
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAZENET:
AN ACCURATE, FAST, & SCALABLE DEEP LEARNING
SOLUTION FOR STEINER MINIMUM TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

The Obstacle Avoiding Rectilinear Steiner Minimum Tree (OARSMT) problem,
which seeks the shortest interconnection of a given number of terminals in a recti-
linear plane while avoiding obstacles, is a critical task in integrated circuit design,
network optimization, and robot path planning. Since OARSMT is NP-hard, exact
algorithms scale poorly with the number of terminals, leading practical solvers to
sacrifice accuracy for large problems. However, for smaller-scale environments,
there is no justification for failing to discover the true shortest path. To address
this gap, we propose and study MazeNet, a deep learning-based method that learns
to solve the OARSMT from data. MazeNet reframes OARSMT as a maze-solving
task that can be addressed with a recurrent convolutional neural network (RCNN).
A key hallmark of MazeNet is its ability to generalize: we only need to train the
RCNN blocks on mazes with a small number of terminals; mazes with a larger
number of terminals can be solved simply by replicating the same pre-trained
blocks to create a larger network. Across a wide range of experiments, MazeNet
achieves perfect OARSMT-solving accuracy with substantially reduced runtime
compared to classical exact algorithms, and its perfect accuracy ensures shorter
path lengths compared to state-of-the-art approximation algorithms.

1 INTRODUCTION

Maze-solving algorithms are a special case of the solutions of an Obstacle-Avoiding Rectilinear
Steiner Minimum Tree (OARSMT), with important applications in fields such as integrated cir-
cuit design (Kahng et al., 2022), routing networks (Dong et al., 2013), and multi-path planning for
robotics (Choset et al., 2005) and (Zang et al., 2022). In these domains, even small improvements
in path lengths can unlock new operational capabilities and reduce costs. For instance, in Very
Large Scale Integration (VLSI) design, minimizing the overall length of wiring directly decreases
the power consumption, reduces signal congestion, and minimizes timing delays; all of which con-
tribute to enhanced system performance Bricaud (2002). In this case, a maze can be expressed as a
graph where all edges have uniform cost, and therefore OARMST directly translates to reducing the
number of edges that are required to connect all the target nodes, which are termed terminals.

The Rectilinear Steiner Minimum Tree (RSMT) problem aims to connect a given set of points using
only horizontal and vertical lines while minimizing the total connection length Hwang et al. (1992).
OARSMT extends this problem by adding obstacles that must be avoided by the path solutions.
RSMT is however NP-complete (Garey & Johnson, 1977), and the inclusion of obstacles further in-
creases the problem’s complexity. Therefore, an exhaustive graph approach (i.e., a search algorithm
that mimics the exact solution of the Traveling Salesman Problem (Gutin & Punnen, 2002)) will be
perfectly accurate, but will have poor runtime scaling with an increasing number of terminals. This
method involves permuting the terminals and using Dijkstra’s algorithm Cormen et al. (2009) to
compute the shortest path between each pair of consecutive terminals. We will refer to this method
as Dijkstra’s exhaustive throughout our work.

Approximation algorithms to solve OARMST, such as by Kou et al. (Kou et al., 1981) and Mehlhorn
(Mehlhorn, 1988), offer improved scaling. However, these methods are not guaranteed to be exact
and can produce incorrect maze solutions. Figure 1 illustrates a maze where approximation methods

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

yield an incorrect result when trying to find the shortest path connecting three terminals, due to
multiple paths having nearly equal lengths. We observe that even for this relatively small 11 × 11
node graph represented by a maze, accuracy is a serious issue for approximation algorithms.

Recent advancements in machine learning have introduced innovative approaches to tackling the
Obstacle-Avoiding Rectilinear Minimum Steiner Tree (OARMST) problem. Among these,(Xiao
et al., 2023), a mixed neural-algorithmic framework, offers a novel solution but does not account
for obstacles in its computations. Similarly, while the methods proposed by (Chen et al., 2022),
(Lin et al., 2023), (Huang & Young, 2011) ,and (Chu & Wong, 2008) address obstacle-avoiding
Steiner tree construction, they are tailored for VLSI layouts and are not readily applicable to maze-
like configurations. This constraints our comparison to explicitly graph approximation methods that
handle more generalized environments, such as mazes with very specific obstacle patterns.

Figure 1: A maze with three terminals (green squares), with an incorrect approximation solution
that is not the minimum-length path (red), and the correct exhaustive solution (blue). The overlap
between the solutions is shown in blue with red stripes.

Rather than approaching OARMST as a traditional graph problem which has limitations of scal-
ability, accuracy and generalization, we instead view mazes as images, and solve them via image
processing techniques. Our deep neural network method, which we call MazeNet, makes use of Re-
current Convolutional Neural Networks (RCNNs), which have been previously used to solve mazes
of only two terminals Schwarzschild et al. (2021), (Bansal et al., 2022). MazeNet is scalable and
extendable, and can be used to solve mazes of variable sizes and variable numbers of terminals to
be connected: in this paper, we present results for mazes of up to a size of 11 × 11 and up to eight
terminals. MazeNet is able to offer perfect empirical accuracy for these scenarios, despite being
trained on smaller mazes that have up to five terminals.

Since RCNNs may not be able to recognize a correct solution and terminate, MazeNet incorpo-
rates a search-based algorithm that recognizes a correct solution to the maze. Our method combines
the runtime efficiency of graph-based approximate algorithms with the accuracy of the graph-based
exhaustive algorithms. This work addresses the gap between probabilistically correct approxima-
tion methods and the demand for deterministic accuracy in small-scale environments. For problems
within the 11×11 regime, probabilistic methods may be effective, but they lack justification for fail-
ing to discover the true shortest path. MazeNet is designed to achieve deterministic accuracy com-
parable to exact graph-based methods while maintaining the runtime efficiency of approximation
algorithms.

The paper is organized as follows. In Section 2, we formally define the OARSMT problem and
present its computational complexity. In Section 3, we present MazeNet’s architecture and train-
ing process, highlighting its key algorithmic features. In Section 4, we present the performance
of MazeNet and its state-of-the-art alternatives with regards to their accuracies and runtimes, and
analyze their scalabilities. We conclude in Section 5 and discuss future work and extensions for
MazeNet, situating its broader significance in regards to Deep Learning for complex problems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PROBLEM STATEMENT

The OARSMT problem is formally defined as follows. Given a set of terminals T = {t1, t2, . . . , tN}
in a 2D plane, where each terminal ti has coordinates (xi, yi), and a set of rectangular obsta-
cles O = {O1, O2, . . . , Om}, with each obstacle Oj defined by its vertices (xj min, yj min) and
(xj max, yj max), the objective is to find a tree T ′ that connects all terminals in T using horizontal
and vertical line segments (rectilinear paths) while avoiding all obstacles in O, such that the total
length of the tree T ′ is minimized. Defining E(T ′) as the set of edges in the tree T ′, and L(T ′) as
the total length of the tree, we have:

T ′ = argmin
T ′

L(T ′) =
∑

e∈E(T ′)

length(e), (1)

such that T ′ is a connected acyclic graph spanning all terminals in T , and for every edge e ∈ E(T ′)
between two points (xi, yi) and (xj , yj), the path is rectilinear and not intersecting any Oj ∈ O.

With an exhaustive method, all possible permutations of the T terminals are considered to evalu-
ate every possible sequence of connections. For each permutation, the shortest path is computed
between each sequential pair of terminals in the order specified by the permutation. The number
of such permutations is O(T !). Dijkstra’s algorithm is used to compute the shortest path for each
sequential pair, with a time complexity of O(V log V + E) (Cormen et al., 2009), where V is the
number of vertices and E is the number of edges. In a grid graph with V vertices and E ≈ V edges,
this simplifies to O(V log V ). Therefore, the total complexity of Dijkstra’s exhaustive method is
O(T !× (V + 1) log V ).

2.1 TRANSFORMING GRAPHS INTO IMAGES

To transform this graph-based problem into an image domain, we first note that mazes can be con-
structed using the Depth-First Search (DFS) algorithm Sibeyn et al. (2001), with each node in the
maze connected to a set of neighbors in a lattice structure. Walls in the maze correspond to obstacles
in the OARSMT problem. We add cycles to this DFS-generated maze by randomly removing some
of the walls. We then place the N terminals to be connected at random, uniformly selected locations
across the maze. Detailed maze generation steps are provided in Appendix A.1.

As an example of this procedure’s usage in MazeNet, consider the 11× 11 node grid with 10 edges
connecting nodes in Figure 2a, resulting in a total of 21 × 21 “cells”. In the image representation
of this graph in Figure 2b, each cell is a 2× 2 pixel square with a 3-pixel padding around the maze,
with the walls and the padding in black and other pixels in white. Thus, Figure 2b is a 48× 48 pixel
image representing the 121-node graph of Figure 2a. For the eventual purpose of training a neural
network, when we extract the shortest path through the maze in Figure 2b, we generate the training
output image in Figure 2c.

(a) Graph representation (b) Maze representation (c) Target representation

Figure 2: Example of converting a graph (a) to its corresponding maze (b), with the target image (c)
as its shortest-path solution.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 OVERVIEW OF MAZENET

We now present the proposed MazeNet method, starting with its Recurrent Convolutional Neural
Network (RCNN) building blocks in Section 3.1. In Section 3.2, we introduce the termination con-
dition module and present its algorithm in detail. In Section 3.3, we present the overall MazeNet
architecture and its training procedure. Finally, in Section 3.4, we describe an algorithmic paral-
lelization feature that is useful for MazeNet’s extension to very large mazes.

3.1 RCNN APPROACH

The building block of the MazeNet method is the RCNN, which has been widely applied to ob-
ject recognition tasks Liang & Hu (2015). RCNNs can processes images by applying convolution
operations recurrently, focusing on learning scalable algorithms without any graph as an input. Sepa-
rately, maze-inspired algorithms have long been employed to tackle the OARSMT problem Lin et al.
(2018); yet there has been little connection between RCNN-based methods and graph-theoretic ap-
proaches. Schwarzschild et al. (2021) and Bansal et al. (2022) were the first to bridge this gap by
using RCNNs to solve maze-related problems, mimicking traditional algorithmic processes. How-
ever, these problems were in domains where traditional methods are both fast and accurate, leaving
open the question of whether RCNNs can provide similar advantages for more complex graph-based
problems.

Since RCNNs are used for supervised learning in our case, it is necessary to have pairs of training
input and target data images. We start by creating graphs as described in Appendix A.1, using the
DFS algorithm followed by random wall removal and uniformly distributing N terminals across the
grid. We then generate the solution graph with Dijsktra’s exhaustive, a graph-based algorithm as
described in Section 2, followed by a transformation to images as detailed in Section 2.1 in order to
create the input/target image pairs in Figures 2b and 2c.

The architecture and the progressive training algorithm of Bansal et al. (2022) were designed to
connect two terminals in perfect mazes, i.e., where a unique solution connects any two nodes. This
architecture has three key stages: a projection module that processes the input, followed by a re-
current module (RB) that operates sequentially, and finally, a head module that produces the output
(Appendix A.2). At each step of the recurrent module, a skip connection is maintained from the in-
put, ensuring that the input information is preserved throughout the recurrence. A final head module
transforms the network’s output into a single-channel prediction. The width of the network, defined
by the number of channels, is a tunable hyperparameter which represents the number of filters of the
recurrent module. In this work, we use their progressive training algorithm and make modifications
to the architecture to adapt it to this new problem, as detailed in Sections 3.3 and 3.2

RCNNs offer step-by-step interpretability of a trained method’s operations, since the head module
can be applied after any iteration, making it possible to observe the intermediate stages of the solu-
tion. These stages can be visualized directly as image outputs for insights into the solution process,
as demonstrated in Figure 3. Here, after suppressing the white permissible paths of the maze in
the input image, exploratory paths originate from the terminals, which intensify and become stable
when connections are established. Note however that the maze is essentially solved by iteration 23
from a simple visual examination, and one does not have to wait for the paths to become solidly
white. This observation motivates the introduction of a termination condition which can automate
the recognition of the maze being essentially solved, and to return this correct solution, as discussed
next.

Figure 3: Visualization of MazeNet’s progress over time as it connects four terminals.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 TERMINATION CONDITION

The RCNN architecture of Bansal et al. (2022) lacks a termination condition within its recurrent
modules, so its number of iterations must be predefined; which can lead to premature termination
or to excessive runtimes. Another issue is that if there are two nearly equidistant paths, the output
frequently oscillates between them. This event is also problematic with the approximation algo-
rithms Kou (Kou et al., 1981) and Mehlhorn (Mehlhorn, 1988). However, during this oscillation the
correct solution is occasionally highlighted as in Figure: 4. We therefore introduce a Termination
Condition (TC) module, which reduces unnecessary iterations by halting the network’s operation
once the correct path is identified, and also achieves the maximum empirical accuracy. TC does
incur a computational overhead, making its optimization crucial.

After a set number of iterations, the head module is followed by the TC module which performs a
guided search, assessing the “whiteness” of the intermediate output which is measure of the presence
of white pixels that represent the connected path. Starting at the upper leftmost terminal in the maze,
TC specifically evaluates the “whiteness” in a 2 × 2 neighboring cell grid, averaging the 0-1 value
of the 4 pixels at neighboring cell. If the whiteness exceeds an empirically determined threshold of
0.65, TC will continue the exploration in any direction North, East, West, and South (NEWS) above
the threshold.

When encountering a junction where multiple directions exceed the whiteness threshold, TC initi-
ates a recursive branch of exploration while keeping track of the main branch with a from-junction
variable. If a branch leads to a previously visited position, indicating a cycle, the TC module stops,
and the image undergoes additional iterations to ensure valid tree convergence. A last-move variable
keeps track of the previous direction to avoid moving backwards during the exploration.TC main-
tains a record of visited positions, to ensure that all the terminals are reached or to terminate if no
valid exploration direction remains.

Figure 4: Visualization of progress when a termination condition is needed to resolve between two
almost equidistant paths, since otherwise MazeNet oscillates between them.

Algorithm 1 Implementation Details of the Termination Condition (TC) Module
Input: Initial position, image tensor, directions
from junction = False
last move = None
while all green terminals not visited

if position revisited then
return False

Calculate “whiteness” for each direction (NEWS) around the current position
if “whiteness” > 0.65 and opposite last move is not the direction then

Move to the direction with the highest “whiteness”
last move = highest whiteness direction

if junction found (two or more available directions excluding last move) then
if from junction is True and junction already explored then

return False
from junction = True
Recursively explore each direction from the junction

if no valid move then
return False

return True

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 enables the TC module to identify the correct path, halting MazeNet once it confirms
that the maze is solved. Although this adds a runtime overhead of up to 40% on average, we have
found it necessary for achieving an empirical 100% accuracy on our datasets with MazeNet. Since
TC is computationally expensive, we avoid applying it after every iteration of the RB module to
minimize overhead. Thus, we can conceptually condense the recurrent iterations that take place
before each application of TC into a Batch module. Empirically, we set the first Batch to represent
a total of 30 RB module iterations, and each subsequent Batch to represent 10 iterations.

3.3 COMPLETE MAZENET ARCHITECTURE

MazeNet combines the head module in Section 3.1 and the TC and Batch modules in Section 3.2.
This architecture, depicted in Figure 5, has each of its modules composed of traditional 2D image
operations such as convolutions, ReLU activations, skip connections, and Argmax operations. Refer
to Appendix A.2 for a more detailed overview of each module.

Figure 5: Block diagram for MazeNet.

To train this architecture, we generate a dataset of mazes with 2, 3, or 4 terminals, aiming to teach
MazeNet to minimize the length when connecting a variable number of terminals. The exact method
is computationally feasible for creating multiple optimal labels for low terminal mazes, allowing us
to generate a large dataset for training. Refer to Section 4 for details on the training and testing data
sizes. We use the progressive training strategy of Bansal et al. (2022), as it has demonstrated RCNN
generalization capabilities when recurrence is applied. Progressive training encourages the model to
incrementally refine its solutions from any given starting point. Specifically, we begin by inputting a
problem instance and running the recurrent module for a random number of iterations, n. After this,
we take the resulting intermediate output, reset the recurrence (discarding gradients from the initial
steps), and then train the model to produce the final solution after an additional number of iterations,
k. Here, n is sampled uniformly from [0,m], and k is then defined after n is randomly selected to
fulfill the constraint n+ k = m.

The output of the network, which matches the dimensions of the targeted image in Figure 2c and is
a single-channel binary 0-1 valued matrix, is compared pixel-by-pixel with the labeled target using
a cross-entropy loss function. The gradient calculation for progressive loss and backpropagation
follows the procedure detailed in Algorithm 1 of Bansal et al. (2022).

Progressive training improves the quality of the network’s incremental solutions, and by selecting
a random iteration as the starting point for the next training phase, it also prevents the network
from developing iteration-specific behaviors. Instead, the network is encouraged to learn iteration-
agnostic behaviors.

We observe in Figure 6 that during the first ten epochs of training, MazeNet has a rapid increase in
accuracy with each iteration. However, in the following ten epochs, the network exhibits diminish-
ing returns (Appendix A.3).Importantly, we do not apply the termination condition during training,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which is why the accuracy does not reach 100% during training. Due to progressive training’s in-
herent randomness, the model that is our definitive MazeNet is not necessarily the one from the
final epoch, but instead the one with the highest peak accuracy on a test set with 5 terminals in each
maze. Based on this criterion, we select the model from epoch 16 as the best-generalizing example
of MazeNet in our implementation.

(a) Test accuracy over epochs 1, 6 and 9 (b) Test accuracy over epochs 11, 13 and 16

Figure 6: Accuracy progress for 5 terminals when training MazeNet, for several representative
epochs for training regime m = 30 shaded in light blue in the background.

3.4 PARALLELIZATION FOR SCALABILITY

To address future scalability challenges, particularly in handling larger mazes that correspond to
more complex graphs, we integrate multi-GPU parallelization to MazeNet directly at the algorith-
mic level. Unlike traditional multi-GPU approaches, where parallelization typically focuses on the
gradient descent process, we parallelize the algorithms of MazeNet itself. This allows us to distribute
the GPU convolution operations, while still maintaining the accuracy of the method.

In our approach, we divide the input image into smaller, equally-sized sections with each section
processed independently through the projection, recurrent, and head modules in parallel, followed
by a recombination of the sections at the end of this process. We divide the image into 2, 3, 4,
5, 6, 7, or 8 sections, as illustrated in detail in Appendix A.4. These image sections overlap by
10 pixels, which is sufficient to ensure that 2D convolution edge effects are discarded before the
sections are combined, resulting in an output identical to what would be produced by processing
the entire image as a single unit. Figure 7 also shows a specific example where two image sections
are processed simultaneously through one iteration. The network is inherently parallelizable across
all nine convolutional layers of a single feedforward pass without compromising any of MazeNet’s
accuracy. However, splitting and merging during every convolution introduces significant overhead.
To minimize this overhead, we parallelize all the 9 convolution layers before merging the image
sections.

For MazeNet’s 48 × 48 images, the overhead introduced by parallelizing computations on a single
GPU outweighs the performance gains due to the small image size. However, for larger synthetic
images, such as 1000× 1000, parallelization provides significant runtime improvements. The logic
follows that convolution operations are inherently parallelizable without introducing errors. For
larger synthetic images, parallelization gains runtime improvements in each iteration by efficiently
distributing the computational load across sections.

4 RESULTS

We train MazeNet for 20 epochs with m = 30 iterations, using a 48× 48 image size that represents
graphs of 11 × 11 nodes. We select a width of 128 channels, which provides a sufficient number
of parameters to maintain both accuracy and speed. We train with a dataset of 500,000 randomly

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Block diagram of one parallelized iteration of MazeNet.

Table 1: Test accuracy (in %) with and without TC module over 20 MazeNet iterations.

Number of Terminals 2 3 4 5 6 7
TC module 100 100 100 100 100 100
No TC module 99.25 96.13 89.10 79.30 68.10 55.10

generated mazes with 2, 3, and 4 terminals. To evaluate MazeNet’s generalization capabilities, we
test on maze datasets containing 2 to 8 terminals. Each test set for 2 to 5 terminals has 10,000 mazes,
but for 6 to 8 terminals we are limited to 1,000 mazes due high target generation runtimes. All of
our experiments were conducted on NVIDIA GeForce GPUs, each with 11 GB of memory and
a maximum power capacity of 250W. MazeNet was trained for approximately 48.12 hours across
four GPUs, utilizing CUDA 11.4. In total, the training consumed 192.48 GPU-hours. This setup
provided the computational resources necessary for parallel training of the model over 20 epochs.
Further details are provided in Appendix A.6.

4.1 MAZENET ACCURACY AND PATH LENGTH COMPARISON ON TEST DATASET

MazeNet achieves 100% accuracy across the entire test set, even though it was trained only on a
mixture of lower terminal numbers. We specifically define accuracy as the model’s ability to identify
the shortest path. As shown in Table 1, the TC module is critical for achieving such performance as
the number of terminals grows. For cases without the TC module, the number of recurrent blocks
must be arbitrarily defined regardless of any batch module; for comparison in Table 1, we set this
number to 20 recurrent modules. As discussed before, approximation methods can be inaccurate for
solving mazes; we provide the percentage accuracies for each method in Table 2.

In Table 3, we observe that the path length computed by MazeNet is always optimal, with differences
between methods being small. This is because the majority of paths are identical across methods,
and the average includes many such cases. However, when conditioned on MazeNet’s mistakes, as
shown in Table 4, the path length difference becomes more significant, ranging from 4

4.2 MAZENET RUNTIMES ON TEST DATASET

In Figure 8, we compare the runtime of MazeNet against Dijkstra’s exhaustive Gutin & Punnen
(2002), which is faster for a small number of terminals, but has excessive runtimes as the number
of terminals increases. As expected, this brute force method scales linearly on a logarithmic scale,
reflecting the factorial growth in complexity due to the permutation scaling. In contrast, MazeNet
demonstrates much better scalability as the number of terminals increases. When compared with
graph-based approximation methods (Kou et al., 1981), (Mehlhorn, 1988), we observe that the com-
putational complexity for all three methods is comparable in terms of their scaling behavior. The
runtime crossing point between Dijkstra’s exhaustive algorithm and MazeNet occurs between 4 and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test accuracy (in %) for different maze-solving methods.

Number of Terminals 2 3 4 5 6 7
MazeNet 100 100 100 100 100 100
Mehlhorn 100 99.05 97.99 98.0 95.9 92.2
Kou 100 99.11 98.1 97.5 95.7 93.0

Table 3: Average path length normalized to Dijkstra’s Exhaustive method across different maze-
solving methods.

Number of Terminals 2 3 4 5 6 7
MazeNet 1.0 1.0 1.0 1.0 1.0 1.0
Mehlhorn Method 1.0 1.00002 1.00359 1.00871 1.01661 1.02037
Kou Method 1.0 1.000005 1.003559 1.008244 1.016068 1.021071

5 terminals, which is significant considering that we only trained MazeNet on a maximum of 4
terminals.

Figure 8: Mean runtime comparison between MazeNet, Dijkstra’s exhaustive, and approximation
methods.

The runtimes of Figure 8 demonstrate that, while Dijkstra’s exhaustive algorithm is both accurate
and efficient for low numbers of terminals, its runtime becomes prohibitive as the terminal number
grows. In comparison, our method scales efficiently and remains practical even for larger numbers
of terminals, offering a competitive runtime alternative to existing approximation methods, while
also achieving the 100% accuracy that these methods cannot attain. An important achievement of
MazeNet is that if we consider each pass through the recurrent module as one overall iteration, our
method reaches the solution in very few iterations, as seen Appendix A.5, Figure 15. This contrasts
with the competing methods, which often rely on loops that repeat for many more iterations to
approximate a solution.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the image-based MazeNet method for solving the Obstacle Avoid-
ing Rectilinear Steiner Minimum Tree (OARSMT) problem, which achieves empirical accuracies
of 100% and competitive runtimes compared to approximate methods that can produce incorrect
results. MazeNet has promising generalization and scalability properties, but also offers valu-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Average path length normalized to Dijkstra’s Exhaustive method across different maze-
solving methods (conditioned on approximations making a mistake).

Terminals 2 3 4 5 6 7
MazeNet 1.0 1.0 1.0 1.0 1.0 1.0
Mehlhorn Method 1.0 1.093595 1.061324 1.052873 1.055554 1.040212
Kou Method 1.0 1.094389 1.061881 1.053988 1.053699 1.041645

able insights into the relationship between image-based approaches and 2D graph structures. We
demonstrated how an RCNN iteratively and successfully solves a challenging problem by emulating
learned algorithmic steps, achieving state-of-the-art performance. Our method represents an inte-
gration of RCNNs with a search algorithm, opening new possibilities for hybrid approaches that
combine the strengths of deep learning with traditional algorithmic techniques. Reframing graph
problems as image processing tasks presents a promising avenue for leveraging recent advances in
graph theory and in deep learning.

MazeNet establishes linkages between the fields of graph theory, deep learning, and traditional
recursive algorithms. The insights to be gained extend far beyond the OARSMT problem, offering
new directions for future research. For example, the intermediate steps of the algorithm that was
learned by MazeNet do not resemble any known algorithmic solutions for the OARSMT problem.
Therefore, closer study of this method could yield new classes of algorithms that differ substantially
from the literature.

There are several important avenues for future work. First, while we successfully demonstrated
that MazeNet can be generalized up to 8 terminals, the method’s performance for larger terminal
counts and larger mazes has not been explored yet. MazeNet can solve mazes with more termi-
nals and arbitrary sizes without retraining; however, both convergence and optimality are no longer
guaranteed under these conditions. Future research could focus on addressing these limitations to
enhance the scalability and robustness of the method. As the dimensions of the mazes grow, simply
training the current MazeNet on such augmented datasets may become computationally prohibitive,
and additional preprocessing steps may be required. Also, an adaptation of MazeNet to layouts be-
yond mazes, such as those used in (Chen et al., 2022), (Lin et al., 2023), (Huang & Young, 2011),
and (Chu & Wong, 2008), would allow for a more direct comparison to these approaches. Second,
MazeNet is a deep learning approach, which is being compared to graph algorithms. It is a difficult
comparison given that both approaches are dissimilar. Graph Neural Networks (GNNs) (Micheli,
2009) present a deep learning alternative that is highly comparable to MazeNet. GNNs are specifi-
cally designed for tasks involving graph-structured data, such as the OARSMT, which is inherently a
graph problem. Recent developments in GNNs have sparked significant interest, further solidifying
their utility in tasks with close ties to our dual approach involving graphs and image-based computer
vision tasks (Han et al., 2022). Future research on GNNs inspired by MazeNet could complement
the recurrent approach proposed in this work, potentially leading to insightful and significant find-
ings. Lastly, adapting MazeNet’s architecture and training regime to application-specific instances
of the OARSMT problem could provide a more specialized solution through domain-specific labeled
paired examples.

We demonstrate the high accuracy, fast runtimes and scalabilty of MazeNet, showing the potential
of hybrid approaches that blend deep learning with algorithmic techniques. MazeNet offers a foun-
dation for exploring not only other graph-related problems but also more general optimization tasks.
As deep learning continues to advance, methods like MazeNet could play a key role in shaping how
complex combinatorial problems are tackled in future research.

REFERENCES

A. Bansal, A. Schwarzschild, E. Borgnia, Z. Emam, F. Huang, M. Goldblum, and T. Goldstein. End-
to-end algorithm synthesis with recurrent networks: Logical extrapolation without overthinking.
arXiv:2202.05826, 2022.

P. Bricaud. VC rating and quality metrics: Why bother? In Proceedings International Symposium
on Quality Electronic Design, 2002.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Po-Yan Chen, Yunhao Liu, Yongpan Liu, and David Z. Pan. A reinforcement learning agent for
obstacle-avoiding rectilinear Steiner tree construction. In Proceedings of the 2022 International
Symposium on Physical Design. ACM, 2022.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, 2005.

Chris Chu and Yiu-Chung Wong. Flute: Fast lookup table based rectilinear steiner minimal tree
algorithm for vlsi design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(1):70–83, 2008.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
3rd edition, 2009.

J. Dong, H. Zhu, M. Xie, and X. Zeng. Graph Steiner tree construction and its routing applications.
In 2013 IEEE 10th International Conference on ASIC, pp. 1–4, 2013.

M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal
on Applied Mathematics, 32(4):826–834, 1977.

G. Gutin and A. P. Punnen (eds.). The Traveling Salesman Problem and Its Variations. Springer,
2002.

K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu. Vision GNN: An image is worth graph of nodes. In
Advances in Neural Information Processing Systems, volume 35, pp. 8291–8303. Curran Asso-
ciates, Inc., 2022.

Tao Huang and Evangeline FY Young. An exact algorithm for the construction of rectilinear Steiner
minimum trees among complex obstacles. In Proceedings of the 48th Design Automation Con-
ference. ACM, 2011.

F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53 of Annals of
Discrete Mathematics. North-Holland, Elsevier Science Publishers B.V., 1992.

A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI Physical Design: From Graph Partitioning to
Timing Closure. Springer, 2nd edition, 2022.

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 15(2):
141–145, 1981.

M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

K. Lin, Y. Lin, Y. Li, and R. Lin. A maze routing-based methodology with bounded exploration
and path-assessed retracing for constrained multilayer obstacle-avoiding rectilinear Steiner tree
construction. ACM Trans. Des. Autom. Electron. Syst., 23(4), 2018.

Zhenkun Lin, Wei Zhu, Peng Zhou, and Bo Liu. Obstacle-avoiding rectilinear steiner minimal tree
algorithm based on deep reinforcement learning. In 2023 International Conference on Artificial
Intelligence of Things and Systems. IEEE, 2023.

K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Information
Processing Letters, 27(3):125–128, 1988.

A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3):498–511, 2009.

A. Schwarzschild, E. Borgnia, A. Gupta, F. Huang, U. Vishkin, M. Goldblum, and T. Goldstein.
Can you learn an algorithm? Generalizing from easy to hard problems with recurrent networks.
In Advances in Neural Information Processing Systems, volume 34, pp. 6695–6706, 2021.

J. F. Sibeyn, M. Kaufmann, and J. Vahrenhold. Generating maze-like graphs for testing pathfinding
algorithms. In Algorithms and Data Structures, pp. 419–431. Springer, 2001.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

M. Xiao, H. Yu, J. Wang, Y. Zhang, and Z. Liu. NN-Steiner: A mixed neural-algorithmic approach
for the rectilinear steiner minimum tree problem. In Proceedings of the 2023 International Con-
ference on Artificial Intelligence of Things and Systems (AIoTSys). IEEE, 2023.

Xiao Zang et al. Robot motion planning as video prediction: A spatio-temporal neural network-
based motion planner. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2022.

A APPENDIX

A.1 DATA GENERATION

We begin with a grid graph where each node is connected to four neighbors—two vertical and two
horizontal—except at the boundaries. From this uniform structure, we generate a perfect maze
using the DFS algorithm, a widely recognized method for maze construction. While DFS is well-
documented in the literature, we detail the process here for our specific method.

In this approach, the maze is represented as a grid of cells, each initially enclosed by four walls:
North, East, South, and West. The algorithm starts from an arbitrary cell and inspects its neighboring
cells. If any of the neighbors have not been visited, the algorithm randomly selects one, removes the
wall between the two cells, and moves to the unvisited cell. This process is repeated, continuously
extending the path. If the algorithm encounters a dead end, where all neighboring cells have already
been visited, it backtracks to the last cell with unvisited neighbors and continues from there.

In our implementation, the DFS algorithm is managed by defining classes for both the individual
cells and the overall maze structure. We track the path through the grid using a stack, which is
implemented as a Python list. When the algorithm encounters a dead end, it backtracks by popping
cells off the stack until it finds a cell with unvisited neighbors, allowing the exploration to continue.

This process results in a perfect maze—one in which each cell is reachable through a single con-
nected path, and in which no cycles exist. To increase the complexity and to introduce cycles, we
further modify the maze by randomly removing walls. Priority is given to nodes that are dead ends,
i.e., cells with three remaining walls, in order to break up isolated paths and to add variability. This
introduces cycles into the maze, making it more complex and extending MazeNet to a wider class
of problems.

Finally, after constructing the maze, we uniformly select N terminals at random locations throughout
the grid. These terminals are the points that will be connected in our OARSMT solution as seen in
Figure 9. By introducing these random elements, we ensure a diverse and challenging dataset for
our purposes.

(a) 2D unweighted, undirected grid graph. (b) Final graph for N=3 terminals

Figure 9: An example of the process of graph generation.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Once created, the graph can be converted to a maze. We create the target (i.e., solution) with Dijk-
stra’s exhaustive, having the labeled pair as shown in Figure 10.

Figure 10: Labeled-pair example for 3 terminals.

A.2 DETAILS OF MAZENET’S ARCHITECTURE

As depicted in Figure 11, MazeNet’s architecture consists of nine convolutional layers. The input
image, which is 3-channel and of arbitrary size (48 × 48 in our case), first passes through the pro-
jection module. This module is a single convolutional layer (Conv 0) that expands the input image
to a predefined number of width channels (set to 128 in this project) while maintaining the spatial
dimensions of 48×48. A ReLU activation follows this layer, introducing non-linearity and allowing
for more expressive feature extraction.

The core of the architecture is the recurrent module (RB), which plays an essential role in the model’s
ability to generalize. The recurrent module consists of five convolutional layers (Conv 1-5). The
first layer in the module takes a concatenation of the input channels and the width channels from the
previous iteration (input + width channels), ensuring that information is retained throughout the it-
erations. It outputs the same number of width channels (128 in this case). The remaining four layers
are identical convolutional layers, processing and outputting width channels without additional ac-
tivations. This recurrent structure is applied iteratively during the testing phase, allowing the model
to adapt and generalize across different terminals.

The final component is the head module, which is responsible for reducing the channel width and
producing the (0-1) output. It achieves this by progressively decreasing the number of channels
through three convolutional layers (Conv 6-8) with ReLU activations between them. The first layer
reduces the channels from 128 to 32, the second reduces it further from 32 to 8, and the final
convolution narrows the channels from 8 to 2. An Argmax function is applied over the two channels,
generating a binary prediction (0-1) for each pixel. For the final model in our architecture in Figure
5, we use the Batch modules as as detailed in Figure 12.

A.3 DETAILS OF THE TRAINING PROCEDURE

To evaluate performance during the training process, we plot the mean iteration accuracy for each
epoch, starting from iteration 2 through iteration 70 — more than double the size of the training
regime. Importantly, we do not apply the termination condition during training. This decision is
made to keep all operations confined to the GPU and to accelerate the training process, as the ter-
mination condition introduces additional overhead. By calculating accuracy without the termination
condition, we ensure faster evaluations while maintaining GPU efficiency.

For model selection, we choose the model based on the highest peak mean accuracy in Figure 13,
irrespective of the iteration number. This method allows us to identify the best-performing model
without overemphasis on any specific iteration. The accuracy curve shows that the model at many

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 11: Implementation details of the Recurrent, Projection and Head blocks of MazeNet.

Figure 12: The first Batch module in Figure 5 is composed of 30 RB modules in total, while the
extra recurrent Batch modules are 10 RB modules in total.

epochs generalizes effectively outside the training regime, as accuracy consistently increases beyond
the maximum iterations used in training.

A.4 PARALLELIZATION RUNTIME

For MazeNet’s 48 × 48 images, we have found that the overhead introduced by parallelizing the
computations on a single GPU outweighs the performance gains, due to the relatively small image
size. However, when experimenting with larger synthetic images—such as of dimensions 1000 ×
1000—we can obtain significant runtime improvements. To quantify these runtimes, we split up such
images into a variable number of sections, from 1 (no parallelization) to 8 (maximum parallelization
on the GPU), and pass them through the network in parallel. We obtain the runtime results in
Figure 14, where the maximum runtime savings are obtained for 2 sections, and the parallelization
overheads leading to smaller savings for increasing numbers of sections.

A.5 NUMBER OF ITERATIONS

An important achievement of MazeNet is that if we consider each pass through the recurrent module
as one overall iteration, our method reaches the solution in very few iterations, as seen in Figure 15.
This contrasts with the competing methods, which often rely on loops that repeat for many more
iterations to arrive to a solution. Our method’s rapid convergence reduces the number of required
iterations, minimizing computation time while maintaining 100% accuracy.

A.6 HYPERPARAMETERS

To ensure that the runtime reflects the actual time required to solve each maze, we use a test batch
size of 1. Larger batch sizes would introduce GPU parallelism during the convolutions, resulting in
artificially lower runtimes, which would skew the comparison with graph techniques. By maintain-
ing a batch size of 1, we provide a fair and accurate assessment of the time required to solve each
maze individually. The α parameter is the parameter used in Schwarzschild et al. (2021), Algorithm
1 for progressive training. The full list is displayed in Table 5

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) First 5 epochs (b) Second 5 epochs

(c) Third 5 epochs (d) Final 5 epochs

Figure 13: Test accuracy progress for 5 terminals when training MazeNet, for several representative
epochs for training regime m = 30 shaded in light blue in the background.

Table 5: Training and Testing Parameters

Parameter Value
α 0.01
Epochs 20
Learning Rate 0.001
Optimizer Adam
Test Batch Size 1
Train Batch Size 25
Train Mode Progressive
Width 128
Training Regime (m) 30
Test Iterations (Low) 2
Test Iterations (High) 70
Test Data Type 5 green

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 14: Parallelized MazeNet’s runtimes for a single iteration through the network, as a function
of number of sections, for images of dimensions 1000× 1000.

Figure 15: Mean iteration comparison between MazeNet and Dijkstra’s exhaustive method.

16


	Introduction
	Problem Statement
	Transforming Graphs Into Images

	Overview of MazeNet
	RCNN approach
	Termination Condition
	Complete MazeNet Architecture
	Parallelization for scalability

	Results
	MazeNet accuracy and path length comparison on test dataset
	MazeNet runtimes on test dataset

	Conclusions and Future Work
	Appendix
	Data Generation
	Details of MazeNet's architecture
	Details of the training procedure
	Parallelization Runtime
	Number of iterations
	Hyperparameters


