-reduce operations, marked in red, that S-LoRA requires.

any communication. That is, for X = [X1|X2| · · · |XN ] ∈ RS×din and

W =


W 1 0 · · · 0
0 W 2 0 · · ·

0 0
. . . 0

0 · · · 0 WN

 ∈ Rdin×dout

with Xi ∈ RS× din
N and W i ∈ R

din
N × dout

N hosted on device i, we can compute XW =

[X1W 1|X2W 2| · · · |XNWN ] ∈ RS×dout with XiW i ∈ RS× dout
N hosted on device i in paral-

lel on the N devices and without any communication. Note that the zeros in W are not touched when
computing XW and therefore also do not need to be loaded or stored in any way.

This principle allows us to introduce block-diagonality constraints on some of the LoRA fac-
tors A1, B1, A2, B2 (using the notation of Section 2) and subsequently shard them in a way that is
aligned with the Megatron-LM sharding of the base model’s weights and that does not introduce
any additional communication operations. Concretely, if we shard A1 column-wise and require
B1 to be block-diagonal, the intermediate LoRA result XA1B1 is column-sharded and aligned
with the intermediate and column-sharded base model result XW1. Hence, we can compute the
intermediate result Y = XW1 + XA1B1 on every device without requiring any communication.
Next, if we require A2 to be block-diagonal and shard B2 row-wise, we can compute Y A2B2 on
every device without requiring any communication and obtain distributed results that can be added to
the distributed YW2 from the base model computation before the base model’s all-reduce operation
yields the final result. Figure 3 provides an illustration of our BD-LoRA sharding strategy. We discuss
how to enforce the block-diagonality constraints during adapter training below.

Constraining B1 and A2 to be block-diagonal reduces their expressiveness. However, we can
compensate for the reduced expressiveness by increasing the rank r such that our BD-LoRA adapters
have a similar number of effective (i.e., non-zero) parameters as standard LoRA adapters. As we
show in our experiments, for a similar number of effective parameters standard LoRA and BD-LoRA
adapters achieve very similar downstream performance (cf. Section 5.1). At the same time, for
a similar number of effective parameters both S-LoRA and BD-LoRA have similar compute and
memory costs (cf. Appendix A), but since BD-LoRA does not require any communication, overall it
is significantly faster than S-LoRA (cf. Section 5.2).

Alternative interpretation and BD-LoRA adapter training From Figure 3 it is not hard to see
that BD-LoRA is equivalent to adding independent LoRA adapters of rank r/N to every shard of
the base model’s weights (it is also easy to see from the algorithmic description of BD-LoRA that
we provide in Appendix B). This interpretation removes the block-diagonality constraints from the
picture and provides a straightforward way to implement BD-LoRA fine-tuning in libraries supporting
standard LoRA fine-tuning, e.g., Hugging Face Transformers [40] and PEFT [21]: we simply rewrite
the model architecture such that weight shards become separate model weights that we can attach
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LoRA adapters to. It also resolves the question how to combine BD-LoRA with rsLoRA, i.e., how to
set the scaling factor in training: since we train independent adapters of rank r

N , we set it as α
√
N√
r

.

Knowledge of N at training time One limitation of BD-LoRA is that we need to know the number
of devices N (aka TP degree) already when training the BD-LoRA adapters. Note that this is not a
big restriction since for each LLM and hardware configuration there is usually a typical TP degree
that is used for serving the LLM (e.g., TP = 8 when serving Llama-X-70B on NVIDIA DGX A100
servers). Furthermore, conceptually it is easy to adapt BD-LoRA to be “downward compatible”
(i.e., allowing adapters trained for a larger TP degree to be served with smaller TP degree): putting
memory constraints aside, we can always run the workloads of Nh many devices on only Nl < Nh

many devices. For BD-LoRA serving, which only involves matrix multiplications and additions,
this could be done by stacking the computations of different devices along a new tensor dimension.
However, implementing such variant would require to adjust the base model sharding accordingly
and presumably to write new efficient kernels, and hence we leave such variant to future work.

4 Additional related work

Punica [4] is concurrent work with S-LoRA [28] and like S-LoRA a system for multi-LoRA serving.
Its key innovation is the design of a new CUDA kernel to batch computations for different LoRA
adapters, which some of the kernels introduced in S-LoRA are based on. Punica does not discuss
tensor parallelism for the LoRA computations, which is the focus of our paper.

Reducing communication overhead Numerous papers have found communication to be a bot-
tleneck in LLM training or inference and propose techniques to overlap communication with com-
putation [e.g., 37, 3, 12, 25, 36]. Overlapping communication with computation is hard whenever
the communication is blocking, and these papers rely on fine-grained decompositions and low-level
interventions to break dependencies. In contrast, Zhang et al. [43] propose a simple architectural
change to the transformer block that allows to overlap communication with computation. They
also introduce an alternative modification termed Desynced Residual that completely eliminates
some communication operations. The latter is closely related to our paper in that we modify the
architecture of LoRA adapters attached to transformer modules to completely eliminate S-LoRA’s
blocking communication.

LoRA variants Numerous variants of LoRA [e.g., 42, 44, 33, 15, 17] and refinements of the LoRA
training [e.g., 45, 9, 22, 41] have been developed, most of which are compatible with our proposed
BD-LoRA approach in the sense that we can replace LoRA with BD-LoRA in these variants and
eliminate the communication overhead one would encounter if using S-LoRA sharding at inference
time. In particular, BD-LoRA is fully compatible with Q-LoRA [5] both for training and inference.

SpartanServe [31] is a system for efficiently serving many different butterfly orthogonal fine-tuning
(BOFT) adapters [18] with the same base LLM. BOFT is a method for parameter-efficient fine-tuning
that updates model weights by multiplying with a product of sparse orthogonal matrices (in contrast
to adding low-rank factorizations as in LoRA). While the SpartanServe paper reports speed-ups over
S-LoRA for Llama-2-7B served on a single GPU, it does not discuss multi-GPU serving and hence is
incomparable to BD-LoRA.

5 Experiments

We first fine-tune numerous LoRA and BD-LoRA adapters on various downstream tasks to investigate
whether the block-diagonality constraint in BD-LoRA negatively impacts downstream performance.
We then study the run-time of BD-LoRA in comparison to S-LoRA in vLLM [14].

For our fine-tuning experiments, we used Llama-3.2-1B and Llama-3.1-8B [8] as base LLMs. We
performed the fine-tuning for numerous ranks, methods, datasets, TP degrees and random seeds,
and with a larger model this would have been infeasible. For our run-time experiments we used
Llama-3.1-8B and Llama-3.1-70B. We did not study the run-time for smaller models since those are
usually served without tensor parallelism.
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Figure 4: Downstream performance for standard LoRA and BD-LoRA adapters (both with rsLoRA
scaling) on Llama-3.2-1B (1st & 2nd plot) and Llama-3.1-8B (3rd & 4th plot) as a function of the
number of trainable parameters. For a similar number of parameters, the performance is very similar
between the two variants. The plots for OpenOrca (1st & 3rd plot) provide confidence intervals
obtained from running experiments for three or five different random seeds. The plots for GLUE (2nd
& 4th plot) provide average results over different tasks and different seeds. Plots for the individual
tasks with confidence intervals are provided in Figure 6 in the appendix.

Takeaways: Across datasets, we find that the block-diagonality constraint does not degrade down-
stream performance—for a similar number of effective parameters both standard LoRA and BD-
LoRA achieve very similar downstream performance (cf. Section 5.1). In almost all settings (with
varying adapter ranks, batch sizes, input and output lengths, TP degrees, and whether we add adapters
to both attention and MLP weight matrices or to only either of them), we find that BD-LoRA provides
significant speed-ups over S-LoRA (cf. Section 5.2).

5.1 Fine-tuning performance

Setup We fine-tuned LoRA and BD-LoRA adapters with various ranks on the tasks in the GLUE
benchmark [35] and on a language modeling task based on the OpenOrca dataset [23].

The GLUE benchmark is a widely used collection of natural language understanding tasks that
span various domains. It includes MNLI [39] for inference tasks, SST-2 [30] for sentiment analysis,
QNLI [26] for question-answering inference, QQP [11], for identifying duplicate questions, MRPC [6]
for paraphrase identification, CoLA [38] for evaluating linguistic acceptability, RTE for inference,
and STS-B [1] for measuring textual similarity. All tasks are classification tasks, except for STS-B,
which is a regression task. The GLUE benchmark also contains WNLI, but most papers using
GLUE [e.g., 10, 44, 9] exclude that task due to its small size, and so do we. GLUE provides an
evaluation metric for each task: Matthews correlation for CoLA, Pearson correlation for STS-B
and accuracy for all other datasets. OpenOrca [16] comprises language model instructions from the
FLAN collection [19] and corresponding GPT-3.5 / GPT-4 completions [24]. The task is language
modeling (i.e., next token prediction), and we evaluate performance with perplexity.

We fine-tuned the adapters using Huggingface Transformers [40] and PEFT [21], where we imple-
mented BD-LoRA as described in Section 3. Some more implementation details and hyperparameter
choices are provided in Appendix C.1. We ran experiments on AWS g5 instances equipped with
NVIDIA A10G GPUs. For the smaller datasets, including MRPC, CoLA, RTE, and STS-B, we ran
each experiment ten times with different random seeds (affecting the initialization of adapter weights
and data shuffling). For Llama-3.2-1B and the larger datasets, including MNLI, SST-2, QNLI, QQP,
and OpenOrca, we ran each experiment five times. For Llama-3.1-8B with the larger datasets, we ran
each experiment three times. Recall from Section 3 that the number of devices N used at inference
time determines the shape of the block-diagonal LoRA adapters, and hence N needs to be known at
training time. For Llama-3.2-1B we consider BD-LoRA adapters for N = 4 and N = 8 devices. For
Llama-3.1-8B we consider BD-LoRA adapters for N = 8 devices. In the following, we refer to the
number of devices also as the TP degree (and write, e.g., TP = 4 when N = 4). Note that the TP
degree has nothing to do with how many devices we use for training BD-LoRA adapters (for training
we use data parallelism rather than tensor parallelism).

Results Figure 4 provides results for OpenOrca and average results for the GLUE benchmark.
Results for the individual tasks in GLUE and when applying LoRA / BD-LoRA adapters only to the
attention or MLP weight matrices are provided in Figures 6 to 8 and Table 2 in Appendix E.
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For the same rank, BD-LoRA has roughly half the number of trainable parameters as standard LoRA,
because some adapter matrices are block-diagonal. For both Llama-3.2-1B and Llama-3.1-8B and
across OpenOrca and the eight datasets in the GLUE benchmark, for a similar number of trainable
parameters, BD-LoRA achieves performance comparable to standard LoRA. In many cases, BD-
LoRA even seems to outperform LoRA, and in the experiments with Llama-3.2-1B the results with
TP = 8 seem to be slightly better than those with TP = 4. However, confidence intervals heavily
overlap (cf. Figure 6), and we cannot consider any method superior to another one. These conclusions
also hold when applying LoRA / BD-LoRA only to the weight matrices in the attention or MLP
module (cf. Appendix E.2).

In these experiments, we used rsLoRA scaling (cf. Section 2), with which the performance of both
LoRA and BD-LoRA increases with the rank. This is in contrast to standard scaling, with which both
LoRA and BD-LoRA achieve nearly identical results across all ranks (cf. Appendix E.3).

5.2 Run-time performance

Setup For our run-time evaluation, we implemented BD-LoRA inference in vLLM [14]. We
provide some information about our implementation in Appendix C.2.

We used LLMPerf5 to send requests to a vLLM server hosting a base LLM and one or more
LoRA adapters and measure latency and throughput. We considered different inference settings
corresponding to different use cases with different numbers of input token (IT) length, output
token (OT) length, and batch size (BS). In each iteration, LLMPerf sends a batch of BS many requests
to the vLLM server and waits for all requests to be completed before sending the next batch, where
we sent a total of 128 requests in each experiment. For each request, vLLM is restricted to generate
a fixed number of OT many output tokens given a prompt of input token length IT. We mainly
considered the case where all requests use the same LoRA / BD-LoRA adapter, and we ran most
experiments using eight devices (i.e., TP = 8) and applying adapters in both attention and MLP
modules. When there is only a single adapter, both within a batch and across batches, this adapter
gets cached in the GPUs and running time is not affected by adapter (un-)loading. This setting is
somewhat artificial as a single adapter would best be served via weight merging. However, it best
demonstrates BD-LoRA’s innovation, which is the elimination of the communication overhead in
S-LoRA’s sharding strategy, and its results are also valid in the scenario where we have a small
number of different adapters (whether within or across batches), all of which get cached. We also
considered the case where every request uses a different adapter (thus completely preventing adapter
caching—the extreme real-world setting), applied adapters to attention or MLP weight matrices only,
and ran an ablation with different TP degrees.

We ran experiments on an AWS p4d instance equipped with eight NVIDIA A100 GPUs (each with
40 GB HBM2) and NVIDIA NVLink Switch that provides fast all-to-all GPU communication at 600
GB/s bidirectional throughput. For an ablation with different hardware we ran some experiments on a
less powerful AWS g5 instance equipped with eight NVIDIA A10G GPUs (each with 24 GB HBM2)
and PCIe interconnect with 100 GB/s networking throughput.

Baseline To provide the full picture, we included Not-Fully-Sharded-LoRA (NFS-LoRA) as baseline
in our run-time evaluation. NFS-LoRA is the default LoRA serving option in vLLM and was the
only serving option before S-LoRA was integrated. In NFS-LoRA, adapters A1 and B2 are not
sharded accross devices, but replicated so that each device maintains a full copy. The number of
communication operations in NFS-LoRA is the same as in BD-LoRA since the full copies of A1 and
B2 avoid the inter-device communication introduced by S-LoRA. However, NFS-LoRA consumes N
times more memory and computation for A1 and B2 compared to fully shared LoRA (i.e., S-LoRA
or BD-LoRA), which can become a significant drawback when serving LoRA adapters with large
rank or a large number of adapters or when handling large batch sizes or sequence lengths.

Results with a single adapter and TP = 8 Figure 5 provides results for Llama-3.1-70B with all
requests using the same adapter, which gets cached in the GPUs, and when IT = 1024, OT = 128
and BS = 1 (1st row) or BS = 64 (2nd row). Here, we applied adapters to both attention and MLP
weight matrices. The results for both Llama-3.1-8B and Llama-3.1-70B and numerous other settings
are provided in Appendix F.

5https://github.com/ray-project/llmperf
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Figure 5: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-70B served with various LoRA adapters (Not-Fully-Sharded LoRA in green,
S-LoRA in blue, BD-LoRA in orange) as a function of the number of trainable parameters. In these
plots we have an input token (IT) length of 1024, output token (OT) length of 128, and batch size (BS)
of 1 (1st row) or 64 (2nd) row, and all requests use the same adapter. We provide additional plots for
several other settings in Appendix F, but the results are largely consistent across settings: BD-LoRA
significantly outperforms S-LoRA for small batch size or medium to large ranks. It outperforms the
baseline of not-fully-sharded LoRA (NFS-LoRA) whenever the rank is not very small. The speed-up
of BD-LoRA mainly comes from a speed-up in decoding whereas in prefill we often do not see any
significant discrepancy between the three methods (the confidence intervals, which show a large
variation across different requests despite all requests having the same input length, heavily overlap).

The plots show the throughput (# output tokens / total time), end-to-end latency (E2E latency; total
time), decoding latency (time per output token), and prefill latency (time to first output token) as a
function of the number of trainable parameters and averaged over 128 requests. The parameter range
corresponds to ranks from 16 to 256 for standard LoRA adapters (S-LoRA and NFS-LoRA) and 32
to 512 for BD-LoRA adapters. Note that a rank of 256 for standard LoRA is not particularly large
and much smaller than the ranks of up to 2048 considered by Kalajdzievski [13] and that users of
vLLM have requested the support of ranks up to 256 when only ranks up to 64 were supported (cf.
issue #2847 in vLLM).

In almost all settings and for both Llama-3.1-8B and Llama-3.1-70B, BD-LoRA demonstrates the
highest throughput and the lowest E2E and decoding latency compared to NFS-LoRA and S-LoRA.
In particular, BD-LoRA significantly outperforms S-LoRA for small batch size or medium to large
ranks, and it outperforms NFS-LoRA whenever the rank is not very small. The speed-up of BD-LoRA
over S-LoRA mainly comes from a speed-up in decoding (and hence is largest in generation-heavy
tasks with small IT and large OT; cf. Appendix F). This is because during decoding the data size
to be communicated is very small, hence, the communication kernels’ latency is essentially a fixed
overhead. This overhead plays a large role during decoding. During prefill, the communication data
sizes are larger, but so are the compute latencies of the matrix multiplications. Overall, during prefill
the communication overhead is not as significant as during decoding. Empirically, BD-LoRA usually
has the lowest prefill latency, but for the prefill latency the confidence intervals are typically very large
and heavily overlap so that we cannot consider any method to be superior. As the rank increases, both
NFS-LoRA and S-LoRA show a strong increase in latency. In contrast, BD-LoRA’s latency grows
slower with the rank, showcasing its higher efficiency at larger ranks, which yield better downstream
performance when using rsLoRA scaling [13]. The performance of NFS-LoRA heavily depends
on the batch size. It outperforms S-LoRA for smaller batch sizes, where S-LoRA’s communication
overhead mainly comes from the communication startup time and sufficient resources are available to
handle NFS-LoRA’s increased memory and computation requirements, but is inferior to S-LoRA for
larger batch sizes.

These findings hold true when applying adapters in only attention or MLP modules, where we see a
larger speed-up of BD-LoRA over S-LoRA in the first case (cf. Appendix F.3) as there S-LoRA’s
communication overhead is larger (cf. Section 2).
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Results with different adapters for every request When every request uses a different adapter
and adapters cannot be cached in memory, adapters have to be loaded from disk before being used.
This adds a constant amount of time to a request’s prefill and E2E latency, which depends on the
adapter’s number of parameters, but is the same for NFS-LoRA, S-LoRA and BD-LoRA. Hence the
curves look similar as the ones discussed above but are shifted, and the overall speed-up numbers of
BD-LoRA are reduced, as it shares the same additional overhead of adapter loading as NFS-LoRA
and S-LoRA. Nevertheless, BD-LoRA still achieves a speedup of up to 1.78x. (cf. Appendix F.4).

Results for different TP degrees We investigated the effect of the TP degree for Llama-3.1-8B.
Plots can be found in Appendix F.2. We see that for smaller TP degrees the performance differences
between NFS-LoRA, S-LoRA, and BD-LoRA are less significant. This is expected since for smaller
TP degrees NFS-LoRA copies LoRA adapters to fewer devices and S-LoRA communicates between
fewer devices. Still, BD-LoRA consistently outperforms NFS-LoRA and S-LoRA. Note that for all
methods run-time performance goes down as the TP degree gets smaller, making TP = 8 the fastest
option for serving Llama-3.1-8B on one AWS p4d instance. These results suggest that BD-LoRA’s
advantage is likely to widen at larger TP degrees (e.g., 16 or 32), highlighting its scalability potential.

Results on different hardware We ran some experiments with Llama-3.1-8B on an AWS g5
instance equipped with eight NVIDIA A10G GPUs with PCIe interconnect. Note that compared
to A100 GPUs, A10G GPUs are not only slower in terms of communication, but also in terms of
compute and have less memory. Results are provided in Appendix F.5. We observe BD-LoRA
speed-ups over S-LoRA of up to 1.36x (1.27x) with 0.86x (1.73x) number of adapter parameters,
demonstrating BD-LoRA’s effectiveness also on less powerful hardware.

Results with quantized base model BD-LoRA and our vLLM implementation also work out of
the box with quantized backbone models as required for Q-LoRA [5]. To illustrate this we include
performance results for one setting with a quantized Llama-3.1-8B model in Appendix F.6. We find
that at better accuracy, serving BD-LoRA on top of the quantized model gives E2E speedups of 1.26x
over S-LoRA and 1.17x over NFS-LoRA (both also with quantized model).

6 Discussion

We proposed BD-LoRA as a variant / architectural change of LoRA that allows to exploit tensor
parallelism in multi-LoRA serving without any communication overhead for the LoRA computations.
BD-LoRA provides an alternative to the S-LoRA [28] sharding strategy, for which the communication
overhead can be significant. We demonstrated that for a similar number of parameters, S-LoRA and
BD-LoRA achieve very similar downstream performance, but BD-LoRA runs significantly faster. We
expect the run-time savings of BD-LoRA to be even more pronounced when combined with further
optimizations of the base model, in which case communication operations likely make up an even
bigger fraction of the overall run-time, but leave an investigation to future work.

One limitation of BD-LoRA is that we need to know the number of devices already at training time.
Another limitation is that we need to train BD-LoRA adapters from scratch even when standard
LoRA adapters already exist. While we discussed that the first limitation could be mitigated by a
modified implementation, we consider it an interesting question for future work how to efficiently
train BD-LoRA adapters starting from existing standard LoRA adapters.
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Table 1: The number of parameters per LoRA factor and per device and the associated compute
cost (number of floating-point operations) and memory cost (number of floating-point elements
to be moved) for S-LoRA and BD-LoRA. We use r to denote the rank for S-LoRA and r′ to
denote the rank for BD-LoRA. S-LoRA and BD-LoRA have the same number of parameters when
r′ = r(dH + dI)/(dH + dI

N ).

LORA FACTOR # PARAMETERS # OPERATIONS COST OF WRITING
AND LOADING OUTPUT

S-LORA

A1 dH · r
N

2 · S · dH · r
N

2 · S · r
N

B1 dI · r
N

2 · S · dI · r
N

2 · S · dI
N

A2 dI · r
N

2 · S · dI · r
N

2 · S · r
B2 dH · r

N
2 · S · dH · r

N
2 · S · dH

N

SUM 2 · (dH + dI) · r
N

4 · S · (dH + dI) · r
N

2 · S · ( r
N

+ dI
N

+ dH
N

+ r)

BD-LORA

A1 dH · r′

N
2 · S · dH · r′

N
2 · S · r′

N

B1
dI
N

· r′

N
2 · S · dI

N
· r′

N
2 · S · dI

N

A2
dI
N

· r′

N
2 · S · dI

N
· r′

N
2 · S · r′

N

B2 dH · r′

N
2 · S · dH · r′

N
2 · S · dH

SUM 2 · (dH + dI
N
) · r′

N
4 · S · (dH + dI

N
) · r′

N
2 · S · ( 2r

′

N
+ dI

N
+ dH)

A Compute and Memory Costs of S-LoRA and BD-LoRA

We analyze the compute and memory costs of S-LoRA and BD-LoRA for one basic MLP module
as considered in Section 2 and Section 3, respectively. For following our analysis, we recommend
to refer to the illustrations of S-LoRA and BD-LoRA in the main part of the paper: the S-LoRA
sharding strategy for a basic MLP module is illustrated in Figure 2, and the BD-LoRA sharding
strategy for a basic MLP module is illustrated in Figure 3.

For both S-LoRA and BD-LoRA the compute cost is the cost of matmul 3, matmul 4, matmul 5
and matmul 6 (corresponding to matrix multiplications with LoRA factors A1, B1, A2, B2) and of
add 1 and add 2 (corresponding to adding outputs of the LoRA computations and the base model
computations) in Figure 2 and Figure 3, respectively. We can see from Table 1 that for both S-LoRA
and BD-LoRA the cost of the matrix multiplications is 2 · S · # parameters. Hence, for the same
number of effective parameters S-LoRA and BD-LoRA incur the same compute cost for the matrix
multiplications. The cost of add 1 is S dI

N floating-point operations per device for both S-LoRA
and BD-LoRA. The cost of add 2 is S dH

N floating-point operations per device for S-LoRA and
SdH for BD-LoRA. The costs of these additions are negligible compared to the cost of the matrix
multiplications as stated in Table 1 (note that r ≥ N and typically dI > dH , e.g., dH = 4096 and
dI = 14336 in Llama-3.1-8B), and S-LoRA and BD-LoRA incur similar compute cost overall.

The memory cost is the cost for loading model weights and inputs and for loading and writing
intermediate results. The cost for loading the input (input X of size S × dH in both Figure 2 and
Figure 3) is the same for S-LoRA and BD-LoRA. For the same number of effective parameters,
the cost for loading model weights is also the same. For S-LoRA the cost for loading and writing
intermediate results is

2 · S ·
(

r

N
+

dI
N

+
dH
N

+ r

)
︸ ︷︷ ︸

intermediate results from matmul as in Table 1

+2 · S · r︸ ︷︷ ︸
all-gather

+2 · S · dI
N︸ ︷︷ ︸

add 1

+2 · S · r︸ ︷︷ ︸
all-reduce

+2 · S · dH︸ ︷︷ ︸
add 2

=

2 · S ·
(

r

N
+

dH
N

)
+ 6 · S · r + 4 · S · dI

N
+ 2 · S · dH .
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For BD-LoRA the cost for loading and writing intermediate results is

2 · S ·
(
2r′

N
+

dI
N

+ dH

)
︸ ︷︷ ︸

intermediate results from matmul as in Table 1

+2 · S · dI
N︸ ︷︷ ︸

add 1

+2 · S · dH︸ ︷︷ ︸
add 2

= 4 · S · r
′

N
+ 4 · S · dI

N
+ 4 · S · dH ,

and the absolute difference between these two is∣∣∣∣4 · S · r′N + 2 · S · dH − 2 · S · r
N
− 2 · S · dH

N
− 6 · S · r

∣∣∣∣ ≤
2 · S

N
· |2r′ − r|+ 2 · S ·

∣∣∣∣dH − dH
N
− 3r

∣∣∣∣ .
For the number of parameters to be the same, we have

r′ = r
dH + dI

dH + dI

N

and hence

1 < r′ < r

(
1 +

dI
dH

)
.

In a typical setting we have dI = c · dH for some rather small c (e.g., c = 3.5 in Llama-3.1-8B),
N ≥ 2 being of similar size or larger and r ≪ dH such that dH/N + 3r ≪ dH . It follows that the
absolute difference in the cost is not greater than 2 · S · dH , which is as small as the memory cost
incurred for loading the input and writing the final result in the base model computation.

B Algorithms for BD-LoRA

In the main paper, we described BD-LoRA and illustrated it in Figure 3. In this section, we further
include an algorithmic description in Algorithm 1. From the algorithm it is clear that lines 6-16 allow
for full parallelization without the need to communicate. Furthermore, the algorithm facilitates the
interpretation that we have presented in Section 3. In the main for loop, each device processes a
standard (unsharded) LoRA-adapted MLP of intermediate size dI/N and with rank r/N . We can
thus interpret BD-LoRA as adding independent LoRA adapters for each GPU.

Our main paper focuses on the full MLP computation as it is prevalent to LLMs, which couples to
matrix multiplications. However, in general, the idea of BD-LoRA can be applied to the adaptation
of any linear layer in deep neural networks. We emphasize that the structure of the adapters should
always be based on the parallelism design of the serving configuration. For a general matrix
multiplication, for example, let us assume the setting that full inputs and outputs should be replicated
across devices and that the weights are column-sharded (sharded along the output dimension). Then
the backbone model’s distributed matrix multiplication would require an all-gather after the sharded
matrix multiplication. In this case BD-LoRA would have the B matrix block diagonal, i.e., the
constraint is the same as for the first matrix multiplication in the Megatron style approach. The
A matrix is dense and regularly column-sharded. This approach would hence not introduce any
additional communication beyond the all-gather required by the backbone. We illustrate this for N
shards in Algorithm 2.

C Implementation and Hyperparameter Details

C.1 Fine-tuning Experiments

Implementation We implemented the training of BD-LoRA adapters within Huggingface Trans-
formers6 & PEFT7. We modified the Huggingface Transformers source code that implements the
Llama architecture to split each projection layer into N shards and then applied standard LoRA to
these shards using PEFT. PEFT allows the addition of a LoRA adapter to any linear layer. For each
shard of the linear layer in the Attention module and / or MLP module, we added a LoRA adapter
with a rank of r′ = r

N (cf. Section 3).
6https://huggingface.co/docs/transformers Version: 4.46.2.
7https://huggingface.co/docs/peft Version: 0.12.0.
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Algorithm 1 BD-LoRA Forward Pass for Megatron-Style MLP with Tensor Parallelism (Figure 3)
Require:

1: Input X ∈ RB×dH (replicated across N devices)
2: Base weights W (i)

1 ∈ RdH×dI/N , W (i)
2 ∈ RdI/N×dH (sharded column-and row-parallel)

3: BD-LoRA factors A(i)
1 ∈ RdH×r/N , B(i)

1 ∈ Rr/N×dI/N (with B1 block-diagonal)
4: BD-LoRA factors A(i)

2 ∈ RdI/N×r/N (with A
(i)
2 block-diagonal), B(i)

2 ∈ Rr/N×dH

5: for each device i ∈ {1, . . . , N} in parallel do
6: // First linear projection (base + BD-LoRA)
7: Y

(i)
1 ← XW

(i)
1 ▷ Base model contribution

8: Z
(i)
1 ← XA

(i)
1 ▷ Local adapter projection

9: Y
(i)
1,adapter ← Z

(i)
1 B

(i)
1 ▷ Block-diagonal B1 ensures no communication

10: Y
(i)
1 ← Y

(i)
1 + Y

(i)
1,adapter

11: // Second linear projection (base + BD-LoRA)
12: Y

(i)
2 ← Y

(i)
1 W

(i)
2

13: Z
(i)
2 ← Y

(i)
1 A

(i)
2 ▷ Block-diagonal A2 ensures no communication

14: Y
(i)
2,adapter ← Z

(i)
2 B

(i)
2

15: Y
(i)
2 ← Y

(i)
2 + Y

(i)
2,adapter

16: end for
17: // Final aggregation (only standard Megatron all-reduce)
18: Y ← AllReduce({Y (1)

2 , . . . , Y
(N)
2 })

19: return Y (replicated across N devices)

Algorithm 2 BD-LoRA Forward Pass for a Single Column-Parallel Linear Layer
Require:

1: Input X ∈ RB×din (replicated across N devices)
2: Base weights W (i) ∈ Rdin×dout/N (sharded column-parallel)
3: BD-LoRA factors A(i) ∈ Rdin×r/N , B(i) ∈ Rr/N×dout/N (with B(i) block-diagonal)
4: for each device i ∈ {1, . . . , N} in parallel do
5: Y

(i)
base ← XW (i) ▷ Base model contribution

6: Z(i) ← XA(i) ▷ Local adapter projection
7: Y

(i)
adapter ← Z(i)B(i) ▷ Block-diagonal B ensures no communication

8: Y
(i)
local ← Y

(i)
base + Y

(i)
adapter

9: end for
10: Y ← AllGather({Y (1)

local, . . . , Y
(N)
local}) ▷ Standard all-gather operation

11: return Y (replicated across N devices)

Hyperparameters We set LoRA’s α parameter to 16 and used the AdamW optimizer [20] with
a linear learning rate schedule and a warmup ratio of 0.05. For the GLUE benchmark, we set the
learning rate to 10−5, enabled early stopping, and restricted the maximum sequence length to 128.
For OpenOrca, we followed the settings described in the rsLoRA-paper [13] and fine-tuned on
20,000 examples with a learning rate of 5 · 10−5 and evaluated on another 20,000 examples. In all
experiments, LoRA [10] and BD-LoRA were applied with the same settings.

C.2 Run-time Experiments

Implementation For our run-time evaluation, we integrated BD-LoRA in vLLM8. We store the
block-diagonal matrices B1 and A2 in our BD-LoRA adapters (using the notation of Figure 3) as
matrices of shape r

N × dI and dI × r
N , respectively, by putting blocks next to each other or on top of

8https://docs.vllm.ai/ Version: commit c11f172 (between releases v0.6.4.post1 and v0.6.5).
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each other. This way we do not store or touch any zeros in the block-diagonal matrices. We modified
the slicing code of vLLM to correctly distribute the block-diagonal LoRA adapters across multiple
GPUs. After loading the BD-LoRA adapters into GPU memory, all we have to do is to remove the
communication operations from the LoRA computations in vLLM to fully implement BD-LoRA. All
other components, including LoRA memory management, scheduling, and request handling, are kept
unchanged and handled by vLLM in the same way as for S-LoRA.

D Licenses

The primary GLUE tasks are built on and derived from existing datasets. Please refer to the original
licenses accompanying each dataset. The original GLUE website9 refers users to the original licenses
accompanying each dataset. OpenOrca is licensed under the MIT License10. The Llama models
are licensed under the LLAMA 3.1 COMMUNITY LICENSE AGREEMENT11 and LLAMA 3.2
COMMUNITY LICENSE AGREEMENT12.

E Additional Fine-tuning Experiments

E.1 BD-LoRA Fine-tuning

Table 2 and Figure 6 provides a detailed comparison of Llama-3.2-1B and Llama-3.1-8B [8] on the
OpenOrca [23] and GLUE benchmarks [35], as represented in Figure 4. Perplexity is used as the
evaluation metric for OpenOrca, where lower is better, while for GLUE, we use Matthew’s correlation
for CoLA, Pearson correlation for STS-B, and accuracy for other tasks, where higher is better. The
confidence intervals overlap significantly, suggesting that BD-LoRA and LoRA perform at a similar
level overall. BD-LoRA occasionally surpasses LoRA, particularly on OpenOrca and the average
GLUE score. BD-LoRA trained with TP = 8 appears to slightly outperform BD-LoRA trained
with TP = 4. For datasets such as MNLI and SST-2, increasing the rank does not significantly
impact performance, even when using rsLoRA. However, for the majority of datasets, increasing
the rank continues to enhance performance. For Llama-3.2-1B, the confidence intervals largely
overlap across the eight datasets, indicating that BD-LoRA and LoRA achieve similar performance
with the same number of trainable parameters. For Llama-3.1-8B, BD-LoRA outperforms LoRA
on SST-2 but underperforms on MRPC. SST-2 is a sentiment analysis task with a larger dataset,
while MRPC focuses on paraphrase detection and involves a smaller dataset. The task type and
dataset size may influence the relative performance of LoRA and BD-LoRA. Nevertheless, for
most datasets, the confidence intervals overlap significantly, indicating that BD-LoRA and LoRA
perform similarly overall.

E.2 BD-LoRA with Attention-only and MLP-only adapters Fine-tuning

Figure 7 and Figure 8 show the performance of Llama-3.2-1B using Attention-only and MLP-only
adapters for both TP = 4 and TP = 8 on eight GLUE datasets.

The confidence intervals largely overlap across the evaluated datasets. Figure 7 indicates that, with
Attention-only adapters, LoRA achieves better performance on MNLI, while BD-LoRA performs
better on QQP. For the remaining datasets, the confidence intervals of the methods exhibit significant
overlap, suggesting comparable performance. Similarly, Figure 8 shows that, with MLP-only adapters,
LoRA performs better on CoLA and at lower ranks on QNLI.

Although BD-LoRA shows a slightly lower average score, less than 0.4%, at lower ranks in both
Attention-only and MLP-only adapters, it demonstrates similar performance to LoRA when both
Attention and MLP modules are equipped with LoRA adapters, as shown in Figure 4 and Figure 6.
This slight difference in performance at lower ranks could be influenced by the reduced number
of trainable parameters, as applying LoRA to only part of a module effectively decreases the
parameter count, leading to marginally worse performance for BD-LoRA at lower ranks. However,

9https://gluebenchmark.com/faq
10https://huggingface.co/datasets/Open-Orca/OpenOrca
11https://www.llama.com/llama3_1/license/
12https://www.llama.com/llama3_2/license/
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Figure 6: Fine-tuning results with confidence intervals obtained from running experiments three
or five times with different random seeds for Llama-3.2-1B (1st and 2nd row) and Llama-3.1-8B
(3rd and 4th row) on eight GLUE datasets. For Llama-3.2-1B we consider BD-LoRA adapters for
TP = 4 and TP = 8 while for Llama-3.1-8B we only consider BD-LoRA adapters for TP = 8.

the confidence intervals for the methods often overlap significantly, as seen with most datasets. The
high overlap of confidence intervals across most datasets suggests comparable performance overall,
with only a few datasets contributing to the slightly lower average score.

E.3 rsLoRA Fine-tuning

In this section, we evaluate LoRA and BD-LoRA with standard scaling and rsLoRA scaling [13]
using Llama-3.2-1B on OpenOrca as well as four small datasets from GLUE: MRPC, CoLA, RTE,
and STS-B, as shown in Figure 9.

With standard scaling, both LoRA and BD-LoRA achieve nearly identical results across all ranks in
both OpenOrca and GLUE. However, with rsLoRA scaling, both LoRA and BD-LoRA demonstrate
performance improvements as the rank increases on both OpenOrca and GLUE. This indicates that
with rsLoRA scaling, larger ranks enhance performance, making higher ranks more effective and
capable of achieving better results. Meanwhile, our proposed BD-LoRA method significantly reduces
the latency associated with large ranks.
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Figure 7: Fine-tuning results for Llama-3.2-1B on eight GLUE datasets when applying LoRA
only to the Attention weight matrices. The top left plot shows the average performance.
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Figure 8: Fine-tuning results for Llama-3.2-1B on eight GLUE datasets when applying LoRA
only to the MLP weight matrices. The top left plot shows the average performance.
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Figure 9: Comparison of fine-tuning with standard scaling and rsLoRA scaling on OpenOrca
(left plot) and four GLUE tasks (MRPC, CoLA, RTE, and STS-B; right plot) using Llama-3.2-1B as
base model. With standard scaling, both LoRA and BD-LoRA achieve similar results across all ranks.
However, with rsLoRA scaling, both LoRA and BD-LoRA show performance improvements as the
rank increases.
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Table 2: Downstream performance after fine-tuning LoRA and BD-LoRA adapters for Llama-
3.2-1B and Llama-3.1-8B on the OpenOrca dataset and eight GLUE benchmarks. Performance on
OpenOrca is measured by perplexity (lower is better). For GLUE, performance on CoLA is measured
by Matthew’s correlation, on STS-B by Pearson correlation, and on other tasks by accuracy (higher is
always better).

Method Rank # Trainable
Parameters OpenOrca ↓

GLUE ↑

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Llama-3.2-1B

LoRA

16 11.3M 3.20 89.3±0.1 95.8±0.3 86.9±1.0 64.6±0.9 92.9±0.1 91.0±0.0 53.4±0.9 20.3±1.7 74.3

32 22.5M 3.17 89.4±0.1 96.0±0.1 86.8±0.8 63.9±1.0 93.0±0.1 91.1±0.1 53.7±1.6 20.6±2.1 74.3

64 45.1M 3.15 89.5±0.1 96.1±0.2 87.6±0.7 64.1±1.1 93.0±0.1 91.3±0.1 54.3±1.2 20.7±2.0 74.6

128 90.2M 3.13 89.5±0.1 95.9±0.2 87.5±0.6 64.3±1.0 93.2±0.1 91.4±0.1 53.4±1.3 21.2±1.8 74.5

256 180.4M 3.11 89.5±0.1 96.1±0.2 87.5±0.7 64.3±1.2 93.3±0.1 91.4±0.1 53.8±1.1 21.0±2.1 74.6

512 360.7M 3.09 89.4±0.1 95.9±0.1 88.0±0.5 64.5±0.9 93.3±0.1 91.4±0.1 54.0±1.4 21.7±2.6 74.8

BD-LoRA
TP=4

32 11.1M 3.20 89.4±0.1 95.7±0.4 86.7±1.1 63.8±0.9 92.8±0.1 91.0±0.1 53.6±1.6 19.9±1.8 74.1

64 22.3M 3.17 89.4±0.1 96.0±0.1 86.6±0.7 63.6±1.0 92.9±0.2 91.1±0.0 53.6±1.9 20.8±2.4 74.3

128 44.6M 3.15 89.5±0.1 95.8±0.1 87.0±0.5 63.7±0.8 93.1±0.2 91.2±0.1 53.1±1.1 21.3±2.1 74.3

256 89.1M 3.13 89.5±0.1 95.9±0.2 87.2±0.5 64.1±1.1 93.1±0.2 91.3±0.1 53.5±1.4 21.4±2.1 74.5

512 178.3M 3.10 89.5±0.1 96.1±0.2 87.6±0.8 64.3±0.8 93.4±0.2 91.4±0.0 54.0±1.6 21.0±2.1 74.7

1024 356.5M 3.08 89.4±0.1 96.1±0.3 88.1±0.4 65.3±0.5 93.4±0.2 91.5±0.1 53.8±1.2 21.1±1.4 74.8

BD-LoRA
TP=8

32 9.2M 3.20 89.3±0.1 95.8±0.2 86.3±1.0 63.4±0.8 92.8±0.1 90.9±0.0 54.1±1.4 20.1±1.9 74.1

64 18.5M 3.18 89.4±0.1 95.9±0.2 86.9±0.6 63.7±1.1 92.9±0.1 91.0±0.1 54.2±1.7 20.9±2.3 74.4

128 37.0M 3.15 89.5±0.1 95.8±0.1 86.9±0.8 63.4±1.1 93.1±0.2 91.2±0.1 53.1±1.3 21.6±1.9 74.3

256 73.9M 3.13 89.5±0.1 96.0±0.0 87.1±0.6 64.2±0.8 93.2±0.2 91.3±0.1 53.8±1.7 21.7±1.7 74.6

512 147.8M 3.10 89.4±0.1 95.9±0.2 87.9±0.7 65.0±0.9 93.4±0.3 91.4±0.1 53.5±1.8 21.1±1.8 74.7

1024 295.7M 3.08 89.4±0.1 96.1±0.2 87.8±0.6 65.6±0.8 93.3±0.1 91.4±0.1 54.4±1.4 21.8±1.6 75.0

Llama-3.1-8B

LoRA

16 41.9M 2.32 91.8±0.1 96.6±0.1 87.7±0.4 69.5±1.1 95.6±0.1 92.0±0.1 52.8±1.8 20.4±2.3 75.8

32 83.9M 2.31 91.8±0.1 96.4±0.1 88.3±0.4 69.6±0.9 95.6±0.1 92.1±0.0 53.0±1.2 20.1±2.4 75.9

64 167.8M 2.30 91.8±0.1 96.6±0.1 88.3±0.6 70.0±0.8 95.7±0.1 92.1±0.1 53.2±1.9 20.3±2.6 76.0

128 335.5M 2.30 91.8±0.0 96.7±0.2 88.5±0.6 69.9±1.2 95.7±0.0 92.2±0.0 54.1±3.0 21.3±2.2 76.3

256 671.1M 2.29 91.8±0.0 96.6±0.1 88.9±0.4 70.3±1.1 95.7±0.1 92.3±0.0 54.2±1.3 21.3±2.1 76.4

BD-LoRA
TP=8

32 36.2M 2.32 91.8±0.1 96.7±0.1 87.2±0.7 69.0±1.0 95.5±0.1 91.9±0.0 52.5±1.9 20.1±2.2 75.6

64 72.4M 2.31 91.8±0.1 96.7±0.1 87.6±0.7 69.8±0.8 95.6±0.1 91.9±0.1 52.9±1.2 20.8±2.1 75.9

128 144.7M 2.30 91.8±0.1 96.6±0.1 87.9±0.6 70.4±0.8 95.7±0.1 92.1±0.1 53.8±1.2 21.0±2.1 76.2

256 289.4M 2.30 91.9±0.1 96.8±0.1 87.7±0.7 70.8±0.8 95.6±0.1 92.2±0.1 55.0±1.1 22.4±2.2 76.6

512 578.8M 2.29 91.9±0.1 96.9±0.1 88.7±0.7 69.9±1.0 95.7±0.1 92.2±0.1 55.0±1.2 22.5±2.6 76.6
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F Additional Run-time Experiments

F.1 Main Results

In this section, we present the throughput, end-to-end (E2E) latency, decoding latency, and prefill
latency of Llama-3.1-8B and Llama-3.1-70B with batch sizes (BS) of 1 / 16 / 32 / 64. Figure 10 and 11
show the results for an input token length of 1024 and an output token length of 128, while Fig-
ure 12 and 13 present the results for an input token length of 4096 and an output token length of 256.

BD-LoRA demonstrates the best E2E latency, decoding latency, and throughput compared to NFS-
LoRA and S-LoRA across all settings and for both Llama-3.1-8B and Llama-3.1-70B. BD-LoRA
outperforms NFS-LoRA particularly on larger model sizes, while surpassing S-LoRA especially on
smaller model sizes, demonstrating stable and superior performance overall. As the ranks increase,
both NFS-LoRA and S-LoRA experience significant increases in latency and decreases in throughput.
As the batch size increases, NFS-LoRA exhibits higher latency and lower throughput, particularly at
larger batch sizes on the 70B model. S-LoRA, on the other hand, shows higher latency and lower
throughput even with BS = 1, primarily due to the additional communication it introduces. From
the results shown in Figure 10, 11, 12 and 13, the input token length and output token length do
not significantly affect the relative runtime performance differences among these three methods.
However, batch size has a substantial impact on NFS-LoRA. BD-LoRA consistently demonstrates
stable and superior results across different settings.

We also present the results in Figure 14 and 15 for an input token length of 128 and an output token
length of 1024, focusing on generation-heavy tasks. The results and trends are similar between
Figure 10, 11 and Figure 14, 15. BD-LoRA shows even better results in generation-heavy tasks,
as it performs better in decoding latency. These results highlight the stability and superior runtime
performance of BD-LoRA in generation-intensive tasks, demonstrating its effectiveness in both short
and long generation scenarios.

Speedup with respect to fine-tuning performance To quantify BD-LoRA’s speedup with respect
to fine-tuning performance, we adopt the following procedure. For each rank of BD-LoRA, we
identify a rank of NFS-LoRA and S-LoRA that produces the most comparable but slightly worse
results compared to the corresponding rank of BD-LoRA. We then compare their speedup. This
analysis is conducted for both OpenOrca [16] and GLUE [35], and the results are presented in
Table 3 to 8. For example, in Table 3, for BS=1 and rank=128 of BD-LoRA, we found that rank=64
of S-LoRA produces worse but most similar results to rank=128 of BD-LoRA. We then compute the
speedup based on the performance of rank=128 for BD-LoRA and rank=64 for S-LoRA.

This approach ensures that, when computing speedup between BD-LoRA and S-LoRA, BD-LoRA
always achieves better results than S-LoRA, making the comparison fair. If a rank of BD-LoRA does
not outperform any rank of S-LoRA, the speedup is marked as “N/A.”

We observe that BD-LoRA achieves up to 2.68x speedup in E2E latency compared to S-LoRA,
which means that, even with slightly better downstream performance, BD-LoRA achieves up to a
2.68x speedup. With a similar number of trainable parameters, BD-LoRA demonstrates slightly
better downstream results, as shown in Appendix E.1. This makes the speedup more significant, as
BD-LoRA performs better in both downstream performance and efficiency.

Speedup with respect to the number of trainable parameters To compare speedup with respect
to the number of trainable parameters, for each rank of BD-LoRA, we identify two ranks of S-
LoRA for comparison: one with fewer trainable parameters but most similar to BD-LoRA, and
one with more trainable parameters but closest to BD-LoRA. In this way, there are two speedup
values for each rank of BD-LoRA. If no corresponding rank can be found in S-LoRA, the speedup is
marked as “N/A.”

Tables 9 to 20 present the detailed results for throughput, end-to-end (E2E) latency, decoding latency,
and prefill latency of Llama-3.1-8B and Llama-3.1-70B for the generation task with input token
lengths (IT) of 1024, 4096, and 128, and output token lengths (OT) of 128, 256, and 1024, respectively.
Tables 21 and 22 present the detailed results for Llama-3.1-8B with TP=4.

For Llama-3.1-8B, BD-LoRA achieves up to a 1.63x speedup with 0.86x the number of trainable
parameters. BD-LoRA achieves up to a 1.30x speedup with 1.73x the number of trainable parameters.
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For Llama-3.1-70B, BD-LoRA achieves up to a 1.79x speedup with 0.87x the number of trainable
parameters. BD-LoRA achieves up to a 1.23x speedup with 1.74x the number of trainable parameters.
When TP=4, BD-LoRA achieves up to a 1.27x speedup with 1.03x the number of trainable parameters.

F.2 Runtime Analysis with Varying TP Configurations

We present experiments with TP degree TP = 2/4/8 and batch size BS = 1/16/32 in Fig-
ure 16, 17, and 18, respectively, using an input length of 1024 and an output length of 128
with Llama-3.1-8B.

We see that for smaller TP degrees the performance differences between NFS-LoRA, S-LoRA, and
BD-LoRA are less significant. This is expected since for smaller TP degrees NFS-LoRA copies
LoRA adapters to fewer devices and S-LoRA communicates between fewer devices. Still, BD-LoRA
consistently outperforms NFS-LoRA and S-LoRA. Note that for all methods performance goes down
as the TP degree gets smaller, making TP = 8 the fastest option for serving Llama-3.1-8B on one
AWS p4d instance. This trend indicates that BD-LoRA’s performance advantage is likely to widen as
the TP size grows, suggesting strong scalability to larger configurations (e.g., TP-16 and TP-32).

F.3 Attention-only and MLP-only Runtime

Figure 19, 20, 21, and 22 show the throughput, E2E latency, decoding latency, and prefill latency of
Llama-3.1-8B and Llama-3.1-70B using Attention-only and MLP-only adapters.

For the Attention-only adapter, compared to Figure 10 and 11, the absolute latency of all three
methods decreases slightly. Removing LoRA from the MLP module reduces latency and computation
for all methods. However, BD-LoRA demonstrates relatively greater advantages compared to the
other baselines in the Attention module, with lower latency and higher throughput. Additionally,
the Attention module performs computations within each device, which increases intermediate
computation before each communication step. This means devices are more likely to wait for
communication to complete. The Attention module includes Q, K, V, and O projections, resulting in
four projection layers and four additional LoRA communication steps, which are more than the MLP
module. BD-LoRA eliminates communication overhead when sharding LoRA adapters, resulting in
greater efficiency in the Attention module.

For the MLP-only adapters, BD-LoRA has fewer trainable parameters compared to the Attention
adapters. The intermediate size in the MLP module is typically very large, and using block-diagonal
matrices in B1 and A2 significantly reduces the number of trainable parameters compared to the
Attention module. The speedup for MLP-only adapters is also more limited compared to Attention
adapters, as the adapters involve four communication steps in the Attention module, whereas the
MLP module has only two communication steps for standard transformers [34] and three for GLU
variants [27]. Nonetheless, BD-LoRA still demonstrates lower latency compared to other baselines.

F.4 Multi-LoRA Runtime

The adapters are loaded from the disk into GPUs via the following pipeline in vLLM: (1) LoRA
weights are first loaded into CPU memory and cached using the CPU’s LRU cache. (2) The LoRA
weights are then sliced within the CPU, transferred to the GPU, and cached in GPU memory.

The loading process from the CPU to the GPU is fast and has minimal impact on prefill latency.
However, loading from the disk to the CPU memory is time-consuming. Our implementation, based
on vLLM, excludes zeros for BD-LoRA in both loading and computation. In this section, we analyze
the runtime of BD-LoRA when each request uses a different adapter, preventing all adapters from
being cached in memory and requiring them to be loaded from disk. This evaluation aims to assess
the performance of BD-LoRA under such conditions and verify whether our implementation, which
excludes zeros, is efficient during the loading process.

Figure 23 shows the results of Llama-3.1-8B and Llama-3.1-70B using multi-adapters loaded from
the disk with an input token length (IT) of 1024, an output token length (OT) of 128, and a batch
size (BS) of 1. Compared with Figure 10 and 11, all methods with multi-LoRA exhibit a similar
increase in prefill latency. This increase also influences the E2E latency and throughput, as these
two metrics depend on the prefill latency. However, the decoding latency is largely unaffected, as it
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does not include loading time, and BD-LoRA still demonstrates superior performance. The loading
time is proportional to the number of trainable parameters. The prefill latency of the three methods
aligns with the number of trainable parameters, demonstrating that our implementation successfully
excludes zeros during loading.

Table 23, 24, and 25 show the speedup of Llama-3.1-8B and Llama-3.1-70B using multi-adapters
loaded from the disk with an input token length (IT) of 1024, an output token length (OT) of 128,
and a batch size (BS) of 1. With respect to fine-tuning performance, BD-LoRA achieves up to 1.78x
speedup in E2E latency compared to S-LoRA. With respect to the number of trainable parameters,
for Llama-3.1-8B, BD-LoRA achieves up to a 1.31x speedup with 0.86x the number of trainable
parameters and up to a 1.20x speedup with 1.73x the number of trainable parameters. For Llama-3.1-
70B, BD-LoRA achieves up to a 1.23x speedup with 0.87x the number of trainable parameters and up
to a 1.13x speedup with 1.74x the number of trainable parameters. As both BD-LoRA and S-LoRA
experience a constant increase in prefill latency, the speedup is reduced. However, BD-LoRA still
demonstrates relatively higher efficiency compared to S-LoRA.

Nevertheless, caching adapters in CPU or GPU memory does not significantly impact latency. The
use of loading adapters from disk is typically considered only when the number of adapters is large
and exceeds the maximum memory capacity.

F.5 Runtime Analysis with Varying Devices

We present experiments with Llama-3.1-8B on AWS g5 instance equipped with eight NVIDIA A10G
GPUs (each with 24 GB HBM2) and PCIe interconnect in Figure 24-25 and Table 26-27.

With respect to the number of trainable parameters, for Llama-3.1-8B, BD-LoRA achieves up to
a 1.36x speedup with 0.86x the number of trainable parameters and up to a 1.27x speedup with
1.73x the number of trainable parameters. These results demonstrate that BD-LoRA is effective
across different devices.

F.6 Runtime Analysis for Quantized Base Model

Table 28 provides some performance results for a quantized Llama-3.1-8B model (weight-only
quantization to INT4 data type) as base model.
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Figure 10: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with an input token (IT) length of 1024, an output token (OT) length of 128,
and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 11: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-70B with an Input Token (IT) length of 1024, an output token (OT) length of
128, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 12: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with an Input Token (IT) length of 4096, an output token (OT) length of
256, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 13: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-70B with an input Token (IT) length of 4096, an output token (OT) length of
256, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 14: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with an input token (IT) length of 128, an output token (OT) length of 1024,
and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 15: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-70B with an input token (IT) length of 128, an output token (OT) length of
1024, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 16: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with TP degrees of 2, 4, and 8 (1st to 3rd row), an input token (IT) length
of 1024, an output token (OT) length of 128, and Batch Size (BS) of 1.
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Figure 17: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with TP degrees of 2, 4, and 8 (1st to 3rd row), an input token (IT) length
of 1024, an output token (OT) length of 128, and Batch Size (BS) of 16.
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Figure 18: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B with TP degrees of 2, 4, and 8 (1st to 3rd row), an input token (IT) length
of 1024, an output token (OT) length of 128, and Batch Size (BS) of 32.
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Figure 19: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—
lower is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—
lower is better) of Llama-3.1-8B using Attention-only adapters. The experiments are conducted
with an input token (IT) length of 1024, an output token (OT) length of 128, and batch sizes
(BS) of 1, 16, 32, and 64.
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Figure 20: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—
lower is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—
lower is better) of Llama-3.1-70B using Attention-only adapters. The experiments are conducted
with an input token (IT) length of 1024, an output token (OT) length of 128, and batch sizes
(BS) of 1, 16, 32, and 64.

35



224 225 226 227 228

Number of Trainable Parameters

90

100

110

120

130

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

 --
- H

IG
HE

R 
IS

 B
ET

TE
R

32
16

16

64 32

32

128

64

64

256

128

128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=1

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

1.0

1.1

1.2

1.3

1.4

E2
E-

La
te

nc
y 

(s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16

16

64 32

32

128

64

64

256

128

128

512

256

256
Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=1

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.0070

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

De
co

di
ng

-L
at

en
cy

 (s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16

16

64 32

32

128

64

64

256

128

128

512

256

256
Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=1

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.085

0.090

0.095

0.100

0.105

0.110

0.115

Pr
ef

ill-
La

te
nc

y 
(s

) -
-- 

LO
W

ER
 IS

 B
ET

TE
R

32
16

16

64

32

32

128
64

64

256

128

128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=1

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

25

30

35

40

45

50

55

60

65

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

 --
- H

IG
HE

R 
IS

 B
ET

TE
R

32

16

16

64
32
32

128

64
64

256

128
128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=16

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

2.0

2.5

3.0

3.5

4.0

4.5

E2
E-

La
te

nc
y 

(s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32
16

16

64
32
32

128

64
64

256

128
128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=16

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.010

0.015

0.020

0.025

0.030

0.035

De
co

di
ng

-L
at

en
cy

 (s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16
16

64 32
32

128

6464
256

128
128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=16

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ef

ill-
La

te
nc

y 
(s

) -
-- 

LO
W

ER
 IS

 B
ET

TE
R

32

16

16

64
3232

128 64
64

256 128

128

512 256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=16

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

15

20

25

30

35

40

45

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

 --
- H

IG
HE

R 
IS

 B
ET

TE
R

32 16

16

64
32

32

128

6464

256

128
128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=32

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

3

4

5

6

7

8

E2
E-

La
te

nc
y 

(s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16

16
64 32

32

128

6464

256

128
128

512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=32

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.02

0.03

0.04

0.05

0.06

De
co

di
ng

-L
at

en
cy

 (s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16
16

64 32
32

128

6464
256

128

128 512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=32

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ef

ill-
La

te
nc

y 
(s

) -
-- 

LO
W

ER
 IS

 B
ET

TE
R

32
16

16

64 32

32

128 64

64

256
128

128

512 256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=32

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

 --
- H

IG
HE

R 
IS

 B
ET

TE
R

32
16

16

64 32

32

128

64
64

256

128

128 512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=64

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

4

6

8

10

12

14

16

E2
E-

La
te

nc
y 

(s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 16
16

64 32
32

128

6464

256

128

128 512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=64

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.02

0.04

0.06

0.08

0.10

De
co

di
ng

-L
at

en
cy

 (s
) -

-- 
LO

W
ER

 IS
 B

ET
TE

R

32 1616 64 3232 128

6464
256

128

128 512

256

256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=64

NFS-LoRA
S-LoRA
BD-LoRA

224 225 226 227 228

Number of Trainable Parameters

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Pr
ef

ill-
La

te
nc

y 
(s

) -
-- 

LO
W

ER
 IS

 B
ET

TE
R

32 16

16

64
32

32
128 64

64

256
128
128

512
256256

Llama-3.1-8B --- TP=8 --- IT=1024 --- OT=128 --- BS=64

NFS-LoRA
S-LoRA
BD-LoRA

Figure 21: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—
lower is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—
lower is better) of Llama-3.1-8B using MLP-only adapters. The experiments are conducted
with an input token (IT) length of 1024, an output token (OT) length of 128, and batch sizes
(BS) of 1, 16, 32, and 64.
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Figure 22: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—
lower is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—
lower is better) of Llama-3.1-70B using MLP-only adapters. The experiments are conducted
with an input token (IT) length of 1024, an output token (OT) length of 128, and batch sizes
(BS) of 1, 16, 32, and 64.
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Figure 23: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower
is better) of Llama-3.1-8B and Llama-3.1-70B using multi-adapters loaded from the disk. The
evaluation is performed with an input token (IT) length of 1024 and an output token (OT) length of
128, and batch sizes (BS) of 1.
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Table 3: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

NFS-LoRA

16 41.9M 2.316 75.82 132.9 1.00x 1.00x 0.96 1.00x 1.00x 0.0069 1.00x 1.00x 0.084 1.00x 1.00x

32 83.9M 2.309 75.87 125.7 1.00x 1.00x 1.02 1.00x 1.00x 0.0072 1.00x 1.00x 0.099 1.00x 1.00x

64 167.8M 2.303 76.01 122.7 1.00x 1.00x 1.04 1.00x 1.00x 0.0075 1.00x 1.00x 0.089 1.00x 1.00x

128 335.5M 2.297 76.28 112.6 1.00x 1.00x 1.14 1.00x 1.00x 0.0081 1.00x 1.00x 0.095 1.00x 1.00x

256 671.1M 2.290 76.39 95.1 1.00x 1.00x 1.35 1.00x 1.00x 0.0098 1.00x 1.00x 0.097 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 131.7 N/A N/A 0.97 N/A N/A 0.0069 N/A N/A 0.091 N/A N/A

64 72.4M 2.310 75.90 131.7 0.99x 1.05x 0.97 0.99x 1.05x 0.0069 0.99x 1.04x 0.088 0.96x 1.13x

128 144.7M 2.303 76.17 130.6 1.04x 1.06x 0.98 1.04x 1.06x 0.0069 1.03x 1.07x 0.091 1.09x 0.98x

256 289.4M 2.296 76.55 130.4 1.16x 1.37x 0.98 1.16x 1.37x 0.0070 1.16x 1.39x 0.086 1.10x 1.13x

512 578.8M 2.289 76.59 121.5 1.28x 1.28x 1.05 1.28x 1.28x 0.0076 1.29x 1.29x 0.085 1.14x 1.14x

BS=16

NFS-LoRA

16 41.9M 2.316 75.82 58.6 1.00x 1.00x 2.18 1.00x 1.00x 0.0131 1.00x 1.00x 0.504 1.00x 1.00x

32 83.9M 2.309 75.87 59.5 1.00x 1.00x 2.15 1.00x 1.00x 0.0134 1.00x 1.00x 0.437 1.00x 1.00x

64 167.8M 2.303 76.01 49.9 1.00x 1.00x 2.56 1.00x 1.00x 0.0161 1.00x 1.00x 0.506 1.00x 1.00x

128 335.5M 2.297 76.28 39.3 1.00x 1.00x 3.25 1.00x 1.00x 0.0218 1.00x 1.00x 0.456 1.00x 1.00x

256 671.1M 2.290 76.39 26.8 1.00x 1.00x 4.77 1.00x 1.00x 0.0334 1.00x 1.00x 0.502 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 60.1 N/A N/A 2.13 N/A N/A 0.0129 N/A N/A 0.480 N/A N/A

64 72.4M 2.310 75.90 59.6 1.02x 1.00x 2.15 1.02x 1.00x 0.0130 1.01x 1.03x 0.481 1.05x 0.91x

128 144.7M 2.303 76.17 61.2 1.03x 1.23x 2.09 1.03x 1.23x 0.0128 1.04x 1.25x 0.445 0.98x 1.14x

256 289.4M 2.296 76.55 56.4 1.44x 2.10x 2.27 1.43x 2.10x 0.0140 1.56x 2.38x 0.474 0.96x 1.06x

512 578.8M 2.289 76.59 44.2 1.65x 1.65x 2.89 1.65x 1.65x 0.0188 1.77x 1.77x 0.483 1.04x 1.04x

BS=32

NFS-LoRA

16 41.9M 2.316 75.82 40.9 1.00x 1.00x 3.13 1.00x 1.00x 0.0180 1.00x 1.00x 0.819 1.00x 1.00x

32 83.9M 2.309 75.87 38.6 1.00x 1.00x 3.32 1.00x 1.00x 0.0198 1.00x 1.00x 0.789 1.00x 1.00x

64 167.8M 2.303 76.01 32.6 1.00x 1.00x 3.93 1.00x 1.00x 0.0243 1.00x 1.00x 0.808 1.00x 1.00x

128 335.5M 2.297 76.28 24.4 1.00x 1.00x 5.25 1.00x 1.00x 0.0353 1.00x 1.00x 0.732 1.00x 1.00x

256 671.1M 2.290 76.39 15.6 1.00x 1.00x 8.20 1.00x 1.00x 0.0576 1.00x 1.00x 0.830 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 42.3 N/A N/A 3.03 N/A N/A 0.0173 N/A N/A 0.806 N/A N/A

64 72.4M 2.310 75.90 44.1 1.08x 1.14x 2.90 1.08x 1.14x 0.0171 1.05x 1.15x 0.706 1.16x 1.12x

128 144.7M 2.303 76.17 41.1 1.06x 1.26x 3.11 1.07x 1.26x 0.0181 1.09x 1.34x 0.790 1.00x 1.02x

256 289.4M 2.296 76.55 38.2 1.57x 2.45x 3.35 1.57x 2.45x 0.0201 1.76x 2.86x 0.778 0.94x 1.07x

512 578.8M 2.289 76.59 28.7 1.84x 1.84x 4.46 1.84x 1.84x 0.0287 2.01x 2.01x 0.785 1.06x 1.06x

BS=64

NFS-LoRA

16 41.9M 2.316 75.82 26.3 1.00x 1.00x 4.90 1.00x 1.00x 0.0277 1.00x 1.00x 1.339 1.00x 1.00x

32 83.9M 2.309 75.87 24.3 1.00x 1.00x 5.29 1.00x 1.00x 0.0314 1.00x 1.00x 1.267 1.00x 1.00x

64 167.8M 2.303 76.01 19.6 1.00x 1.00x 6.56 1.00x 1.00x 0.0407 1.00x 1.00x 1.346 1.00x 1.00x

128 335.5M 2.297 76.28 13.5 1.00x 1.00x 9.52 1.00x 1.00x 0.0639 1.00x 1.00x 1.338 1.00x 1.00x

256 671.1M 2.290 76.39 8.5 1.00x 1.00x 15.15 1.00x 1.00x 0.1074 1.00x 1.00x 1.388 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 28.8 N/A N/A 4.46 N/A N/A 0.0259 N/A N/A 1.132 N/A N/A

64 72.4M 2.310 75.90 27.9 1.06x 1.15x 4.59 1.07x 1.15x 0.0269 1.03x 1.17x 1.141 1.17x 1.11x

128 144.7M 2.303 76.17 27.3 1.12x 1.39x 4.71 1.12x 1.39x 0.0275 1.14x 1.48x 1.180 1.07x 1.14x

256 289.4M 2.296 76.55 23.7 1.76x 2.80x 5.41 1.76x 2.80x 0.0325 1.97x 3.31x 1.247 1.07x 1.11x

512 578.8M 2.289 76.59 16.3 1.93x 1.93x 7.84 1.93x 1.93x 0.0509 2.11x 2.11x 1.314 1.06x 1.06x
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Table 4: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

S-LoRA

16 41.9M 2.316 75.82 103.5 1.00x 1.00x 1.24 1.00x 1.00x 0.0088 1.00x 1.00x 0.108 1.00x 1.00x

32 83.9M 2.309 75.87 102.3 1.00x 1.00x 1.25 1.00x 1.00x 0.0089 1.00x 1.00x 0.109 1.00x 1.00x

64 167.8M 2.303 76.01 100.2 1.00x 1.00x 1.28 1.00x 1.00x 0.0091 1.00x 1.00x 0.111 1.00x 1.00x

128 335.5M 2.297 76.28 96.5 1.00x 1.00x 1.33 1.00x 1.00x 0.0095 1.00x 1.00x 0.108 1.00x 1.00x

256 671.1M 2.290 76.39 86.6 1.00x 1.00x 1.48 1.00x 1.00x 0.0107 1.00x 1.00x 0.112 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 131.7 N/A N/A 0.97 N/A N/A 0.0069 N/A N/A 0.091 N/A N/A

64 72.4M 2.310 75.90 131.7 1.27x 1.29x 0.97 1.27x 1.29x 0.0069 1.28x 1.29x 0.088 1.23x 1.24x

128 144.7M 2.303 76.17 130.6 1.28x 1.30x 0.98 1.28x 1.30x 0.0069 1.29x 1.31x 0.091 1.20x 1.22x

256 289.4M 2.296 76.55 130.4 1.35x 1.51x 0.98 1.35x 1.51x 0.0070 1.36x 1.52x 0.086 1.26x 1.30x

512 578.8M 2.289 76.59 121.5 1.40x 1.40x 1.05 1.40x 1.40x 0.0076 1.41x 1.41x 0.085 1.32x 1.32x

BS=16

S-LoRA

16 41.9M 2.316 75.82 51.9 1.00x 1.00x 2.47 1.00x 1.00x 0.0150 1.00x 1.00x 0.549 1.00x 1.00x

32 83.9M 2.309 75.87 51.9 1.00x 1.00x 2.47 1.00x 1.00x 0.0152 1.00x 1.00x 0.518 1.00x 1.00x

64 167.8M 2.303 76.01 46.7 1.00x 1.00x 2.74 1.00x 1.00x 0.0169 1.00x 1.00x 0.582 1.00x 1.00x

128 335.5M 2.297 76.28 41.1 1.00x 1.00x 3.12 1.00x 1.00x 0.0199 1.00x 1.00x 0.570 1.00x 1.00x

256 671.1M 2.290 76.39 32.5 1.00x 1.00x 3.93 1.00x 1.00x 0.0266 1.00x 1.00x 0.528 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 60.1 N/A N/A 2.13 N/A N/A 0.0129 N/A N/A 0.480 N/A N/A

64 72.4M 2.310 75.90 59.6 1.15x 1.15x 2.15 1.15x 1.15x 0.0130 1.15x 1.17x 0.481 1.14x 1.08x

128 144.7M 2.303 76.17 61.2 1.18x 1.31x 2.09 1.18x 1.31x 0.0128 1.18x 1.31x 0.445 1.16x 1.31x

256 289.4M 2.296 76.55 56.4 1.37x 1.73x 2.27 1.38x 1.73x 0.0140 1.42x 1.90x 0.474 1.20x 1.12x

512 578.8M 2.289 76.59 44.2 1.36x 1.36x 2.89 1.36x 1.36x 0.0188 1.41x 1.41x 0.483 1.09x 1.09x

BS=32

S-LoRA

16 41.9M 2.316 75.82 35.3 1.00x 1.00x 3.63 1.00x 1.00x 0.0208 1.00x 1.00x 0.962 1.00x 1.00x

32 83.9M 2.309 75.87 34.0 1.00x 1.00x 3.77 1.00x 1.00x 0.0219 1.00x 1.00x 0.960 1.00x 1.00x

64 167.8M 2.303 76.01 33.7 1.00x 1.00x 3.80 1.00x 1.00x 0.0230 1.00x 1.00x 0.848 1.00x 1.00x

128 335.5M 2.297 76.28 27.6 1.00x 1.00x 4.64 1.00x 1.00x 0.0295 1.00x 1.00x 0.851 1.00x 1.00x

256 671.1M 2.290 76.39 20.0 1.00x 1.00x 6.42 1.00x 1.00x 0.0428 1.00x 1.00x 0.932 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 42.3 N/A N/A 3.03 N/A N/A 0.0173 N/A N/A 0.806 N/A N/A

64 72.4M 2.310 75.90 44.1 1.25x 1.30x 2.90 1.25x 1.30x 0.0171 1.21x 1.28x 0.706 1.36x 1.36x

128 144.7M 2.303 76.17 41.1 1.21x 1.22x 3.11 1.21x 1.22x 0.0181 1.21x 1.27x 0.790 1.21x 1.07x

256 289.4M 2.296 76.55 38.2 1.38x 1.91x 3.35 1.38x 1.91x 0.0201 1.47x 2.13x 0.778 1.09x 1.20x

512 578.8M 2.289 76.59 28.7 1.44x 1.44x 4.46 1.44x 1.44x 0.0287 1.49x 1.49x 0.785 1.19x 1.19x

BS=64

S-LoRA

16 41.9M 2.316 75.82 22.7 1.00x 1.00x 5.64 1.00x 1.00x 0.0318 1.00x 1.00x 1.565 1.00x 1.00x

32 83.9M 2.309 75.87 22.3 1.00x 1.00x 5.76 1.00x 1.00x 0.0331 1.00x 1.00x 1.508 1.00x 1.00x

64 167.8M 2.303 76.01 20.3 1.00x 1.00x 6.32 1.00x 1.00x 0.0378 1.00x 1.00x 1.484 1.00x 1.00x

128 335.5M 2.297 76.28 16.7 1.00x 1.00x 7.66 1.00x 1.00x 0.0489 1.00x 1.00x 1.394 1.00x 1.00x

256 671.1M 2.290 76.39 11.4 1.00x 1.00x 11.21 1.00x 1.00x 0.0759 1.00x 1.00x 1.486 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 28.8 N/A N/A 4.46 N/A N/A 0.0259 N/A N/A 1.132 N/A N/A

64 72.4M 2.310 75.90 27.9 1.23x 1.25x 4.59 1.23x 1.25x 0.0269 1.18x 1.23x 1.141 1.37x 1.32x

128 144.7M 2.303 76.17 27.3 1.22x 1.34x 4.71 1.22x 1.34x 0.0275 1.20x 1.37x 1.180 1.28x 1.26x

256 289.4M 2.296 76.55 23.7 1.41x 2.07x 5.41 1.42x 2.07x 0.0325 1.51x 2.34x 1.247 1.12x 1.19x

512 578.8M 2.289 76.59 16.3 1.43x 1.43x 7.84 1.43x 1.43x 0.0509 1.49x 1.49x 1.314 1.13x 1.13x
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Table 5: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

NFS-LoRA

16 41.9M 2.316 75.82 130.9 1.00x 1.00x 1.96 1.00x 1.00x 0.0072 1.00x 1.00x 0.109 1.00x 1.00x

32 83.9M 2.309 75.87 129.7 1.00x 1.00x 1.97 1.00x 1.00x 0.0073 1.00x 1.00x 0.113 1.00x 1.00x

64 167.8M 2.303 76.01 121.2 1.00x 1.00x 2.11 1.00x 1.00x 0.0078 1.00x 1.00x 0.121 1.00x 1.00x

128 335.5M 2.297 76.28 112.2 1.00x 1.00x 2.28 1.00x 1.00x 0.0084 1.00x 1.00x 0.139 1.00x 1.00x

256 671.1M 2.290 76.39 94.5 1.00x 1.00x 2.71 1.00x 1.00x 0.0099 1.00x 1.00x 0.179 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 132.2 N/A N/A 1.94 N/A N/A 0.0071 N/A N/A 0.116 N/A N/A

64 72.4M 2.310 75.90 131.5 1.00x 1.01x 1.95 1.00x 1.01x 0.0071 1.01x 1.02x 0.117 0.93x 0.97x

128 144.7M 2.303 76.17 131.1 1.01x 1.08x 1.95 1.01x 1.08x 0.0072 1.01x 1.08x 0.110 1.03x 1.10x

256 289.4M 2.296 76.55 130.1 1.16x 1.38x 1.97 1.16x 1.38x 0.0072 1.15x 1.36x 0.111 1.25x 1.60x

512 578.8M 2.289 76.59 120.6 1.28x 1.28x 2.12 1.28x 1.28x 0.0078 1.26x 1.26x 0.122 1.46x 1.46x

BS=16

NFS-LoRA

16 41.9M 2.316 75.82 58.0 1.00x 1.00x 4.41 1.00x 1.00x 0.0139 1.00x 1.00x 0.862 1.00x 1.00x

32 83.9M 2.309 75.87 54.6 1.00x 1.00x 4.69 1.00x 1.00x 0.0149 1.00x 1.00x 0.883 1.00x 1.00x

64 167.8M 2.303 76.01 46.8 1.00x 1.00x 5.47 1.00x 1.00x 0.0176 1.00x 1.00x 0.961 1.00x 1.00x

128 335.5M 2.297 76.28 34.9 1.00x 1.00x 7.34 1.00x 1.00x 0.0243 1.00x 1.00x 1.117 1.00x 1.00x

256 671.1M 2.290 76.39 23.6 1.00x 1.00x 10.83 1.00x 1.00x 0.0367 1.00x 1.00x 1.440 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 57.9 N/A N/A 4.42 N/A N/A 0.0137 N/A N/A 0.907 N/A N/A

64 72.4M 2.310 75.90 57.3 0.99x 1.05x 4.47 0.99x 1.05x 0.0140 0.99x 1.07x 0.896 0.96x 0.99x

128 144.7M 2.303 76.17 58.0 1.06x 1.24x 4.42 1.06x 1.24x 0.0140 1.07x 1.26x 0.842 1.05x 1.14x

256 289.4M 2.296 76.55 54.1 1.55x 2.29x 4.74 1.55x 2.29x 0.0151 1.61x 2.43x 0.872 1.28x 1.65x

512 578.8M 2.289 76.59 41.6 1.76x 1.76x 6.15 1.76x 1.76x 0.0203 1.81x 1.81x 0.964 1.49x 1.49x

BS=32

NFS-LoRA

16 41.9M 2.316 75.82 38.6 1.00x 1.00x 6.63 1.00x 1.00x 0.0198 1.00x 1.00x 1.564 1.00x 1.00x

32 83.9M 2.309 75.87 35.3 1.00x 1.00x 7.25 1.00x 1.00x 0.0220 1.00x 1.00x 1.617 1.00x 1.00x

64 167.8M 2.303 76.01 29.6 1.00x 1.00x 8.65 1.00x 1.00x 0.0268 1.00x 1.00x 1.790 1.00x 1.00x

128 335.5M 2.297 76.28 21.0 1.00x 1.00x 12.21 1.00x 1.00x 0.0396 1.00x 1.00x 2.070 1.00x 1.00x

256 671.1M 2.290 76.39 13.5 1.00x 1.00x 18.99 1.00x 1.00x 0.0637 1.00x 1.00x 2.671 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 38.2 N/A N/A 6.70 N/A N/A 0.0197 N/A N/A 1.667 N/A N/A

64 72.4M 2.310 75.90 38.0 0.98x 1.08x 6.74 0.98x 1.08x 0.0201 0.99x 1.10x 1.596 0.98x 1.01x

128 144.7M 2.303 76.17 38.3 1.09x 1.30x 6.68 1.09x 1.30x 0.0201 1.10x 1.34x 1.544 1.05x 1.16x

256 289.4M 2.296 76.55 34.8 1.66x 2.58x 7.35 1.66x 2.58x 0.0224 1.77x 2.84x 1.613 1.28x 1.66x

512 578.8M 2.289 76.59 25.6 1.90x 1.90x 10.00 1.90x 1.90x 0.0320 1.99x 1.99x 1.796 1.49x 1.49x

BS=64

NFS-LoRA

16 41.9M 2.316 75.82 23.1 1.00x 1.00x 11.07 1.00x 1.00x 0.0322 1.00x 1.00x 2.810 1.00x 1.00x

32 83.9M 2.309 75.87 21.2 1.00x 1.00x 12.07 1.00x 1.00x 0.0358 1.00x 1.00x 2.887 1.00x 1.00x

64 167.8M 2.303 76.01 17.2 1.00x 1.00x 14.90 1.00x 1.00x 0.0459 1.00x 1.00x 3.157 1.00x 1.00x

128 335.5M 2.297 76.28 11.6 1.00x 1.00x 22.11 1.00x 1.00x 0.0717 1.00x 1.00x 3.749 1.00x 1.00x

256 671.1M 2.290 76.39 7.2 1.00x 1.00x 35.49 1.00x 1.00x 0.1190 1.00x 1.00x 5.025 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 23.0 N/A N/A 11.13 N/A N/A 0.0319 N/A N/A 2.965 N/A N/A

64 72.4M 2.310 75.90 22.5 0.97x 1.06x 11.36 0.97x 1.06x 0.0329 0.98x 1.09x 2.933 0.96x 0.98x

128 144.7M 2.303 76.17 23.2 1.09x 1.35x 11.06 1.09x 1.35x 0.0327 1.10x 1.40x 2.679 1.08x 1.18x

256 289.4M 2.296 76.55 20.6 1.78x 2.85x 12.45 1.78x 2.85x 0.0374 1.91x 3.18x 2.854 1.31x 1.76x

512 578.8M 2.289 76.59 14.5 2.01x 2.01x 17.65 2.01x 2.01x 0.0566 2.10x 2.10x 3.152 1.59x 1.59x
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Table 6: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

S-LoRA

16 41.9M 2.316 75.82 104.6 1.00x 1.00x 2.45 1.00x 1.00x 0.0091 1.00x 1.00x 0.121 1.00x 1.00x

32 83.9M 2.309 75.87 103.8 1.00x 1.00x 2.47 1.00x 1.00x 0.0092 1.00x 1.00x 0.120 1.00x 1.00x

64 167.8M 2.303 76.01 102.0 1.00x 1.00x 2.51 1.00x 1.00x 0.0093 1.00x 1.00x 0.121 1.00x 1.00x

128 335.5M 2.297 76.28 97.2 1.00x 1.00x 2.63 1.00x 1.00x 0.0098 1.00x 1.00x 0.123 1.00x 1.00x

256 671.1M 2.290 76.39 88.2 1.00x 1.00x 2.90 1.00x 1.00x 0.0108 1.00x 1.00x 0.136 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 132.2 N/A N/A 1.94 N/A N/A 0.0071 N/A N/A 0.116 N/A N/A

64 72.4M 2.310 75.90 131.5 1.26x 1.27x 1.95 1.26x 1.27x 0.0071 1.27x 1.28x 0.117 1.03x 1.03x

128 144.7M 2.303 76.17 131.1 1.26x 1.29x 1.95 1.26x 1.29x 0.0072 1.27x 1.30x 0.110 1.10x 1.11x

256 289.4M 2.296 76.55 130.1 1.34x 1.48x 1.97 1.34x 1.48x 0.0072 1.35x 1.49x 0.111 1.11x 1.22x

512 578.8M 2.289 76.59 120.6 1.37x 1.37x 2.12 1.37x 1.37x 0.0078 1.38x 1.38x 0.122 1.11x 1.11x

BS=16

S-LoRA

16 41.9M 2.316 75.82 51.0 1.00x 1.00x 5.02 1.00x 1.00x 0.0160 1.00x 1.00x 0.933 1.00x 1.00x

32 83.9M 2.309 75.87 50.1 1.00x 1.00x 5.11 1.00x 1.00x 0.0164 1.00x 1.00x 0.899 1.00x 1.00x

64 167.8M 2.303 76.01 46.2 1.00x 1.00x 5.54 1.00x 1.00x 0.0179 1.00x 1.00x 0.966 1.00x 1.00x

128 335.5M 2.297 76.28 40.2 1.00x 1.00x 6.36 1.00x 1.00x 0.0210 1.00x 1.00x 0.979 1.00x 1.00x

256 671.1M 2.290 76.39 30.4 1.00x 1.00x 8.41 1.00x 1.00x 0.0286 1.00x 1.00x 1.094 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 57.9 N/A N/A 4.42 N/A N/A 0.0137 N/A N/A 0.907 N/A N/A

64 72.4M 2.310 75.90 57.3 1.12x 1.14x 4.47 1.12x 1.14x 0.0140 1.14x 1.18x 0.896 1.04x 1.00x

128 144.7M 2.303 76.17 58.0 1.16x 1.25x 4.42 1.16x 1.25x 0.0140 1.18x 1.28x 0.842 1.07x 1.15x

256 289.4M 2.296 76.55 54.1 1.34x 1.78x 4.74 1.34x 1.78x 0.0151 1.39x 1.89x 0.872 1.12x 1.25x

512 578.8M 2.289 76.59 41.6 1.37x 1.37x 6.15 1.37x 1.37x 0.0203 1.41x 1.41x 0.964 1.13x 1.13x

BS=32

S-LoRA

16 41.9M 2.316 75.82 34.5 1.00x 1.00x 7.42 1.00x 1.00x 0.0223 1.00x 1.00x 1.714 1.00x 1.00x

32 83.9M 2.309 75.87 34.7 1.00x 1.00x 7.37 1.00x 1.00x 0.0227 1.00x 1.00x 1.562 1.00x 1.00x

64 167.8M 2.303 76.01 30.5 1.00x 1.00x 8.39 1.00x 1.00x 0.0258 1.00x 1.00x 1.789 1.00x 1.00x

128 335.5M 2.297 76.28 25.5 1.00x 1.00x 10.02 1.00x 1.00x 0.0321 1.00x 1.00x 1.800 1.00x 1.00x

256 671.1M 2.290 76.39 18.7 1.00x 1.00x 13.65 1.00x 1.00x 0.0454 1.00x 1.00x 2.028 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 38.2 N/A N/A 6.70 N/A N/A 0.0197 N/A N/A 1.667 N/A N/A

64 72.4M 2.310 75.90 38.0 1.10x 1.09x 6.74 1.10x 1.09x 0.0201 1.11x 1.13x 1.596 1.07x 0.98x

128 144.7M 2.303 76.17 38.3 1.10x 1.26x 6.68 1.10x 1.26x 0.0201 1.13x 1.29x 1.544 1.01x 1.16x

256 289.4M 2.296 76.55 34.8 1.36x 1.86x 7.35 1.36x 1.86x 0.0224 1.43x 2.03x 1.613 1.12x 1.26x

512 578.8M 2.289 76.59 25.6 1.37x 1.37x 10.00 1.37x 1.37x 0.0320 1.42x 1.42x 1.796 1.13x 1.13x

BS=64

S-LoRA

16 41.9M 2.316 75.82 21.1 1.00x 1.00x 12.13 1.00x 1.00x 0.0351 1.00x 1.00x 3.149 1.00x 1.00x

32 83.9M 2.309 75.87 20.2 1.00x 1.00x 12.65 1.00x 1.00x 0.0371 1.00x 1.00x 3.139 1.00x 1.00x

64 167.8M 2.303 76.01 18.4 1.00x 1.00x 13.94 1.00x 1.00x 0.0419 1.00x 1.00x 3.213 1.00x 1.00x

128 335.5M 2.297 76.28 15.1 1.00x 1.00x 16.98 1.00x 1.00x 0.0539 1.00x 1.00x 3.185 1.00x 1.00x

256 671.1M 2.290 76.39 10.5 1.00x 1.00x 24.43 1.00x 1.00x 0.0810 1.00x 1.00x 3.688 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 23.0 N/A N/A 11.13 N/A N/A 0.0319 N/A N/A 2.965 N/A N/A

64 72.4M 2.310 75.90 22.5 1.07x 1.11x 11.36 1.07x 1.11x 0.0329 1.07x 1.13x 2.933 1.07x 1.07x

128 144.7M 2.303 76.17 23.2 1.14x 1.26x 11.06 1.14x 1.26x 0.0327 1.14x 1.28x 2.679 1.17x 1.20x

256 289.4M 2.296 76.55 20.6 1.36x 1.96x 12.45 1.36x 1.96x 0.0374 1.44x 2.16x 2.854 1.12x 1.29x

512 578.8M 2.289 76.59 14.5 1.38x 1.38x 17.65 1.38x 1.38x 0.0566 1.43x 1.43x 3.152 1.17x 1.17x
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Table 7: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

NFS-LoRA

16 41.9M 2.316 75.82 141.7 1.00x 1.00x 7.23 1.00x 1.00x 0.0070 1.00x 1.00x 0.088 1.00x 1.00x

32 83.9M 2.309 75.87 137.4 1.00x 1.00x 7.45 1.00x 1.00x 0.0072 1.00x 1.00x 0.095 1.00x 1.00x

64 167.8M 2.303 76.01 131.0 1.00x 1.00x 7.82 1.00x 1.00x 0.0075 1.00x 1.00x 0.095 1.00x 1.00x

128 335.5M 2.297 76.28 122.5 1.00x 1.00x 8.36 1.00x 1.00x 0.0081 1.00x 1.00x 0.088 1.00x 1.00x

256 671.1M 2.290 76.39 101.4 1.00x 1.00x 10.10 1.00x 1.00x 0.0098 1.00x 1.00x 0.096 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 143.6 N/A N/A 7.13 N/A N/A 0.0069 N/A N/A 0.088 N/A N/A

64 72.4M 2.310 75.90 142.7 1.01x 1.04x 7.18 1.01x 1.04x 0.0069 1.01x 1.04x 0.086 1.02x 1.11x

128 144.7M 2.303 76.17 141.8 1.03x 1.08x 7.22 1.03x 1.08x 0.0070 1.03x 1.08x 0.088 1.09x 1.09x

256 289.4M 2.296 76.55 137.5 1.12x 1.36x 7.45 1.12x 1.36x 0.0072 1.12x 1.36x 0.093 0.95x 1.03x

512 578.8M 2.289 76.59 131.2 1.29x 1.29x 7.81 1.29x 1.29x 0.0075 1.30x 1.30x 0.087 1.11x 1.11x

BS=16

NFS-LoRA

16 41.9M 2.316 75.82 88.6 1.00x 1.00x 11.57 1.00x 1.00x 0.0111 1.00x 1.00x 0.248 1.00x 1.00x

32 83.9M 2.309 75.87 83.5 1.00x 1.00x 12.27 1.00x 1.00x 0.0117 1.00x 1.00x 0.248 1.00x 1.00x

64 167.8M 2.303 76.01 70.3 1.00x 1.00x 14.56 1.00x 1.00x 0.0140 1.00x 1.00x 0.252 1.00x 1.00x

128 335.5M 2.297 76.28 49.3 1.00x 1.00x 20.77 1.00x 1.00x 0.0201 1.00x 1.00x 0.233 1.00x 1.00x

256 671.1M 2.290 76.39 31.5 1.00x 1.00x 32.54 1.00x 1.00x 0.0315 1.00x 1.00x 0.289 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 90.4 N/A N/A 11.32 N/A N/A 0.0108 N/A N/A 0.261 N/A N/A

64 72.4M 2.310 75.90 89.0 1.01x 1.07x 11.50 1.01x 1.07x 0.0110 1.00x 1.07x 0.232 1.07x 1.07x

128 144.7M 2.303 76.17 88.3 1.06x 1.26x 11.59 1.06x 1.26x 0.0111 1.06x 1.26x 0.236 1.05x 1.06x

256 289.4M 2.296 76.55 81.4 1.65x 2.59x 12.58 1.65x 2.59x 0.0120 1.66x 2.61x 0.245 0.95x 1.18x

512 578.8M 2.289 76.59 59.0 1.87x 1.87x 17.36 1.87x 1.87x 0.0167 1.89x 1.89x 0.256 1.13x 1.13x

BS=32

NFS-LoRA

16 41.9M 2.316 75.82 73.9 1.00x 1.00x 13.85 1.00x 1.00x 0.0132 1.00x 1.00x 0.291 1.00x 1.00x

32 83.9M 2.309 75.87 65.4 1.00x 1.00x 15.65 1.00x 1.00x 0.0150 1.00x 1.00x 0.292 1.00x 1.00x

64 167.8M 2.303 76.01 50.4 1.00x 1.00x 20.31 1.00x 1.00x 0.0195 1.00x 1.00x 0.285 1.00x 1.00x

128 335.5M 2.297 76.28 31.7 1.00x 1.00x 32.30 1.00x 1.00x 0.0313 1.00x 1.00x 0.279 1.00x 1.00x

256 671.1M 2.290 76.39 18.8 1.00x 1.00x 54.46 1.00x 1.00x 0.0529 1.00x 1.00x 0.300 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 77.7 N/A N/A 13.19 N/A N/A 0.0126 N/A N/A 0.264 N/A N/A

64 72.4M 2.310 75.90 73.7 1.00x 1.13x 13.89 1.00x 1.13x 0.0133 0.99x 1.13x 0.258 1.13x 1.13x

128 144.7M 2.303 76.17 72.6 1.11x 1.44x 14.10 1.11x 1.44x 0.0135 1.11x 1.45x 0.277 1.06x 1.03x

256 289.4M 2.296 76.55 63.0 1.99x 3.35x 16.27 1.99x 3.35x 0.0156 2.00x 3.39x 0.277 1.01x 1.08x

512 578.8M 2.289 76.59 40.0 2.13x 2.13x 25.58 2.13x 2.13x 0.0247 2.14x 2.14x 0.276 1.09x 1.09x

BS=64

NFS-LoRA

16 41.9M 2.316 75.82 52.4 1.00x 1.00x 19.53 1.00x 1.00x 0.0188 1.00x 1.00x 0.306 1.00x 1.00x

32 83.9M 2.309 75.87 44.7 1.00x 1.00x 22.90 1.00x 1.00x 0.0221 1.00x 1.00x 0.301 1.00x 1.00x

64 167.8M 2.303 76.01 31.9 1.00x 1.00x 32.07 1.00x 1.00x 0.0309 1.00x 1.00x 0.397 1.00x 1.00x

128 335.5M 2.297 76.28 18.3 1.00x 1.00x 55.82 1.00x 1.00x 0.0542 1.00x 1.00x 0.329 1.00x 1.00x

256 671.1M 2.290 76.39 10.3 1.00x 1.00x 99.83 1.00x 1.00x 0.0971 1.00x 1.00x 0.345 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 56.1 N/A N/A 18.27 N/A N/A 0.0175 N/A N/A 0.316 N/A N/A

64 72.4M 2.310 75.90 51.9 0.99x 1.16x 19.74 0.99x 1.16x 0.0190 0.99x 1.16x 0.321 0.95x 0.94x

128 144.7M 2.303 76.17 50.6 1.13x 1.59x 20.23 1.13x 1.59x 0.0194 1.13x 1.59x 0.315 0.96x 1.26x

256 289.4M 2.296 76.55 41.5 2.26x 4.05x 24.68 2.26x 4.05x 0.0238 2.28x 4.09x 0.336 0.98x 1.03x

512 578.8M 2.289 76.59 24.0 2.34x 2.34x 42.66 2.34x 2.34x 0.0413 2.35x 2.35x 0.340 1.02x 1.02x
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Table 8: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-OO. and S.-G. denote the speedup with respect to OpenOrca
and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

BS=1

S-LoRA

16 41.9M 2.316 75.82 110.7 1.00x 1.00x 9.25 1.00x 1.00x 0.0089 1.00x 1.00x 0.104 1.00x 1.00x

32 83.9M 2.309 75.87 110.4 1.00x 1.00x 9.28 1.00x 1.00x 0.0090 1.00x 1.00x 0.101 1.00x 1.00x

64 167.8M 2.303 76.01 108.2 1.00x 1.00x 9.47 1.00x 1.00x 0.0091 1.00x 1.00x 0.105 1.00x 1.00x

128 335.5M 2.297 76.28 104.7 1.00x 1.00x 9.78 1.00x 1.00x 0.0095 1.00x 1.00x 0.101 1.00x 1.00x

256 671.1M 2.290 76.39 92.8 1.00x 1.00x 11.03 1.00x 1.00x 0.0107 1.00x 1.00x 0.102 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 143.6 N/A N/A 7.13 N/A N/A 0.0069 N/A N/A 0.088 N/A N/A

64 72.4M 2.310 75.90 142.7 1.29x 1.29x 7.18 1.29x 1.29x 0.0069 1.29x 1.29x 0.086 1.21x 1.17x

128 144.7M 2.303 76.17 141.8 1.28x 1.31x 7.22 1.28x 1.31x 0.0070 1.29x 1.31x 0.088 1.15x 1.20x

256 289.4M 2.296 76.55 137.5 1.31x 1.48x 7.45 1.31x 1.48x 0.0072 1.32x 1.49x 0.093 1.09x 1.09x

512 578.8M 2.289 76.59 131.2 1.41x 1.41x 7.81 1.41x 1.41x 0.0075 1.42x 1.42x 0.087 1.18x 1.18x

BS=16

S-LoRA

16 41.9M 2.316 75.82 76.7 1.00x 1.00x 13.36 1.00x 1.00x 0.0128 1.00x 1.00x 0.297 1.00x 1.00x

32 83.9M 2.309 75.87 73.6 1.00x 1.00x 13.92 1.00x 1.00x 0.0133 1.00x 1.00x 0.288 1.00x 1.00x

64 167.8M 2.303 76.01 68.2 1.00x 1.00x 15.01 1.00x 1.00x 0.0144 1.00x 1.00x 0.283 1.00x 1.00x

128 335.5M 2.297 76.28 56.3 1.00x 1.00x 18.19 1.00x 1.00x 0.0175 1.00x 1.00x 0.287 1.00x 1.00x

256 671.1M 2.290 76.39 40.3 1.00x 1.00x 25.41 1.00x 1.00x 0.0245 1.00x 1.00x 0.292 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 90.4 N/A N/A 11.32 N/A N/A 0.0108 N/A N/A 0.261 N/A N/A

64 72.4M 2.310 75.90 89.0 1.16x 1.21x 11.50 1.16x 1.21x 0.0110 1.16x 1.21x 0.232 1.28x 1.24x

128 144.7M 2.303 76.17 88.3 1.20x 1.29x 11.59 1.20x 1.29x 0.0111 1.20x 1.30x 0.236 1.22x 1.20x

256 289.4M 2.296 76.55 81.4 1.45x 2.02x 12.58 1.45x 2.02x 0.0120 1.45x 2.04x 0.245 1.17x 1.19x

512 578.8M 2.289 76.59 59.0 1.46x 1.46x 17.36 1.46x 1.46x 0.0167 1.47x 1.47x 0.256 1.14x 1.14x

BS=32

S-LoRA

16 41.9M 2.316 75.82 64.0 1.00x 1.00x 16.01 1.00x 1.00x 0.0153 1.00x 1.00x 0.343 1.00x 1.00x

32 83.9M 2.309 75.87 60.6 1.00x 1.00x 16.91 1.00x 1.00x 0.0162 1.00x 1.00x 0.330 1.00x 1.00x

64 167.8M 2.303 76.01 53.4 1.00x 1.00x 19.17 1.00x 1.00x 0.0184 1.00x 1.00x 0.328 1.00x 1.00x

128 335.5M 2.297 76.28 40.0 1.00x 1.00x 25.61 1.00x 1.00x 0.0247 1.00x 1.00x 0.325 1.00x 1.00x

256 671.1M 2.290 76.39 26.5 1.00x 1.00x 38.67 1.00x 1.00x 0.0374 1.00x 1.00x 0.334 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 77.7 N/A N/A 13.19 N/A N/A 0.0126 N/A N/A 0.264 N/A N/A

64 72.4M 2.310 75.90 73.7 1.15x 1.22x 13.89 1.15x 1.22x 0.0133 1.15x 1.22x 0.258 1.33x 1.28x

128 144.7M 2.303 76.17 72.6 1.20x 1.36x 14.10 1.20x 1.36x 0.0135 1.20x 1.36x 0.277 1.19x 1.18x

256 289.4M 2.296 76.55 63.0 1.57x 2.38x 16.27 1.57x 2.38x 0.0156 1.58x 2.40x 0.277 1.18x 1.21x

512 578.8M 2.289 76.59 40.0 1.51x 1.51x 25.58 1.51x 1.51x 0.0247 1.52x 1.52x 0.276 1.21x 1.21x

BS=64

S-LoRA

16 41.9M 2.316 75.82 48.3 1.00x 1.00x 21.21 1.00x 1.00x 0.0204 1.00x 1.00x 0.353 1.00x 1.00x

32 83.9M 2.309 75.87 44.0 1.00x 1.00x 23.28 1.00x 1.00x 0.0224 1.00x 1.00x 0.337 1.00x 1.00x

64 167.8M 2.303 76.01 36.5 1.00x 1.00x 28.02 1.00x 1.00x 0.0270 1.00x 1.00x 0.341 1.00x 1.00x

128 335.5M 2.297 76.28 25.4 1.00x 1.00x 40.32 1.00x 1.00x 0.0390 1.00x 1.00x 0.379 1.00x 1.00x

256 671.1M 2.290 76.39 15.5 1.00x 1.00x 66.17 1.00x 1.00x 0.0643 1.00x 1.00x 0.370 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 56.1 N/A N/A 18.27 N/A N/A 0.0175 N/A N/A 0.316 N/A N/A

64 72.4M 2.310 75.90 51.9 1.07x 1.18x 19.74 1.07x 1.18x 0.0190 1.07x 1.18x 0.321 1.10x 1.05x

128 144.7M 2.303 76.17 50.6 1.15x 1.39x 20.23 1.15x 1.39x 0.0194 1.15x 1.39x 0.315 1.07x 1.08x

256 289.4M 2.296 76.55 41.5 1.63x 2.68x 24.68 1.63x 2.68x 0.0238 1.64x 2.70x 0.336 1.13x 1.10x

512 578.8M 2.289 76.59 24.0 1.55x 1.55x 42.66 1.55x 1.55x 0.0413 1.56x 1.56x 0.340 1.09x 1.09x
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Table 9: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

NFS-LoRA

16 41.9M 132.9 1.00x 1.00x 0.96 1.00x 1.00x 0.0069 1.00x 1.00x 0.084 1.00x 1.00x

32 83.9M 125.7 1.00x 1.00x 1.02 1.00x 1.00x 0.0072 1.00x 1.00x 0.099 1.00x 1.00x

64 167.8M 122.7 1.00x 1.00x 1.04 1.00x 1.00x 0.0075 1.00x 1.00x 0.089 1.00x 1.00x

128 335.5M 112.6 1.00x 1.00x 1.14 1.00x 1.00x 0.0081 1.00x 1.00x 0.095 1.00x 1.00x

256 671.1M 95.1 1.00x 1.00x 1.35 1.00x 1.00x 0.0098 1.00x 1.00x 0.097 1.00x 1.00x

BD-LoRA

32 36.2M 131.7 0.99x N/A 0.97 0.99x N/A 0.0069 1.00x N/A 0.091 0.92x N/A

64 72.4M 131.7 1.05x 0.99x 0.97 1.05x 0.99x 0.0069 1.04x 0.99x 0.088 1.13x 0.96x

128 144.7M 130.6 1.06x 1.04x 0.98 1.06x 1.04x 0.0069 1.07x 1.03x 0.091 0.98x 1.09x

256 289.4M 130.4 1.16x 1.06x 0.98 1.16x 1.06x 0.0070 1.16x 1.06x 0.086 1.10x 1.04x

512 578.8M 121.5 1.28x 1.08x 1.05 1.28x 1.08x 0.0076 1.29x 1.08x 0.085 1.14x 1.11x

Llama-3.1-8B BS=16

NFS-LoRA

16 41.9M 58.6 1.00x 1.00x 2.18 1.00x 1.00x 0.0131 1.00x 1.00x 0.504 1.00x 1.00x

32 83.9M 59.5 1.00x 1.00x 2.15 1.00x 1.00x 0.0134 1.00x 1.00x 0.437 1.00x 1.00x

64 167.8M 49.9 1.00x 1.00x 2.56 1.00x 1.00x 0.0161 1.00x 1.00x 0.506 1.00x 1.00x

128 335.5M 39.3 1.00x 1.00x 3.25 1.00x 1.00x 0.0218 1.00x 1.00x 0.456 1.00x 1.00x

256 671.1M 26.8 1.00x 1.00x 4.77 1.00x 1.00x 0.0334 1.00x 1.00x 0.502 1.00x 1.00x

BD-LoRA

32 36.2M 60.1 1.03x N/A 2.13 1.03x N/A 0.0129 1.02x N/A 0.480 1.05x N/A

64 72.4M 59.6 1.00x 1.02x 2.15 1.00x 1.02x 0.0130 1.03x 1.01x 0.481 0.91x 1.05x

128 144.7M 61.2 1.23x 1.03x 2.09 1.23x 1.03x 0.0128 1.25x 1.04x 0.445 1.14x 0.98x

256 289.4M 56.4 1.44x 1.13x 2.27 1.43x 1.13x 0.0140 1.56x 1.15x 0.474 0.96x 1.07x

512 578.8M 44.2 1.65x 1.12x 2.89 1.65x 1.12x 0.0188 1.77x 1.16x 0.483 1.04x 0.94x

Llama-3.1-8B BS=32

NFS-LoRA

16 41.9M 40.9 1.00x 1.00x 3.13 1.00x 1.00x 0.0180 1.00x 1.00x 0.819 1.00x 1.00x

32 83.9M 38.6 1.00x 1.00x 3.32 1.00x 1.00x 0.0198 1.00x 1.00x 0.789 1.00x 1.00x

64 167.8M 32.6 1.00x 1.00x 3.93 1.00x 1.00x 0.0243 1.00x 1.00x 0.808 1.00x 1.00x

128 335.5M 24.4 1.00x 1.00x 5.25 1.00x 1.00x 0.0353 1.00x 1.00x 0.732 1.00x 1.00x

256 671.1M 15.6 1.00x 1.00x 8.20 1.00x 1.00x 0.0576 1.00x 1.00x 0.830 1.00x 1.00x

BD-LoRA

32 36.2M 42.3 1.03x N/A 3.03 1.03x N/A 0.0173 1.04x N/A 0.806 1.02x N/A

64 72.4M 44.1 1.14x 1.08x 2.90 1.14x 1.08x 0.0171 1.15x 1.05x 0.706 1.12x 1.16x

128 144.7M 41.1 1.26x 1.06x 3.11 1.26x 1.07x 0.0181 1.34x 1.09x 0.790 1.02x 1.00x

256 289.4M 38.2 1.57x 1.17x 3.35 1.57x 1.17x 0.0201 1.76x 1.21x 0.778 0.94x 1.04x

512 578.8M 28.7 1.84x 1.18x 4.46 1.84x 1.18x 0.0287 2.01x 1.23x 0.785 1.06x 0.93x

Llama-3.1-8B BS=64

NFS-LoRA

16 41.9M 26.3 1.00x 1.00x 4.90 1.00x 1.00x 0.0277 1.00x 1.00x 1.339 1.00x 1.00x

32 83.9M 24.3 1.00x 1.00x 5.29 1.00x 1.00x 0.0314 1.00x 1.00x 1.267 1.00x 1.00x

64 167.8M 19.6 1.00x 1.00x 6.56 1.00x 1.00x 0.0407 1.00x 1.00x 1.346 1.00x 1.00x

128 335.5M 13.5 1.00x 1.00x 9.52 1.00x 1.00x 0.0639 1.00x 1.00x 1.338 1.00x 1.00x

256 671.1M 8.5 1.00x 1.00x 15.15 1.00x 1.00x 0.1074 1.00x 1.00x 1.388 1.00x 1.00x

BD-LoRA

32 36.2M 28.8 1.10x N/A 4.46 1.10x N/A 0.0259 1.07x N/A 1.132 1.18x N/A

64 72.4M 27.9 1.15x 1.06x 4.59 1.15x 1.07x 0.0269 1.17x 1.03x 1.141 1.11x 1.17x

128 144.7M 27.3 1.39x 1.12x 4.71 1.39x 1.12x 0.0275 1.48x 1.14x 1.180 1.14x 1.07x

256 289.4M 23.7 1.76x 1.21x 5.41 1.76x 1.21x 0.0325 1.97x 1.25x 1.247 1.07x 1.08x

512 578.8M 16.3 1.93x 1.22x 7.84 1.93x 1.21x 0.0509 2.11x 1.25x 1.314 1.06x 1.02x
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Table 10: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

S-LoRA

16 41.9M 103.5 1.00x 1.00x 1.24 1.00x 1.00x 0.0088 1.00x 1.00x 0.108 1.00x 1.00x

32 83.9M 102.3 1.00x 1.00x 1.25 1.00x 1.00x 0.0089 1.00x 1.00x 0.109 1.00x 1.00x

64 167.8M 100.2 1.00x 1.00x 1.28 1.00x 1.00x 0.0091 1.00x 1.00x 0.111 1.00x 1.00x

128 335.5M 96.5 1.00x 1.00x 1.33 1.00x 1.00x 0.0095 1.00x 1.00x 0.108 1.00x 1.00x

256 671.1M 86.6 1.00x 1.00x 1.48 1.00x 1.00x 0.0107 1.00x 1.00x 0.112 1.00x 1.00x

BD-LoRA

32 36.2M 131.7 1.27x N/A 0.97 1.27x N/A 0.0069 1.28x N/A 0.091 1.18x N/A

64 72.4M 131.7 1.29x 1.27x 0.97 1.29x 1.27x 0.0069 1.29x 1.28x 0.088 1.24x 1.23x

128 144.7M 130.6 1.30x 1.28x 0.98 1.30x 1.28x 0.0069 1.31x 1.29x 0.091 1.22x 1.20x

256 289.4M 130.4 1.35x 1.30x 0.98 1.35x 1.30x 0.0070 1.36x 1.30x 0.086 1.26x 1.29x

512 578.8M 121.5 1.40x 1.26x 1.05 1.40x 1.26x 0.0076 1.41x 1.26x 0.085 1.32x 1.27x

Llama-3.1-8B BS=16

S-LoRA

16 41.9M 51.9 1.00x 1.00x 2.47 1.00x 1.00x 0.0150 1.00x 1.00x 0.549 1.00x 1.00x

32 83.9M 51.9 1.00x 1.00x 2.47 1.00x 1.00x 0.0152 1.00x 1.00x 0.518 1.00x 1.00x

64 167.8M 46.7 1.00x 1.00x 2.74 1.00x 1.00x 0.0169 1.00x 1.00x 0.582 1.00x 1.00x

128 335.5M 41.1 1.00x 1.00x 3.12 1.00x 1.00x 0.0199 1.00x 1.00x 0.570 1.00x 1.00x

256 671.1M 32.5 1.00x 1.00x 3.93 1.00x 1.00x 0.0266 1.00x 1.00x 0.528 1.00x 1.00x

BD-LoRA

32 36.2M 60.1 1.16x N/A 2.13 1.16x N/A 0.0129 1.16x N/A 0.480 1.14x N/A

64 72.4M 59.6 1.15x 1.15x 2.15 1.15x 1.15x 0.0130 1.17x 1.15x 0.481 1.08x 1.14x

128 144.7M 61.2 1.31x 1.18x 2.09 1.31x 1.18x 0.0128 1.31x 1.18x 0.445 1.31x 1.16x

256 289.4M 56.4 1.37x 1.21x 2.27 1.38x 1.21x 0.0140 1.42x 1.20x 0.474 1.20x 1.23x

512 578.8M 44.2 1.36x 1.08x 2.89 1.36x 1.08x 0.0188 1.41x 1.06x 0.483 1.09x 1.18x

Llama-3.1-8B BS=32

S-LoRA

16 41.9M 35.3 1.00x 1.00x 3.63 1.00x 1.00x 0.0208 1.00x 1.00x 0.962 1.00x 1.00x

32 83.9M 34.0 1.00x 1.00x 3.77 1.00x 1.00x 0.0219 1.00x 1.00x 0.960 1.00x 1.00x

64 167.8M 33.7 1.00x 1.00x 3.80 1.00x 1.00x 0.0230 1.00x 1.00x 0.848 1.00x 1.00x

128 335.5M 27.6 1.00x 1.00x 4.64 1.00x 1.00x 0.0295 1.00x 1.00x 0.851 1.00x 1.00x

256 671.1M 20.0 1.00x 1.00x 6.42 1.00x 1.00x 0.0428 1.00x 1.00x 0.932 1.00x 1.00x

BD-LoRA

32 36.2M 42.3 1.20x N/A 3.03 1.20x N/A 0.0173 1.20x N/A 0.806 1.19x N/A

64 72.4M 44.1 1.30x 1.25x 2.90 1.30x 1.25x 0.0171 1.28x 1.21x 0.706 1.36x 1.36x

128 144.7M 41.1 1.22x 1.21x 3.11 1.22x 1.21x 0.0181 1.27x 1.21x 0.790 1.07x 1.21x

256 289.4M 38.2 1.38x 1.13x 3.35 1.38x 1.13x 0.0201 1.47x 1.14x 0.778 1.09x 1.09x

512 578.8M 28.7 1.44x 1.04x 4.46 1.44x 1.04x 0.0287 1.49x 1.03x 0.785 1.19x 1.08x

Llama-3.1-8B BS=64

S-LoRA

16 41.9M 22.7 1.00x 1.00x 5.64 1.00x 1.00x 0.0318 1.00x 1.00x 1.565 1.00x 1.00x

32 83.9M 22.3 1.00x 1.00x 5.76 1.00x 1.00x 0.0331 1.00x 1.00x 1.508 1.00x 1.00x

64 167.8M 20.3 1.00x 1.00x 6.32 1.00x 1.00x 0.0378 1.00x 1.00x 1.484 1.00x 1.00x

128 335.5M 16.7 1.00x 1.00x 7.66 1.00x 1.00x 0.0489 1.00x 1.00x 1.394 1.00x 1.00x

256 671.1M 11.4 1.00x 1.00x 11.21 1.00x 1.00x 0.0759 1.00x 1.00x 1.486 1.00x 1.00x

BD-LoRA

32 36.2M 28.8 1.27x N/A 4.46 1.27x N/A 0.0259 1.23x N/A 1.132 1.38x N/A

64 72.4M 27.9 1.25x 1.23x 4.59 1.25x 1.23x 0.0269 1.23x 1.18x 1.141 1.32x 1.37x

128 144.7M 27.3 1.34x 1.22x 4.71 1.34x 1.22x 0.0275 1.37x 1.20x 1.180 1.26x 1.28x

256 289.4M 23.7 1.41x 1.16x 5.41 1.42x 1.17x 0.0325 1.51x 1.16x 1.247 1.12x 1.19x

512 578.8M 16.3 1.43x 0.98x 7.84 1.43x 0.98x 0.0509 1.49x 0.96x 1.314 1.13x 1.06x
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Table 11: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

NFS-LoRA

16 207.1M 38.2 1.00x 1.00x 3.35 1.00x 1.00x 0.0243 1.00x 1.00x 0.236 1.00x 1.00x

32 414.2M 37.4 1.00x 1.00x 3.42 1.00x 1.00x 0.0249 1.00x 1.00x 0.239 1.00x 1.00x

64 828.4M 36.0 1.00x 1.00x 3.56 1.00x 1.00x 0.0259 1.00x 1.00x 0.241 1.00x 1.00x

128 1656.8M 34.0 1.00x 1.00x 3.76 1.00x 1.00x 0.0276 1.00x 1.00x 0.233 1.00x 1.00x

256 3313.5M 29.0 1.00x 1.00x 4.41 1.00x 1.00x 0.0323 1.00x 1.00x 0.279 1.00x 1.00x

BD-LoRA

32 180.2M 38.7 1.01x N/A 3.31 1.01x N/A 0.0240 1.01x N/A 0.228 1.03x N/A

64 360.4M 38.5 1.03x 1.01x 3.33 1.03x 1.01x 0.0242 1.03x 1.01x 0.232 1.03x 1.02x

128 720.9M 38.5 1.07x 1.03x 3.33 1.07x 1.03x 0.0242 1.07x 1.03x 0.232 1.04x 1.03x

256 1441.8M 37.7 1.11x 1.05x 3.40 1.11x 1.05x 0.0247 1.11x 1.05x 0.234 1.00x 1.03x

512 2883.6M 36.2 1.25x 1.06x 3.54 1.25x 1.06x 0.0259 1.25x 1.06x 0.222 1.25x 1.05x

Llama-3.1-70B BS=16

NFS-LoRA

16 207.1M 19.5 1.00x 1.00x 6.57 1.00x 1.00x 0.0397 1.00x 1.00x 1.486 1.00x 1.00x

32 414.2M 18.8 1.00x 1.00x 6.82 1.00x 1.00x 0.0417 1.00x 1.00x 1.482 1.00x 1.00x

64 828.4M 16.4 1.00x 1.00x 7.80 1.00x 1.00x 0.0485 1.00x 1.00x 1.600 1.00x 1.00x

128 1656.8M 12.7 1.00x 1.00x 10.08 1.00x 1.00x 0.0645 1.00x 1.00x 1.821 1.00x 1.00x

256 3313.5M 8.7 1.00x 1.00x 14.78 1.00x 1.00x 0.0977 1.00x 1.00x 2.270 1.00x 1.00x

BD-LoRA

32 180.2M 19.6 1.01x N/A 6.51 1.01x N/A 0.0390 1.02x N/A 1.525 0.97x N/A

64 360.4M 19.6 1.04x 1.00x 6.55 1.04x 1.00x 0.0394 1.06x 1.01x 1.502 0.99x 0.99x

128 720.9M 19.8 1.21x 1.05x 6.47 1.21x 1.05x 0.0393 1.23x 1.06x 1.436 1.11x 1.03x

256 1441.8M 18.7 1.47x 1.14x 6.85 1.47x 1.14x 0.0420 1.54x 1.15x 1.472 1.24x 1.09x

512 2883.6M 15.8 1.82x 1.24x 8.10 1.82x 1.24x 0.0509 1.92x 1.27x 1.578 1.44x 1.15x

Llama-3.1-70B BS=32

NFS-LoRA

16 207.1M 13.3 1.00x 1.00x 9.65 1.00x 1.00x 0.0550 1.00x 1.00x 2.607 1.00x 1.00x

32 414.2M 12.5 1.00x 1.00x 10.27 1.00x 1.00x 0.0596 1.00x 1.00x 2.641 1.00x 1.00x

64 828.4M 10.6 1.00x 1.00x 12.04 1.00x 1.00x 0.0721 1.00x 1.00x 2.807 1.00x 1.00x

128 1656.8M 7.7 1.00x 1.00x 16.57 1.00x 1.00x 0.1042 1.00x 1.00x 3.231 1.00x 1.00x

256 3313.5M 5.0 1.00x 1.00x 25.37 1.00x 1.00x 0.1668 1.00x 1.00x 4.021 1.00x 1.00x

BD-LoRA

32 180.2M 13.3 1.00x N/A 9.65 1.00x N/A 0.0540 1.02x N/A 2.737 0.95x N/A

64 360.4M 13.1 1.05x 0.99x 9.78 1.05x 0.99x 0.0553 1.08x 1.00x 2.705 0.98x 0.96x

128 720.9M 13.4 1.26x 1.07x 9.58 1.26x 1.07x 0.0547 1.32x 1.09x 2.573 1.09x 1.03x

256 1441.8M 12.4 1.61x 1.17x 10.31 1.61x 1.17x 0.0600 1.74x 1.20x 2.621 1.23x 1.07x

512 2883.6M 10.1 2.00x 1.30x 12.71 2.00x 1.30x 0.0772 2.16x 1.35x 2.832 1.42x 1.14x

Llama-3.1-70B BS=64

NFS-LoRA

16 207.1M 8.4 1.00x 1.00x 15.17 1.00x 1.00x 0.0821 1.00x 1.00x 4.652 1.00x 1.00x

32 414.2M 7.7 1.00x 1.00x 16.63 1.00x 1.00x 0.0926 1.00x 1.00x 4.768 1.00x 1.00x

64 828.4M 6.4 1.00x 1.00x 19.94 1.00x 1.00x 0.1164 1.00x 1.00x 5.040 1.00x 1.00x

128 1656.8M 4.4 1.00x 1.00x 28.98 1.00x 1.00x 0.1806 1.00x 1.00x 5.860 1.00x 1.00x

256 3313.5M 2.8 1.00x 1.00x 46.15 1.00x 1.00x 0.3034 1.00x 1.00x 7.307 1.00x 1.00x

BD-LoRA

32 180.2M 8.4 0.99x N/A 15.32 0.99x N/A 0.0810 1.01x N/A 4.944 0.94x N/A

64 360.4M 8.2 1.07x 0.97x 15.56 1.07x 0.97x 0.0836 1.11x 0.98x 4.855 0.98x 0.96x

128 720.9M 8.4 1.31x 1.09x 15.19 1.31x 1.09x 0.0826 1.41x 1.12x 4.616 1.09x 1.03x

256 1441.8M 7.6 1.72x 1.19x 16.81 1.72x 1.19x 0.0939 1.92x 1.24x 4.785 1.22x 1.05x

512 2883.6M 5.9 2.13x 1.34x 21.65 2.13x 1.34x 0.1270 2.39x 1.42x 5.315 1.37x 1.10x
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Table 12: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 1024, an output token (OT) length of 128, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

S-LoRA

16 207.1M 31.8 1.00x 1.00x 4.02 1.00x 1.00x 0.0295 1.00x 1.00x 0.248 1.00x 1.00x

32 414.2M 31.3 1.00x 1.00x 4.09 1.00x 1.00x 0.0298 1.00x 1.00x 0.278 1.00x 1.00x

64 828.4M 30.8 1.00x 1.00x 4.15 1.00x 1.00x 0.0302 1.00x 1.00x 0.278 1.00x 1.00x

128 1656.8M 29.7 1.00x 1.00x 4.31 1.00x 1.00x 0.0314 1.00x 1.00x 0.281 1.00x 1.00x

256 3313.5M 27.5 1.00x 1.00x 4.66 1.00x 1.00x 0.0344 1.00x 1.00x 0.255 1.00x 1.00x

BD-LoRA

32 180.2M 38.7 1.22x N/A 3.31 1.22x N/A 0.0240 1.23x N/A 0.228 1.09x N/A

64 360.4M 38.5 1.23x 1.21x 3.33 1.23x 1.21x 0.0242 1.23x 1.22x 0.232 1.20x 1.07x

128 720.9M 38.5 1.25x 1.23x 3.33 1.25x 1.23x 0.0242 1.25x 1.23x 0.232 1.20x 1.20x

256 1441.8M 37.7 1.27x 1.22x 3.40 1.27x 1.22x 0.0247 1.27x 1.22x 0.234 1.20x 1.19x

512 2883.6M 36.2 1.32x 1.22x 3.54 1.32x 1.22x 0.0259 1.33x 1.21x 0.222 1.15x 1.26x

Llama-3.1-70B BS=16

S-LoRA

16 207.1M 17.5 1.00x 1.00x 7.30 1.00x 1.00x 0.0453 1.00x 1.00x 1.507 1.00x 1.00x

32 414.2M 17.1 1.00x 1.00x 7.50 1.00x 1.00x 0.0466 1.00x 1.00x 1.527 1.00x 1.00x

64 828.4M 16.2 1.00x 1.00x 7.92 1.00x 1.00x 0.0498 1.00x 1.00x 1.551 1.00x 1.00x

128 1656.8M 14.2 1.00x 1.00x 9.03 1.00x 1.00x 0.0579 1.00x 1.00x 1.621 1.00x 1.00x

256 3313.5M 11.1 1.00x 1.00x 11.58 1.00x 1.00x 0.0765 1.00x 1.00x 1.790 1.00x 1.00x

BD-LoRA

32 180.2M 19.6 1.12x N/A 6.51 1.12x N/A 0.0390 1.16x N/A 1.525 0.99x N/A

64 360.4M 19.6 1.15x 1.12x 6.55 1.15x 1.12x 0.0394 1.18x 1.15x 1.502 1.02x 1.00x

128 720.9M 19.8 1.22x 1.16x 6.47 1.22x 1.16x 0.0393 1.27x 1.19x 1.436 1.08x 1.06x

256 1441.8M 18.7 1.32x 1.16x 6.85 1.32x 1.16x 0.0420 1.38x 1.19x 1.472 1.10x 1.05x

512 2883.6M 15.8 1.43x 1.11x 8.10 1.43x 1.11x 0.0509 1.50x 1.14x 1.578 1.13x 1.03x

Llama-3.1-70B BS=32

S-LoRA

16 207.1M 12.5 1.00x 1.00x 10.26 1.00x 1.00x 0.0594 1.00x 1.00x 2.651 1.00x 1.00x

32 414.2M 12.2 1.00x 1.00x 10.50 1.00x 1.00x 0.0616 1.00x 1.00x 2.617 1.00x 1.00x

64 828.4M 11.3 1.00x 1.00x 11.33 1.00x 1.00x 0.0677 1.00x 1.00x 2.658 1.00x 1.00x

128 1656.8M 9.5 1.00x 1.00x 13.53 1.00x 1.00x 0.0839 1.00x 1.00x 2.781 1.00x 1.00x

256 3313.5M 7.1 1.00x 1.00x 18.08 1.00x 1.00x 0.1172 1.00x 1.00x 3.084 1.00x 1.00x

BD-LoRA

32 180.2M 13.3 1.06x N/A 9.65 1.06x N/A 0.0540 1.10x N/A 2.737 0.97x N/A

64 360.4M 13.1 1.07x 1.05x 9.78 1.07x 1.05x 0.0553 1.11x 1.08x 2.705 0.97x 0.98x

128 720.9M 13.4 1.18x 1.10x 9.58 1.18x 1.10x 0.0547 1.24x 1.12x 2.573 1.03x 1.02x

256 1441.8M 12.4 1.31x 1.10x 10.31 1.31x 1.10x 0.0600 1.40x 1.13x 2.621 1.06x 1.01x

512 2883.6M 10.1 1.42x 1.06x 12.71 1.42x 1.06x 0.0772 1.52x 1.09x 2.832 1.09x 0.98x

Llama-3.1-70B BS=64

S-LoRA

16 207.1M 8.1 1.00x 1.00x 15.87 1.00x 1.00x 0.0867 1.00x 1.00x 4.769 1.00x 1.00x

32 414.2M 7.8 1.00x 1.00x 16.50 1.00x 1.00x 0.0915 1.00x 1.00x 4.777 1.00x 1.00x

64 828.4M 7.1 1.00x 1.00x 18.06 1.00x 1.00x 0.1030 1.00x 1.00x 4.874 1.00x 1.00x

128 1656.8M 5.8 1.00x 1.00x 22.26 1.00x 1.00x 0.1337 1.00x 1.00x 5.138 1.00x 1.00x

256 3313.5M 4.1 1.00x 1.00x 31.34 1.00x 1.00x 0.2014 1.00x 1.00x 5.553 1.00x 1.00x

BD-LoRA

32 180.2M 8.4 1.04x N/A 15.32 1.04x N/A 0.0810 1.07x N/A 4.944 0.96x N/A

64 360.4M 8.2 1.06x 1.02x 15.56 1.06x 1.02x 0.0836 1.09x 1.04x 4.855 0.98x 0.98x

128 720.9M 8.4 1.19x 1.09x 15.19 1.19x 1.09x 0.0826 1.25x 1.11x 4.616 1.06x 1.03x

256 1441.8M 7.6 1.32x 1.07x 16.81 1.32x 1.07x 0.0939 1.42x 1.10x 4.785 1.07x 1.02x

512 2883.6M 5.9 1.45x 1.03x 21.65 1.45x 1.03x 0.1270 1.59x 1.05x 5.315 1.04x 0.97x
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Table 13: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

NFS-LoRA

16 41.9M 130.9 1.00x 1.00x 1.96 1.00x 1.00x 0.0072 1.00x 1.00x 0.109 1.00x 1.00x

32 83.9M 129.7 1.00x 1.00x 1.97 1.00x 1.00x 0.0073 1.00x 1.00x 0.113 1.00x 1.00x

64 167.8M 121.2 1.00x 1.00x 2.11 1.00x 1.00x 0.0078 1.00x 1.00x 0.121 1.00x 1.00x

128 335.5M 112.2 1.00x 1.00x 2.28 1.00x 1.00x 0.0084 1.00x 1.00x 0.139 1.00x 1.00x

256 671.1M 94.5 1.00x 1.00x 2.71 1.00x 1.00x 0.0099 1.00x 1.00x 0.179 1.00x 1.00x

BD-LoRA

32 36.2M 132.2 1.01x N/A 1.94 1.01x N/A 0.0071 1.01x N/A 0.116 0.94x N/A

64 72.4M 131.5 1.01x 1.00x 1.95 1.01x 1.00x 0.0071 1.02x 1.01x 0.117 0.97x 0.93x

128 144.7M 131.1 1.08x 1.01x 1.95 1.08x 1.01x 0.0072 1.08x 1.01x 0.110 1.10x 1.03x

256 289.4M 130.1 1.16x 1.07x 1.97 1.16x 1.07x 0.0072 1.15x 1.07x 0.111 1.25x 1.09x

512 578.8M 120.6 1.28x 1.07x 2.12 1.28x 1.07x 0.0078 1.26x 1.07x 0.122 1.46x 1.14x

Llama-3.1-8B BS=16

NFS-LoRA

16 41.9M 58.0 1.00x 1.00x 4.41 1.00x 1.00x 0.0139 1.00x 1.00x 0.862 1.00x 1.00x

32 83.9M 54.6 1.00x 1.00x 4.69 1.00x 1.00x 0.0149 1.00x 1.00x 0.883 1.00x 1.00x

64 167.8M 46.8 1.00x 1.00x 5.47 1.00x 1.00x 0.0176 1.00x 1.00x 0.961 1.00x 1.00x

128 335.5M 34.9 1.00x 1.00x 7.34 1.00x 1.00x 0.0243 1.00x 1.00x 1.117 1.00x 1.00x

256 671.1M 23.6 1.00x 1.00x 10.83 1.00x 1.00x 0.0367 1.00x 1.00x 1.440 1.00x 1.00x

BD-LoRA

32 36.2M 57.9 1.00x N/A 4.42 1.00x N/A 0.0137 1.01x N/A 0.907 0.95x N/A

64 72.4M 57.3 1.05x 0.99x 4.47 1.05x 0.99x 0.0140 1.07x 0.99x 0.896 0.99x 0.96x

128 144.7M 58.0 1.24x 1.06x 4.42 1.24x 1.06x 0.0140 1.26x 1.07x 0.842 1.14x 1.05x

256 289.4M 54.1 1.55x 1.16x 4.74 1.55x 1.16x 0.0151 1.61x 1.17x 0.872 1.28x 1.10x

512 578.8M 41.6 1.76x 1.19x 6.15 1.76x 1.19x 0.0203 1.81x 1.20x 0.964 1.49x 1.16x

Llama-3.1-8B BS=32

NFS-LoRA

16 41.9M 38.6 1.00x 1.00x 6.63 1.00x 1.00x 0.0198 1.00x 1.00x 1.564 1.00x 1.00x

32 83.9M 35.3 1.00x 1.00x 7.25 1.00x 1.00x 0.0220 1.00x 1.00x 1.617 1.00x 1.00x

64 167.8M 29.6 1.00x 1.00x 8.65 1.00x 1.00x 0.0268 1.00x 1.00x 1.790 1.00x 1.00x

128 335.5M 21.0 1.00x 1.00x 12.21 1.00x 1.00x 0.0396 1.00x 1.00x 2.070 1.00x 1.00x

256 671.1M 13.5 1.00x 1.00x 18.99 1.00x 1.00x 0.0637 1.00x 1.00x 2.671 1.00x 1.00x

BD-LoRA

32 36.2M 38.2 0.99x N/A 6.70 0.99x N/A 0.0197 1.01x N/A 1.667 0.94x N/A

64 72.4M 38.0 1.08x 0.98x 6.74 1.08x 0.98x 0.0201 1.10x 0.99x 1.596 1.01x 0.98x

128 144.7M 38.3 1.30x 1.09x 6.68 1.30x 1.09x 0.0201 1.34x 1.10x 1.544 1.16x 1.05x

256 289.4M 34.8 1.66x 1.18x 7.35 1.66x 1.18x 0.0224 1.77x 1.20x 1.613 1.28x 1.11x

512 578.8M 25.6 1.90x 1.22x 10.00 1.90x 1.22x 0.0320 1.99x 1.24x 1.796 1.49x 1.15x

Llama-3.1-8B BS=64

NFS-LoRA

16 41.9M 23.1 1.00x 1.00x 11.07 1.00x 1.00x 0.0322 1.00x 1.00x 2.810 1.00x 1.00x

32 83.9M 21.2 1.00x 1.00x 12.07 1.00x 1.00x 0.0358 1.00x 1.00x 2.887 1.00x 1.00x

64 167.8M 17.2 1.00x 1.00x 14.90 1.00x 1.00x 0.0459 1.00x 1.00x 3.157 1.00x 1.00x

128 335.5M 11.6 1.00x 1.00x 22.11 1.00x 1.00x 0.0717 1.00x 1.00x 3.749 1.00x 1.00x

256 671.1M 7.2 1.00x 1.00x 35.49 1.00x 1.00x 0.1190 1.00x 1.00x 5.025 1.00x 1.00x

BD-LoRA

32 36.2M 23.0 1.00x N/A 11.13 1.00x N/A 0.0319 1.01x N/A 2.965 0.95x N/A

64 72.4M 22.5 1.06x 0.97x 11.36 1.06x 0.97x 0.0329 1.09x 0.98x 2.933 0.98x 0.96x

128 144.7M 23.2 1.35x 1.09x 11.06 1.35x 1.09x 0.0327 1.40x 1.10x 2.679 1.18x 1.08x

256 289.4M 20.6 1.78x 1.20x 12.45 1.78x 1.20x 0.0374 1.91x 1.22x 2.854 1.31x 1.11x

512 578.8M 14.5 2.01x 1.25x 17.65 2.01x 1.25x 0.0566 2.10x 1.27x 3.152 1.59x 1.19x

49



Table 14: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

S-LoRA

16 41.9M 104.6 1.00x 1.00x 2.45 1.00x 1.00x 0.0091 1.00x 1.00x 0.121 1.00x 1.00x

32 83.9M 103.8 1.00x 1.00x 2.47 1.00x 1.00x 0.0092 1.00x 1.00x 0.120 1.00x 1.00x

64 167.8M 102.0 1.00x 1.00x 2.51 1.00x 1.00x 0.0093 1.00x 1.00x 0.121 1.00x 1.00x

128 335.5M 97.2 1.00x 1.00x 2.63 1.00x 1.00x 0.0098 1.00x 1.00x 0.123 1.00x 1.00x

256 671.1M 88.2 1.00x 1.00x 2.90 1.00x 1.00x 0.0108 1.00x 1.00x 0.136 1.00x 1.00x

BD-LoRA

32 36.2M 132.2 1.26x N/A 1.94 1.26x N/A 0.0071 1.28x N/A 0.116 1.04x N/A

64 72.4M 131.5 1.27x 1.26x 1.95 1.27x 1.26x 0.0071 1.28x 1.27x 0.117 1.03x 1.03x

128 144.7M 131.1 1.29x 1.26x 1.95 1.29x 1.26x 0.0072 1.30x 1.27x 0.110 1.11x 1.10x

256 289.4M 130.1 1.34x 1.28x 1.97 1.34x 1.28x 0.0072 1.35x 1.29x 0.111 1.11x 1.09x

512 578.8M 120.6 1.37x 1.24x 2.12 1.37x 1.24x 0.0078 1.38x 1.25x 0.122 1.11x 1.01x

Llama-3.1-8B BS=16

S-LoRA

16 41.9M 51.0 1.00x 1.00x 5.02 1.00x 1.00x 0.0160 1.00x 1.00x 0.933 1.00x 1.00x

32 83.9M 50.1 1.00x 1.00x 5.11 1.00x 1.00x 0.0164 1.00x 1.00x 0.899 1.00x 1.00x

64 167.8M 46.2 1.00x 1.00x 5.54 1.00x 1.00x 0.0179 1.00x 1.00x 0.966 1.00x 1.00x

128 335.5M 40.2 1.00x 1.00x 6.36 1.00x 1.00x 0.0210 1.00x 1.00x 0.979 1.00x 1.00x

256 671.1M 30.4 1.00x 1.00x 8.41 1.00x 1.00x 0.0286 1.00x 1.00x 1.094 1.00x 1.00x

BD-LoRA

32 36.2M 57.9 1.14x N/A 4.42 1.14x N/A 0.0137 1.16x N/A 0.907 1.03x N/A

64 72.4M 57.3 1.14x 1.12x 4.47 1.14x 1.12x 0.0140 1.18x 1.14x 0.896 1.00x 1.04x

128 144.7M 58.0 1.25x 1.16x 4.42 1.25x 1.16x 0.0140 1.28x 1.18x 0.842 1.15x 1.07x

256 289.4M 54.1 1.34x 1.17x 4.74 1.34x 1.17x 0.0151 1.39x 1.18x 0.872 1.12x 1.11x

512 578.8M 41.6 1.37x 1.03x 6.15 1.37x 1.03x 0.0203 1.41x 1.04x 0.964 1.13x 1.02x

Llama-3.1-8B BS=32

S-LoRA

16 41.9M 34.5 1.00x 1.00x 7.42 1.00x 1.00x 0.0223 1.00x 1.00x 1.714 1.00x 1.00x

32 83.9M 34.7 1.00x 1.00x 7.37 1.00x 1.00x 0.0227 1.00x 1.00x 1.562 1.00x 1.00x

64 167.8M 30.5 1.00x 1.00x 8.39 1.00x 1.00x 0.0258 1.00x 1.00x 1.789 1.00x 1.00x

128 335.5M 25.5 1.00x 1.00x 10.02 1.00x 1.00x 0.0321 1.00x 1.00x 1.800 1.00x 1.00x

256 671.1M 18.7 1.00x 1.00x 13.65 1.00x 1.00x 0.0454 1.00x 1.00x 2.028 1.00x 1.00x

BD-LoRA

32 36.2M 38.2 1.11x N/A 6.70 1.11x N/A 0.0197 1.13x N/A 1.667 1.03x N/A

64 72.4M 38.0 1.09x 1.10x 6.74 1.09x 1.10x 0.0201 1.13x 1.11x 1.596 0.98x 1.07x

128 144.7M 38.3 1.26x 1.10x 6.68 1.26x 1.10x 0.0201 1.29x 1.13x 1.544 1.16x 1.01x

256 289.4M 34.8 1.36x 1.14x 7.35 1.36x 1.14x 0.0224 1.43x 1.15x 1.613 1.12x 1.11x

512 578.8M 25.6 1.37x 1.00x 10.00 1.37x 1.00x 0.0320 1.42x 1.00x 1.796 1.13x 1.00x

Llama-3.1-8B BS=64

S-LoRA

16 41.9M 21.1 1.00x 1.00x 12.13 1.00x 1.00x 0.0351 1.00x 1.00x 3.149 1.00x 1.00x

32 83.9M 20.2 1.00x 1.00x 12.65 1.00x 1.00x 0.0371 1.00x 1.00x 3.139 1.00x 1.00x

64 167.8M 18.4 1.00x 1.00x 13.94 1.00x 1.00x 0.0419 1.00x 1.00x 3.213 1.00x 1.00x

128 335.5M 15.1 1.00x 1.00x 16.98 1.00x 1.00x 0.0539 1.00x 1.00x 3.185 1.00x 1.00x

256 671.1M 10.5 1.00x 1.00x 24.43 1.00x 1.00x 0.0810 1.00x 1.00x 3.688 1.00x 1.00x

BD-LoRA

32 36.2M 23.0 1.09x N/A 11.13 1.09x N/A 0.0319 1.10x N/A 2.965 1.06x N/A

64 72.4M 22.5 1.11x 1.07x 11.36 1.11x 1.07x 0.0329 1.13x 1.07x 2.933 1.07x 1.07x

128 144.7M 23.2 1.26x 1.14x 11.06 1.26x 1.14x 0.0327 1.28x 1.14x 2.679 1.20x 1.17x

256 289.4M 20.6 1.36x 1.12x 12.45 1.36x 1.12x 0.0374 1.44x 1.12x 2.854 1.12x 1.13x

512 578.8M 14.5 1.38x 0.96x 17.65 1.38x 0.96x 0.0566 1.43x 0.95x 3.152 1.17x 1.01x
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Table 15: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

NFS-LoRA

16 207.1M 37.1 1.00x 1.00x 6.91 1.00x 1.00x 0.0250 1.00x 1.00x 0.518 1.00x 1.00x

32 414.2M 36.3 1.00x 1.00x 7.06 1.00x 1.00x 0.0255 1.00x 1.00x 0.534 1.00x 1.00x

64 828.4M 34.8 1.00x 1.00x 7.35 1.00x 1.00x 0.0265 1.00x 1.00x 0.570 1.00x 1.00x

128 1656.8M 32.6 1.00x 1.00x 7.86 1.00x 1.00x 0.0282 1.00x 1.00x 0.653 1.00x 1.00x

256 3313.5M 27.7 1.00x 1.00x 9.26 1.00x 1.00x 0.0329 1.00x 1.00x 0.822 1.00x 1.00x

BD-LoRA

32 180.2M 37.5 1.01x N/A 6.83 1.01x N/A 0.0245 1.02x N/A 0.551 0.94x N/A

64 360.4M 37.2 1.03x 1.00x 6.88 1.03x 1.00x 0.0248 1.03x 1.01x 0.542 0.98x 0.96x

128 720.9M 37.3 1.07x 1.03x 6.86 1.07x 1.03x 0.0248 1.07x 1.03x 0.517 1.10x 1.03x

256 1441.8M 36.4 1.12x 1.05x 7.02 1.12x 1.05x 0.0254 1.11x 1.04x 0.534 1.22x 1.07x

512 2883.6M 34.7 1.26x 1.07x 7.37 1.26x 1.07x 0.0266 1.24x 1.06x 0.571 1.44x 1.14x

Llama-3.1-70B BS=16

NFS-LoRA

16 207.1M 15.3 1.00x 1.00x 16.71 1.00x 1.00x 0.0479 1.00x 1.00x 4.447 1.00x 1.00x

32 414.2M 14.6 1.00x 1.00x 17.59 1.00x 1.00x 0.0508 1.00x 1.00x 4.598 1.00x 1.00x

64 828.4M 13.0 1.00x 1.00x 19.69 1.00x 1.00x 0.0577 1.00x 1.00x 4.923 1.00x 1.00x

128 1656.8M 10.3 1.00x 1.00x 24.93 1.00x 1.00x 0.0752 1.00x 1.00x 5.673 1.00x 1.00x

256 3313.5M 7.2 1.00x 1.00x 35.61 1.00x 1.00x 0.1110 1.00x 1.00x 7.194 1.00x 1.00x

BD-LoRA

32 180.2M 15.1 0.98x N/A 16.97 0.98x N/A 0.0478 1.00x N/A 4.726 0.94x N/A

64 360.4M 15.0 1.03x 0.98x 17.08 1.03x 0.98x 0.0485 1.05x 0.99x 4.664 0.99x 0.95x

128 720.9M 15.4 1.18x 1.05x 16.68 1.18x 1.05x 0.0479 1.20x 1.06x 4.413 1.12x 1.04x

256 1441.8M 14.5 1.42x 1.12x 17.61 1.42x 1.12x 0.0509 1.48x 1.13x 4.570 1.24x 1.08x

512 2883.6M 12.6 1.75x 1.23x 20.33 1.75x 1.23x 0.0602 1.84x 1.25x 4.917 1.46x 1.15x

Llama-3.1-70B BS=32

NFS-LoRA

16 207.1M 9.7 1.00x 1.00x 26.51 1.00x 1.00x 0.0709 1.00x 1.00x 8.342 1.00x 1.00x

32 414.2M 9.1 1.00x 1.00x 28.16 1.00x 1.00x 0.0763 1.00x 1.00x 8.617 1.00x 1.00x

64 828.4M 7.9 1.00x 1.00x 32.27 1.00x 1.00x 0.0900 1.00x 1.00x 9.237 1.00x 1.00x

128 1656.8M 6.0 1.00x 1.00x 42.43 1.00x 1.00x 0.1243 1.00x 1.00x 10.612 1.00x 1.00x

256 3313.5M 4.1 1.00x 1.00x 62.80 1.00x 1.00x 0.1925 1.00x 1.00x 13.508 1.00x 1.00x

BD-LoRA

32 180.2M 9.4 0.98x N/A 27.18 0.98x N/A 0.0714 0.99x N/A 8.896 0.94x N/A

64 360.4M 9.4 1.03x 0.97x 27.32 1.03x 0.97x 0.0725 1.05x 0.98x 8.743 0.99x 0.95x

128 720.9M 9.7 1.22x 1.06x 26.49 1.22x 1.06x 0.0710 1.27x 1.07x 8.304 1.11x 1.04x

256 1441.8M 9.1 1.50x 1.14x 28.23 1.50x 1.14x 0.0768 1.62x 1.17x 8.557 1.24x 1.08x

512 2883.6M 7.6 1.86x 1.26x 33.70 1.86x 1.26x 0.0955 2.02x 1.30x 9.251 1.46x 1.15x

Llama-3.1-70B BS=64

NFS-LoRA

16 207.1M 5.6 1.00x 1.00x 45.44 1.00x 1.00x 0.1153 1.00x 1.00x 15.918 1.00x 1.00x

32 414.2M 5.3 1.00x 1.00x 48.75 1.00x 1.00x 0.1262 1.00x 1.00x 16.448 1.00x 1.00x

64 828.4M 4.5 1.00x 1.00x 56.62 1.00x 1.00x 0.1521 1.00x 1.00x 17.665 1.00x 1.00x

128 1656.8M 3.3 1.00x 1.00x 77.14 1.00x 1.00x 0.2219 1.00x 1.00x 20.313 1.00x 1.00x

256 3313.5M 2.2 1.00x 1.00x 116.68 1.00x 1.00x 0.3547 1.00x 1.00x 25.857 1.00x 1.00x

BD-LoRA

32 180.2M 5.5 0.97x N/A 46.74 0.97x N/A 0.1161 0.99x N/A 17.003 0.94x N/A

64 360.4M 5.5 1.04x 0.97x 46.92 1.04x 0.97x 0.1179 1.07x 0.98x 16.720 0.98x 0.95x

128 720.9M 5.6 1.25x 1.08x 45.34 1.25x 1.08x 0.1153 1.32x 1.09x 15.815 1.12x 1.04x

256 1441.8M 5.2 1.58x 1.16x 48.82 1.58x 1.16x 0.1269 1.75x 1.20x 16.335 1.24x 1.08x

512 2883.6M 4.3 1.96x 1.30x 59.54 1.96x 1.30x 0.1629 2.18x 1.36x 17.831 1.45x 1.14x
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Table 16: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 4096, an output token (OT) length of 256, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

S-LoRA

16 207.1M 31.0 1.00x 1.00x 8.25 1.00x 1.00x 0.0302 1.00x 1.00x 0.511 1.00x 1.00x

32 414.2M 30.8 1.00x 1.00x 8.32 1.00x 1.00x 0.0305 1.00x 1.00x 0.513 1.00x 1.00x

64 828.4M 30.2 1.00x 1.00x 8.46 1.00x 1.00x 0.0310 1.00x 1.00x 0.527 1.00x 1.00x

128 1656.8M 29.1 1.00x 1.00x 8.79 1.00x 1.00x 0.0322 1.00x 1.00x 0.555 1.00x 1.00x

256 3313.5M 26.6 1.00x 1.00x 9.62 1.00x 1.00x 0.0352 1.00x 1.00x 0.615 1.00x 1.00x

BD-LoRA

32 180.2M 37.5 1.21x N/A 6.83 1.21x N/A 0.0245 1.23x N/A 0.551 0.93x N/A

64 360.4M 37.2 1.21x 1.20x 6.88 1.21x 1.20x 0.0248 1.23x 1.22x 0.542 0.95x 0.94x

128 720.9M 37.3 1.23x 1.21x 6.86 1.23x 1.21x 0.0248 1.25x 1.23x 0.517 1.02x 0.99x

256 1441.8M 36.4 1.25x 1.20x 7.02 1.25x 1.20x 0.0254 1.27x 1.22x 0.534 1.04x 0.99x

512 2883.6M 34.7 1.30x 1.19x 7.37 1.30x 1.19x 0.0266 1.32x 1.21x 0.571 1.08x 0.97x

Llama-3.1-70B BS=16

S-LoRA

16 207.1M 14.1 1.00x 1.00x 18.13 1.00x 1.00x 0.0536 1.00x 1.00x 4.407 1.00x 1.00x

32 414.2M 13.8 1.00x 1.00x 18.54 1.00x 1.00x 0.0550 1.00x 1.00x 4.458 1.00x 1.00x

64 828.4M 13.1 1.00x 1.00x 19.53 1.00x 1.00x 0.0584 1.00x 1.00x 4.581 1.00x 1.00x

128 1656.8M 11.7 1.00x 1.00x 21.95 1.00x 1.00x 0.0669 1.00x 1.00x 4.830 1.00x 1.00x

256 3313.5M 9.3 1.00x 1.00x 27.43 1.00x 1.00x 0.0862 1.00x 1.00x 5.358 1.00x 1.00x

BD-LoRA

32 180.2M 15.1 1.07x N/A 16.97 1.07x N/A 0.0478 1.12x N/A 4.726 0.93x N/A

64 360.4M 15.0 1.09x 1.06x 17.08 1.09x 1.06x 0.0485 1.13x 1.11x 4.664 0.96x 0.94x

128 720.9M 15.4 1.17x 1.11x 16.68 1.17x 1.11x 0.0479 1.22x 1.15x 4.413 1.04x 1.01x

256 1441.8M 14.5 1.25x 1.11x 17.61 1.25x 1.11x 0.0509 1.31x 1.15x 4.570 1.06x 1.00x

512 2883.6M 12.6 1.35x 1.08x 20.33 1.35x 1.08x 0.0602 1.43x 1.11x 4.917 1.09x 0.98x

Llama-3.1-70B BS=32

S-LoRA

16 207.1M 9.4 1.00x 1.00x 27.26 1.00x 1.00x 0.0748 1.00x 1.00x 8.113 1.00x 1.00x

32 414.2M 9.1 1.00x 1.00x 28.01 1.00x 1.00x 0.0775 1.00x 1.00x 8.171 1.00x 1.00x

64 828.4M 8.5 1.00x 1.00x 30.01 1.00x 1.00x 0.0841 1.00x 1.00x 8.483 1.00x 1.00x

128 1656.8M 7.4 1.00x 1.00x 34.73 1.00x 1.00x 0.1010 1.00x 1.00x 8.864 1.00x 1.00x

256 3313.5M 5.7 1.00x 1.00x 44.66 1.00x 1.00x 0.1358 1.00x 1.00x 9.887 1.00x 1.00x

BD-LoRA

32 180.2M 9.4 1.00x N/A 27.18 1.00x N/A 0.0714 1.05x N/A 8.896 0.91x N/A

64 360.4M 9.4 1.03x 1.00x 27.32 1.03x 1.00x 0.0725 1.07x 1.03x 8.743 0.93x 0.93x

128 720.9M 9.7 1.13x 1.06x 26.49 1.13x 1.06x 0.0710 1.18x 1.09x 8.304 1.02x 0.98x

256 1441.8M 9.1 1.23x 1.06x 28.23 1.23x 1.06x 0.0768 1.32x 1.09x 8.557 1.04x 0.99x

512 2883.6M 7.6 1.33x 1.03x 33.70 1.33x 1.03x 0.0955 1.42x 1.06x 9.251 1.07x 0.96x

Llama-3.1-70B BS=64

S-LoRA

16 207.1M 5.7 1.00x 1.00x 45.29 1.00x 1.00x 0.1167 1.00x 1.00x 15.411 1.00x 1.00x

32 414.2M 5.5 1.00x 1.00x 46.86 1.00x 1.00x 0.1222 1.00x 1.00x 15.570 1.00x 1.00x

64 828.4M 5.0 1.00x 1.00x 50.91 1.00x 1.00x 0.1360 1.00x 1.00x 16.094 1.00x 1.00x

128 1656.8M 4.3 1.00x 1.00x 59.73 1.00x 1.00x 0.1671 1.00x 1.00x 16.935 1.00x 1.00x

256 3313.5M 3.2 1.00x 1.00x 79.87 1.00x 1.00x 0.2374 1.00x 1.00x 19.083 1.00x 1.00x

BD-LoRA

32 180.2M 5.5 0.97x N/A 46.74 0.97x N/A 0.1161 1.00x N/A 17.003 0.91x N/A

64 360.4M 5.5 1.00x 0.97x 46.92 1.00x 0.97x 0.1179 1.04x 0.99x 16.720 0.93x 0.92x

128 720.9M 5.6 1.12x 1.03x 45.34 1.12x 1.03x 0.1153 1.18x 1.06x 15.815 1.02x 0.98x

256 1441.8M 5.2 1.22x 1.04x 48.82 1.22x 1.04x 0.1269 1.32x 1.07x 16.335 1.04x 0.99x

512 2883.6M 4.3 1.34x 1.00x 59.54 1.34x 1.00x 0.1629 1.46x 1.03x 17.831 1.07x 0.95x
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Table 17: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

NFS-LoRA

16 41.9M 141.7 1.00x 1.00x 7.23 1.00x 1.00x 0.0070 1.00x 1.00x 0.088 1.00x 1.00x

32 83.9M 137.4 1.00x 1.00x 7.45 1.00x 1.00x 0.0072 1.00x 1.00x 0.095 1.00x 1.00x

64 167.8M 131.0 1.00x 1.00x 7.82 1.00x 1.00x 0.0075 1.00x 1.00x 0.095 1.00x 1.00x

128 335.5M 122.5 1.00x 1.00x 8.36 1.00x 1.00x 0.0081 1.00x 1.00x 0.088 1.00x 1.00x

256 671.1M 101.4 1.00x 1.00x 10.10 1.00x 1.00x 0.0098 1.00x 1.00x 0.096 1.00x 1.00x

BD-LoRA

32 36.2M 143.6 1.01x N/A 7.13 1.01x N/A 0.0069 1.01x N/A 0.088 1.00x N/A

64 72.4M 142.7 1.04x 1.01x 7.18 1.04x 1.01x 0.0069 1.04x 1.01x 0.086 1.11x 1.02x

128 144.7M 141.8 1.08x 1.03x 7.22 1.08x 1.03x 0.0070 1.08x 1.03x 0.088 1.09x 1.09x

256 289.4M 137.5 1.12x 1.05x 7.45 1.12x 1.05x 0.0072 1.12x 1.05x 0.093 0.95x 1.02x

512 578.8M 131.2 1.29x 1.07x 7.81 1.29x 1.07x 0.0075 1.30x 1.07x 0.087 1.11x 1.02x

Llama-3.1-8B BS=16

NFS-LoRA

16 41.9M 88.6 1.00x 1.00x 11.57 1.00x 1.00x 0.0111 1.00x 1.00x 0.248 1.00x 1.00x

32 83.9M 83.5 1.00x 1.00x 12.27 1.00x 1.00x 0.0117 1.00x 1.00x 0.248 1.00x 1.00x

64 167.8M 70.3 1.00x 1.00x 14.56 1.00x 1.00x 0.0140 1.00x 1.00x 0.252 1.00x 1.00x

128 335.5M 49.3 1.00x 1.00x 20.77 1.00x 1.00x 0.0201 1.00x 1.00x 0.233 1.00x 1.00x

256 671.1M 31.5 1.00x 1.00x 32.54 1.00x 1.00x 0.0315 1.00x 1.00x 0.289 1.00x 1.00x

BD-LoRA

32 36.2M 90.4 1.02x N/A 11.32 1.02x N/A 0.0108 1.02x N/A 0.261 0.95x N/A

64 72.4M 89.0 1.07x 1.01x 11.50 1.07x 1.01x 0.0110 1.07x 1.00x 0.232 1.07x 1.07x

128 144.7M 88.3 1.26x 1.06x 11.59 1.26x 1.06x 0.0111 1.26x 1.06x 0.236 1.06x 1.05x

256 289.4M 81.4 1.65x 1.16x 12.58 1.65x 1.16x 0.0120 1.66x 1.16x 0.245 0.95x 1.03x

512 578.8M 59.0 1.87x 1.20x 17.36 1.87x 1.20x 0.0167 1.89x 1.20x 0.256 1.13x 0.91x

Llama-3.1-8B BS=32

NFS-LoRA

16 41.9M 73.9 1.00x 1.00x 13.85 1.00x 1.00x 0.0132 1.00x 1.00x 0.291 1.00x 1.00x

32 83.9M 65.4 1.00x 1.00x 15.65 1.00x 1.00x 0.0150 1.00x 1.00x 0.292 1.00x 1.00x

64 167.8M 50.4 1.00x 1.00x 20.31 1.00x 1.00x 0.0195 1.00x 1.00x 0.285 1.00x 1.00x

128 335.5M 31.7 1.00x 1.00x 32.30 1.00x 1.00x 0.0313 1.00x 1.00x 0.279 1.00x 1.00x

256 671.1M 18.8 1.00x 1.00x 54.46 1.00x 1.00x 0.0529 1.00x 1.00x 0.300 1.00x 1.00x

BD-LoRA

32 36.2M 77.7 1.05x N/A 13.19 1.05x N/A 0.0126 1.05x N/A 0.264 1.10x N/A

64 72.4M 73.7 1.13x 1.00x 13.89 1.13x 1.00x 0.0133 1.13x 0.99x 0.258 1.13x 1.13x

128 144.7M 72.6 1.44x 1.11x 14.10 1.44x 1.11x 0.0135 1.45x 1.11x 0.277 1.03x 1.06x

256 289.4M 63.0 1.99x 1.25x 16.27 1.99x 1.25x 0.0156 2.00x 1.25x 0.277 1.01x 1.03x

512 578.8M 40.0 2.13x 1.26x 25.58 2.13x 1.26x 0.0247 2.14x 1.27x 0.276 1.09x 1.01x

Llama-3.1-8B BS=64

NFS-LoRA

16 41.9M 52.4 1.00x 1.00x 19.53 1.00x 1.00x 0.0188 1.00x 1.00x 0.306 1.00x 1.00x

32 83.9M 44.7 1.00x 1.00x 22.90 1.00x 1.00x 0.0221 1.00x 1.00x 0.301 1.00x 1.00x

64 167.8M 31.9 1.00x 1.00x 32.07 1.00x 1.00x 0.0309 1.00x 1.00x 0.397 1.00x 1.00x

128 335.5M 18.3 1.00x 1.00x 55.82 1.00x 1.00x 0.0542 1.00x 1.00x 0.329 1.00x 1.00x

256 671.1M 10.3 1.00x 1.00x 99.83 1.00x 1.00x 0.0971 1.00x 1.00x 0.345 1.00x 1.00x

BD-LoRA

32 36.2M 56.1 1.07x N/A 18.27 1.07x N/A 0.0175 1.07x N/A 0.316 0.97x N/A

64 72.4M 51.9 1.16x 0.99x 19.74 1.16x 0.99x 0.0190 1.16x 0.99x 0.321 0.94x 0.95x

128 144.7M 50.6 1.59x 1.13x 20.23 1.59x 1.13x 0.0194 1.59x 1.13x 0.315 1.26x 0.96x

256 289.4M 41.5 2.26x 1.30x 24.68 2.26x 1.30x 0.0238 2.28x 1.30x 0.336 0.98x 1.18x

512 578.8M 24.0 2.34x 1.31x 42.66 2.34x 1.31x 0.0413 2.35x 1.31x 0.340 1.02x 0.97x
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Table 18: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
of Llama-3.1-8B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

S-LoRA

16 41.9M 110.7 1.00x 1.00x 9.25 1.00x 1.00x 0.0089 1.00x 1.00x 0.104 1.00x 1.00x

32 83.9M 110.4 1.00x 1.00x 9.28 1.00x 1.00x 0.0090 1.00x 1.00x 0.101 1.00x 1.00x

64 167.8M 108.2 1.00x 1.00x 9.47 1.00x 1.00x 0.0091 1.00x 1.00x 0.105 1.00x 1.00x

128 335.5M 104.7 1.00x 1.00x 9.78 1.00x 1.00x 0.0095 1.00x 1.00x 0.101 1.00x 1.00x

256 671.1M 92.8 1.00x 1.00x 11.03 1.00x 1.00x 0.0107 1.00x 1.00x 0.102 1.00x 1.00x

BD-LoRA

32 36.2M 143.6 1.30x N/A 7.13 1.30x N/A 0.0069 1.30x N/A 0.088 1.18x N/A

64 72.4M 142.7 1.29x 1.29x 7.18 1.29x 1.29x 0.0069 1.29x 1.29x 0.086 1.17x 1.21x

128 144.7M 141.8 1.31x 1.28x 7.22 1.31x 1.28x 0.0070 1.31x 1.29x 0.088 1.20x 1.15x

256 289.4M 137.5 1.31x 1.27x 7.45 1.31x 1.27x 0.0072 1.32x 1.27x 0.093 1.09x 1.13x

512 578.8M 131.2 1.41x 1.25x 7.81 1.41x 1.25x 0.0075 1.42x 1.25x 0.087 1.18x 1.17x

Llama-3.1-8B BS=16

S-LoRA

16 41.9M 76.7 1.00x 1.00x 13.36 1.00x 1.00x 0.0128 1.00x 1.00x 0.297 1.00x 1.00x

32 83.9M 73.6 1.00x 1.00x 13.92 1.00x 1.00x 0.0133 1.00x 1.00x 0.288 1.00x 1.00x

64 167.8M 68.2 1.00x 1.00x 15.01 1.00x 1.00x 0.0144 1.00x 1.00x 0.283 1.00x 1.00x

128 335.5M 56.3 1.00x 1.00x 18.19 1.00x 1.00x 0.0175 1.00x 1.00x 0.287 1.00x 1.00x

256 671.1M 40.3 1.00x 1.00x 25.41 1.00x 1.00x 0.0245 1.00x 1.00x 0.292 1.00x 1.00x

BD-LoRA

32 36.2M 90.4 1.18x N/A 11.32 1.18x N/A 0.0108 1.18x N/A 0.261 1.14x N/A

64 72.4M 89.0 1.21x 1.16x 11.50 1.21x 1.16x 0.0110 1.21x 1.16x 0.232 1.24x 1.28x

128 144.7M 88.3 1.29x 1.20x 11.59 1.29x 1.20x 0.0111 1.30x 1.20x 0.236 1.20x 1.22x

256 289.4M 81.4 1.45x 1.19x 12.58 1.45x 1.19x 0.0120 1.45x 1.19x 0.245 1.17x 1.16x

512 578.8M 59.0 1.46x 1.05x 17.36 1.46x 1.05x 0.0167 1.47x 1.05x 0.256 1.14x 1.12x

Llama-3.1-8B BS=32

S-LoRA

16 41.9M 64.0 1.00x 1.00x 16.01 1.00x 1.00x 0.0153 1.00x 1.00x 0.343 1.00x 1.00x

32 83.9M 60.6 1.00x 1.00x 16.91 1.00x 1.00x 0.0162 1.00x 1.00x 0.330 1.00x 1.00x

64 167.8M 53.4 1.00x 1.00x 19.17 1.00x 1.00x 0.0184 1.00x 1.00x 0.328 1.00x 1.00x

128 335.5M 40.0 1.00x 1.00x 25.61 1.00x 1.00x 0.0247 1.00x 1.00x 0.325 1.00x 1.00x

256 671.1M 26.5 1.00x 1.00x 38.67 1.00x 1.00x 0.0374 1.00x 1.00x 0.334 1.00x 1.00x

BD-LoRA

32 36.2M 77.7 1.21x N/A 13.19 1.21x N/A 0.0126 1.21x N/A 0.264 1.30x N/A

64 72.4M 73.7 1.22x 1.15x 13.89 1.22x 1.15x 0.0133 1.22x 1.15x 0.258 1.28x 1.33x

128 144.7M 72.6 1.36x 1.20x 14.10 1.36x 1.20x 0.0135 1.36x 1.20x 0.277 1.18x 1.19x

256 289.4M 63.0 1.57x 1.18x 16.27 1.57x 1.18x 0.0156 1.58x 1.18x 0.277 1.18x 1.18x

512 578.8M 40.0 1.51x 1.00x 25.58 1.51x 1.00x 0.0247 1.52x 1.00x 0.276 1.21x 1.18x

Llama-3.1-8B BS=64

S-LoRA

16 41.9M 48.3 1.00x 1.00x 21.21 1.00x 1.00x 0.0204 1.00x 1.00x 0.353 1.00x 1.00x

32 83.9M 44.0 1.00x 1.00x 23.28 1.00x 1.00x 0.0224 1.00x 1.00x 0.337 1.00x 1.00x

64 167.8M 36.5 1.00x 1.00x 28.02 1.00x 1.00x 0.0270 1.00x 1.00x 0.341 1.00x 1.00x

128 335.5M 25.4 1.00x 1.00x 40.32 1.00x 1.00x 0.0390 1.00x 1.00x 0.379 1.00x 1.00x

256 671.1M 15.5 1.00x 1.00x 66.17 1.00x 1.00x 0.0643 1.00x 1.00x 0.370 1.00x 1.00x

BD-LoRA

32 36.2M 56.1 1.16x N/A 18.27 1.16x N/A 0.0175 1.16x N/A 0.316 1.12x N/A

64 72.4M 51.9 1.18x 1.07x 19.74 1.18x 1.07x 0.0190 1.18x 1.07x 0.321 1.05x 1.10x

128 144.7M 50.6 1.39x 1.15x 20.23 1.39x 1.15x 0.0194 1.39x 1.15x 0.315 1.08x 1.07x

256 289.4M 41.5 1.63x 1.14x 24.68 1.63x 1.14x 0.0238 1.64x 1.14x 0.336 1.13x 1.01x

512 578.8M 24.0 1.55x 0.95x 42.66 1.55x 0.95x 0.0413 1.56x 0.94x 0.340 1.09x 1.11x
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Table 19: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

NFS-LoRA

16 207.1M 40.5 1.00x 1.00x 25.30 1.00x 1.00x 0.0245 1.00x 1.00x 0.226 1.00x 1.00x

32 414.2M 39.8 1.00x 1.00x 25.73 1.00x 1.00x 0.0249 1.00x 1.00x 0.219 1.00x 1.00x

64 828.4M 38.1 1.00x 1.00x 26.87 1.00x 1.00x 0.0260 1.00x 1.00x 0.227 1.00x 1.00x

128 1656.8M 35.9 1.00x 1.00x 28.50 1.00x 1.00x 0.0276 1.00x 1.00x 0.218 1.00x 1.00x

256 3313.5M 30.7 1.00x 1.00x 33.36 1.00x 1.00x 0.0324 1.00x 1.00x 0.222 1.00x 1.00x

BD-LoRA

32 180.2M 41.1 1.02x N/A 24.92 1.02x N/A 0.0241 1.01x N/A 0.211 1.07x N/A

64 360.4M 40.8 1.03x 1.01x 25.09 1.03x 1.01x 0.0243 1.03x 1.01x 0.221 1.00x 1.03x

128 720.9M 40.8 1.07x 1.03x 25.08 1.07x 1.03x 0.0243 1.07x 1.03x 0.221 1.03x 0.99x

256 1441.8M 40.0 1.11x 1.05x 25.62 1.11x 1.05x 0.0248 1.11x 1.05x 0.222 0.98x 1.02x

512 2883.6M 38.0 1.24x 1.06x 26.92 1.24x 1.06x 0.0261 1.24x 1.06x 0.224 0.99x 0.97x

Llama-3.1-70B BS=16

NFS-LoRA

16 207.1M 29.9 1.00x 1.00x 34.28 1.00x 1.00x 0.0328 1.00x 1.00x 0.648 1.00x 1.00x

32 414.2M 27.8 1.00x 1.00x 36.78 1.00x 1.00x 0.0353 1.00x 1.00x 0.667 1.00x 1.00x

64 828.4M 23.9 1.00x 1.00x 42.88 1.00x 1.00x 0.0412 1.00x 1.00x 0.673 1.00x 1.00x

128 1656.8M 17.5 1.00x 1.00x 58.56 1.00x 1.00x 0.0566 1.00x 1.00x 0.644 1.00x 1.00x

256 3313.5M 11.3 1.00x 1.00x 90.78 1.00x 1.00x 0.0880 1.00x 1.00x 0.689 1.00x 1.00x

BD-LoRA

32 180.2M 30.9 1.03x N/A 33.16 1.03x N/A 0.0318 1.03x N/A 0.639 1.01x N/A

64 360.4M 30.0 1.08x 1.00x 34.16 1.08x 1.00x 0.0327 1.08x 1.00x 0.652 1.02x 0.99x

128 720.9M 29.9 1.25x 1.07x 34.23 1.25x 1.07x 0.0328 1.26x 1.07x 0.631 1.07x 1.06x

256 1441.8M 27.8 1.59x 1.16x 36.81 1.59x 1.16x 0.0353 1.60x 1.17x 0.630 1.02x 1.07x

512 2883.6M 22.4 1.99x 1.28x 45.61 1.99x 1.28x 0.0439 2.00x 1.29x 0.667 1.03x 0.97x

Llama-3.1-70B BS=32

NFS-LoRA

16 207.1M 25.2 1.00x 1.00x 40.71 1.00x 1.00x 0.0389 1.00x 1.00x 0.825 1.00x 1.00x

32 414.2M 22.6 1.00x 1.00x 45.29 1.00x 1.00x 0.0434 1.00x 1.00x 0.809 1.00x 1.00x

64 828.4M 17.8 1.00x 1.00x 57.56 1.00x 1.00x 0.0554 1.00x 1.00x 0.858 1.00x 1.00x

128 1656.8M 11.6 1.00x 1.00x 88.34 1.00x 1.00x 0.0854 1.00x 1.00x 0.907 1.00x 1.00x

256 3313.5M 6.9 1.00x 1.00x 148.59 1.00x 1.00x 0.1441 1.00x 1.00x 1.041 1.00x 1.00x

BD-LoRA

32 180.2M 26.3 1.04x N/A 38.96 1.04x N/A 0.0372 1.05x N/A 0.818 1.01x N/A

64 360.4M 25.2 1.12x 1.00x 40.60 1.12x 1.00x 0.0389 1.12x 1.00x 0.812 1.00x 1.02x

128 720.9M 25.1 1.41x 1.11x 40.76 1.41x 1.11x 0.0390 1.42x 1.11x 0.766 1.12x 1.06x

256 1441.8M 22.2 1.92x 1.25x 46.12 1.92x 1.25x 0.0442 1.93x 1.25x 0.814 1.11x 1.05x

512 2883.6M 16.3 2.36x 1.41x 62.86 2.36x 1.41x 0.0606 2.38x 1.41x 0.833 1.25x 1.09x

Llama-3.1-70B BS=64

NFS-LoRA

16 207.1M 19.9 1.00x 1.00x 51.55 1.00x 1.00x 0.0492 1.00x 1.00x 1.144 1.00x 1.00x

32 414.2M 16.8 1.00x 1.00x 60.95 1.00x 1.00x 0.0583 1.00x 1.00x 1.196 1.00x 1.00x

64 828.4M 12.2 1.00x 1.00x 84.24 1.00x 1.00x 0.0810 1.00x 1.00x 1.239 1.00x 1.00x

128 1656.8M 7.0 1.00x 1.00x 145.25 1.00x 1.00x 0.1407 1.00x 1.00x 1.218 1.00x 1.00x

256 3313.5M 3.9 1.00x 1.00x 262.10 1.00x 1.00x 0.2545 1.00x 1.00x 1.507 1.00x 1.00x

BD-LoRA

32 180.2M 21.0 1.06x N/A 48.80 1.06x N/A 0.0465 1.06x N/A 1.212 0.94x N/A

64 360.4M 19.8 1.18x 1.00x 51.68 1.18x 1.00x 0.0493 1.18x 1.00x 1.196 1.00x 0.96x

128 720.9M 19.6 1.61x 1.17x 52.26 1.61x 1.17x 0.0500 1.62x 1.17x 1.100 1.13x 1.09x

256 1441.8M 16.5 2.34x 1.36x 62.02 2.34x 1.36x 0.0596 2.36x 1.36x 1.033 1.18x 1.20x

512 2883.6M 10.8 2.77x 1.53x 94.77 2.77x 1.53x 0.0915 2.78x 1.54x 1.095 1.38x 1.11x
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Table 20: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B with an input token (IT) length of 128, an output token (OT) length of 1024, and
batch sizes (BS) of 1, 16, 32, and 64. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

Llama-3.1-70B BS=1

S-LoRA

16 207.1M 33.4 1.00x 1.00x 30.64 1.00x 1.00x 0.0297 1.00x 1.00x 0.243 1.00x 1.00x

32 414.2M 33.1 1.00x 1.00x 30.89 1.00x 1.00x 0.0299 1.00x 1.00x 0.255 1.00x 1.00x

64 828.4M 32.6 1.00x 1.00x 31.37 1.00x 1.00x 0.0304 1.00x 1.00x 0.250 1.00x 1.00x

128 1656.8M 31.4 1.00x 1.00x 32.63 1.00x 1.00x 0.0316 1.00x 1.00x 0.262 1.00x 1.00x

256 3313.5M 28.6 1.00x 1.00x 35.80 1.00x 1.00x 0.0347 1.00x 1.00x 0.266 1.00x 1.00x

BD-LoRA

32 180.2M 41.1 1.23x N/A 24.92 1.23x N/A 0.0241 1.23x N/A 0.211 1.15x N/A

64 360.4M 40.8 1.23x 1.22x 25.09 1.23x 1.22x 0.0243 1.23x 1.22x 0.221 1.16x 1.10x

128 720.9M 40.8 1.25x 1.23x 25.08 1.25x 1.23x 0.0243 1.25x 1.23x 0.221 1.13x 1.15x

256 1441.8M 40.0 1.27x 1.22x 25.62 1.27x 1.22x 0.0248 1.27x 1.23x 0.222 1.18x 1.13x

512 2883.6M 38.0 1.33x 1.21x 26.92 1.33x 1.21x 0.0261 1.33x 1.21x 0.224 1.19x 1.17x

Llama-3.1-70B BS=16

S-LoRA

16 207.1M 25.3 1.00x 1.00x 40.40 1.00x 1.00x 0.0388 1.00x 1.00x 0.715 1.00x 1.00x

32 414.2M 24.5 1.00x 1.00x 41.86 1.00x 1.00x 0.0402 1.00x 1.00x 0.710 1.00x 1.00x

64 828.4M 22.9 1.00x 1.00x 44.79 1.00x 1.00x 0.0430 1.00x 1.00x 0.716 1.00x 1.00x

128 1656.8M 19.4 1.00x 1.00x 52.87 1.00x 1.00x 0.0509 1.00x 1.00x 0.741 1.00x 1.00x

256 3313.5M 14.4 1.00x 1.00x 71.21 1.00x 1.00x 0.0689 1.00x 1.00x 0.619 1.00x 1.00x

BD-LoRA

32 180.2M 30.9 1.22x N/A 33.16 1.22x N/A 0.0318 1.22x N/A 0.639 1.12x N/A

64 360.4M 30.0 1.23x 1.18x 34.16 1.23x 1.18x 0.0327 1.23x 1.18x 0.652 1.09x 1.10x

128 720.9M 29.9 1.31x 1.22x 34.23 1.31x 1.22x 0.0328 1.31x 1.22x 0.631 1.13x 1.13x

256 1441.8M 27.8 1.44x 1.22x 36.81 1.44x 1.22x 0.0353 1.44x 1.22x 0.630 1.18x 1.14x

512 2883.6M 22.4 1.56x 1.16x 45.61 1.56x 1.16x 0.0439 1.57x 1.16x 0.667 0.93x 1.11x

Llama-3.1-70B BS=32

S-LoRA

16 207.1M 22.3 1.00x 1.00x 45.94 1.00x 1.00x 0.0440 1.00x 1.00x 0.870 1.00x 1.00x

32 414.2M 21.2 1.00x 1.00x 48.29 1.00x 1.00x 0.0463 1.00x 1.00x 0.862 1.00x 1.00x

64 828.4M 18.9 1.00x 1.00x 54.26 1.00x 1.00x 0.0522 1.00x 1.00x 0.854 1.00x 1.00x

128 1656.8M 14.6 1.00x 1.00x 70.19 1.00x 1.00x 0.0677 1.00x 1.00x 0.879 1.00x 1.00x

256 3313.5M 9.9 1.00x 1.00x 103.09 1.00x 1.00x 0.0999 1.00x 1.00x 0.814 1.00x 1.00x

BD-LoRA

32 180.2M 26.3 1.18x N/A 38.96 1.18x N/A 0.0372 1.18x N/A 0.818 1.06x N/A

64 360.4M 25.2 1.19x 1.13x 40.60 1.19x 1.13x 0.0389 1.19x 1.13x 0.812 1.06x 1.07x

128 720.9M 25.1 1.33x 1.18x 40.76 1.33x 1.18x 0.0390 1.34x 1.19x 0.766 1.12x 1.12x

256 1441.8M 22.2 1.52x 1.18x 46.12 1.52x 1.18x 0.0442 1.53x 1.18x 0.814 1.08x 1.05x

512 2883.6M 16.3 1.64x 1.12x 62.86 1.64x 1.12x 0.0606 1.65x 1.12x 0.833 0.98x 1.06x

Llama-3.1-70B BS=64

S-LoRA

16 207.1M 18.4 1.00x 1.00x 55.64 1.00x 1.00x 0.0533 1.00x 1.00x 1.096 1.00x 1.00x

32 414.2M 16.8 1.00x 1.00x 60.99 1.00x 1.00x 0.0585 1.00x 1.00x 1.105 1.00x 1.00x

64 828.4M 14.0 1.00x 1.00x 72.89 1.00x 1.00x 0.0701 1.00x 1.00x 1.111 1.00x 1.00x

128 1656.8M 10.0 1.00x 1.00x 102.66 1.00x 1.00x 0.0992 1.00x 1.00x 1.114 1.00x 1.00x

256 3313.5M 6.0 1.00x 1.00x 169.45 1.00x 1.00x 0.1643 1.00x 1.00x 1.202 1.00x 1.00x

BD-LoRA

32 180.2M 21.0 1.14x N/A 48.80 1.14x N/A 0.0465 1.15x N/A 1.212 0.90x N/A

64 360.4M 19.8 1.18x 1.08x 51.68 1.18x 1.08x 0.0493 1.19x 1.08x 1.196 0.92x 0.92x

128 720.9M 19.6 1.39x 1.17x 52.26 1.39x 1.17x 0.0500 1.40x 1.17x 1.100 1.01x 1.00x

256 1441.8M 16.5 1.66x 1.18x 62.02 1.66x 1.18x 0.0596 1.67x 1.18x 1.033 1.08x 1.08x

512 2883.6M 10.8 1.79x 1.08x 94.77 1.79x 1.08x 0.0915 1.80x 1.08x 1.095 1.10x 1.02x
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Table 21: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B with a TP of 4 input token (IT) length of 1024, an output token (OT) length of 128,
and batch sizes (BS) of 1, 16, 32, and 64. S.-0.51 denotes the speedup when BD-LoRA has 0.51 the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.03x denotes the speedup
when BD-LoRA has 1.03x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x

Llama-3.1-8B TP=4 BS=1

NFS-LoRA

16 41.9M 109.5 1.00x 1.00x 1.17 1.00x 1.00x 0.0084 1.00x 1.00x 0.093 1.00x 1.00x

32 83.9M 107.5 1.00x 1.00x 1.19 1.00x 1.00x 0.0086 1.00x 1.00x 0.093 1.00x 1.00x

64 167.8M 104.6 1.00x 1.00x 1.22 1.00x 1.00x 0.0089 1.00x 1.00x 0.087 1.00x 1.00x

128 335.5M 99.4 1.00x 1.00x 1.29 1.00x 1.00x 0.0094 1.00x 1.00x 0.083 1.00x 1.00x

256 671.1M 82.3 1.00x 1.00x 1.56 1.00x 1.00x 0.0114 1.00x 1.00x 0.093 1.00x 1.00x

BD-LoRA

32 43.0M 112.4 1.04x 1.03x 1.14 1.04x 1.03x 0.0082 1.04x 1.02x 0.086 1.08x 1.08x

64 86.0M 113.3 1.08x 1.05x 1.13 1.08x 1.05x 0.0082 1.08x 1.04x 0.080 1.09x 1.17x

128 172.0M 110.9 1.11x 1.06x 1.15 1.11x 1.06x 0.0084 1.12x 1.06x 0.081 1.02x 1.07x

256 343.9M 104.4 1.27x 1.05x 1.23 1.27x 1.05x 0.0089 1.29x 1.06x 0.093 0.99x 0.89x

512 687.9M 97.9 N/A 1.19x 1.31 N/A 1.19x 0.0096 N/A 1.19x 0.082 N/A 1.13x

Llama-3.1-8B TP=4 BS=16

NFS-LoRA

16 41.9M 59.5 1.00x 1.00x 2.16 1.00x 1.00x 0.0134 1.00x 1.00x 0.436 1.00x 1.00x

32 83.9M 55.1 1.00x 1.00x 2.33 1.00x 1.00x 0.0145 1.00x 1.00x 0.467 1.00x 1.00x

64 167.8M 49.6 1.00x 1.00x 2.59 1.00x 1.00x 0.0167 1.00x 1.00x 0.450 1.00x 1.00x

128 335.5M 37.2 1.00x 1.00x 3.45 1.00x 1.00x 0.0230 1.00x 1.00x 0.507 1.00x 1.00x

256 671.1M 25.0 1.00x 1.00x 5.14 1.00x 1.00x 0.0347 1.00x 1.00x 0.697 1.00x 1.00x

BD-LoRA

32 43.0M 55.1 1.00x 0.93x 2.47 0.94x 0.87x 0.0136 1.07x 0.99x 0.733 0.64x 0.60x

64 86.0M 55.6 1.12x 1.01x 2.46 1.05x 0.95x 0.0134 1.25x 1.08x 0.745 0.60x 0.63x

128 172.0M 53.2 1.43x 1.07x 2.41 1.43x 1.07x 0.0150 1.53x 1.12x 0.495 1.02x 0.91x

256 343.9M 48.9 1.96x 1.32x 2.62 1.96x 1.32x 0.0169 2.05x 1.36x 0.455 1.53x 1.11x

512 687.9M 34.2 N/A 1.37x 3.74 N/A 1.38x 0.0252 N/A 1.38x 0.506 N/A 1.38x

Llama-3.1-8B TP=4 BS=32

NFS-LoRA

16 41.9M 37.0 1.00x 1.00x 3.50 1.00x 1.00x 0.0198 1.00x 1.00x 0.961 1.00x 1.00x

32 83.9M 35.7 1.00x 1.00x 3.61 1.00x 1.00x 0.0210 1.00x 1.00x 0.923 1.00x 1.00x

64 167.8M 27.7 1.00x 1.00x 4.73 1.00x 1.00x 0.0276 1.00x 1.00x 1.189 1.00x 1.00x

128 335.5M 21.5 1.00x 1.00x 6.00 1.00x 1.00x 0.0392 1.00x 1.00x 0.986 1.00x 1.00x

256 671.1M 14.4 1.00x 1.00x 8.93 1.00x 1.00x 0.0614 1.00x 1.00x 1.070 1.00x 1.00x

BD-LoRA

32 43.0M 38.0 1.06x 1.03x 3.40 1.06x 1.03x 0.0194 1.08x 1.02x 0.911 1.01x 1.06x

64 86.0M 39.0 1.41x 1.09x 3.31 1.43x 1.09x 0.0192 1.44x 1.10x 0.856 1.39x 1.08x

128 172.0M 36.1 1.68x 1.30x 3.58 1.68x 1.32x 0.0209 1.87x 1.32x 0.901 1.09x 1.32x

256 343.9M 30.2 2.10x 1.41x 4.26 2.09x 1.41x 0.0264 2.32x 1.48x 0.878 1.22x 1.12x

512 687.9M 19.6 N/A 1.37x 6.56 N/A 1.36x 0.0432 N/A 1.42x 1.027 N/A 1.04x

Llama-3.1-8B TP=4 BS=64

NFS-LoRA

16 41.9M 19.3 1.00x 1.00x 6.74 1.00x 1.00x 0.0383 1.00x 1.00x 1.824 1.00x 1.00x

32 83.9M 18.8 1.00x 1.00x 6.96 1.00x 1.00x 0.0408 1.00x 1.00x 1.735 1.00x 1.00x

64 167.8M 16.0 1.00x 1.00x 8.06 1.00x 1.00x 0.0495 1.00x 1.00x 1.714 1.00x 1.00x

128 335.5M 11.6 1.00x 1.00x 11.10 1.00x 1.00x 0.0728 1.00x 1.00x 1.780 1.00x 1.00x

256 671.1M 7.6 1.00x 1.00x 16.92 1.00x 1.00x 0.1149 1.00x 1.00x 2.206 1.00x 1.00x

BD-LoRA

32 43.0M 21.7 1.16x 1.12x 5.91 1.18x 1.14x 0.0334 1.22x 1.15x 1.626 1.07x 1.12x

64 86.0M 22.6 1.41x 1.20x 5.72 1.41x 1.22x 0.0332 1.49x 1.23x 1.461 1.17x 1.19x

128 172.0M 20.5 1.77x 1.28x 6.27 1.77x 1.28x 0.0369 1.97x 1.34x 1.548 1.15x 1.11x

256 343.9M 15.9 2.10x 1.37x 8.17 2.07x 1.36x 0.0512 2.24x 1.42x 1.609 1.37x 1.11x

512 687.9M 10.3 N/A 1.36x 12.52 N/A 1.35x 0.0820 N/A 1.40x 2.015 N/A 1.09x
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Table 22: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B with a TP of 4 input token (IT) length of 1024, an output token (OT) length of 128,
and batch sizes (BS) of 1, 16, 32, and 64. S.-0.51 denotes the speedup when BD-LoRA has 0.51 the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.03x denotes the speedup
when BD-LoRA has 1.03x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x Time S.-0.51 S.-1.03x

Llama-3.1-8B TP=4 BS=1

S-LoRA

16 41.9M 91.9 1.00x 1.00x 1.39 1.00x 1.00x 0.0101 1.00x 1.00x 0.107 1.00x 1.00x

32 83.9M 91.2 1.00x 1.00x 1.40 1.00x 1.00x 0.0101 1.00x 1.00x 0.106 1.00x 1.00x

64 167.8M 89.3 1.00x 1.00x 1.43 1.00x 1.00x 0.0104 1.00x 1.00x 0.107 1.00x 1.00x

128 335.5M 85.5 1.00x 1.00x 1.50 1.00x 1.00x 0.0108 1.00x 1.00x 0.114 1.00x 1.00x

256 671.1M 79.1 1.00x 1.00x 1.62 1.00x 1.00x 0.0119 1.00x 1.00x 0.099 1.00x 1.00x

BD-LoRA

32 43.0M 112.4 1.23x 1.22x 1.14 1.23x 1.22x 0.0082 1.23x 1.22x 0.086 1.22x 1.24x

64 86.0M 113.3 1.27x 1.24x 1.13 1.27x 1.24x 0.0082 1.26x 1.24x 0.080 1.35x 1.33x

128 172.0M 110.9 1.30x 1.24x 1.15 1.30x 1.24x 0.0084 1.29x 1.24x 0.081 1.40x 1.32x

256 343.9M 104.4 1.32x 1.22x 1.23 1.32x 1.22x 0.0089 1.34x 1.22x 0.093 1.06x 1.23x

512 687.9M 97.9 N/A 1.24x 1.31 N/A 1.24x 0.0096 N/A 1.24x 0.082 N/A 1.20x

Llama-3.1-8B TP=4 BS=16

S-LoRA

16 41.9M 49.5 1.00x 1.00x 2.59 1.00x 1.00x 0.0159 1.00x 1.00x 0.556 1.00x 1.00x

32 83.9M 48.6 1.00x 1.00x 2.64 1.00x 1.00x 0.0163 1.00x 1.00x 0.555 1.00x 1.00x

64 167.8M 44.9 1.00x 1.00x 2.86 1.00x 1.00x 0.0178 1.00x 1.00x 0.572 1.00x 1.00x

128 335.5M 39.4 1.00x 1.00x 3.25 1.00x 1.00x 0.0210 1.00x 1.00x 0.557 1.00x 1.00x

256 671.1M 29.0 1.00x 1.00x 4.49 1.00x 1.00x 0.0289 1.00x 1.00x 0.797 1.00x 1.00x

BD-LoRA

32 43.0M 55.1 1.13x 1.11x 2.47 1.07x 1.05x 0.0136 1.20x 1.17x 0.733 0.76x 0.76x

64 86.0M 55.6 1.24x 1.14x 2.46 1.16x 1.07x 0.0134 1.33x 1.22x 0.745 0.77x 0.75x

128 172.0M 53.2 1.35x 1.18x 2.41 1.35x 1.19x 0.0150 1.41x 1.19x 0.495 1.12x 1.15x

256 343.9M 48.9 1.68x 1.24x 2.62 1.71x 1.24x 0.0169 1.71x 1.24x 0.455 1.75x 1.23x

512 687.9M 34.2 N/A 1.18x 3.74 N/A 1.20x 0.0252 N/A 1.14x 0.506 N/A 1.57x

Llama-3.1-8B TP=4 BS=32

S-LoRA

16 41.9M 32.4 1.00x 1.00x 4.00 1.00x 1.00x 0.0230 1.00x 1.00x 1.051 1.00x 1.00x

32 83.9M 32.3 1.00x 1.00x 4.01 1.00x 1.00x 0.0236 1.00x 1.00x 0.990 1.00x 1.00x

64 167.8M 29.5 1.00x 1.00x 4.38 1.00x 1.00x 0.0263 1.00x 1.00x 1.014 1.00x 1.00x

128 335.5M 25.2 1.00x 1.00x 5.11 1.00x 1.00x 0.0324 1.00x 1.00x 0.963 1.00x 1.00x

256 671.1M 17.8 1.00x 1.00x 7.22 1.00x 1.00x 0.0473 1.00x 1.00x 1.158 1.00x 1.00x

BD-LoRA

32 43.0M 38.0 1.18x 1.17x 3.40 1.18x 1.18x 0.0194 1.21x 1.18x 0.911 1.09x 1.15x

64 86.0M 39.0 1.32x 1.21x 3.31 1.32x 1.21x 0.0192 1.37x 1.23x 0.856 1.18x 1.16x

128 172.0M 36.1 1.43x 1.22x 3.58 1.43x 1.22x 0.0209 1.55x 1.26x 0.901 1.07x 1.13x

256 343.9M 30.2 1.70x 1.20x 4.26 1.69x 1.20x 0.0264 1.79x 1.22x 0.878 1.32x 1.10x

512 687.9M 19.6 N/A 1.10x 6.56 N/A 1.10x 0.0432 N/A 1.10x 1.027 N/A 1.13x

Llama-3.1-8B TP=4 BS=64

S-LoRA

16 41.9M 17.9 1.00x 1.00x 7.22 1.00x 1.00x 0.0400 1.00x 1.00x 2.096 1.00x 1.00x

32 83.9M 17.9 1.00x 1.00x 7.26 1.00x 1.00x 0.0408 1.00x 1.00x 2.025 1.00x 1.00x

64 167.8M 16.8 1.00x 1.00x 7.72 1.00x 1.00x 0.0466 1.00x 1.00x 1.750 1.00x 1.00x

128 335.5M 13.8 1.00x 1.00x 9.37 1.00x 1.00x 0.0587 1.00x 1.00x 1.859 1.00x 1.00x

256 671.1M 9.5 1.00x 1.00x 13.58 1.00x 1.00x 0.0873 1.00x 1.00x 2.408 1.00x 1.00x

BD-LoRA

32 43.0M 21.7 1.21x 1.21x 5.91 1.23x 1.22x 0.0334 1.22x 1.20x 1.626 1.25x 1.29x

64 86.0M 22.6 1.35x 1.26x 5.72 1.35x 1.27x 0.0332 1.40x 1.23x 1.461 1.20x 1.39x

128 172.0M 20.5 1.49x 1.23x 6.27 1.49x 1.23x 0.0369 1.59x 1.26x 1.548 1.20x 1.13x

256 343.9M 15.9 1.67x 1.15x 8.17 1.66x 1.15x 0.0512 1.70x 1.14x 1.609 1.50x 1.16x

512 687.9M 10.3 N/A 1.08x 12.52 N/A 1.08x 0.0820 N/A 1.06x 2.015 N/A 1.20x
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Table 23: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B and Llama-3.1-70B using multi-adapters loaded from the disk with an input Token
(IT) length of 1024, an output Token (OT) length of 128, and batch sizes (BS) of 1. S.-OO. and S.-G.
denote the speedup with respect to OpenOrca and GLUE, respectively.

Method Rank # Trainable
Parameters OpenOrca ↓ GLUE ↑

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G. Time S.-OO. S.-G.

NFS-LoRA

16 41.9M 2.316 75.82 115.9 1.00x 1.00x 1.11 1.00x 1.00x 0.0071 1.00x 1.00x 0.194 1.00x 1.00x

32 83.9M 2.309 75.87 108.2 1.00x 1.00x 1.18 1.00x 1.00x 0.0071 1.00x 1.00x 0.273 1.00x 1.00x

64 167.8M 2.303 76.01 94.5 1.00x 1.00x 1.36 1.00x 1.00x 0.0075 1.00x 1.00x 0.394 1.00x 1.00x

128 335.5M 2.297 76.28 74.8 1.00x 1.00x 1.71 1.00x 1.00x 0.0082 1.00x 1.00x 0.666 1.00x 1.00x

256 671.1M 2.290 76.39 51.0 1.00x 1.00x 2.51 1.00x 1.00x 0.0098 1.00x 1.00x 1.256 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 121.5 N/A N/A 1.05 N/A N/A 0.0069 N/A N/A 0.174 N/A N/A

64 72.4M 2.310 75.90 113.8 0.98x 1.05x 1.13 0.98x 1.05x 0.0070 1.02x 1.02x 0.233 0.83x 1.17x

128 144.7M 2.303 76.17 106.2 0.98x 1.12x 1.21 0.98x 1.12x 0.0068 1.04x 1.10x 0.331 0.83x 1.19x

256 289.4M 2.296 76.55 88.4 1.18x 1.73x 1.45 1.18x 1.73x 0.0070 1.16x 1.39x 0.549 1.21x 2.29x

512 578.8M 2.289 76.59 63.5 1.25x 1.25x 2.02 1.25x 1.25x 0.0076 1.29x 1.29x 1.045 1.20x 1.20x

S-LoRA

16 41.9M 2.316 75.82 94.5 1.00x 1.00x 1.36 1.00x 1.00x 0.0089 1.00x 1.00x 0.218 1.00x 1.00x

32 83.9M 2.309 75.87 89.1 1.00x 1.00x 1.44 1.00x 1.00x 0.0090 1.00x 1.00x 0.291 1.00x 1.00x

64 167.8M 2.303 76.01 81.2 1.00x 1.00x 1.58 1.00x 1.00x 0.0091 1.00x 1.00x 0.413 1.00x 1.00x

128 335.5M 2.297 76.28 67.8 1.00x 1.00x 1.89 1.00x 1.00x 0.0095 1.00x 1.00x 0.669 1.00x 1.00x

256 671.1M 2.290 76.39 49.6 1.00x 1.00x 2.58 1.00x 1.00x 0.0107 1.00x 1.00x 1.214 1.00x 1.00x

BD-LoRA

32 36.2M 2.318 75.58 121.5 N/A N/A 1.05 N/A N/A 0.0069 N/A N/A 0.174 N/A N/A

64 72.4M 2.310 75.90 113.8 1.20x 1.28x 1.13 1.20x 1.28x 0.0070 1.28x 1.28x 0.233 0.93x 1.25x

128 144.7M 2.303 76.17 106.2 1.19x 1.31x 1.21 1.19x 1.31x 0.0068 1.31x 1.33x 0.331 0.88x 1.25x

256 289.4M 2.296 76.55 88.4 1.30x 1.78x 1.45 1.30x 1.78x 0.0070 1.36x 1.52x 0.549 1.22x 2.21x

512 578.8M 2.289 76.59 63.5 1.28x 1.28x 2.02 1.28x 1.28x 0.0076 1.41x 1.41x 1.045 1.16x 1.16x

Table 24: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B using multi-adapters with an input Token (IT) length of 1024, an output Token (OT)
length of 128, and batch sizes (BS) of 1. S.-0.86x denotes the speedup when BD-LoRA has 0.86x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.73x denotes the speedup
when BD-LoRA has 1.73x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

NFS-LoRA

16 41.9M 115.9 1.00x 1.00x 1.11 1.00x 1.00x 0.0071 1.00x 1.00x 0.194 1.00x 1.00x

32 83.9M 108.2 1.00x 1.00x 1.18 1.00x 1.00x 0.0071 1.00x 1.00x 0.273 1.00x 1.00x

64 167.8M 94.5 1.00x 1.00x 1.36 1.00x 1.00x 0.0075 1.00x 1.00x 0.394 1.00x 1.00x

128 335.5M 74.8 1.00x 1.00x 1.71 1.00x 1.00x 0.0082 1.00x 1.00x 0.666 1.00x 1.00x

256 671.1M 51.0 1.00x 1.00x 2.51 1.00x 1.00x 0.0098 1.00x 1.00x 1.256 1.00x 1.00x

BD-LoRA

32 36.2M 121.5 1.05x N/A 1.05 1.05x N/A 0.0069 1.03x N/A 0.174 1.12x N/A

64 72.4M 113.8 1.05x 0.98x 1.13 1.05x 0.98x 0.0070 1.02x 1.02x 0.233 1.17x 0.83x

128 144.7M 106.2 1.12x 0.98x 1.21 1.12x 0.98x 0.0068 1.10x 1.04x 0.331 1.19x 0.83x

256 289.4M 88.4 1.18x 0.94x 1.45 1.18x 0.94x 0.0070 1.16x 1.07x 0.549 1.21x 0.72x

512 578.8M 63.5 1.25x 0.85x 2.02 1.25x 0.85x 0.0076 1.29x 1.08x 1.045 1.20x 0.64x

S-LoRA

16 41.9M 94.5 1.00x 1.00x 1.36 1.00x 1.00x 0.0089 1.00x 1.00x 0.218 1.00x 1.00x

32 83.9M 89.1 1.00x 1.00x 1.44 1.00x 1.00x 0.0090 1.00x 1.00x 0.291 1.00x 1.00x

64 167.8M 81.2 1.00x 1.00x 1.58 1.00x 1.00x 0.0091 1.00x 1.00x 0.413 1.00x 1.00x

128 335.5M 67.8 1.00x 1.00x 1.89 1.00x 1.00x 0.0095 1.00x 1.00x 0.669 1.00x 1.00x

256 671.1M 49.6 1.00x 1.00x 2.58 1.00x 1.00x 0.0107 1.00x 1.00x 1.214 1.00x 1.00x

BD-LoRA

32 36.2M 121.5 1.29x N/A 1.05 1.29x N/A 0.0069 1.29x N/A 0.174 1.25x N/A

64 72.4M 113.8 1.28x 1.20x 1.13 1.28x 1.20x 0.0070 1.28x 1.28x 0.233 1.25x 0.93x

128 144.7M 106.2 1.31x 1.19x 1.21 1.31x 1.19x 0.0068 1.33x 1.31x 0.331 1.25x 0.88x

256 289.4M 88.4 1.30x 1.09x 1.45 1.30x 1.09x 0.0070 1.36x 1.29x 0.549 1.22x 0.75x

512 578.8M 63.5 1.28x 0.94x 2.02 1.28x 0.94x 0.0076 1.41x 1.26x 1.045 1.16x 0.64x
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Table 25: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-70B using multi-adapters with an input Token (IT) length of 1024, an output Token (OT)
length of 128, and batch sizes (BS) of 1. S.-0.87x denotes the speedup when BD-LoRA has 0.87x the
number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-1.74x denotes the speedup
when BD-LoRA has 1.74x the number of trainable parameters compared to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x Time S.-0.87x S.-1.74x

NFS-LoRA

16 207.1M 34.6 1.00x 1.00x 3.70 1.00x 1.00x 0.0243 1.00x 1.00x 0.593 1.00x 1.00x

32 414.2M 30.8 1.00x 1.00x 4.16 1.00x 1.00x 0.0248 1.00x 1.00x 0.975 1.00x 1.00x

64 828.4M 26.0 1.00x 1.00x 4.93 1.00x 1.00x 0.0258 1.00x 1.00x 1.623 1.00x 1.00x

128 1656.8M 19.4 1.00x 1.00x 6.59 1.00x 1.00x 0.0275 1.00x 1.00x 3.066 1.00x 1.00x

256 3313.5M 12.8 1.00x 1.00x 10.01 1.00x 1.00x 0.0322 1.00x 1.00x 5.883 1.00x 1.00x

BD-LoRA

32 180.2M 34.6 1.00x N/A 3.70 1.00x N/A 0.0240 1.01x N/A 0.622 0.95x N/A

64 360.4M 32.7 1.06x 0.94x 3.91 1.06x 0.94x 0.0240 1.03x 1.01x 0.836 1.17x 0.71x

128 720.9M 28.8 1.11x 0.93x 4.45 1.11x 0.93x 0.0241 1.07x 1.03x 1.367 1.19x 0.71x

256 1441.8M 22.5 1.16x 0.87x 5.68 1.16x 0.87x 0.0247 1.11x 1.04x 2.517 1.22x 0.64x

512 2883.6M 14.5 1.14x 0.75x 8.81 1.14x 0.75x 0.0259 1.25x 1.06x 5.497 1.07x 0.56x

S-LoRA

16 207.1M 29.0 1.00x 1.00x 4.41 1.00x 1.00x 0.0295 1.00x 1.00x 0.627 1.00x 1.00x

32 414.2M 26.5 1.00x 1.00x 4.83 1.00x 1.00x 0.0298 1.00x 1.00x 1.018 1.00x 1.00x

64 828.4M 23.3 1.00x 1.00x 5.48 1.00x 1.00x 0.0302 1.00x 1.00x 1.614 1.00x 1.00x

128 1656.8M 18.4 1.00x 1.00x 6.97 1.00x 1.00x 0.0315 1.00x 1.00x 2.945 1.00x 1.00x

256 3313.5M 12.6 1.00x 1.00x 10.18 1.00x 1.00x 0.0345 1.00x 1.00x 5.767 1.00x 1.00x

BD-LoRA

32 180.2M 34.6 1.19x N/A 3.70 1.19x N/A 0.0240 1.23x N/A 0.622 1.01x N/A

64 360.4M 32.7 1.23x 1.13x 3.91 1.23x 1.13x 0.0240 1.24x 1.23x 0.836 1.22x 0.75x

128 720.9M 28.8 1.23x 1.09x 4.45 1.23x 1.09x 0.0241 1.26x 1.24x 1.367 1.18x 0.74x

256 1441.8M 22.5 1.23x 0.96x 5.68 1.23x 0.96x 0.0247 1.27x 1.22x 2.517 1.17x 0.64x

512 2883.6M 14.5 1.16x 0.79x 8.81 1.16x 0.79x 0.0259 1.33x 1.22x 5.497 1.05x 0.54x
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Figure 24: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B on NVIDIA A10G with an input token (IT) length of 1024, an output token
(OT) length of 128, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).
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Figure 25: Throughput (1st column—higher is better), end-to-end (E2E) latency (2nd column—lower
is better), decoding latency (3rd column—lower is better), and prefill latency (4th column—lower is
better) of Llama-3.1-8B on NVIDIA A10G with an input token (IT) length of 4096, an output token
(OT) length of 256, and batch sizes (BS) of 1, 16, 32 and 64 (1st to 4th row).

62



Table 26: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B on NVIDIA A10G GPUs with an input token (IT) length of 1024, an output token
(OT) length of 128, and batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when
BD-LoRA has 0.86x the number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-
1.73x denotes the speedup when BD-LoRA has 1.73x the number of trainable parameters compared
to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

S-LoRA

16 41.9M 59.2 1.00x 1.00x 2.18 1.00x 1.00x 0.0139 1.00x 1.00x 0.394 1.00x 1.00x

32 83.9M 58.8 1.00x 1.00x 2.18 1.00x 1.00x 0.0141 1.00x 1.00x 0.371 1.00x 1.00x

64 167.8M 57.4 1.00x 1.00x 2.23 1.00x 1.00x 0.0144 1.00x 1.00x 0.385 1.00x 1.00x

128 335.5M 55.2 1.00x 1.00x 2.32 1.00x 1.00x 0.0149 1.00x 1.00x 0.409 1.00x 1.00x

256 671.1M 50.8 1.00x 1.00x 2.52 1.00x 1.00x 0.0160 1.00x 1.00x 0.470 1.00x 1.00x

BD-LoRA

32 36.2M 74.1 1.25x N/A 1.73 1.26x N/A 0.0106 1.31x N/A 0.367 1.07x N/A

64 72.4M 74.5 1.27x 1.26x 1.72 1.27x 1.27x 0.0107 1.32x 1.30x 0.351 1.06x 1.12x

128 144.7M 74.0 1.29x 1.26x 1.73 1.29x 1.26x 0.0107 1.34x 1.31x 0.354 1.09x 1.05x

256 289.4M 73.0 1.32x 1.27x 1.75 1.32x 1.27x 0.0110 1.36x 1.31x 0.345 1.19x 1.12x

512 578.8M 68.7 1.35x 1.25x 1.86 1.35x 1.25x 0.0117 1.37x 1.27x 0.362 1.30x 1.13x

Llama-3.1-8B BS=16

S-LoRA

16 41.9M 14.9 1.00x 1.00x 8.60 1.00x 1.00x 0.0421 1.00x 1.00x 3.205 1.00x 1.00x

32 83.9M 14.7 1.00x 1.00x 8.70 1.00x 1.00x 0.0428 1.00x 1.00x 3.220 1.00x 1.00x

64 167.8M 14.3 1.00x 1.00x 8.98 1.00x 1.00x 0.0446 1.00x 1.00x 3.267 1.00x 1.00x

128 335.5M 12.8 1.00x 1.00x 10.01 1.00x 1.00x 0.0503 1.00x 1.00x 3.571 1.00x 1.00x

256 671.1M 10.4 1.00x 1.00x 12.31 1.00x 1.00x 0.0631 1.00x 1.00x 4.229 1.00x 1.00x

BD-LoRA

32 36.2M 16.5 1.11x N/A 7.76 1.11x N/A 0.0371 1.13x N/A 3.014 1.06x N/A

64 72.4M 15.9 1.08x 1.07x 8.03 1.08x 1.07x 0.0383 1.12x 1.10x 3.120 1.03x 1.03x

128 144.7M 16.1 1.13x 1.10x 7.93 1.13x 1.10x 0.0378 1.18x 1.13x 3.087 1.06x 1.04x

256 289.4M 15.8 1.24x 1.11x 8.10 1.24x 1.11x 0.0394 1.28x 1.13x 3.057 1.17x 1.07x

512 578.8M 13.7 1.32x 1.07x 9.34 1.32x 1.07x 0.0484 1.30x 1.04x 3.146 1.34x 1.14x

Llama-3.1-8B BS=32

S-LoRA

16 41.9M 8.4 1.00x 1.00x 15.30 1.00x 1.00x 0.0737 1.00x 1.00x 5.869 1.00x 1.00x

32 83.9M 8.0 1.00x 1.00x 15.91 1.00x 1.00x 0.0771 1.00x 1.00x 6.039 1.00x 1.00x

64 167.8M 7.7 1.00x 1.00x 16.68 1.00x 1.00x 0.0811 1.00x 1.00x 6.288 1.00x 1.00x

128 335.5M 6.9 1.00x 1.00x 18.68 1.00x 1.00x 0.0926 1.00x 1.00x 6.821 1.00x 1.00x

256 671.1M 5.5 1.00x 1.00x 23.10 1.00x 1.00x 0.1184 1.00x 1.00x 7.942 1.00x 1.00x

BD-LoRA

32 36.2M 8.8 1.05x N/A 14.56 1.05x N/A 0.0690 1.07x N/A 5.724 1.03x N/A

64 72.4M 8.6 1.06x 1.02x 14.94 1.06x 1.02x 0.0710 1.08x 1.04x 5.843 1.03x 1.00x

128 144.7M 8.6 1.12x 1.07x 14.90 1.12x 1.07x 0.0707 1.15x 1.09x 5.850 1.07x 1.03x

256 289.4M 8.2 1.20x 1.07x 15.59 1.20x 1.07x 0.0754 1.23x 1.08x 5.925 1.15x 1.06x

512 578.8M 7.3 1.32x 1.07x 17.54 1.32x 1.07x 0.0912 1.30x 1.02x 5.866 1.35x 1.16x

Llama-3.1-8B BS=64

S-LoRA

16 41.9M 4.4 1.00x 1.00x 28.86 1.00x 1.00x 0.1371 1.00x 1.00x 11.302 1.00x 1.00x

32 83.9M 4.3 1.00x 1.00x 29.88 1.00x 1.00x 0.1423 1.00x 1.00x 11.660 1.00x 1.00x

64 167.8M 4.2 1.00x 1.00x 30.69 1.00x 1.00x 0.1487 1.00x 1.00x 11.652 1.00x 1.00x

128 335.5M 3.6 1.00x 1.00x 35.09 1.00x 1.00x 0.1733 1.00x 1.00x 12.905 1.00x 1.00x

256 671.1M 2.9 1.00x 1.00x 43.39 1.00x 1.00x 0.2231 1.00x 1.00x 14.833 1.00x 1.00x

BD-LoRA

32 36.2M 4.5 1.02x N/A 28.18 1.02x N/A 0.1330 1.03x N/A 11.142 1.01x N/A

64 72.4M 4.5 1.06x 1.02x 28.28 1.06x 1.02x 0.1347 1.06x 1.02x 11.033 1.06x 1.02x

128 144.7M 4.6 1.10x 1.07x 27.93 1.10x 1.07x 0.1324 1.12x 1.07x 10.979 1.06x 1.06x

256 289.4M 4.3 1.18x 1.03x 29.85 1.18x 1.03x 0.1446 1.20x 1.03x 11.341 1.14x 1.03x

512 578.8M 3.8 1.28x 1.03x 34.01 1.28x 1.03x 0.1762 1.27x 0.98x 11.460 1.29x 1.13x
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Table 27: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency of
Llama-3.1-8B on NVIDIA A10G GPUs with an input token (IT) length of 4096, an output token
(OT) length of 256, and batch sizes (BS) of 1, 16, 32, and 64. S.-0.86x denotes the speedup when
BD-LoRA has 0.86x the number of trainable parameters compared to S-LoRA or NFS-LoRA. S.-
1.73x denotes the speedup when BD-LoRA has 1.73x the number of trainable parameters compared
to S-LoRA or NFS-LoRA.

Method Rank # Trainable
Parameters

Throughput ↑ E2E Latency ↓ Decoding Latency ↓ Prefill Latency ↓

Token/s S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x Time S.-0.86x S.-1.73x

Llama-3.1-8B BS=1

S-LoRA

16 41.9M 50.9 1.00x 1.00x 5.03 1.00x 1.00x 0.0142 1.00x 1.00x 1.392 1.00x 1.00x

32 83.9M 50.4 1.00x 1.00x 5.08 1.00x 1.00x 0.0144 1.00x 1.00x 1.397 1.00x 1.00x

64 167.8M 49.2 1.00x 1.00x 5.20 1.00x 1.00x 0.0147 1.00x 1.00x 1.452 1.00x 1.00x

128 335.5M 46.8 1.00x 1.00x 5.47 1.00x 1.00x 0.0152 1.00x 1.00x 1.580 1.00x 1.00x

256 671.1M 42.5 1.00x 1.00x 6.03 1.00x 1.00x 0.0164 1.00x 1.00x 1.830 1.00x 1.00x

BD-LoRA

32 36.2M 61.7 1.21x N/A 4.15 1.21x N/A 0.0109 1.30x N/A 1.352 1.03x N/A

64 72.4M 60.9 1.21x 1.20x 4.20 1.21x 1.20x 0.0110 1.31x 1.29x 1.385 1.01x 1.01x

128 144.7M 61.6 1.25x 1.22x 4.16 1.25x 1.22x 0.0110 1.33x 1.31x 1.338 1.09x 1.04x

256 289.4M 60.6 1.29x 1.23x 4.23 1.29x 1.23x 0.0112 1.35x 1.30x 1.350 1.17x 1.08x

512 578.8M 57.8 1.36x 1.24x 4.43 1.36x 1.24x 0.0119 1.38x 1.27x 1.373 1.33x 1.15x

Llama-3.1-8B BS=16

S-LoRA

16 41.9M 8.8 1.00x 1.00x 29.12 1.00x 1.00x 0.0663 1.00x 1.00x 12.146 1.00x 1.00x

32 83.9M 8.9 1.00x 1.00x 28.77 1.00x 1.00x 0.0658 1.00x 1.00x 11.918 1.00x 1.00x

64 167.8M 8.6 1.00x 1.00x 29.88 1.00x 1.00x 0.0688 1.00x 1.00x 12.260 1.00x 1.00x

128 335.5M 7.8 1.00x 1.00x 32.72 1.00x 1.00x 0.0759 1.00x 1.00x 13.290 1.00x 1.00x

256 671.1M 6.5 1.00x 1.00x 39.64 1.00x 1.00x 0.0935 1.00x 1.00x 15.698 1.00x 1.00x

BD-LoRA

32 36.2M 9.5 1.08x N/A 26.87 1.08x N/A 0.0604 1.10x N/A 11.410 1.06x N/A

64 72.4M 9.5 1.07x 1.08x 26.87 1.07x 1.08x 0.0607 1.08x 1.09x 11.337 1.05x 1.07x

128 144.7M 9.5 1.11x 1.07x 26.84 1.11x 1.07x 0.0604 1.14x 1.09x 11.376 1.08x 1.05x

256 289.4M 9.5 1.21x 1.10x 27.08 1.21x 1.10x 0.0616 1.23x 1.12x 11.301 1.18x 1.08x

512 578.8M 8.7 1.34x 1.11x 29.54 1.34x 1.11x 0.0707 1.32x 1.07x 11.438 1.37x 1.16x

Llama-3.1-8B BS=32

S-LoRA

16 41.9M 4.8 1.00x 1.00x 53.86 1.00x 1.00x 0.1207 1.00x 1.00x 22.958 1.00x 1.00x

32 83.9M 4.8 1.00x 1.00x 53.24 1.00x 1.00x 0.1204 1.00x 1.00x 22.402 1.00x 1.00x

64 167.8M 4.5 1.00x 1.00x 57.29 1.00x 1.00x 0.1294 1.00x 1.00x 24.169 1.00x 1.00x

128 335.5M 4.2 1.00x 1.00x 61.64 1.00x 1.00x 0.1417 1.00x 1.00x 25.370 1.00x 1.00x

256 671.1M 3.4 1.00x 1.00x 74.49 1.00x 1.00x 0.1756 1.00x 1.00x 29.522 1.00x 1.00x

BD-LoRA

32 36.2M 5.0 1.06x N/A 51.02 1.06x N/A 0.1135 1.06x N/A 21.946 1.05x N/A

64 72.4M 5.1 1.06x 1.07x 50.14 1.06x 1.07x 0.1127 1.07x 1.07x 21.285 1.05x 1.08x

128 144.7M 5.0 1.11x 1.04x 51.43 1.11x 1.04x 0.1149 1.13x 1.05x 22.019 1.10x 1.02x

256 289.4M 4.9 1.18x 1.09x 52.33 1.18x 1.09x 0.1186 1.19x 1.09x 21.961 1.16x 1.10x

512 578.8M 4.5 1.32x 1.09x 56.32 1.32x 1.09x 0.1347 1.30x 1.05x 21.841 1.35x 1.16x

Llama-3.1-8B BS=64

S-LoRA

16 41.9M 2.4 1.00x 1.00x 104.55 1.00x 1.00x 0.2321 1.00x 1.00x 45.112 1.00x 1.00x

32 83.9M 2.5 1.00x 1.00x 101.64 1.00x 1.00x 0.2270 1.00x 1.00x 43.525 1.00x 1.00x

64 167.8M 2.4 1.00x 1.00x 107.50 1.00x 1.00x 0.2418 1.00x 1.00x 45.603 1.00x 1.00x

128 335.5M 2.1 1.00x 1.00x 120.55 1.00x 1.00x 0.2751 1.00x 1.00x 50.120 1.00x 1.00x

256 671.1M 1.8 1.00x 1.00x 145.68 1.00x 1.00x 0.3418 1.00x 1.00x 58.161 1.00x 1.00x

BD-LoRA

32 36.2M 2.6 1.06x N/A 98.18 1.06x N/A 0.2182 1.06x N/A 42.308 1.07x N/A

64 72.4M 2.6 1.02x 1.05x 99.24 1.02x 1.05x 0.2220 1.02x 1.05x 42.407 1.03x 1.06x

128 144.7M 2.6 1.10x 1.04x 97.83 1.10x 1.04x 0.2182 1.11x 1.04x 41.972 1.09x 1.04x

256 289.4M 2.5 1.20x 1.07x 100.63 1.20x 1.07x 0.2283 1.20x 1.06x 42.175 1.19x 1.08x

512 578.8M 2.3 1.30x 1.08x 111.63 1.30x 1.08x 0.2651 1.29x 1.04x 43.763 1.33x 1.15x
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Table 28: Speedup of throughput, end-to-end (E2E) latency, decoding latency, and prefill latency
with a quantized Llama-3.1-8B model (https://huggingface.co/RedHatAI/Meta-Llama-3
.1-8B-Instruct-quantized.w4a16) with an input token (IT) length of 1024, an output token
(OT) length of 128, and batch size (BS) of 16. Rank is chosen such that BD-LoRA has better
accuracies and thus speedups are meaningful.

Method Rank # Trainable Parameters OpenOrca ↓ GLUE ↑ Throughput E2E Latency Decoding Latency Prefill Latency

[token/s] [s] [s] [s]

BD-LoRA 128 144.7M 2.303 76.17 56.00 2.29 0.01 0.49

S-LoRA 64 167.8M 2.303 76.01 44.30 2.89 0.02 0.50

Speedup over S-LoRA - - - - 1.26x 1.26x 1.26x 1.03x

NFS-LoRA 64 167.8M 2.303 76.01 47.80 2.68 0.02 0.61

Speedup over NFS-LoRA - - - - 1.17x 1.17x 1.21x 1.24x
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Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5, Appendix C, Appendix E, and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We plan to release the code upon publication of our paper as mentioned in
Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5, Appendix C, Appendix E, and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 5, Appendix E, and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5, Appendix E, and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No violations of the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper presents work whose goal is to eliminate communication overhead
and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix C, Appendix E, and Appendix F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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