

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOOK BACK TO REASON FORWARD: REVISITABLE MEMORY FOR LONG-CONTEXT LLM AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the “memorize while reading” methods. While this approach scales efficiently, it suffers from irreversible forward-only processing, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose Reinforcement Learning with Multi-Level Rewards (RLMLR), which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning. Our code is available at <https://anonymous.4open.science/r/ReMemR1-047E>.

1 INTRODUCTION

Reasoning over vast, multi-document contexts remains a critical bottleneck for large language models (LLMs) (Hsieh et al., 2024; Team et al., 2024; Beltagy et al., 2020; Ding et al., 2023; Child et al., 2019). This capability is crucial for real-world applications, such as synthesizing legal precedents or reviewing scientific literature, where critical evidence for a single query can be scattered across millions of tokens. However, the quadratic complexity of attention mechanisms makes it difficult for LLMs to track long-range dependencies and faithfully synthesize disparate information into a coherent answer.

To mitigate this, two primary paradigms have emerged. The first is Full-Text Context Retrieval (Figure 2(a)), where a retriever fetches relevant chunks from a corpus to form a prompt (Jin et al., 2025; Song et al., 2025; Shi et al., 2025). While widely used, this approach presents the LLM with fragmented, partial information and suffers from a heavy storage burden for the vector index. Alternatively, recent research explores the “memorize while reading” paradigm (Yu et al., 2025a; Li et al., 2025; Wang et al., 2025b) to handle infinite contexts linearly. As shown in Figure 2(b), this framework employs a memory agent that digests documents sequentially. At each step, the agent consumes a document chunk c_t together with its previous memory m_t and compresses them into a new memory m_{t+1} . After a single linear pass through the entire document, the agent uses this final memory m_T buffer to generate an answer for the given question. This reduces the complexity of long-context question answering to linear time.

Complex multi-hop reasoning often requires integrating evidence found at different positions in a text. For instance, an agent might encounter a piece of evidence early on (Step t) whose significance only becomes apparent after reading a later section (Step $t+k$). In a forward-only process, if this early evidence was compressed or discarded to save space, it is permanently lost.

Despite its efficiency, we identify the following intrinsic limitations in the existing “memorize while reading” paradigm:

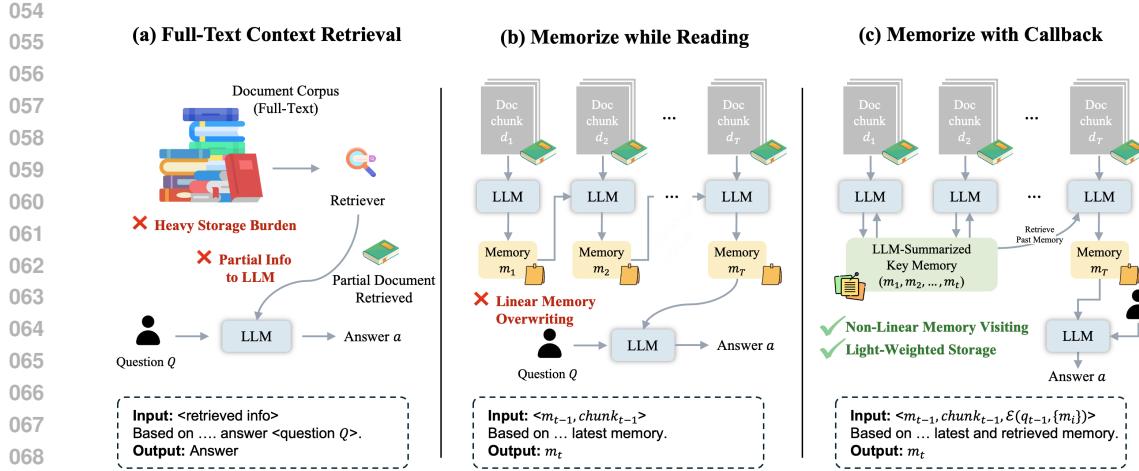


Figure 1: **Comparison of memory paradigms.** (a) Full-Text Retrieval separates retrieval from reasoning and incurs heavy storage burden. (b) “Memorize while Reading” paradigm suffers from progressive information loss and important information neglection due to linear memory overwriting. (c) This work introduces a callback mechanism, enabling non-linear memory visiting over past details and light-weighted storage.

• **Neglection of important information.** Standard memory agents evaluate the importance of the current document chunk c_t based solely on the current memory state m_t . However, complex multi-hop reasoning often may require integrating evidence found at different positions in a text. For instance, an agent might encounter a piece of evidence early on (Step t) whose significance only becomes apparent after reading a later section (Step $t+k$). Crucially, such limitation cannot be solved solely by improving the memory update policy, as the relevance of specific information may only become apparent with certain prior knowledge, which can be embedded in future context.

• **Progressive Information Loss in Memory Overwriting.** The paradigm’s reliance on a fixed-length memory buffer necessitates constant information compression. As illustrated in Figure 2(b), crucial early-stage details (e.g., “Dr Aris Thorne was a postdoc in Chicago” from Doc 42, step 5) can be inevitably lost after numerous overwrites. This progressive degradation of memory makes it difficult to maintain the full context and impedes the ability to resolve complex queries that require synthesizing evidence spread across distant sections of the document.

• **Sparse and Delayed Supervision.** Training these agents using reinforcement learning typically relies on a single reward signal, such as the correctness of the final answer. This sparse reward, provided only at the end of the reasoning process, offers limited guidance for the long sequence of intermediate memory updates, leading to inefficient optimization and suboptimal memory management strategies, particularly in complex tasks where producing correct final answers is especially challenging.

To address these challenges, we introduce ReMemR1, a memory-augmented LLM agent that can callback historical memories when navigating long documents. Conceptually, we introduce the mechanism of explicit memory retrieval into the “memorize while reading” paradigm, thus move beyond the restrictive state of the conventional MDP. Instead of passing only the memory m_t during iteration, we augment the state to $s_t = (m_t, q_t)$, where q_t is a callback query that enables retrieval over the agent’s entire memory history. At each step, the agent not only updates its memory m_t based on the new chunk c_t , but also generates a callback query q_{t+1} to reach its past memories $\{m_i\}_{i \leq t}$ (Figure 3). The retrieved information is then integrated into the context for the next state update. As depicted in Figure 2(c), this mechanism empowers the agent to construct non-linear reasoning paths, and selectively revisit critical facts from early stages to connect with new evidence. This directly counters the progressive information loss and breaks the irreversible forward-only constraint.

To robustly optimize this architecture, we implement a multi-level design tailored for the multistep memory updating of ReMemR1. Unlike general RL environments where agent actions alter future observations, the sequence of document chunks in our task remains identical across all trajecto-

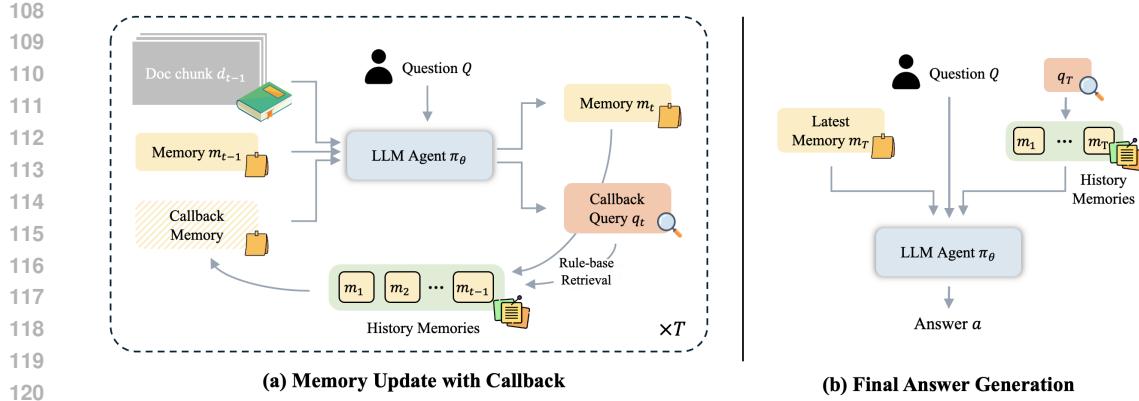


Figure 2: **Framework of ReMemR1.** (a) **Memory Update with Callback:** At each time step, the agent updates the current memory m_t and generates a callback query q_t to retrieve relevant history memories. The state update integrates the previous memory m_{t-1} , the current chunk, and the retrieved history. (b) **Final Answer Generation:** The final answer is synthesized using the latest memory state and a final query over the accumulated memory history.

ries at any given step t . This isolation allows us to pinpoint the specific contribution of memory updates and callback actions without environmental noise. Leveraging this, our training objective combines trajectory-level outcome rewards (answer correctness) with fine-grained, step-level signals that strictly evaluate the information gain of each memory transformation, thereby solving the sparse supervision bottleneck inherent in long-context reasoning.

Extensive experiments on both in-distribution and out-of-distribution benchmarks demonstrate that ReMemR1 consistently surpasses general-purpose LLMs and specialized memory agents. Beyond overall performance, we further conduct systematic analyses of memory callback strategies and multi-level reward designs, confirming the superiority of our RL-driven framework. Furthermore, we provide a detailed analysis of computational overhead, which reveals that while ReMemR1 explicitly stores intermediate memories, the retrieval latency is negligible ($< 0.2\%$ time overhead). This confirms that our approach successfully trades a marginal increase in computational cost for significant gains (over 20% error rate reduction) in reasoning accuracy, effectively addressing the limitations of progressive information loss without incurring prohibitive scalability issues.

2 METHOD

In this section, we present ReMemR1, a memory-augmented agent that incorporates history-aware retrieval and reinforcement learning with multi-level rewards to enhance long-context reasoning. We first review the formulation and limitations of conventional “memorize while reading” paradigm, where memory agents solve long-context QA through a single-pass scan that can be formulated as a Markov decision process (§2.1). We then introduce our history-augmented state mechanism, which enriches the memory update process with a query component that enables retrieval over past memory pieces and supports non-linear reasoning paths (§2.2). Finally, we describe the proposed multi-level reward structure, which combines trajectory-level outcome rewards with step-level state rewards to provide more effective training supervision (§2.3). Related work is discussed in Appendix A.

2.1 PRELIMINARIES: MDP MEMORY AGENT FOR LONG-CONTEXT QA

We consider the task of long-context question answering (QA), where each dataset sample is given as (Q, Y) . Here, Q denotes a question and Y is the set of all acceptable correct answers to that question (*i.e.*, a candidate answer list, and answering with any element in Y is regarded as correct). Each sample is further associated with a long document C , which is divided into small chunks c_0, c_1, \dots, c_{T-1} and sequentially provided to the model.

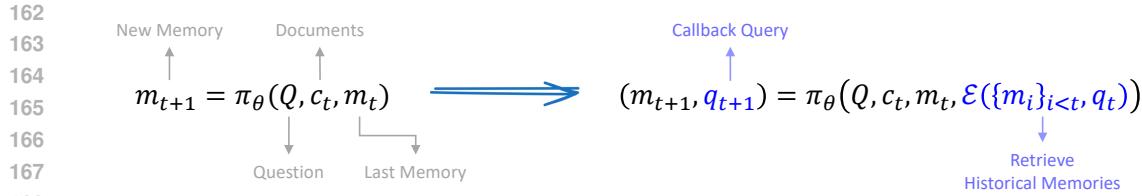


Figure 3: **The comparison of state transition functions between “memorize while reading” and our method.** (left) Conventional memory agents use a restrictive state $s_t = m_t$, where the next memory m_{t+1} only depends on the current context c_t and memory m_t . (right) Our method presents states as $s_t = (m_t, q_t)$, where the agent generates a callback query q_t to retrieve relevant information from its entire memory history $\{m_i\}_{i \leq t}$, enabling non-linear reasoning paths.

Standard memory-augmented agents process long documents in a “memorize while reading” paradigm: the agent reads chunks one by one and continuously updates its memory to preserve important information. This sequential procedure can be naturally cast as a Markov Decision Process (MDP), written as (S, \mathcal{U}, P, R) . At each step t :

- The **state** $s_t \in S$ is defined by the agent’s memory m_t (i.e., $s_t = m_t$), which serves as the sufficient statistic summarizing the past trajectory. The agent also receives external inputs from the environment, consisting of the question Q and the document chunk c_t .
- The **action** $u_t \in \mathcal{U}$ represents an update to the memory, which is determined by the policy π_θ given the current state and inputs.
- The **transition** $P(s_{t+1} | s_t, u_t)$ specifies how the next state is produced. In particular, the memory is updated as

$$s_{t+1} = m_{t+1} = \pi_\theta(Q, c_t, m_t), \quad \text{for } t \in [0, T-1] \quad (1)$$

- The **reward** R is defined based on the quality of the final answer after the entire document has been processed (§2.3).

The model begins with an empty memory, i.e., $m_0 = \emptyset$. After all T document chunks are processed, the agent produces a terminal output state by updating:

$$s_{T+1} = o = \pi_\theta(Q, \emptyset, m_T), \quad (2)$$

where the empty input indicates that no document chunk is provided at this final step.

In this formulation, the memory m_t is assumed to be a sufficient statistic of the entire history of previously processed chunks $\{c_i\}_{i < t}$. However, this formulation is inherently restrictive. First, in multi-hop reasoning, the agent may scan over evidence that is crucial for later hops but fail to recognize its importance at the time, since the preceding hop has not yet been resolved. As the memory is updated, such overlooked evidence can be overwritten and thus lost for subsequent reasoning. Second, because the memory is typically constrained to a fixed length to guarantee linear-time complexity, early evidence is progressively compressed and discarded as more chunks are processed. Finally, the MDP structure itself prohibits the agent from revisiting past inputs once they are overwritten, further limiting its ability to integrate evidence scattered across distant parts of the document.

2.2 MEMORY AGENT WITH HISTORY-AUGMENTED STATE

To address these limitations, we extend the agent’s reasoning capability beyond a strictly forward trajectory by enabling it to revisit and incorporate past evidence on demand. Specifically, the agent not only maintains the current memory m_t but also generates a callback query q_t to search over its history of memories $\{m_i\}_{i \leq t}$. The retrieved content is then integrated into the state representation, yielding $s_t = (m_t, q_t)$. This design allows the agent to selectively recall overlooked information and construct non-linear reasoning paths, rather than being confined to irreversible memory updates.

To realize this mechanism, at each step t the agent receives the fixed question Q , the current document chunk c_t , and the current state s_t . It is further equipped with a retrieval function \mathcal{E} , which

216 selects relevant content from the previous memories $\{m_i\}_{i < t}$ on the overlap of words with the query
 217 q_t . The state transition is then defined as

$$218 \quad s_{t+1} = (m_{t+1}, q_{t+1}) = \pi_\theta(Q, c_t, m_t, \mathcal{E}(\{m_i\}_{i \leq t}, q_t)), \quad (3)$$

220 where $\mathcal{E}(X, b) = \arg \max_{x \in X} \text{recall}(b, x)$, with $\text{recall}(a, b)$ denoting the proportion of words in a
 221 that also appear in b .

222 The query component q_{t+1} evolves alongside the memory, enabling the agent to iteratively refine its
 223 retrieval strategy over time. This design frees the agent from a strictly linear trajectory through the
 224 document, allowing it to form non-linear reasoning paths by recalling earlier evidence and thereby
 225 mitigating the information loss inherent to fixed-length memory.

227 2.3 REINFORCEMENT LEARNING WITH MULTI-LEVEL REWARD SHAPING

229 A primary challenge in training memory-augmented agents is the sparse and delayed nature of su-
 230 pervision. For instance, a reward signal based solely on the final answer’s correctness provides weak
 231 guidance for the many intermediate steps leading to it. To address this, we analyzed the agent’s rea-
 232 soning process and made the key observations: (1) In GRPO optimization, there are multiple rollouts
 233 for a single query Q and document set $\{c_t\}_{t=0}^{T-1}$, yet they explore different reasoning paths leading
 234 to different answers. (2) At each given step t , the agent across different trajectories sees the same
 235 external context (Q, c_t) but maintains a different internal state s_t . In this situation, the agent’s task
 236 is to integrate the current context with its evolving state to approach the correct answer.

237 **Based on this insight, we implement a multi-level reward formulation tailored for the robust op-**
 238 **timization of memory agents.** As illustrated in Figure 4(b), this algorithm comprises two main
 239 components: a trajectory-level reward that evaluates the final outcome, and a dense, step-level state
 240 reward designed to shape the agent’s intermediate behaviors by measuring relative information gain.
 241 These rewards are normalized across the corresponding trajectories and steps to acquire the overall
 242 advantage for group relative policy optimization (GRPO) (Shao et al., 2024) optimization.

243 2.3.1 TRAJECTORY-LEVEL OUTCOME REWARDS FOR FINAL CORRECTNESS

245 The ultimate measure of an agent’s success is its ability to answer the given question correctly. We
 246 capture this with a trajectory-level outcome reward, which is calculated based on the terminal state
 247 of each trajectory. Specifically, we first extract the predicted answer $\hat{y}^{(g)}$, enclosed in a $\backslash\text{box}\{\}$,
 248 from the state $s_{T+1}^{(g)}$. The outcome reward is then computed using an exact match metric against the
 249 set of ground-truth answers Y :

$$250 \quad R_{\text{out}}^{(g)} = \max_{y \in Y} \mathbb{I}(\hat{y}^{(g)} = y), \quad (4)$$

252 where $\mathbb{I}(\cdot)$ is the indicator function that returns 1 if the condition is true and 0 otherwise.

254 2.3.2 STEP-LEVEL ACTION REWARDS FOR BEHAVIOR SHAPING

256 To provide the dense, fine-grained supervision that outcome rewards lack, we introduce step-level
 257 state rewards. These rewards evaluate the quality of intermediate state updates within a trajectory,
 258 directly shaping the agent’s behavior toward greater efficiency and effectiveness.

259 **• Information Gain in Memory Updates:** To combat the progressive information loss discussed
 260 in the introduction, we use a rubric-based reward to measure the information gain in the agent’s
 261 memory. After each update from m_{t-1} to m_t , we assess the presence of crucial entities from the
 262 ground-truth answer. If m_t contains more information that are directly relevant to the ground truth
 263 Y than m_{t-1} , we believe there’s a positive information gain achieved at time step t . Building on
 264 such rationale, we use the change in recall as a reward:

$$265 \quad r_{\text{memory}, t}^{(g)} = \max_{y \in Y} \text{recall}(m_t^{(g)}, y) - \max_{y \in Y} \text{recall}(m_{t-1}^{(g)}, y). \quad (5)$$

266 **• Bonus for Callback Retrievals:** When the query component $q_t^{(g)}$ triggers a retrieval through
 267 $\mathcal{E}(\{m_i^{(g)}\}_{i \leq t}, q_t^{(g)})$, the agent supplements its current memory with recalled information. To en-
 268 courage meaningful retrieval, we design a reward that measures the additional recall of critical

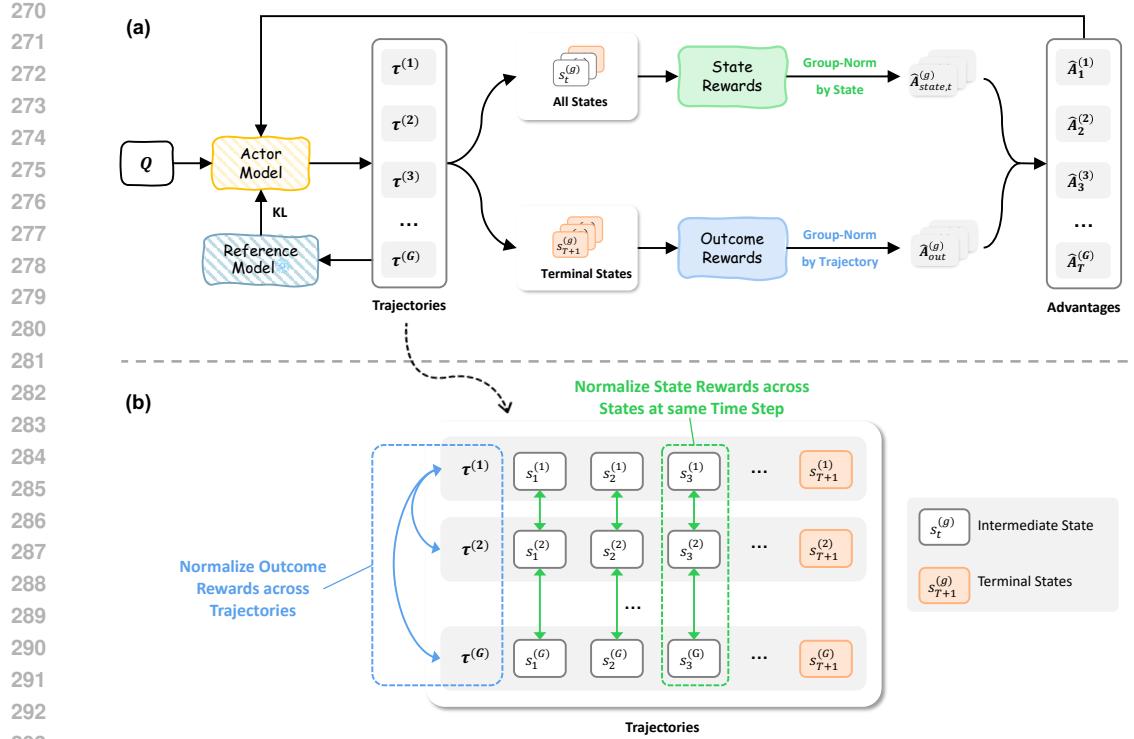


Figure 4: **Overview of the Multi-Level Reward Design.** (a) From the trajectories generated by the actor model, we compute outcome rewards at terminal states and state rewards at all states. (b) Each reward type is normalized at the corresponding level: state rewards across the states at the same step, and outcome rewards across all trajectories in the group.

information provided by the retrieved content beyond what is already available in the current memory $m_t^{(g)}$ and the immediate context c_t . Formally:

$$r_{\text{callback},t}^{(g)} = \max_{y \in Y} \text{recall}(y, \mathcal{E}(\{m_i^{(g)}\}_{i \leq t}, q_t^{(g)}) \cup m_t^{(g)} \cup c_t) - \max_{y \in Y} \text{recall}(y, m_t^{(g)} \cup c_t). \quad (6)$$

- **Format Reward:** To ensure that the agent’s outputs can be reliably parsed, we introduce a format reward $r_{\text{format},t}^{(g)}$ for all steps. For intermediate states, this reward checks for the correct usage of `<callback>` and `<memory>` tags. For the final step, it verifies the presence of the `\box{}` tag for the predicted answer.

The total step-level state reward at time t for trajectory g is the sum of these components:

$$R_{\text{state},t}^{(g)} = r_{\text{memory},t}^{(g)} + r_{\text{callback},t}^{(g)} + r_{\text{format},t}^{(g)}. \quad (7)$$

2.3.3 TRAINING OBJECTIVE

Given an actor model π_θ and a reference model π_{ref} , we sample a group of G trajectories $\{\tau^{(g)}\}_{g=1}^G$, where each trajectory $\tau^{(g)} = (s_1^{(g)}, s_2^{(g)}, \dots, s_{T+1}^{(g)})$ is generated according to the state-transition dynamics in §2.2. The optimization objective is a variant of GRPO (Shao et al., 2024) algorithm. Refer to Appendix C.1 for the full form of our training objective.

The normalized group advantage $\hat{A}_t^{(g)}$ is a composite of our multi-level rewards, with components calculated at different scales to reflect their distinct roles. For the outcome reward, we compute a trajectory-level advantage $\hat{A}_{\text{out}}^{(g)}$ by comparing a trajectory’s outcome to the group average. For the state rewards, we compute a step-level advantage $\hat{A}_{\text{state},t}^{(g)}$ by comparing a state’s reward to the average reward of states at the same step t in the group. Following (Liu et al., 2025b;c), we omit the

324 Table 1: Long-context QA results on HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA (Ho
 325 et al., 2020). Values are accuracy (%), rounded to 1 decimal. **Bold** denotes the best performances.
 326

(a) Accuracy on HotpotQA (In-Distribution)

Scale	Method	Number of Context Documents							
		50	100	200	400	800	1600	3200	6400
3B	Qwen2.5 (Yang et al., 2024)	59.4	57.0	-	-	-	-	-	-
	MemAgent (Yu et al., 2025a)	70.3	69.4	60.9	68.8	60.9	60.2	59.4	58.8
	ReMemR1 (Ours)	70.9	71.7	63.8	74.0	65.4	65.0	65.4	66.1
7B	Qwen2.5 (Yang et al., 2024)	70.3	75.0	-	-	-	-	-	-
	R1-Distill (DeepSeek-AI et al., 2025)	40.6	25.8	10.2	0.8	1.6	2.3	1.5	3.1
	Qwen2.5-1M (Yang et al., 2025b)	75.8	71.9	68.0	67.2	69.5	54.7	22.7	0.0
	MemAgent (Yu et al., 2025a)	81.8	78.9	78.9	77.0	79.7	72.1	74.0	75.8
	ReMemR1 (Ours)	82.3	82.8	81.1	78.9	82.0	79.7	80.0	80.8

(b) Accuracy on 2WikiMultiHopQA (Out-Of-Distribution)

Scale	Method	Number of Context Documents							
		50	100	200	400	800	1600	3200	6400
3B	Qwen2.5 (Yang et al., 2024)	39.8	39.1	39.0	-	-	-	-	-
	MemAgent (Yu et al., 2025a)	41.4	45.3	40.2	39.4	36.3	28.9	26.7	25.9
	ReMemR1 (Ours)	53.5	50.4	42.5	41.7	37.0	36.2	35.4	37.8
7B	Qwen2.5 (Yang et al., 2024)	53.9	49.2	61.1	-	-	-	-	-
	R1-Distill-Qwen (DeepSeek-AI et al., 2025)	36.7	29.7	25.8	0.0	0.8	2.3	2.3	0.8
	Qwen2.5-1M (Yang et al., 2025b)	62.5	59.4	57.8	47.7	46.1	45.3	25.8	0.0
	MemAgent (Yu et al., 2025a)	61.7	57.8	50.8	47.6	50.7	44.5	46.9	44.7
	ReMemR1 (Ours)	63.9	63.1	55.6	54.5	54.7	45.4	48.9	50.3

350 standard deviation term during normalization to avoid introducing difficulty bias:
 351

$$\hat{A}_{\text{out}}^{(g)} = R_{\text{out}}^{(g)} - \frac{1}{G} \sum_{k=1}^G R_{\text{out}}^{(k)}, \quad \hat{A}_{\text{state},t}^{(g)} = R_{\text{state},t}^{(g)} - \frac{1}{G} \sum_{k=1}^G R_{\text{state},t}^{(k)}. \quad (8)$$

355 Finally, the overall advantage $\hat{A}_t^{(g)}$ in Eq. 10 is a combination of these two components:

$$\hat{A}_t^{(g)} = \alpha \hat{A}_{\text{out}}^{(g)} + (1 - \alpha) \hat{A}_{\text{state},t}^{(g)}, \quad (9)$$

358 where α is the hyperparameter that controls the importance of each term.
 359

3 EXPERIMENTS

362 In this paper, we conduct experiments to answer the following research questions (RQs):
 363

364 **RQ1:** Does ReMemR1 outperform other memory agents or general-purpose LLMs on long-context
 365 tasks, and can it alleviate the progressive information loss?

366 **RQ2:** Does ReMemR1 achieve nonlinear document utilization through the callback mechanism?

368 **RQ3:** Is ReMemR1 computationally efficient, and how does the extra time and memory cost scale?

369 **RQ4:** Does our proposed multi-level rewards help the memory agent converge into a better solution?

370 **RQ5:** What's the benefits of the RL-driven memory callback, comparing with rule-based design?
 371

3.1 EXPERIMENTAL SETUP

374 **Datasets.** Our training data is sourced from HotpotQA (Yang et al., 2018). We pad the context of
 375 each training sample with random documents to 200 (about 30K tokens) per sample. For evaluation,
 376 we use the in-distribution (ID) HotpotQA and the out-of-distribution (OOD) 2WikiMultiHopQA
 377 (Ho et al., 2020) datasets. The context documents of test data are also padded, ranging from 50 to
 6400 documents per sample. For more implementation and dataset details, refer to Appendix C.

378 **Baselines.** In our experiments, we compare our method against three categories of baselines: (1)
 379 general LLMs, including Qwen2.5 models (Yang et al., 2024) and Qwen models distilled from
 380 DeepSeek-R1 (DeepSeek-AI et al., 2025). (2) Long-context LLMs, including Qwen2.5-1M (Yang
 381 et al., 2025b); (3) tailored memory agents, such as MemAgent (Yu et al., 2025a). By default, we use
 382 the instruct version for all models. For comparison with more baselines, refer to Appendix B.1.
 383

384 3.2 MAIN RESULTS (RQ1)

385 As shown in Table 1, our method consistently achieves the best accuracy across all model scales,
 386 datasets, and context lengths, surpassing both general-purpose LLMs and specialized memory
 387 agents. Compared with MemAgent, it achieves up to 7.3% higher accuracy on 3B model and 7.6%
 388 on 7B model, underscoring the effectiveness of adaptive memory recall. We further observe that
 389 as the number of context documents increases, the role of memory becomes increasingly critical.
 390 Pure reasoning models and long-context models exhibit sharp performance degradation when facing
 391 very long contexts, while MemAgent mitigates this issue by adopting a “memorize while reading”
 392 strategy that stores salient information in a memory buffer. Building upon this, our method equips
 393 the agent with an RL-driven memory callback mechanism that adaptively selects what and when to
 394 retrieve, thereby enhancing the quality of the maintained memory. This advantage becomes increas-
 395 ingly evident as the document length grows, since in longer contexts important evidence is more
 396 likely to be overwritten or overlooked, amplifying the need for precise recall to preserve reasoning
 397 accuracy. Notably, the gains are even more pronounced on the OOD 2WikiMultiHopQA dataset,
 398 indicating that our approach goes beyond memorizing dataset-specific patterns and instead acquires
 399 a genuine retrieval and reasoning ability, leading to stronger generalization across domains.
 400

401 3.3 DISTANT EVIDENCE CHALLENGE (RQ2)

402 To rigorously test the effectiveness and ac-
 403 curacy of the proposed memory callback
 404 mechanism, we construct a more challeng-
 405 ing evaluation setting. Specifically, for
 406 each question, the supporting evidences
 407 are arranged in the reverse order of their
 408 required reasoning sequence, and the dis-
 409 tance between successive evidence is en-
 410 forced to exceed half of the total number
 411 of context documents. This setup makes
 412 it infeasible for the model to rely on lo-
 413 cal context alone; instead, it requires the
 414 model to identify and utilize interdepen-
 415 dent evidences across long spans.
 416

417 As shown in Figure 5, our method surpasses MemAgent by large margin under this setting. MemA-
 418 gent suffers pronounced accuracy degradation due to its inherent inability to look back and reliably
 419 recall distant, scattered evidences. In contrast, our RL-driven callback mechanism adaptively re-
 420 trievals and maintains critical information, achieving far superior performance. These results demon-
 421 strate that the proposed callback design is both effective and robust, particularly when reasoning
 422 requires nontrivial coordination of evidences over long contexts.
 423

424 3.4 COMPUTATIONAL EFFICIENCY AND SCALABILITY (RQ3)

425 To evaluate the computational viability of our recurrent-memory design, we compare ReMemR1
 426 with the memorize-while-reading baseline MemAgent under varying numbers of context documents.
 427 Figure 6(b) reports the overall accuracy and total memory usage of both methods, while Figure 6 (a)
 428 presents the time and memory overhead introduced by the memory-retrieval module.
 429

430 We find that the retrieval process itself is highly efficient. Although ReMemR1 stores all interme-
 431 diate memory states, the callback operations require less than 2 seconds of latency and under 1MB of
 432 additional memory even at the 6400-document setting. This efficiency stems from the fact that the
 433 retrieved states are compact, model-generated summaries rather than full external documents.
 434

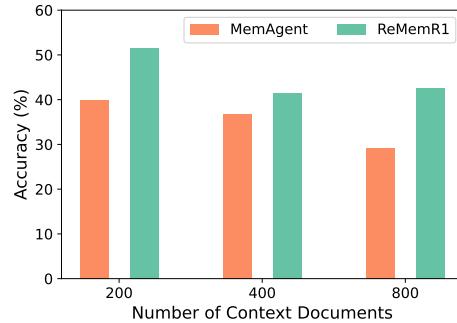


Figure 5: Accuracy on 2Wiki with distant evidences.

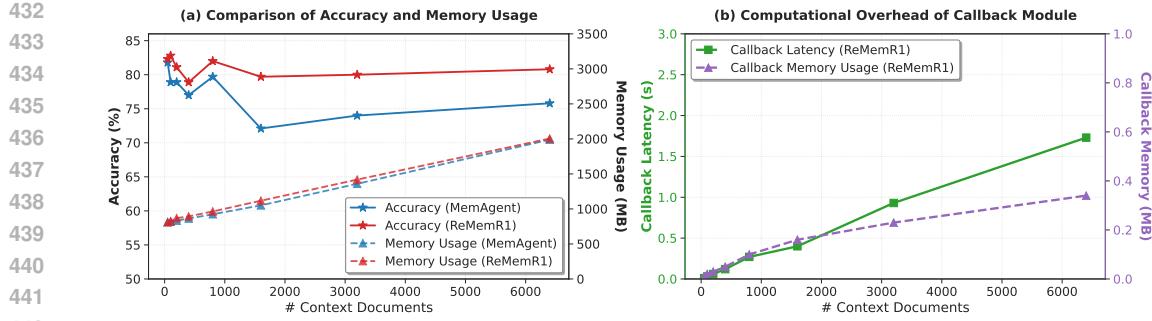


Figure 6: **Computational performance under different context lengths.** (a) Comparison of accuracy and total memory usage between ReMemR1 and MemAgent. (b) Time and memory overhead introduced by the retrieval module. ReMemR1 consistently achieves higher accuracy with only modest additional computation (< 2s latency and < 1MB memory).

Table 2: Accuracy on HotpotQA with different α values.

Method	α	Number of Context Documents							
		50	100	200	400	800	1600	3200	6400
ReMemR1	1.0	70.3	73.4	61.5	59.6	60.9	64.1	62.5	63.3
	0.8	70.9	71.7	63.8	74.0	65.4	65.0	65.4	66.1
	0.5	71.7	68.5	62.2	66.1	63.0	58.3	59.6	65.4
	0.2	68.8	68.5	55.9	62.5	53.5	45.7	49.6	52.0

Importantly, this small computational overhead translates into substantial performance gains: ReMemR1 achieves up to **5% absolute accuracy improvement** over the baseline, corresponding to a 20% reduction in error rate. These results illustrate that ReMemR1 offers a favorable accuracy–efficiency tradeoff, and provides stronger long-context reasoning while maintaining practical computational cost. Refer to Appendix B.4 and Appendix D for additional empirical results and theoretical analysis over computational overhead of ReMemR1.

3.5 ABLATION STUDIES

3.5.1 EFFECTIVENESS OF MULTI-LEVEL REWARD DESIGN (RQ4)

In ReMemR1, we propose a **multi-level rewarding method** to alleviate the sparse supervision problem by combining trajectory-level outcome rewards with step-level state rewards. The balance between these two rewards is controlled by a hyperparameter α , which determines how much weight is placed on final-answer correctness versus intermediate behavior shaping (Eq. 9). We evaluate $\alpha \in \{1.0, 0.8, 0.5, 0.2\}$ on Qwen2.5-3B Instruct to examine its impact.

Results in Table 2 demonstrate that $\alpha = 0.8$ consistently delivers the best accuracy across different context lengths. A larger α (e.g., 1.0) corresponds to using only outcome rewards, which neglects the benefits of dense step-level guidance and leads to weaker optimization. Conversely, smaller values (e.g., 0.2) overly emphasize step-level shaping, which distracts the model from optimizing for final correctness. Based on these findings, we adopt $\alpha = 0.8$ by default in all the other experiments, as it provides the best trade-off between global outcome rewards and local step-level supervision.

3.5.2 RL-DRIVEN V.S. RULE-BASED MEMORY CALLBACK (RQ5)

A key component of ReMemR1 is the RL-driven memory callback, where the agent learns through reinforcement learning to generate informative queries that retrieve past evidence most relevant to the current step. This mechanism allows the agent to dynamically determine *when* and *what* to recall during reasoning. As an intuitive yet strong baseline, we design a rule-based memory callback, where the agent uses the question Q itself as a fixed query for retrieval at every step. This design is motivated by the fact that the question contains rich information about the target answer, and thus provides a natural heuristic for guiding memory recall without requiring additional training.

486
487
488
489 Table 3: Comparison of accuracy (%) on HotpotQA and 2WikiMultiHopQA across different call-
490 back implementations. **Bold** denotes the best performance.
491
492
493
494
495

490 Benchmark	491 Method	492 Number of Context Documents							
		493 50	494 100	495 200	496 400	497 800	498 1600	499 3200	500 6400
491 HotpotQA	492 MemAgent	493 70.3	494 69.4	495 60.9	496 68.8	497 60.9	498 60.2	499 59.4	500 58.8
	492 MemAgent + rule-based callback	493 69.5	494 66.4	495 57.0	496 60.9	497 61.4	498 53.9	499 61.7	500 60.9
	492 ReMemR1 (Ours)	493 70.9	494 71.7	495 63.8	496 74.0	497 65.4	498 65.0	499 65.4	500 66.1
491 2WikiMultiHopQA	492 MemAgent	493 41.4	494 45.3	495 42.2	496 41.4	497 38.3	498 28.9	499 26.7	500 25.9
	492 MemAgent + rule-based callback	493 49.2	494 43.0	495 35.9	496 35.2	497 33.4	498 33.6	499 30.5	500 27.3
	492 ReMemR1 (Ours)	493 53.5	494 50.4	495 42.5	496 41.7	497 37.0	498 36.2	499 35.4	500 37.8

496
497
498 Table 3 reports the results on HotpotQA and 2WikiMultiHopQA, with Qwen2.5-3B Instruct as the
499 base model. We observe that RL-driven memory callback consistently outperforms both the vanilla
500 MemAgent and the rule-based callback on both datasets across all context lengths. Notably, the
501 rule-based callback does not always yield improvements and can even cause performance drops of
502 up to 7.9%, highlighting that determining *when* and *what* to recall is non-trivial. We also observe
503 that the advantage of our method increases as the document length grows, indicating that effective
504 memory recall becomes increasingly crucial in longer contexts. These results confirm that learning
505 adaptive recall strategies via RL is essential for robust and generalizable long-context reasoning.
506 Refer to Appendix B.2 for extended discussion about the impact of RL training.

507 4 CONCLUSION

508 This work examined the inherent limitations of the prevailing “memorize while reading” paradigm
509 for long-context question answering, including irreversible forward-only processing, progressive in-
510 formation loss from memory overwriting, and the sparsity of supervision signals. To address these
511 challenges, we proposed ReMemR1, a memory-augmented agent that enhances the state represen-
512 tation with callback queries, enabling retrieval from historical memories and facilitating non-linear
513 reasoning paths. To further improve training efficacy, we developed RLMLR, a reinforcement learn-
514 ing framework with multi-level rewards that combines trajectory-level outcome supervision with
515 step-level state rewards. Experiments across both in-distribution and out-of-distribution benchmarks
516 show that ReMemR1 consistently surpasses general LLMs and prior memory agents, and remains
517 robust under the challenging distant-evidence setting. Ablation studies further confirm the necessity
518 of the RLMLR training scheme and the RL-driven memory callback for enabling effective and gen-
519 eralizable long-context reasoning. Looking ahead, we believe this work opens up new potential for
520 future research on robust long-context understanding agents across diverse real-world domains.

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 ETHICS STATEMENT
541542 Our research is confined to computational experiments on publicly available benchmarks, specifically
543 HotpotQA and 2WikiMultiHopQA. These datasets consist of publicly sourced text and do not
544 contain personal information or other forms of sensitive data (Yang et al., 2018; Ho et al., 2020). No
545 human subjects were involved in any stage of our work, including data collection or model evalua-
546 tion. The focus of this paper is on foundational research for long-context reasoning, and we do not
547 develop or evaluate applications in high-stakes domains such as medicine, law, or finance.548 We acknowledge the broader ethical challenges inherent in LLM-based systems, including the risk
549 of perpetuating societal biases present in their training data. While our methodological focus is
550 on reasoning capabilities, the introduction of a memory mechanism raises specific considerations
551 regarding privacy and security. A system with the ability to store and recall information over long
552 contexts could pose risks if deployed with private or proprietary data without robust safeguards.
553 Any downstream application of this work should undergo evaluation for fairness, transparency, and
554 potential discriminatory impacts.555
556 REPRODUCIBILITY STATEMENT
557558 To ensure the reproducibility of our results, we provide an anonymous downloadable source code
559 package in our abstract, as recommended by the conference guidelines. This package includes:
560561

- 562 • Complete code for generating our evaluation datasets from publicly available benchmarks (Hot-
potQA and 2WikiMultiHopQA) using fixed random seeds.
- 563 • Configuration files and instructions for setting up the experimental environment.
- 564 • The training procedure of ReMemR1, including the implementation of the callback mechanism,
RLMLR, and runnable training scripts based on ver1.
- 565 • Evaluation scripts for both baseline models and our proposed method.

566 In addition, detailed descriptions of the experimental setup and hyperparameters are reported in §3.1
567 and Appendix C. We hope that these materials will enable researchers to fully replicate and further
568 extend our work.569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
597 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
598 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

599 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
600 *arXiv preprint arXiv:2004.05150*, 2020.
601

602 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
603 Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
604 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025a.

605 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan RGuan, Peng Wang, Mengkang Hu,
606 Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
607 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025b.
608

609 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
610 of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*, 2023.

611 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
612 transformers. *arXiv preprint arXiv:1904.10509*, 2019.
613

614 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
615 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
616 Zhibin Gou, Zhihong Shao, Zhusu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
617 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
618 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
619 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
620 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
621 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
622 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
623 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
624 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
625 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
626 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
627 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
628 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
629 48550/ARXIV.2501.12948.

630 Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
631 Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. *arXiv preprint*
632 *arXiv:2307.02486*, 2023.

633 Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
634 Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
635 future directions. *arXiv preprint arXiv:2505.00675*, 2025.

636 Romain Duverger, Alexis Bonnin, Romain Granier, Quentin Marolleau, Cédric Blanchard, Nassim
637 Zahzam, Yannick Bidel, Malo Cadoret, Alexandre Bresson, and Sylvain Schwartz. Metrology
638 of microwave fields based on trap-loss spectroscopy with cold rydberg atoms. *Physical Review*
639 *Applied*, 22(4):044039, 2024.

640 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
641 *preprint arXiv:2312.00752*, 2023.
642

643 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
644 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.
645

646 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
647 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th Interna-*
tional Conference on Computational Linguistics, pp. 6609–6625, 2020.

648 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 649 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
 650 models? *arXiv preprint arXiv:2404.06654*, 2024.

651 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 652 *preprint arXiv:2501.03262*, 2025.

653 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 654 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 655 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 656 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-
 657 drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 658 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
 659 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
 660 garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
 661 Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
 662 Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
 663 David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
 664 mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
 665 Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Francis Song, Fred von
 666 Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao,
 667 Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hes-
 668 sam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
 669 O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Openai o1 system card.
 670 *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720.

671 Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
 672 Training llms to reason and leverage search engines with reinforcement learning. *arXiv preprint*
 673 *arXiv:2503.09516*, 2025.

674 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
 675 survey. *Journal of artificial intelligence research*, 4:237–285, 1996.

676 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 677 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-*
 678 *chine learning*, pp. 5156–5165. PMLR, 2020.

679 Yukun Li and Liping Liu. Enhancing diffusion-based point cloud generation with smoothness con-
 680 straint. *arXiv preprint arXiv:2404.02396*, 2024.

681 Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei
 682 Yang, Chunyu Li, Qingchen Yu, et al. Memos: A memory os for ai system. *arXiv preprint*
 683 *arXiv:2507.03724*, 2025.

684 Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
 685 Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
 686 brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint*
 687 *arXiv:2504.01990*, 2025a.

688 Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
 689 infinite context. *arXiv preprint arXiv:2310.01889*, 2023.

690 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 691 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 692 *arXiv:2503.20783*, 2025b.

693 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 694 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 695 *arXiv:2503.20783*, 2025c.

696 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
 697 Fang. Evaluating very long-term conversational memory of llm agents. In *Proceedings of the*
 698 *62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 699 pp. 13851–13870, 2024.

702 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
 703

704 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 705 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 706 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 707 27730–27744, 2022.

708 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E
 709 Gonzalez. Memgpt: Towards llms as operating systems. *arXiv preprint arXiv:2310.08560*, 2023.
 710

711 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 712 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 713 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023a.

714 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
 715 dow extension of large language models. In *The Twelfth International Conference on Learning
 716 Representations*, 2023b.

717 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 718 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

720 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 721 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 722 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

724 Yaorui Shi, Shihan Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, and Xiang
 725 Wang. Search and refine during think: Autonomous retrieval-augmented reasoning of llms. *arXiv
 726 e-prints*, pp. arXiv–2505, 2025.

727 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 728 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 729 learning. *arXiv preprint arXiv:2503.05592*, 2025.

730 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 731 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

733 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 734 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 735 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

737 Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li, Ziyi Yang, Ji Zhang, Fei
 738 Huang, Jingren Zhou, and Ming Yan. Qwenlong-11: Towards long-context large reasoning models
 739 with reinforcement learning. *arXiv preprint arXiv:2505.17667*, 2025.

740 Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,
 741 Jinhu Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety:
 742 Data, training and deployment. *arXiv preprint arXiv:2504.15585*, 2025a.

744 Yu Wang, Ryuichi Takanobu, Zhiqi Liang, Yuzhen Mao, Yuanzhe Hu, Julian McAuley, and Xiaojian
 745 Wu. Mem- $\{\backslash\alpha\}$: Learning memory construction via reinforcement learning. *arXiv preprint
 746 arXiv:2509.25911*, 2025b.

747 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 748 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

750 Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen
 751 Ma, Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language
 752 model agents to manage and utilize memories via reinforcement learning. *arXiv preprint
 753 arXiv:2508.19828*, 2025.

754 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 755 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 756 arXiv:2412.15115*, 2024.

756 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
757 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
758 *arXiv:2505.09388*, 2025a.

759

760 An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
761 Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. *arXiv preprint*
762 *arXiv:2501.15383*, 2025b.

763

764 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
765 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
766 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
767 Processing*, pp. 2369–2380, 2018.

768

769 Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
770 Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
771 multi-conv rl-based memory agent. *arXiv preprint arXiv:2507.02259*, 2025a.

772

773 QIying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
774 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
775 scale. *arXiv preprint arXiv:2503.14476*, 2025b.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A RELATED WORK
811812
813 We review three areas of prior research relevant to our long-context LLM agent: memory mech-
814 anisms for LLM-based agents, approaches for extending context length in language models, and
815 reinforcement learning techniques for improving LLM reasoning abilities.
816817 **Memory Augmented LLM Agents.** The reasoning and planning capabilities of LLM agents are
818 fundamentally limited by the fixed size of their context window (Hsieh et al., 2024; Maharana et al.,
819 2024; Liu et al., 2025a). To overcome this, researchers have built external memory systems to
820 retain information across long interactions, enabling agents to recall past experiences and adapt
821 their behavior (OpenAI, 2023; Wang et al., 2025a; Du et al., 2025). Early memory systems primarily
822 focused on simple short-term memory (e.g., prepending a conversation history to the prompt) and
823 long-term memory (e.g., storing information in a vector database for retrieval) (Li & Liu, 2024;
824 Duverger et al., 2024; Packer et al., 2023; Yan et al., 2025). More recent approaches explore a
825 “memorizing while reading” paradigm, where the LLM autonomously organizes its memory corpus
826 during a single-pass scan through the documents (Xu et al., 2025; Li et al., 2025; Yu et al., 2025a).
827828 **Long-Context LLMs.** This long-context challenge in LLM has driven a variety of solutions,
829 which can be broadly categorized into architectural modifications and context window extension
830 techniques. Novel architectures, such as state space models (Gu et al., 2021; Gu & Dao, 2023; Peng
831 et al., 2023a), achieve linear-time complexity and are highly efficient for long sequences. Other ef-
832 forts focus on extending the context windows of attention-based LLMs. One approach involves de-
833 veloping more efficient attention mechanisms to reduce computational burden (Beltagy et al., 2020;
834 Ding et al., 2023; Child et al., 2019; Katharopoulos et al., 2020; Liu et al., 2023). A complemen-
835 tary technical route modifies Rotary Position Embedding to enable models to extrapolate effectively
836 beyond their original training length (Su et al., 2024; Chen et al., 2023; Peng et al., 2023b).
837838 **Reinforcement Learning in LLMs.** Reinforcement Learning (RL) (Kaelbling et al., 1996) has
839 emerged as a powerful paradigm for post-training LLMs recently (Chen et al., 2025a;b; Jaech et al.,
840 2024; DeepSeek-AI et al., 2025). Early efforts focus on Reinforcement Learning from Human Feed-
841 back (RLHF) (Ouyang et al., 2022) using algorithms like Proximal Policy Optimization (PPO) to
842 align the LLM with human preferences (Schulman et al., 2017). More recent work has explored scal-
843 ing this process by using outcome-based rewards. These Techniques such as Group Relative Policy
844 Optimization (GRPO) (Shao et al., 2024) and Reinforce (Hu, 2025) are central to this trend, which
845 offer alternatives to traditional PPO that reduce the need for a separate value model or extensive
846 human-annotated data (Ahmadian et al., 2024; Yu et al., 2025b).
847848 B ADDITIONAL RESULTS
849850 B.1 COMPARISON AGAINST MORE BASELINES
851852 We also conduct comparisons with a broader set of long-context models beyond 7B level. The
853 baselines include recent Qwen3 models (Yang et al., 2025a), 14B variant of Qwen2.5-1M (Yang
854 et al., 2025b) and R1-Distill-Qwen (DeepSeek-AI et al., 2025), and the 32B long-context LLM
855 QwenLong-L1-32B (Wan et al., 2025).
856857 Table 4 reports the extended comparison on both ID and OOD settings. In the table, we observe:
858 (1) At high context lengths, ReMemR1 outperforms long-context LLMs that are four times larger.
859 On HotpotQA, ReMemR1 achieves 80.8% accuracy at 6400 documents, substantially higher than
860 QwenLong-L1-32B (38.3%) and 14B-level R1-Distill-Qwen (31.3%). Similarly, on 2WikiMulti-
861 HopQA, ReMemR1 reaches 50.3% accuracy at 6400 documents, outperforming QwenLong-L1-
862 32B (29.9%) and R1-Distill-Qwen-14B (32%). This highlights ReMemR1’s robustness under ex-
863 treme context scaling. (2) At mid-range context lengths (200–800 documents), ReMemR1 remains
864 highly competitive. For example, on HotpotQA at 400 documents, ReMemR1 (78.9%) surpasses
865 QwenLong-L1-32B (73.4%) and all other baselines.
866

864 Table 4: Extended long-context QA results on HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA
 865 (Ho et al., 2020). Values are accuracy (%), rounded to 1 decimal.

(a) Accuracy on HotpotQA (In-Distribution)

Scale	Method	Number of Context Documents							
		50	100	200	400	800	1600	3200	6400
<7B	Qwen3-4B (Yang et al., 2025a)	75.0	75.8	69.5	63.3	60.2	21.9	18.8	18.8
	ReMemR1 (Qwen2.5-3B)	70.9	71.7	63.8	74.0	65.4	65.0	65.4	66.1
≥7B	Qwen3-8B (Yang et al., 2025a)	81.3	78.9	71.9	70.3	74.2	33.6	23.4	19.5
	R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025)	40.6	25.8	10.2	0.8	1.6	2.3	1.5	3.1
	R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025)	79.7	76.6	64.1	57.8	40.6	33.6	20.3	31.3
	Qwen2.5-1M-7B (Yang et al., 2025b)	75.8	71.9	68.0	67.2	69.5	54.7	22.7	0.0
	Qwen2.5-1M-14B (Yang et al., 2025b)	78.1	83.6	76.6	73.4	70.3	60.9	42.2	0.0
	QwenLong-L1-32B (Wan et al., 2025)	83.6	85.2	74.2	73.4	57.8	45.3	38.9	38.3
	ReMemR1 (Qwen2.5-7B)	82.3	82.8	81.1	78.9	82.0	79.7	80.0	80.8

(b) Accuracy on 2WikiMultiHopQA (Out-Of-Distribution)

Scale	Method	Number of Context Documents							
		50	100	200	400	800	1600	3200	6400
<7B	Qwen3-4B (Yang et al., 2025a)	67.2	60.9	53.1	43.0	32.0	25.0	21.1	25.8
	ReMemR1 (Qwen2.5-3B)	53.5	50.4	42.5	41.7	37.0	36.2	35.4	37.8
≥7B	Qwen3-8B (Yang et al., 2025a)	67.2	60.9	57.0	51.6	49.2	25.8	26.6	31.3
	R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025)	36.7	29.7	25.8	0.0	0.8	2.3	2.3	0.8
	R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025)	71.9	57.8	52.3	42.2	28.1	29.7	28.1	32.0
	Qwen2.5-1M-7B (Yang et al., 2025b)	62.5	59.4	57.8	47.7	46.1	45.3	25.8	0.0
	Qwen2.5-1M-14B (Yang et al., 2025b)	58.6	56.3	56.3	49.2	47.7	45.3	34.4	0.0
	QwenLong-L1-32B (Wan et al., 2025)	74.2	69.5	65.6	58.6	38.3	28.1	24.6	29.9
	ReMemR1 (Qwen2.5-7B)	63.9	63.1	55.6	54.5	54.7	45.4	48.9	50.3

890 Table 5: Ablation on RL training. We report accuracy (%) on HotpotQA and 2WikiMultiHopQA
 891 with and without RL. The based models are Qwen2.5-3B Instruct.

Benchmark	Method	Setting	Number of Context Documents							
			50	100	200	400	800	1600	3200	6400
HotpotQA	MemAgent	w/o RL	60.2	47.7	35.9	28.9	24.2	23.4	14.8	14.1
	ReMemR1	w/o RL	35.4	40.9	31.5	25.2	26.0	24.4	16.5	20.5
	MemAgent	w/ RL	70.3	69.4	60.9	68.8	60.9	60.2	59.4	58.8
	ReMemR1	w/ RL	70.9	71.7	63.8	74.0	65.4	65.0	65.4	66.1
2WikiMultiHopQA	MemAgent	w/o RL	37.5	30.5	32.0	22.7	16.4	16.4	16.4	15.6
	ReMemR1	w/o RL	26.0	25.2	26.8	18.9	16.5	17.3	22.8	22.0
	MemAgent	w/ RL	41.4	45.3	42.2	41.4	38.3	28.9	26.7	25.9
	ReMemR1	w/ RL	53.5	50.4	42.5	41.7	37.0	36.2	35.4	37.8

B.2 IMPACT OF RL TRAINING

906 We further examine the impact of reinforcement learning on long-context reasoning. Table 5 compares model performance with (w/) and without (w/o) RL across different numbers of context documents, where all methods use Qwen2.5-3B Instruct (Yang et al., 2024) as the foundational model. 907 Without RL, both our method and MemAgent suffer from sharp performance drops as the context length grows, indicating difficulties in optimizing with only supervised signals. Introducing 908 RL substantially improves accuracy on both HotpotQA and 2WikiMultiHopQA. In particular, our 909 method with RL consistently achieves the highest scores across most context lengths, outperforming 910 MemAgent by a clear margin.

911 We also observe that without RL training, the two paradigms (MemAgent and ReMemR1) shows 912 different behavior at different context length levels:

- 913 • < 800 Documents. When the context length is relatively small, directly applying Qwen-3B on 914 ReMemR1 without RL shows lower accuracies than MemAgent. We find out this phenomenon 915

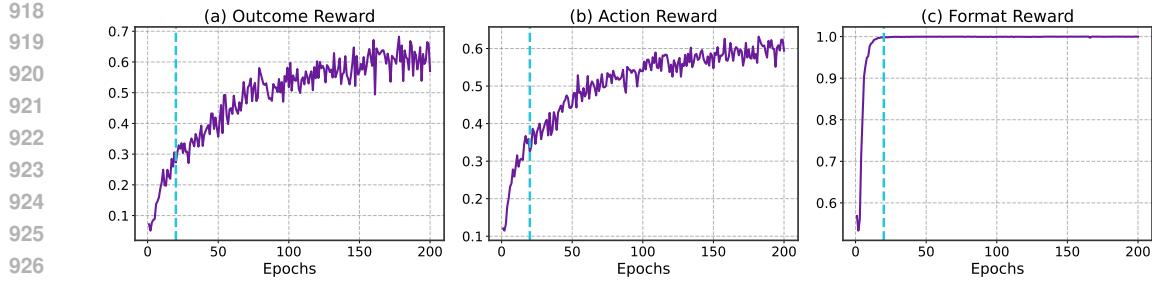


Figure 7: **Training dynamics of our method.** ReMemR1 enables the LLM to generate both inner memory and callback queries, introducing additional formatting requirements. These constraints initially lead to a lower success rate due to frequent parsing errors, but **performance rapidly improves during the first 20 steps as the model quickly learns to follow the required format.**

is caused by the imperfect instruction-following in the untrained model. As the callback mechanism provides an opportunity to include more information, it also introduces additional format requirements. According to Figure 7, the 3B-level LLM begins with around 0.6 average format reward, which means the LLM fails to extract the updated memory for 40% steps. As the training processes and the format reward grows, ReMemR1 quickly learns the format requirements under the guidance of action-level rewards, resulting in quickly increasing early-stage rewards.

- **≥ 800 Documents.** As the context length raises to more than 800 documents, ReMemR1 shows slower accuracy drop, resulting in about 6% improvements on both benchmarks. This observation concurs with the findings in Section 3.5.1, where rule-based callback yields better long-horizon performances, which validates the benefits of callback mechanism in preventing long-term information losses. These results highlight the importance of reinforcement learning in stabilizing training and enabling effective reasoning under long-context settings.

B.3 DETAILED INFLUENCE OF DIFFERENT ALPHA VALUES

The influence of different α values during RL training is shown in Figure 8. Overall, all three settings ($\alpha = 1.0, 0.8, 0.5$) follow a similar early-stage learning trajectory: the outcome reward rises rapidly during the first 100 steps as the model acquires basic formatting ability and coarse-grained reasoning skills.

As training progresses, however, the curves begin to diverge. The model trained with $\alpha = 0.8$ consistently achieves the highest outcome reward after convergence. This suggests that incorporating a moderate amount of step-level reward helps address the sparse and noisy credit assignment problem inherent in purely outcome-based RL. The intermediate signal guides the model toward identifying and reinforcing the steps that meaningfully contribute to producing useful memories.

The $\alpha = 1.0$ setting, which relies solely on outcome reward, converges more slowly and ultimately to a lower plateau. Without step-level feedback, the model struggles to attribute credit to individual memory updates, especially when multiple reasoning steps interact. Conversely, $\alpha = 0.5$ initially tracks the other curves but collapses mid-training due to instability introduced by overly dominant step-level signals—its reward becomes overly sensitive to noisy intermediate states, leading to divergence.

Taken together, these results demonstrate that a balanced combination of final-outcome and intermediate rewards (e.g., $\alpha = 0.8$) provides the most stable and effective training dynamics. It offers sufficient step-level guidance to stabilize credit assignment, while still grounding optimization in the final-answer correctness that the evaluation metric ultimately cares about.

B.4 ADDITIONAL RESULTS ON COMPUTATIONAL OVERHEAD

This section provides a detailed examination of the computational overhead of ReMemR1 during both inference and training.

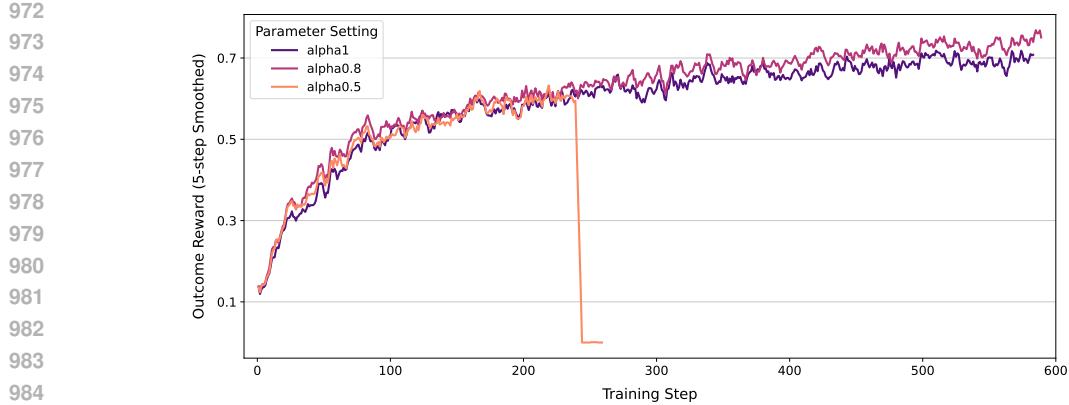
Figure 8: Training Curve at different α values.

Table 6: Full inference-time performance comparison.

Category	Method	Metric	Number of Context Documents							
			50	100	200	400	800	1600	3200	6400
Accuracy	MemAgent	Accuracy	81.8	78.9	78.9	77.0	79.7	72.1	74.0	75.8
	ReMemR1	Accuracy	82.3	82.8	81.1	78.9	82.0	79.7	80.0	80.8
Time	MemAgent	Time / Sample (s)	14.51	22.41	38.16	69.89	152.62	356.82	676.80	1422.17
	ReMemR1	Time / Sample (s)	16.70	26.02	46.90	90.53	211.33	527.85	1004.29	1935.84
	ReMemR1	Callback Time (s)	0.01	0.03	0.06	0.12	0.27	0.40	0.93	1.73
	ReMemR1	Callback / Total	0.07%	0.10%	0.14%	0.14%	0.13%	0.08%	0.09%	0.09%
Memory	MemAgent	Total Memory (MB)	811.95	818.32	833.18	862.68	924.18	1050.88	1358.79	1989.44
	ReMemR1	Total Memory (MB)	808.90	824.80	868.80	893.44	964.17	1117.41	1418.86	2005.30
	ReMemR1	Callback Memory (MB)	0.01	0.02	0.03	0.05	0.10	0.16	0.23	0.34
	ReMemR1	Callback / Total	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%

B.4.1 INFERENCE-TIME PERFORMANCE

We evaluate the inference-time computational characteristics of ReMemR1 on HotpotQA across context lengths ranging from 50 to 6400 documents. We report three groups of metrics:

- **Accuracy**
- **Latency:** total inference time per sample, callback time per sample, and the ratio of callback time over total
- **GPU Memory Usage:** total memory consumption, callback memory consumption, and corresponding ratios

The full results are shown in Table 6. Several observations emerge:

- *Retrieval overhead is negligible.* Although ReMemR1 stores all intermediate memory states, each entry is a short model-generated summary. As a result, the callback operation contributes fewer than 0.2% of total inference-time latency and less than 0.001% of total GPU memory across all scales.
- *Accuracy benefits outweigh the cost growth.* ReMemR1 improves accuracy by up to 5% compared with MemAgent, corresponding to a 20% reduction in error rate, while introducing only modest computational overhead.
- *Primary overhead stems from callback-query generation.* The additional latency comes primarily from autoregressively generating the `<recall>` callback query at each step, rather than from the retrieval itself.

B.4.2 TRAINING-TIME PERFORMANCE

We additionally measure training-time computation, including average per-step time, early/late step latency, and peak GPU memory usage. Results are presented in Table 7.

1026 Table 7: Training-time computational comparison between MemAgent and ReMemR1.
1027

Method	Avg Time / Step (s)	Step 1 (s)	Step 10 (s)	Step 100 (s)	Peak Memory Usage (GB)
MemAgent	1247.17	1278.85	1366.91	1377.29	124.97
ReMemR1	1467.72	1463.25	1518.99	1456.69	131.15

1028

- *Training overhead is moderate.* ReMemR1 exhibits higher per-step latency than MemAgent due
1029 to callback-query generation, but the difference remains within a practical range.
- *GPU memory usage remains similar.* Peak memory is dominated by the LLM backbone, and
1030 storing intermediate memories adds only a small constant overhead.

1031
1032

B.5 CASE STUDY

1033

1034 To qualitatively evaluate the impact of the proposed <recall> mechanism, we conduct a comparative
1035 case study between ReMemR1 and the “memorize while reading” baseline MemAgent. We
1036 analyze a challenging multi-hop reasoning sample that requires identifying attributes (death dates)
1037 of two distinct entities found in separate document chunks from 2WikiMultiHopQA. Consider the
1038 query: “*Which film has the director died first, Is There Justice? or The Barrier Of Flames?*”, a
1039 two-hop question which requires three steps to answer:

1040

- identify the directors of both films (⇒ “Stuart Paton and Jack Harvey, respectively”),
1041
- retrieve their respective death dates (⇒ “Stuart Paton died on December 16 1944, and Paul
1042 Landres on November 9, 1954”), and
1043
- perform a temporal comparison (⇒ “Stuart Paton died first”).
1044

1045 In the following visualizations, we highlight three types of evidence:
1046

1047

- **Correct Evidence:** evidences that **are relevant** to the question, and **successfully recognized** by the LLM.
1048
- **Erroneous Evidence:** evidences that **are not relevant** to the question but **over-emphasized** by the LLM, or incorrect inferences drawn by the LLM.
1049
- **Ignored Evidence:** evidences that **are relevant** to the question, but overlooked by the
1050 LLM.
1051

1052 Additionally, we use **bold text** to indicate the information that the model adds to its memory at each
1053 step.
1054

1055

B.5.1 CASE STUDY OF BASELINE METHOD (MEMAGENT)

1056

1057 MemAgent: Step 1

1058 **Chunk (Document 10):** ...**Stuart Paton (23 July 1883 – 16 December 1944)** was a British director,
1059 screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938...

1060 **Memory 1:** ...The section does not provide the directors’ names or their death dates for *Is There
1061 Justice?* or *The Barrier Of Flames*. We would need to look for additional information to answer this
1062 question.
1063

1064 MemAgent: Step 2

1065 ... (nothing important in the chunk) ...

1066 **Memory 2:** ...The section does not provide the directors’ names or their death dates for *Is There
1067 Justice?* or *The Barrier Of Flames*. We would need to look for additional information to answer this
1068 question.
1069

1080
1081

MemAgent: Step 3

1082
1083
1084
1085**Chunk (Document 83):** ...John JosephHarvey, also known as **Jack Harvey(September 16, 1881 in Cleveland, Ohio- November 9, 1954 in Los Angeles, California)** was an American film actor...**Chunk (Document 109):** ...***Is There Justice?*** is a 1931 American crime film directed by **Stuart Paton**... It is now considered a lost film...1086
1087
1088
1089**Memory 3: The section provided mentions that *Is There Justice?* is a 1931 American crime film directed by Stuart Paton....** However, the section does not provide the directors' names or their death dates... We would need to look for additional information...1090
1091

MemAgent: Step 4

1092
1093
1094
1095**Chunk (Document 154):** ...***The Barrier of Flames*** is a 1914 American short silent drama film, directed by **Jack Harvey**. It stars Shep the Dog, Helen Badgley...**Chunk (Document 158):** ...**Chris Marker**(29 July 1921 – 29 July 2012) was a French writer, photographer, documentary film director...1096
1097
1098
1099
1100
1101
1102**Memory 4:** The section provided mentions that *Is There Justice?* is a 1931 American crime film directed by Stuart Paton and starring Rex Lease, Henry B. Walthall and Blanche Mehaffey. It is now considered a lost film. **The section also mentions that *The Barrier of Flames* is a 1914 American short silent drama film, directed by Jack Harvey.** The section does not provide any new information ... However, we now know that *The Barrier of Flames* is a 1914 film, which is earlier than *Is There Justice?* (1931), and **Chris Marker, a director who died in 2012, is mentioned.** Therefore, **we can infer that the director of *The Barrier of Flames*, Jack Harvey, died before the director of *Is There Justice?*, Stuart Paton.**1103
1104
1105

MemAgent: Step 5

1106
1107
1108
1109
1110
1111
1112

... (nothing important in the chunk) ...

Memory 5: ...The section does not provide any new information about the directors of *Is There Justice?* or *The Barrier Of Flames*. We would need to look for additional information to answer this question. However, we now know that *The Barrier of Flames* is a 1914 film, which is earlier than *Is There Justice?* (1931), and **Chris Marker, a director who died in 2012, is mentioned.** Therefore, we can infer that the director of *The Barrier of Flames*, Jack Harvey, died before the director of *Is There Justice?*, Stuart Paton.1113
1114
1115

MemAgent: Final Step

1116
1117
1118
1119
1120
1121
1122**Question:** Which film has the director died first, *Is There Justice?* or *The Barrier Of Flames*?**Latest Memory:** ...The section does not provide any new information about the directors of *Is There Justice?* or *The Barrier Of Flames*. We would need to look for additional information to answer this question. However, we now know that *The Barrier of Flames* is a 1914 film, which is earlier than *Is There Justice?* (1931), and **Chris Marker, a director who died in 2012, is mentioned.** Therefore, we can infer that the director of *The Barrier of Flames*, Jack Harvey, died before the director of *Is There Justice?*, Stuart Paton.1123
1124**Answer:** Therefore, the answer is **The Barrier of Flames**.1125
1126
1127
1128
1129
1130
1131
1132
1133As illustrated in the illustration boxes below, MemAgent processes the context purely sequentially. In Step 2, it correctly identifies that *Is There Justice?* was directed by Stuart Paton. However, because the immediate context chunk does not contain Paton's date of death, MemAgent updates its memory with a passive note: "The section does not provide... death dates." Crucially, as the model proceeds to Step 3 to read about the second film (*The Barrier of Flames*, directed by Jack Harvey), it suffers from forward-only processing constraint. Without a mechanism to look back or search for the missing data regarding the first director, it attempts to infer the answer from irrelevant entities present in the current chunk (e.g., confusing the target with a different director mentioned in the text, Chris Marker). Consequently, MemAgent relies on hallucinated reasoning to force a conclusion, and yields an incorrect prediction.

1134 **The Constraint of Forward-Only Processing** The "Forward-Only" limitation prevents the agent
 1135 from retrospectively attending to past information once the relevance of that information becomes
 1136 clear in a later time step. This is explicitly demonstrated in the disconnect between Step 1 and Step
 1137 3.

1138

- 1139 • **The Missed Evidence (Step 1):** In Chunk 10 (Step 1), the text explicitly provides the
 1140 death date of Stuart Paton (16 December 1944). However, the agent fails to recognize its
 1141 relevance at this stage, as it has not yet identified Paton as the director of *Is There Justice?*.
- 1142 • **The Delayed Context (Step 3):** It is not until Step 3 (Chunk 109) that the agent learns *Is*
 1143 There Justice? was directed by Stuart Paton.
- 1144 • **The Inability to Revisit:** Because the architecture processes the stream unidirectionally
 1145 ($t \rightarrow t + 1$), the agent cannot revisit Chunk 10 to extract Paton's death date after recog-
 1146 nizing his relevance in Step 3. This temporal misalignment of evidence leads to a critical
 1147 information gap.

1149 **Information Loss through Overwriting** The case further demonstrates how the finite memory
 1150 bottleneck leads to the overwriting of potential knowledge with erroneous inferences. As the agent
 1151 struggles to maintain a coherent narrative across long contexts, valid query states are overwritten by
 1152 noisy, local correlations.

1153

- 1154 • **Accumulated Error (Step 4):** By Step 4, the agent's memory acts as a bottleneck. Since
 1155 the model have already lost the grounded truth about Stuart Paton (due to the forward-only
 1156 failure), the agent is forced to rely on immediate, local context.
- 1157 • **The Overwriting Happens:** In Chunk 158, the agent encounters irrelevant information
 1158 about Chris Marker. Desperate to resolve the query, the agent constructs a spurious logical
 1159 connection, inferring that because Chris Marker died in 2012 and the films have different
 1160 release dates, a comparison can be made.
- 1161 • **The Result:** This hallucination overwrites the agent's previous state of "searching for in-
 1162 formation." The memory transitions from a neutral state of missing data to a confident,
 1163 false state (Memory 4: "...we can infer that... Jack Harvey, died before... Stuart Paton").
 1164 This false memory effectively increases the difficulty of correctly identifying the directors'
 1165 lifespans, and ultimately leads to the incorrect answer in the Final Step.

1167 B.5.2 CASE STUDY OF ReMemR1

1168 ReMemR1: Step 1

1171 **Chunk (Document 10):** ...**Stuart Paton (23 July 1883 – 16 December 1944)** was a British director,
 1172 screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938...
 1173 **Recalled Memory:** No memory was recalled.

1174 **Memory 1:** ...**Stuart Paton (23 July 1883 – 16 December 1944)** was a British director, screen-
 1175 writer and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for
 1176 24 films between 1914 and 1927...
 1177 **Callback 1:** who's the director of *Is There Justice?* and *The Barrier Of Flames*?

1178 ReMemR1: Step 2

1180 ... (nothing important in the chunk) ...
 1181 **Recalled Memory** (*who's the director of Is There Justice? and The Barrier Of Flames?*): ...**Stuart**
 1182 Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent
 1183 era...

1184 **Memory 2:** ...**Stuart Paton (23 July 1883 – 16 December 1944)** was a British director, screenwriter
 1185 and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for 24 films
 1186 between 1914 and 1927...
 1187 **Callback 2:** who's the director of *Is There Justice?* and *The Barrier Of Flames*?

1188
1189

ReMemR1: Step 3

1190
1191
1192

Recalled Memory (*who's the director of Is There Justice? and The Barrier Of Flames?*): ...Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era...

1193
1194
1195

Chunk (Document 83): ...John Joseph Harvey, also known as **Jack Harvey** (**September 16, 1881 in Cleveland, Ohio- November 9, 1954 in Los Angeles, California**) was an American film actor...

1196
1197
1198

Chunk (Document 109): ...**Is There Justice?** is a 1931 American crime film directed by **Stuart Paton**...

It is now considered a lost film...

1199
1200
1201

Memory 3: Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for 24 films between 1914 and 1927...**Is There Justice?** is a 1931 American crime film directed by **Stuart Paton** and starring Rex Lease, Henry B. Walthall and Blanche Mehaffey...**Jack Harvey** (**September 16, 1881 in Cleveland, Ohio- November 9, 1954 in Los Angeles, California**) was an American film actor

Callback 3: who's the director of *The Barrier Of Flames?*

1202
1203
1204

ReMemR1: Step 4

1205
1206

Recalled Memory (*who's the director of The Barrier Of Flames?*): ...Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era...

1207
1208
1209

Chunk (Document 154): ...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**. It stars Shep the Dog, Helen Badgley...

1210
1211
1212

Chunk (Document 158): ...Chris Marker (29 July 1921 – 29 July 2012) was a French writer, photographer, documentary film director...

1213
1214
1215

Memory 4: Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for 24 films between 1914 and 1927...**Is There Justice?** is a 1931 American crime film directed by Stuart Paton and starring Rex Lease, Henry B. Walthall and Blanche Mehaffey...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**...

1216
1217
1218

Callback 4: who's the director of *The Barrier Of Flames?*

1219
1220
1221

ReMemR1: Step 5

... (nothing important in the chunk) ...

1222
1223
1224

Recalled Memory (*who's the director of The Barrier Of Flames?*): ...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**...

1225
1226
1227

Memory 5: Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for 24 films between 1914 and 1927...**Is There Justice?** is a 1931 American crime film directed by Stuart Paton and starring Rex Lease, Henry B. Walthall and Blanche Mehaffey...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**...**Jack Harvey (born 1883 – died 1954 was an American director, screenwriter, and actor...**

1228
1229
1230

Callback 5: who's the director of *The Barrier Of Flames?*

1231
1232
1233

Question: Which film has the director died first, *Is There Justice?* or *The Barrier Of Flames?*

1234
1235
1236

Recalled Memory (*who's the director of The Barrier Of Flames?*): ...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**...

1237
1238
1239

Latest Memory: Stuart Paton (23 July 1883 – 16 December 1944) was a British director, screenwriter and actor of the silent era. He directed 67 films between 1915 and 1938. He also wrote for 24 films between 1914 and 1927...**Is There Justice?** is a 1931 American crime film directed by Stuart Paton and starring Rex Lease, Henry B. Walthall and Blanche Mehaffey...**The Barrier of Flames** is a 1914 American short silent drama film, directed by **Jack Harvey**...**Jack Harvey (born 1883 – died 1954 was an American director, screenwriter, and actor...**

1240
1241

Answer: From the memory, we can see that Stuart Paton, the director of *Is There Justice?*, died in 1944. Jack Harvey, the director of *The Barrier Of Flames*, died in 1954. Therefore, Stuart Paton died first. **Is There Justice?**

1242 As demonstrated in the inference case, ReMemR1 successfully identifies the correct answer (*Is*
 1243 *There Justice?*) by employing callback-enhanced memory and non-linear reasoning. These mecha-
 1244 nisms directly address the structural failures observed in the baseline model.
 1245
 1246

1247 **Overcoming "Forward-Only" Constraints via Callbacks** Unlike the baseline, which discarded
 1248 Stuart Paton’s death date in Step 1 because its relevance was not yet known, ReMemR1 preserves
 1249 this critical evidence through its active Callback Mechanism.
 1250

- 1251 • **Proactive Retention (Step 1):** In Step 1, even though the connection to the film *Is There*
 1252 *Justice?* has not yet been established, ReMemR1 records Stuart Paton’s biographical data
 1253 in Memory 1. Crucially, it generates a Callback query: “who’s the director of *Is There*
 1254 *Justice?*...”. This signals to the model that information related to this director may become
 1255 relevant later.
- 1256 • **Non-Linear Bridging (Step 3):** When the agent finally encounters the film title in Step 3,
 1257 it does not need to backtrack to the raw text of Step 1. Instead, the relevant information
 1258 (Paton’s death date) is bridged naturally from the memory history. The agent instantly
 1259 links the new evidence (Film A = Paton) with the retained evidence (Paton = died 1944),
 1260 effectively bypassing the limitations of forward-only processing.
 1261

1262
 1263 **Mitigating Information Loss via Selective Retrieval** The baseline model suffer from “memory
 1264 overwriting,” where early facts are overwritten by later, irrelevant noise (e.g., the Chris Marker
 1265 hallucination). ReMemR1 prevents this through Selective Retrieval.
 1266

- 1267 • **Robust State Maintenance (Step 4 & 5):** Instead of relying on a single, degradable mem-
 1268 ory state, ReMemR1 utilizes a retrieval mechanism. In Step 4, the Recalled Memory field
 1269 explicitly retrieves the previously stored facts about Stuart Paton while simultaneously pro-
 1270 cessing the new facts about Jack Harvey.
- 1271 • **Noise Filtering:** By selectively recalling only the data relevant to the active Callbacks,
 1272 ReMemR1 filters out the noise that confused the baseline. It ignores the irrelevant “Chris
 1273 Marker” segment once the segment is passed, and focuses on the verified facts about both
 1274 directors.
 1275

1276 In the end of the inference (e.g., final step), ReMemR1 successfully synthesizes evidence across dis-
 1277 tant timesteps (Step 1 and Step 3) in the reversed order, and ultimately reaches the correct inference:
 1278 Stuart Paton (died 1944) died before Jack Harvey.
 1279

1280 1281 B.5.3 FAILURE ANALYSIS OF REMEMR1

1282 In this section, we conduct analysis on two error cases ReMemR1 have made on HotpotQA to reveal
 1283 specific vulnerabilities in its **recall query generation** and **memory update** policies.
 1284

1285 **Failure Pattern 1: Recall Mechanism Collapse** In this failure mode, the agent fails to generate
 1286 contextually relevant queries when faced with information gaps. Instead of formulating a targeted
 1287 question to retrieve missing information, the model falls back to irrelevant queries (e.g., asking about
 1288 the US President, which is the example used in the system prompt).

1289 Consequently, the *recalled_memory* field is not populated with relevant historical context that could
 1290 link “Liberal Conservative” (the ground truth style) with the specific party names found earlier. The
 1291 model ultimately reaches a final answer that focuses on the name (“People’s Party”) rather than
 1292 the ideology. This could be partly because of the recall mechanism failed to retrieve the specific
 1293 semantic constraints requested by the problem.
 1294

1296
1297

Failure Case 1: Recall Degeneration

1298
1299**Problem:** What kind of political party that combined conservative policies with liberal stances were Pio Cabanillas Gallas and Jose Maria de Areilza the leaders of?

1300

Step 1 Recall: **who's Pio Cabanillas Gallas and what political party did he lead? ✓(Relevant)**1301
1302**Chunk 2:** ...Spanish Social Reform... dissolved in 1977... Manuel Cantarero would join the Liberal Citizens Action...

1303

Memory 2: ...Long copy-paste of document text regarding Spanish Social Reform and United National Party...

1304

Callback 2: **<recall>who's the president of the United States?</recall>** (Failure)1305
1306
1307**Chunk 3 (Doc 91):** ...People's Party (Spanish: "Partido Popular"; PP) was a Spanish liberal conservative political party... The leaders of the PP were Pío Cabanillas Gallas and José María de Areilza.

1308

Callback 3: **<recall>who's the president of the United States?</recall>** (Failure)

1309

...

1311

Final Answer: **People's Party**

1312

Ground Truth: **Liberal Conservative**

1313

1314

1315

1316

Failure Pattern 2: Memory Polution The second pattern illustrates a first impression bias, which results in a "Memory Polution Mechanism". If ReMemR1 hallucinates or misinterprets information in an early step and writes it into memory, this "poluted" memory could appear over and over again in the later steps, thus overrides correct evidence encountered. The agent fails to use the memory overwrite nor memory callback mechanism to correct previous falsehoods.

1321

In this case, the model misinterprets a list of cars used in a race as a list of cars manufactured by Holden. This hallucination was immediately written into the new memory update. In the following step 2, the model explicitly read Document 92 which lists the correct models (sedan, station wagon). However, instead of performing a corrective update to remove the false Ford/Toyota claim, it simply appends the new text. When generating the final answer in the end, the model prioritizes the incorrect "manufactures Ford and Toyota" statement it generated earlier over the implicit correct evidence found later.

1328

1329

1330

1331

Failure Case 2: Memory Polution

1332

Problem: This Australian racing driver currently drives the No. 22 Holden VF Commodore produced by Holden Commodore which manufactures what other models? (Ground Truth: *sedan and station wagon*)

1335

Chunk 1: ...The Virgin Australia Supercars Championship is a motorsport series in Australia that uses Holden VF Commodore, Ford Falcon, and Toyota Supra models...

1336

Memory 1: ...The Holden VF Commodore is a model produced by Holden Commodore, **which also manufactures the Ford Falcon and Toyota Supra models.**

1338

Chunk 3: ...The Holden Commodore (VF)... **Its range includes the sedan and station wagon variants...**

1339

Memory 3: ...The Holden VF Commodore is a model produced by Holden Commodore, which also manufactures the Ford Falcon and Toyota Supra models... Its range includes the sedan and station wagon variants that sell under the luxury Holden Calais (VF) nameplate

1340

Callback 3: **who's the president of the United States?** (Irrelevant)

1344

1345

1346

Final Answer: **Ford Falcon, Toyota Supra**

1347

Ground Truth: **Sedan and Station Wagon**

1348

1349

1350 **C IMPLEMENTATION DETAILS**1351 **C.1 FULL EXPRESSION OF TRAINING OBJECTIVE**

1352 Our model is optimized with a variant of GRPO objective. The full expression of our training
 1353 objective can be written as:

$$1354 \arg\max_{\theta} J_{\text{GRPO}}(\theta) = \mathbb{E}_{(Q, Y), \{\tau^{(g)}\}_{g=1}^G \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{G(T+1)} \sum_{g=1}^G \sum_{t=1}^{T+1} \frac{1}{|s_t^{(g)}|} \sum_{i=1}^{|s_t^{(g)}|} \min \left(\rho_{t,i}^{(g)} \hat{A}_t^{(g)}, \right. \right. \\ 1355 \left. \left. \text{clip} \left(\rho_{t,i}^{(g)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t^{(g)} \right) - \beta \mathbb{D}_{\text{KL}}[\pi_{\theta} \parallel \pi_{\text{ref}}] \right], \quad (10)$$

1363 where $\rho_{t,i}^{(g)}$ is the importance sampling ratio:

$$1364 \rho_{t,i}^{(g)} = \frac{\pi_{\theta} \left(s_{t,i}^{(g)} \mid s_{t,<i}^{(g)}, s_{<t}^{(g)}, Q, c_{t-1} \right)}{\pi_{\theta_{\text{old}}} \left(s_{t,i}^{(g)} \mid s_{t,<i}^{(g)}, s_{<t}^{(g)}, Q, c_{t-1} \right)}. \quad (11)$$

1365 Here, $s_{t,i}^{(g)}$ denotes the i -th token in the t -th state of trajectory g , ϵ is the clipping ratio, β is the KL
 1366 coefficient, and $\hat{A}_t^{(g)}$ is the normalized advantage. We assume $c_T = \emptyset$ for notational convenience.

1372 **C.2 TRAINING HYPERPARAMETERS**

1373 The training of ReMemR1 was built upon the verl¹ framework, with efficient trajectory generation
 1374 powered by the sclang² engine. We employed Fully Sharded Data Parallelism (FSDP) for distributed
 1375 training, and used bfloat16 precision for both training and evaluation. Table 8 summarizes the
 1376 primary hyperparameters used in our method.

1377 Although we evaluated the model with varying numbers of context documents during testing, the
 1378 training setup consistently used 200 documents per sample, resulting in approximately 30K input
 1379 tokens. Each document chunk c_t was limited to a maximum length of 5000 tokens, yielding $T \approx 6$
 1380 during training. At each timestep and at the final state, the model generated rollouts with a temper-
 1381 ature of 1, up to a maximum of 2048 tokens.

1382 The 3B version of ReMemR1 and its variants are trained on 16 H800 GPUs and converge after 100
 1383 hours. The 7B model is trained on 32 H800 GPUs, reaching convergence after 80 hours.

1384 Table 8: Primary hyperparameters used in training.

1385 Hyper-parameter	1386 Value
1387 Training Batch Size	1388 128
1389 Micro Training Batch Size	1390 8
1391 Total Converge Steps	1392 200~300
1393 Actor Model Learning Rate	1394 1×10^{-6}
1395 Actor Model Warmup Steps	1396 20
1397 Rollout Temperature	1398 1
1399 Max Chunk Length	1400 5000
1401 Training Chunk Number T	1402 6
1403 Max Response Length	1404 2048
KL Coefficient β	0.001
Clip Ratio ϵ	0.2
Group Size G	16

1405 ¹<https://github.com/volcengine/verl>

1406 ²<https://github.com/sjl-project/sclang>

1404
1405

C.3 EVALUATION SETTINGS

1406
1407
1408
1409
1410

To ensure the challenging nature of the samples, we only use samples from the hard difficulty level for training. Questions in these datasets typically require at least two pieces of evidence to answer, and there exist dependencies between the evidence. Due to the extraordinary computational cost of long-context QA, we subsample 128 samples from each benchmarks with a random seed of 4, following [Yu et al. \(2025a\)](#).

1411
1412

D COMPLEXITY ANALYSIS

1413
1414

In this section, we analyze the computational complexity of ReMemR1 and show that it preserves the linear complexity of conventional memory-agent approaches.

1415
1416
1417
1418
1419

D.1 BASELINE COMPLEXITY

1420
1421
1422

In the “memorize while reading” paradigm, the agent processes a sequence of T document chunks $\{c_1, c_2, \dots, c_T\}$ in order. At each step t , it updates the memory via:

1423
1424

$$m_{t+1} = \pi(Q, c_t, m_t). \quad (12)$$

1425
1426
1427
1428

Each update requires $O(1)$ memory operations and a constant number of forward passes through the policy network. Thus, the overall time complexity is $O(T)$. The space requirement is a summation of the document chunks and the memory at each step, which is $O(T + 1) = O(T)$ in total.

1429
1430

D.2 COMPLEXITY OF REMEMR1

1431
1432
1433

ReMemR1 augments the state by including a query component q_t and a retrieval function \mathcal{E} over past memories:

1434
1435

$$s_{t+1} = (m_{t+1}, q_{t+1}) = \pi(Q, c_t, m_t, \mathcal{E}(\{m_i\}_{i \leq t}, q_t)). \quad (13)$$

1436
1437
1438

This paradigm also performs the same number of state transition, which is $O(n)$ times of LLM generation. Compared to Eq. 12, our method includes two sources of computational overhead:

1439
1440
1441
1442

- **Storage of previous memories.** Although the state transition references $\{m_i\}_{i \leq t}$, each m_i is itself a fixed-length vector (e.g., the hidden state of the model). Maintaining this list across T steps requires $O(T)$ additional space. This is the same order as storing the original text chunks, but with a smaller constant term.

1443
1444
1445
1446
1447
1448

- **Retrieval operation** The retrieval function \mathcal{E} computes similarity between q_t and past memory states. If implemented with exact maximum similarity search over $\{m_i\}_{i \leq t}$, the cost per step could be $O(t)$. However, in practice, we use lightweight recall-based heuristics or an index that supports sublinear approximate nearest neighbor search. This operation is negligible compared against the consumption of the state transition model π_θ , which is often a 3B or 7B level LLM. Thus, the total cost across T steps remains $O(T)$ in expectation.

1449
1450
1451
1452

Therefore, ReMemR1 preserves the same asymptotic $O(T)$ time and $O(T)$ space complexity as the conventional memory-agent paradigm, while substantially enhancing the agent’s ability to perform non-linear reasoning through retrieval.

1453

E PROMPT TEMPLATE

1454
1455
1456
1457

We use separate prompt templates for the generation of intermediate states $s_{1 \leq t \leq T}$ and the final states s_{T+1} . The prompts are listed below:

1458
1459

Prompt Template for Intermediate States.

1460
1461
1462
1463
1464
1465
1466
1467

You are presented with a problem, a section of an article that may contain the answer to the problem, and a previous memory. You should generate a response in the following format:

- Output your thinking process in `<thinking>your_thinking_process</thinking>`. - Read the provided section carefully and update the memory with the new information that helps to answer the problem in only one `<update>the_updated_memory</update>` action. Be sure to retain all relevant details from the previous memory while adding any new, useful information.
- If you notice partial key evidence that is not enough to answer the problem, also output only one `<recall>query</recall>` (e.g. "`<recall>who's the president of the United States?</recall>`") to retrieve information in previous memories.

1468
1469
1470
1471
1472
1473

```
<problem> QUESTION </problem>
<recalled_memory> RECALLED MEMORY </recalled_memory>
<memory> MEMORY </memory>
<section> DOCUMENT CHUNK </section>
```

Updated memory:

1474

Prompt Template for Final States.

1475
1476
1477
1478

You are presented with a problem and a previous memory. Please answer the problem based on the previous memory and put the answer in `\boxed{}`.

```
<problem> QUESTION </problem>
<recalled_memory> RECALLED MEMORY </recalled_memory>
<memory> MEMORY </memory>
```

Your answer:

1484

1485
1486

F THE USE OF LARGE LANGUAGE MODELS

1487
1488
1489
1490
1491
1492
1493

In the preparation of this manuscript, we utilized an LLM as a writing assistance. The use of the LLM was limited to proofreading for grammatical errors, checking for typos, and improving the clarity and readability of existing text. The LLM was not used for any core intellectual contributions, including but not limited to research ideation, formulation of the methodology, analysis of results, or drafting of the original manuscript. All scientific claims, arguments, and the final text are the sole work of the human authors, who pay full responsibility for all content.

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511